
Mining Configurable Enterprise Information

Systems

M.H. Jansen-Vullers a W.M.P. van der Aalst a M. Rosemann b

aDepartment of Technology Management, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

bFaculty of Information Technology, Queensland University of Technology, 126
Margaret Street Brisbane Qld 4000, Australia.

Abstract

Process mining is the extraction of a process model from system logs. These logs
have to meet minimum requirements, i.e. each event should refer to a case and a task.
Many system logs do not meet these requirements, and therefore it is not possible
to use process mining for process optimization or delta analysis. This paper shows
an alternative process mining procedure for logs containing data on the frequency
that process steps have been executed. To be able to mine such logs we apply
Configurable Event-driven Process Chains (C-EPCs). If a C-EPC is available, we
propose a method to mine the process. If only a classical reference model (i.e. an
EPC) is available, we propose a method to first derive the C-EPC through mining
and then analyse the process. This approach enables us to do process mining in the
context of ERP systems such as SAP R/3.

Key words: Data and Process Re-engineering, Data Mining, Knowledge
Discovery, Reference Models, Enterprise Information Systems

1 Introduction

Many organizations are confronted with problems resulting from badly imple-
mented enterprise information systems. They observe that the system frus-
trates the normal way of handling processes. Maybe the system is not able to
support the process as it should be carried out, or maybe the business process

Email addresses: m.h.jansen-vullers@tm.tue.nl (M.H. Jansen-Vullers),
w.p.m.v.d.aalst@tm.tue.nl (W.M.P. van der Aalst), m.rosemann@qut.edu.au
(M. Rosemann).

Preprint submitted to Elsevier Preprint 27 April 2004

as implemented in the enterprise information system is not known or accepted
by the employees [30]. As a result, the actual business process may diverge
from the processes as implemented in the enterprise information system. To
improve such a situation, it would be helpful to know the actual steps when
carrying out a particular process. Process mining can do this as the actual
process is taken as a starting point [5].

Other areas where process mining might contribute are reconfiguration or
upgrades of configurable enterprise information systems. When an enterprise
information system is in use for some time, typically quite a number of updates
and extensions have been added. Documentation, if present at all, is outdated.
When mining the actual processes from the old system, the result can be
used to implement the new system, without requiring too much effort from
scarce resources [28]. Apart from finding the actual process or making a delta
analysis, process mining allows for performance analysis by explicitly defining
the executed processes.

Process mining is well-described in literature, see e.g. [5,6,9,15–17,24,25,36–
38,42–44]. Process mining requires logs from enterprise information systems
such as workflow management systems, case-handling systems and Enterprise
Resource Planning Systems. These logs may record several attributes, e.g. the
case that is being handled, the task and event types, the user that carried out
the task etc. It is not necessary that all information is available in the log, but
the reference to both cases and tasks is required.

This paper focuses on mining actual processes from incomplete logs, this is
without both case and task reference. An example of such an incomplete log is
a frequency profile, based on the frequency a transaction has been executed,
e.g. task A has been carried out 100 times and task B 40 times (see left-
hand side of Figure 1). As a result, pure process mining, this is without any
prior information about the process structure, is not possible. We need some
additional information in the form of process models such as best practices
or reference models [39,40]. We discuss how reference models (especially C-
EPCs [32]) can contribute to mine actual processes. Our first research question
focuses on the transformation process of a C-EPC and a frequency profile into
a configuration and a process model. In Figure 1 this process is illustrated.

However, if such a C-EPC is not available, we could use a more general ref-
erence model, such as an EPC. Together with the frequency profile, a C-EPC
and the actual process model can be determined. The second research question
focuses on this transformation step. It should be taken into account that the
derived C-EPC is merely based on one particular log and might differ from
C-EPCs based on other logs.

An extension of the previous approach is to take n logs, resulting in a set of

2

Task frequency

A 100

B 40

C 60

D 100

Frequency profile and C-EPC configuration and process model

c
1

c
2

c
3

c
4

B C

A

V

V

V

V

D

conf
fD

=ON

conf
c2

=XOR

conf
c3

=XOR

c
1

c
2

c
3

c
4

B C

A

X

X

V

V

D

Fig. 1. Process mining based on a frequency profile and an EPC (for elaboration of
this example we refer to Section 4)

n C-EPCs. Subsequently, this set of C-EPCs can be consolidated into a more
general and more accurate C-EPC. This is the focus of the third research
question. The C-EPC can be improved by rules, e.g. a particular configuration
setting in one part of the model implies a particular setting in another part
of the model.

Ultimately, the C-EPC can be extended by guidelines. Apart from the ref-
erence model and n logs, additional meta data is required, such as cost and
performance data of the process, size of the company or the industry sector.
Another extension can be the use of additional data in the log (time and
resource of each event is known).

The paper is structured as follows. In the next section we present the back-
ground of the research: process mining, its applicability to configurable en-
terprise information systems and the role reference models might play mining
these systems. In our approach, we make extensive use of reference models,
and especially EPCs and C-EPCs. The semantics of these modelling languages
should be defined unambiguously, therefore EPCs and C-EPCs are formally
described in Section 3. Readers already familiar with this material could skip
this section. When elaborating the first research question, taking a C-EPC
and a frequency profile as a starting point (Section 4), we will show that we
can apply existing software packages to support solving our mining problems;
these software packages are based on Integer Programming techniques. In Sec-
tion 5 we reformulate our approach in such a way that it indeed corresponds
to an Integer Programming problem. When elaborating the other two research
questions, i.e. starting from an EPC and one respectively n frequency profiles
(Section 6) we will show that the solutions are variants of the solution of the
first research question. This paper concludes with a section on related work,
a brief summary and future work.

3

2 Background

2.1 Process Mining

During the last decade explicit process concepts (e.g. workflow models) have
been applied in many enterprise information systems [3,12,20,23]. Workflow
Management (WFM) Systems such as Staffware, IBM MQ-Series, COSA, etc.
offer generic modelling and enactment capabilities for structured business pro-
cesses. By making graphical process definitions, i.e. models describing the life-
cycle of a particular case (process instance) in isolation, one can configure
these systems to support business processes. Many other systems make use of
explicit process models. Consider for example Enterprise Resource Planning
systems (e.g. SAP, Peoplesoft, Baan and Oracle) or Customer Relationship
Management software (Siebel), etc. As pointed out in the introduction, the
actual collection of runtime process execution data from such Enterpise Infor-
mation Systems may contribute to diagnoses, design and redesign of Enterpise
Information Systems and business processes. The collection of runtime data
and the analysis of these data is called process mining.

For this mining process, the data logs of an enterprise information system
are processed by a mining tool, e.g. EMiT, Little Thumb, Process Miner, etc.
[5]. The mining tools are generic, i.e. can be applied to all kinds of business
processes and all kinds of enterprise information systems. These tools require a
common XML format for storing and exchanging the logs. We have developed
such a format, which is described by a document type definition (DTD) of an
XML-schema (both can be downloaded from www.processmining.org). Figure
2 shows that the XML-format connects the transactional systems such as
workflow systems, ERP systems, CRM systems etc. The XML-format is then
used as input for the mining tools. The goal of using a single format is to reduce
the implementation effort and to promote the use of the mining concepts in
multiple contexts.

Application of the mining tools require logs in the specified format. Further-
more, we assume that (1) each event refers to a task or well-defined step, (2)
each event refers to a case or instance and (3) events are totally ordered. If
this is available, mining algorithms can be used to derive models describing
the underlying process. The minimum information (i.e. task and case) may be
complemented by resource, time, event type etc., thus allowing for the discov-
ery of organizational structures, social networks and performance indicators.

Figure 3 shows an example log of a process from the workflow management
system Staffware. This log contains the required data case-id and task-id, and
additionally the event type (the task is scheduled, processed or released), the

4

Staffware

InConcert

MQ Series

workflow management systems

FLOWer

Vectus

Siebel

case handling / CRM systems

SAP R/3

BaaN

Peoplesoft

ERP systems

common XML format for storing/

exchanging workflow logs

EMiT
Little

Thumb

mining tools

InWoLvE
Process

Miner

Exper-

DiTo

Fig. 2. The XML-format as solver/system independent medium (available from
www.processmining.org)

user and a time stamp.

Case 3
Step Description Event User yyyy/mm/dd hh:mm

--

 Start mhjansen@staffw_ 2003/05/06 15:22

A Processed To mhjansen@staffw_ 2003/05/06 15:22

A Released By mhjansen@staffw_ 2003/05/06 15:22

C Processed To mhjansen@staffw_ 2003/05/06 15:22

C Released By mhjansen@staffw_ 2003/05/06 15:22

D Processed To mhjansen@staffw_ 2003/05/06 15:22

D Released By mhjansen@staffw_ 2003/05/06 15:23

 Terminated 2003/05/06 15:2 4

Case 1

Step Description Event User yyyy/mm/dd hh:mm

--

 Start mhjansen@staffw_ 2003/05/06 15:22

A Processed To mhjansen@staffw_ 2003/05/06 15:22

A Released By mhjansen@staffw_ 2003/05/06 15:22

B Processed To mhjansen@staffw_ 2003/05/06 15:22

B Released By mhjansen@staffw_ 2003/05/06 15:22

D Processed To mhjansen@staffw_ 2003/05/06 15:22

D Released By mhjansen@staffw_ 2003/05/06 15:23

 Terminated 2003/05/06 15 :28

Case 2

Step Description Event User yyyy/mm/dd hh:mm

--

 Start mhjansen@staffw_ 2003/05/06 15:22

A Processed To mhjansen@staffw_ 2003/05/06 15:22

A Released By mhjansen@staffw_ 2003/05/06 15:22

B Processed To mhjansen@staffw_ 2003/05/06 15:22

B Released By mhjansen@staffw_ 2003/05/06 15:23

D Processed To mhjansen@staffw_ 2003/05/06 15:23

D Released By mhjansen@staffw_ 2003/05/06 15:24

 Terminated 2003/05/06 15:28

Fig. 3. Example log (based on the EPC in Figure 4)

However, for many types of systems the logs may look differently. Although
from a pure process mining view such a log is incomplete, other data may
be available to help mining the actual process model. In the next subsection,
we elaborate two alternative approaches to show which information in config-
urable enterprise information systems might contribute to process mining.

5

2.2 Alternative approaches

When mining processes in enterprise information systems, the mining pro-
cess is straightforward if data on the level of business process management
is available, e.g. like in Figure 3. If this type of information is not available,
other data might help. We consider two types of registrations: (1) transaction
data stored in tables and (2) process registration in the context of database
performance.

Enterprise information systems make extensive use of the database that sup-
ports the system: each business transaction results in a system transaction
that is recorded in the database. The data that is recorded are documents
that are created or updated, such as purchase requisitions, purchase orders or
scheduling agreements. In relation to these documents all other detailed trans-
action data is stored in the database. Making use of these data is promising
in the context of process mining: the document numbers can be considered
as case-id. The derivation of the tasks that have been executed to create or
update these documents is less straightforward, but may be possible. This
approach is used in tools such as ARIS Process Performance Manager (PPM)
when analyzing process performance of SAP-supported business processes.

A disadvantage of this approach is that it is time consuming and very specific.
For each particular process and variant of a process, it is necessary to find
the relevant tables and table fields. Additionally, this approach is sensitive
with respect to the configuration of the enterprise information system. The
actual configuration of the system may influence the use of tables and fields.
To be able to pinpoint the exact table fields that are affected by a particular
process, it is necessary to examine whether these fields may differ for particular
configurations. Eventually, this may even lead to a mining approach in which
the actual process should be known completely before mining the process.
In PPM for example, we see that application of the software first requires
customization of PPM [19]. In this manual step a consultant discusses the
actual process with the process owner, which is input for PPM and thus the
performance analysis. The quality of the output of the performance analysis is,
amongst others dependent on the quality of the model and the configuration
of PPM.

Another approach originates from the fact that enterprise information systems
such as SAP R/3 log data to be able to analyse the workload of the database.
The workload analysis collects the workload of each transaction carried out in
the system. The workload analysis of a particular period summarizes which
transactions have been carried out, by whom and how much computing time
it consumed. Tools like the SAP Reverse Business Engineer (RBE) make use
of this feature and are able to report the transaction frequencies [28,34]. We

6

can apply this approach for process mining when deriving the frequencies of
the execution of transactions. Unfortunately, there is no link between case-ids
(document numbers) and these frequencies. In this context reference models
may contribute. A well-known example of such reference models are Event
Driven Process chains (EPC’s) which have been developed in a collaborative
research project conducted by SAP AG and the IDS Scheer AG [21,35] and
which form the basis of the SAP R/3 reference models [10]. Also other enter-
prise information systems make use of similar reference models, e.g. Baan [41]
or Intentia [13]. In this paper, we elaborate on this second approach. There-
fore, in the next subsection we focus on the application of reference models
for process mining.

2.3 Reference models

Business process management frequently uses models, e.g. for modelling the
enterprise, for information system specification or end-user training [7,14,31].
These models may be descriptive or prescriptive. A typical example are refer-
ence models in the context of Enterprise Resource Planning systems such as
SAP. The SAP R/3 reference models are expressed in so-called Event-driven
Process Chains (EPCs). Figure 4 shows an example of an EPC for internal
order handling.

1

A

2

X

CB

5

3

6

Check order

Product C

required

Product B

required

Manufacture

product C

Manufacture

product B

Order

received

Product C

available
Product B

available

Deliver order

X

4

Order

delivered

D

Fig. 4. Example EPC

It should be taken into account that reference models for enterprise informa-
tion systems such as SAP R/3 are extremely complex because of the com-

7

plexity of the business processes at one hand, and the fact that these systems
are configurable at the other hand. In fact, such a reference model (or EPC)
is an ‘upperbound’ of process models that may possibly be implemented in
a particular enterprise. Consider for example an enterprise information sys-
tem that allows configuration of the purchasing process with respect to the
quotation process. The related reference model consists of two branches (pro-
curement with respectively without quotations). Some companies might not
implement quotations and it is clear which part of the process model is rele-
vant. Other companies however, might implement the quotation functionality,
though leaving implicit whether quotations are required (one branch of the
process model is applicable) or quotations may be used which may dependent
on some criteria (both branches of the process model are applicable). Because
such implicit decisions cannot be derived from such reference models, we call
these ‘upperbound’ or ‘maximum’ reference models (for example EPC-Max).

To handle the complexity that is caused by the possibility to configure a
system, a new approach has been developed that intuitively reflects the con-
figurable nature of the enterprise information system. The representation of
this reference modelling language is called configurable EPC (C-EPC) [32]. In
this paper we will look at this specific class of reference models. In a C-EPC,
there is an explicit distinction between choices made at runtime and choices
made at configuration time. The following example illustrates the difference
between these two types of decisions.

The left-hand side of Figure 5 shows an example of a C-EPC for transmitting
purchase orders. The configurable XOR-connector is used to state that at
configuration time it should be decided whether executing both the left and the
right branch, i.e. purchasing with or without scheduling agreements, is allowed
for a particular company. In the C-EPC this is modelled as configurable XOR-
connector, which can be set XOR (i.e. choice and runtime); this is depicted
in the middle part of Figure 5 (variant 1). In practice one may also find
companies that do not allow purchase order processing based on scheduling
agreements. In that case only one path can be selected (i.e. choice made at
configuration time); this is depicted in the right-hand part of Figure 5 (variant
2). This example is taken from [32] and is based on the SAP Reference Model
Purchasing, version 4.6c. For more details on the C-EPC approach we refer to
Section 3.

8

Requisition

released

for SA

Scheduling

Agreement

Delivery

Purchase

requisition

released for

PO

Purchase

order

Creation

SA release

created

Purchase

order

created

Release of

purchase

order

Purchasing

document

released

X

Scheduling

Agreement

Delivery

Purchase

order

Processing

Purchasing

order

transmitted

Requisition

released

for SA

Scheduling

Agreement

Delivery

Purchase

requisition

released for

PO

Purchase

order

Creation

SA release

created

Purchase

order

created

Release of

purchase

order

Purchasing

document

released

X

Scheduling

Agreement

Delivery

Purchase

order

Processing

Purchasing

order

transmitted

Purchase

requisition

released for

PO

Purchase

order

Creation

Purchase

order

created

Release of

purchase

order

Purchasing

document

released

Purchase

order

Processing

Purchasing

order

transmitted

C-EPC Variant 1 Variant 2

Fig. 5. Example of a C-EPC with XOR-join (SA-scheduling agreement, PO - pur-
chase order)

3 Formalization of EPCs and C-EPCs

3.1 Event-driven Process Chains

An Event-driven Process Chain (EPC) consists of events, functions and con-
nectors. However, not every diagram composed of events, functions and con-
nectors is a correct EPC. For example, it is not allowed to connect two events
to each other (cf. [21]). Unfortunately, a formal syntax for event-driven process
chains is missing. In this section, we give a formal definition of an event-driven
process chain. This definition is based on the restrictions described in [21] and
imposed by tools such as ARIS and SAP R/3. This way we are able to specify
the requirements an event-driven process chain should satisfy.

Definition 1 (Event-driven process chain (1)) An event-driven process
chain is a five-tuple (E, F, C, l, A):

- E is a finite set of events,
- F is a finite set of functions,
- C is a finite set of logical connectors,
- l ∈ C → {∧,XOR,∨} is a function which maps each connector onto a

9

connector type,
- A ⊆ (E×F)∪ (F ×E)∪ (E×C)∪ (C ×E)∪ (F ×C)∪ (C ×F)∪ (C ×C)

is a set of arcs.

An event-driven process chain is composed of three types of nodes: events (E),
functions (F) and connectors (C). The type of each connector is given by the
function l: l(c) is the type (∧, XOR, or ∨) of a connector c ∈ C. Relation A
specifies the set of arcs connecting functions, events and connectors. Definition
1 shows that it is not allowed to have an arc connecting two functions or
two events. There are many more requirements an event-driven process chain
should satisfy, e.g., only connectors are allowed to branch, there is at least one
start event, there is at least one final event, and there are several limitations
with respect to the use of connectors. To formalize these requirements we need
to define some additional concepts and introduce some notation.

Definition 2 (Directed path and elementary path) Let EPC be an event-
driven process chain. A directed path p from a node n1 to a node nk is a
sequence 〈n1, n2, . . . , nk〉 such that 〈ni, ni+1〉 ∈ A for 1 ≤ i ≤ k − 1. p is
elementary iff for any two nodes ni and nj on p, i 6= j ⇒ ni 6= nj.

The definition of directed path will be used to limit the set of routing con-
structs that may be used. It also allows for the definition of CEF (the set of
connectors on a path from an event to a function) and CFE (the set of connec-
tors on a path from a function to an event). CEF and CFE partition the set
of connectors C. Based on the function l we also partition C into C∧, C∨, and
CXOR. The sets CJ and CS are used to classify connectors into join connectors
and split connectors.

Definition 3 (N , C∧, C∨, CXOR, •, CJ , CS, CEF , CFE) Let EPC =
(E, F, C, l, A) be an event-driven process chain.

- N = E ∪ F ∪ C is the set of nodes of EPC .
- C∧ = {c ∈ C | l(c) = ∧}
- C∨ = {c ∈ C | l(c) = ∨}
- CXOR = {c ∈ C | l(c) = XOR}
- For n ∈ N :
•n = {m | (m,n) ∈ A} is the set of input nodes, and
n• = {m | (n,m) ∈ A} is the set of output nodes.

- CJ = {c ∈ C | | • c| ≥ 2} is the set of join connectors.
- CS = {c ∈ C | |c • | ≥ 2} is the set of split connectors.
- CEF ⊆ C such that c ∈ CEF if and only if there is a path p = 〈n1, n2, . . . ,

nk−1, nk〉 such that n1 ∈ E, n2, . . . , nk−1 ∈ C, nk ∈ F , and c ∈ {n2, . . . ,
nk−1}.

- CFE ⊆ C such that c ∈ CFE if and only if there is a path p = 〈n1, n2, . . . ,
nk−1, nk〉 such that n1 ∈ F , n2, . . . , nk−1 ∈ C, nk ∈ E, and c ∈ {n2, . . . ,

10

nk−1}.

These notations allow for the completion of the definition of an event-driven
process chain.

Definition 4 (Event-driven process chain (2)) An event-driven process
chain EPC = (E, F, C, l, A) satisfies the following requirements:

- The sets E, F , and C are pairwise disjoint, i.e., E ∩ F = ∅, E ∩ C = ∅,
and F ∩ C = ∅.

- For each e ∈ E: | • e| ≤ 1 and |e • | ≤ 1.
- There is at least one event e ∈ E such that | • e| = 0 (i.e. a start event).
- There is at least one event e ∈ E such that |e • | = 0 (i.e. a final event).
- For each f ∈ F : | • f | = 1 and |f • | = 1.
- For each c ∈ C: | • c| ≥ 1 or |c • | ≥ 1.
- CJ and CS partition C, i.e., CJ ∩ CS = ∅ and CJ ∪ CS = C.
- CEF and CFE partition C, i.e., CEF ∩ CFE = ∅ and CEF ∪ CFE = C.

The first requirement states that each component has a unique identifier
(name). Note that connector names are omitted in the diagram of an event-
driven process chain. The other requirements correspond to restrictions on
the relation A. Events cannot have multiple input arcs and there is at least
one start event and one final event. Each function has exactly one input arc
and one output arc. A connector c is either a join connector (|c • | = 1 and
| • c| ≥ 2) or a split connector (| • c| = 1 and |c • | ≥ 2). The last requirement
states that a connector c is either on a path from an event to a function or on
a path from a function to an event. In the remainder of this paper we assume
all event-driven process chains to be syntactically correct.

Note that {CJ , CS}, {CEF , CFE}, and {C∧, CXOR, C∨} partition C, i.e., CJ and
CS are disjoint and C = CJ ∪ CS, CEF and CFE are disjoint and C = CEF ∪
CFE, and C∧, CXOR and C∨ are pair-wise disjoint and C = C∧ ∪ CXOR ∪ C∨.
In principle there are 2× 2× 3 = 12 kinds of connectors! In [21] two of these
12 constructs are not allowed: a split connector of type CEF cannot be of type
XOR or ∨, i.e., CS ∩CEF ∩CXOR = ∅ and CS ∩CEF ∩C∨ = ∅. As a result of
this restriction, there are no choices between functions sharing the same input
event. A choice is resolved after the execution of a function, not before. In this
paper, we will not impose this restriction.

The semantics of EPCs have often been debated in literature. Here we do not
contribute to this discussion but simply refer to [1,2,11,22,29,33].

11

3.2 Configurable EPCs

This section introduces the notion of a configurable event-driven process chain
C-EPC. In a C-EPC functions and connectors can be configurable. Con-
figurable functions may be included (ON), skipped (OFF) or conditionally
skipped (OPT). Configurable connectors may be restricted at configuration
time, e.g., a configurable connector of type ∨ may be mapped onto a ∧ con-
nector. Local configuration choices like skipping a function may be limited
by configuration requirements. For example, if one configurable connector of
type ∨ is mapped onto ∧ connector, then another configurable function needs
to be included. This configuration requirement may be denoted by the logi-
cal expression c = ∧ ⇒ f = ON . To guide the configuration process there
is also a partial order which suggests the order of configuration. Moreover,
besides the configuration requirements there may also be configuration guide-
lines. One can think of configuration requirements as hard constraints and
interpret configuration guidelines as soft constraints.

Definition 5 (Configurable event-driven process chain) A configurable
event-driven process chain (C-EPC) is a seven-tuple (E, F, C, l, A, FC , CC):

- E, F , C, l, and A are as specified in Definition 1 satisfying the constraints
mentioned in Definition 4,

- FC ⊆ F is the set of configurable functions,
- CC ⊆ C is the set of configurable connectors.

Configurable nodes are denoted by thick circles (for configurable connectors)
or thick rectangles (for configurable functions).

A configurable function may be configured as included (ON), skipped (OFF)
or conditionally skipped (OPT). Configurable connectors are mapped onto a
concrete choice for the split or join considered. Clearly, a configurable connec-
tor of type ∧ may not be mapped onto a concrete connector of type connector
of type ∨. The concrete connector should always represent a behavior allowed
by the configurable connector, i.e., the configuration process only restricts the
possible execution sequences. In case of a configurable connector of type XOR
or ∨, also only one of the options may be selected, e.g., if a split connector c
has an output function f , then c = SEQf denotes that function f is always
selected.

In Figure 6 there are three configurable functions: A, E, and F. Each of these
three functions can be configured as included (ON), skipped (OFF) or condi-
tionally skipped (OPT). The other three functions cannot be configured, i.e.,
are always ”ON”. There are four connectors and only the XOR connector is
configurable. The configurable XOR connector can be set XOR (i.e., a choice
at runtime), or select one of the two paths (i.e., at configuration time the

12

1

A

XOR

3

D

4

E

6 7

5

F

8

AND

B

AND

2

AND

C

XOR
1

normal connector

configurable

connector

normal function

configurable function

Fig. 6. Example of a configurable EPC

left-hand side or right-hand side is selected).

The partial order ≤C is used to specify which concrete connector type may be
used for a given connector type, i.e., x ≤C y if and only if a connector of type
y may be configured to x (e.g., ∧ ≤C ∨ but not ∨ ≤C ∧).

Definition 6 (Partial ordering ≤C, CT , CTS) ≤C defines a partial order
on CT = {∧,XOR,∨} ∪ CTS where CTS = {SEQn | n ∈ E ∪ F ∪ C}.
≤C= {(∧,∧), (XOR,XOR),
(∨,∨), (XOR,∨), (∧,∨)} ∪ {(n,XOR) | n ∈ CTS} ∪ {(n,∨) | n ∈ CTS} ∪
{(n, n) | n ∈ CTS}.

Note that ≤C= {(n, n) | n ∈ CT} ∪ (XOR,∨)∪ {(n1, n2) | n1 ∈ CTS ∧ n2 ∈
{XOR,∨}}.

This partial order is motivated by the fact that the configurable connector
has to subsume the behavior of the concrete connector. Table 1 illustrates
the configuration rules for connectors. This table only describes the overall
constraints. Each row corresponds to a configurable connector type (ORC ,

13

XORC , &C), e.g., an ORC may be mapped onto an OR (∨), XOR (×), AND
(∧), or SEQ (SEQn for some node n).

OR XOR AND SEQ

ORC X X X X

XORC X X

ANDC X
Table 1
Constraints for the configuration of connectors

A configuration maps all configurable nodes onto concrete values like ON ,
OFF , and OPT for functions and ∧, XOR, ∨, and SEQn for connectors.

Definition 7 (Configuration) Let CEPC = (E, F, C, l, A, FC , CC be a C-
EPC. lC ∈ (FC → {ON ,OFF ,OPT}) ∪ (CC → CT) is a configuration of
CEPC if for each c ∈ CC:

- lC(c) ≤C l(c)
- if lC(c) ∈ CTS and c ∈ CJ , then there exists an n ∈ •c such that lC(c) =

SEQn,
- if lC(c) ∈ CTS and c ∈ CS, then there exists an n ∈ c• such that lC(c) =

SEQn,

Function lC maps configurable functions onto values like ON, OFF, and OPT,
i.e., lC(f) ∈ ON ,OFF ,OPT for f ∈ FC . Configurable connectors are mapped
onto the set CT, i.e., lC(c) ∈ CT for c ∈ CC . Clearly this mapping should be
consistent with Table 1 and the partial order ≤C . Moreover, if lC(c) = SEQn,
then n should be in the preset (for a join connector) or postset (for a split
connector) of c.

Definition 8 (Valid/suitable configuration) Let CEPC = (E, F, C, l, A, FC , CC)
be a C-EPC and lC a configuration of CEPC . lC is a valid configuration if it
satisfies all configuration requirements, i.e., it satisfies all logical expressions
in RC. lC is a suitable configuration if is valid and it satisfies all configuration
guidelines, i.e., it satisfies all logical expressions in GC.

Definition 9 (Satisfiable) Let CEPC = (E, F, C, l, A, FC , CC) be a C-EPC.
CEPC is satisfiable if and only if there is valid configuration.

Up to now we assumed a complete configuration, i.e., lC is a complete function
mapping each configurable node onto a concrete value. However, the config-
uration process may go through several stages and therefore we also add the
notion of a partial configuration. One can think of a C-EPC with a partial
configuration as another C-EPC.

14

Definition 10 (Partial configuration) Let CEPC = (E,F,C, l, A, FC , CC)
be a C-EPC. lC ∈ (FC 6→ {ON ,OFF ,OPT}) ∪ (CC 6→ CT) 1 is a partial
configuration of CEPC if for each c ∈ CC ∩ dom(lC):

- lC(c) ≤C l(c)
- if lC(c) ∈ CTS and c ∈ CJ , then there exists an n ∈ •c such that lC(c) =

SEQn,
- if lC(c) ∈ CTS and c ∈ CS, then there exists an n ∈ c• such that lC(c) =

SEQn,

4 Mining C-EPC’s: From C-EPC to EPC

Mining configurable enterprise information systems is hindered by the fact that
logs from these systems do not meet the requirements of traditional process
mining, e.g. as can be carried out in the context of workflow systems and case
handling systems. An alternative approach for process mining in enterprise
information systems is to use frequency profiles and reference models, in this
particular case represented by C-EPCs.

Definition 11 (Frequency profile) A frequency profile is a partial function
FP ∈ (F 6→ N). A frequency profile of an EPC or C-EPC reflects the number
of times the functions of the (C-)EPC have been carried out.

An example of a frequency profile for Figure 4 is that function A has been car-
ried out 100 times, function B 40 times and function C 100 times: FP(fA)=100,
FP(fB)=40 and FP(fC)=100.

Problem 1 Consider a frequency profile FP ∈ (F 6→ N) and a C-EPC CEPC =
(E, F, C,
l, A, FC , CC). Find configurations lC ∈ FC → (ON ,OFF ,OPT)∪(CC → CT)
and such that the frequency profile and the C-EPC match.

We first elaborate an example C-EPC and a number of frequency profiles
and show that several alternatives for the resulting configuration and EPC
may exist. Next we define a function to show whether a C-EPC, configuration
and frequency profile match and we define a function to determine the best
configuration out of the matching alternatives. We conclude that a generalized
approach to find the best matching EPC may include Integer Programming
techniques.

1 Note that f ∈ X 6→ Y denotes a partial function whose domain dom(f) ⊆ X.

15

4.1 Searching for configurations

An EPC consists of events, functions and connectors. A C-EPC may addition-
ally contain configurable functions and three different types of configurable
connectors (&C , XORC and ORC). In this subsection we elaborate an ex-
ample consisting of a C-EPC (with two configurable OR-connectors and one
configurable function as represented in Figure 7) and three frequency profiles,
represented in Table 2.

c
1

c
2

c
3

c
4

B C

A

1

2

3

V

V

V

V

D

Fig. 7. Example of a configurable EPC

frequency frequency frequency

function profile A profile B profile C

A 100 100 100

B 0 100 80

C 100 100 60

D 0 100 70

Table 2
Three frequency profiles for the C-EPC in Figure 7

Frequency profile A shows that in this particular case function D and the
leftmost branch of the C-EPC have not been executed. Function D may have
been configured OFF or OPT: lC ∈ {(D,OFF), (D,OPT)}). In the latter
case, D has not been performed at runtime. The explanation why the leftmost
branch has not been executed is a bit more complex:

• during configuration time the configurable connectors c2 and c3 have been

16

configured SEQC , and at runtime function B could not be performed (EPC
variant 1 in Figure 8): lC = ((ORc2 , SEQC), (ORc3 , SEQC)) .

• during configuration time the configurable connectors c2 and c3 have been
configured XOR, and at runtime function B has not been performed (EPC
variant 2 in Figure 8): lC = ((ORc2 ,XOR), (ORc3 ,XOR)).

• during configuration time the configurable connectors c2 and c3 have been
configured OR, and at runtime function B has not been performed (EPC
variant 3 in Figure 8): lC = ((ORc2 ,OR), (ORc3 ,OR)).

c
1

c
4

C

A

(1)

V

V

c
1

c
2

c
3

c
4

B C

A

X

X

(2)

V

V

c
1

c
2

c
3

c
4

B C

A

V

V

(3)

V

V

Fig. 8. Alternative EPCs based on the C-EPC in Figure 7 and frequency profiles
FP-A

Frequency profile B shows that functions A and D have been performed the
same number of times, which implies that function D should be configured
ON or OPT: lC ∈ {(D,OFF), (D,OPT)}). In the latter case, D has been
performed each time at runtime. Furthermore, functions B and C have been
performed the same number of times. This can be because:

• during configuration time the configurable connectors c2 and c3 have been
configured AND: lC = ((ORc2 , &), (ORc3 , &)).

• during configuration time the configurable connectors c2 and c3 have been
configured OR and coincidentally A, B and C have been performed the same
number of times: lC = ((ORc2 ,OR), (ORc3 ,OR)).

Frequency profile C finally, does not leave any freedom for configuration. Since
D has been performed, but less than A, it should be configured OPT: lC =

17

(D,OPT). Note that we assume that the log consists of complete cases without
any noise which, in practice, is not necessarily the case. Furthermore, c2 and
c3 can only be configured OR: lC = ((ORc2 ,OR), (ORc3 ,OR)).

From these examples, we conclude that deriving a configuration based on a
C-EPC and a frequency profile is not unambiguous. The remainder of this
section is used to show when a particular configuration is allowed and if more
than one configuration is allowed, which configuration fits best.

4.2 Matching

Combining a particular C-EPC and frequency profile results in a configuration
and related EPC. However, in general, this process may result in a number of
configurations and thus several different EPCs. In this subsection we define
the function match to show whether a C-EPC, configuration and frequency
profile do match, in the next subsection we define a function to determine the
best configuration out of the matching alternatives.

A C-EPC can be considered a set of concrete EPCs; a particular EPC is
determined by its configuration as defined in Definition 7. An EPC/C-EPC is
a graph consisting of different nodes. Each node and each arc have a frequency.
Through the frequency profile we only know the frequency of functions and
not of the other nodes. Assume that the frequency of each node n is given
by a variable xn and let fn be the frequency in the profile if n is a function.
Consider the following system of equations: ∀n ∈ F : xn = fn and the set
of equations generated by arcs. The exact formulation of the set of equations
is dependent on (i) the structure of the model, (ii) whether a function is
configurable or not (and if applicable its configuration), and (iii) whether a
connector is configurable or not (and if applicable its configuration). For all
nodes in the model, the applicable equations should be selected from the list
below:

• Related to functions:
· An arc ending in a function has a frequency that is equal to the frequency

of the arc starting from that function.
· All arcs starting or ending in a non-configurable function or event have a

frequency that equals the frequency of that function or event.
· All arcs starting or ending in a configurable function that has been con-

figured ON, have a frequency that equals the frequency of that function.
· All arcs starting or ending in a configurable function that has been config-

ured OPT, have a frequency that is greater than or equal to the frequency
of that function.

· A configurable function that has been configured OFF, has a frequency 0.

18

• Related to AND-nodes (connectors or configurations):
· An AND-node has a frequency that equals the frequency of each of the

arcs starting from that AND-node.
· An AND-node has a frequency that is less than or equal to the frequency

of each of the arcs ending in that AND-node, and equals the frequency of
at least one of the arcs ending in that AND-node.

• Related to XOR-nodes (connectors or configurations):
· A XOR-node has a frequency that equals the sum of the frequencies of all

arcs starting from that XOR-node.
· A XOR-node has a frequency that equals the sum of the frequencies of all

arcs ending in that XOR-node.

• Related to OR-nodes (connectors or configurations)
· An OR-node has a frequency that is less than or equal to the sum of the

frequencies of each of the arcs ending in that OR-node.
· An OR-node has a frequency that is greater than or equal to the frequency

of each of the arcs ending in that OR-node.
· An OR-node has a frequency that is less than or equal to the sum of the

frequencies of each of the arcs starting from that OR-node.
· An OR-node has a frequency that is greater than or equal to the frequency

of each of the arcs starting from that OR-node.

• Related to SEQx-configurations (split)
· A connector that has been configured SEQx, has a frequency that is equal

to the frequency of the arc starting from that connector and ending in
node x.

· An arc starting from a connector that has been configured SEQx and
ending in any other node than x has a frequency 0.

· An arc starting from a connector that has been configured SEQx and end-
ing in any node has a frequency equal to the frequency of that connector.

• Related to SEQx-configurations (join)
· An arc starting from any node and ending in a connector that has been

configured SEQx has a frequency equal to the frequency of that connector.
· A connector that has been configured SEQx, has a frequency that is equal

to the frequency of the arc starting from node x and ending in that con-
nector.

· An arc ending in a connector that has been configured SEQx and starting
from any other node than x has a frequency 0.

We have defined now a C-EPC and a frequency profile, and we are able to
define the set of equations that describe this situation. We are ready to define
when a configuration matches with a C-EPC and a given frequency profile.

19

Definition 12 (Match) Let CEPC = (E, F, C, l, A, FC , CC) be a C-EPC,
lC ∈ (FC → {ON, OFF, OPT})∪ (CC → CT) a configuration of C-EPC and
FP ∈ (F 6→ N) a frequency profile of C-EPC. match:(C-EPC, lC , FP) →
boolean. If there is a solution to the ‘system of equations’, match(C-EPC, lC,
FP)= true; if there is no solution match(C-EPC, lC, FP)= false.

In other words, the function match is true iff FP is a possible frequency profile
for the EPC that results from C-EPC and lC . Note that we still have to for-
malize the system of equations, see Section 5. Consider the example in Figure
7 and frequency profile A. We mentioned three alternative configurations:

(1) lC = ((ORc2 , SEQC), (ORc3 , SEQC), (D,OFF))
(2) lC = ((ORc2 ,XOR), (ORc3 ,XOR), (D,OFF))
(3) lC = ((ORc2 ,OR), (ORc3 ,OR), (D,OFF))

It is easy to verify that the configurations in Section 4.1 match, because
the system of equations can be solved for all three configurations and thus
match(C-EPC of Figure 7, lC , FP-A) = true.

4.3 Objective function

In the previous subsection we have defined the function match to be able
to decide whether a C-EPC, a configuration and a frequency profile actually
match. The result of this step is a set of matching configurations. The next
step is to decide which of the matching configurations fits best. To be able
to do so, we define the objective function of a configuration and minimize
this function to find the ‘best configuration’. The basic idea is that an EPC
should be as specific as possible, still meeting the requirements of the C-EPC.
Furthermore, we prefer the configuration of connectors over the configuration
of functions.

To define the objective function we refer to the partial ordering in Definition
6 and visualized in the left-hand part of Figure 9. The basic idea for the
configuration of connectors is that the concrete connector should be selected
conform the partial ordering and that the selected node is as low as possible in
the ordering tree. The resulting objective function is depicted in the right-hand
part of Figure 9.

The basic idea for configurable functions is that all functions should be con-
figured ON, unless this is in conflict with the frequency profile. Furthermore,
functions should not be configured OPT unless absolutely necessary, because
this configuration is not discriminative at all. In Figure 10 the resulting ob-
jective function for the configuration of functions is depicted.

20

0

OR

ANDXOR

SEQ
2

2

1

0

OR

ANDXOR

SEQ
1SEQ

2SEQ
1

1

Fig. 9. Objective function for the configuration of connectors

OPT

ON OFF

100

10

Fig. 10. Objective function for the configuration of functions

The objective function can now be formulated as: minimize the sum of the
objective function due to the configuration of all configurable connectors and
the objective function due to the configuration of all configurable functions.

For the example in subsection 4.1 we conclude that variant 1 (both connectors
configured SEQC) and function D configured OFF is the best configuration,
see Table 5.

lC lC(c2) lC(c3) lC(D) Objective function

1 SEQC SEQC OFF ⇒ 0+0+1=1

2 XOR XOR OFF ⇒ 1+1+1=3

3 OR OR OFF ⇒ 2+2+1=5

Table 3
Configurations for the C-EPC in Figure 7 and frequency profile FP-A

4.4 Conclusion

In this section we have defined the function match to be able to decide whether
a C-EPC, a configuration and a frequency profile actually match. The result of
this step is a set of matching configurations. The next step is to decide which
of the matching configurations fits best. To be able to do so, we defined the
objective function for a configuration. Summarizing, if we want to determine
an EPC based on a C-EPC and a frequency profile, we go through the following
steps:

21

(1) find all matching configurations
(2) minimize the objective function

The approach that we followed in Section 4.2 (find all solutions of a system of
equations) and Section 4.3 (minimize a particular objective function) can be
performed in one step by making use of Integer Programming techniques. This
has an additional advantage since standard software for solving Integer Pro-
gramming problems is generally available. In the next section we reformulate
the above described approach in such a way that integer programming can be
applied. Subsequently we will discuss the required variables, the constraints
and the objective function.

5 Formulating the Integer Programming problem

Let CEPC = (E, F, C, l, FC , CC) be a C-EPC and FP ∈ (F 6→ N) be a fre-
quency profile. A (C-)EPC is a graph consisting of different nodes. Each node
and each arc have a frequency. The frequency profile records the frequency of
functions and not of the other node types 2 . Consider the following Integer
Programming problem.

5.1 Variables

We consider two types of variables: variables to describe the model elements
and variables to describe the configuration settings, which are our decision
variables. These decision variables are related to the configuration of functions
and the configuration of connectors.

All elements in the C-EPC have a frequency.

∀x ∈ E ∪ F ∪ C ∪ A : freqx ∈ N (1)

2 We assume that the EPCs are sound, i.e. meet the following three requirements: (i)
for each case that is represented in the start event, one and only one representation
exists (eventually) in the end event, (ii) when the representation of a case appears
in the end event, there is no other representation of this case present in the EPC,
and (iii) for each function in the EPC it is possible to move from the start event
to a situation in which this function can be executed. Furthermore we assume that
the frequency profiles represent complete cases, i.e. the frequency profile does not
contain any noise.

22

A configurable function can be configured ON, OFF or OPT.

∀f ∈ FC : conf f ∈ {ON ,OFF ,OPT} (2)

All configurable connectors can be mapped onto a concrete connector within
CT, provided that the concrete connector is more specific than the configurable
connector (cf. partial ordering in Definition 6). Moreover, if lC(c) = SEQn,
then n should be in the preset (for join connectors) or in the postset (for split
connectors).

∀c ∈ CC : conf c ∈ {x ∈ CT |x ≤C l(c) ∧ (3)

if lC(c) ∈ CTS and c ∈ CJ , there exists an n ∈ •c such that x = SEQn ∧
if lC(c) ∈ CTS and c ∈ CS, there exists an n ∈ c • such that x = SEQn}

5.2 Constraints

We consider several groups of constraints: constraints related to functions,
constraints related to concrete, non-configurable connectors (AND, OR and
XOR) and to configurable nodes that have been configured (SEQ-, AND-, OR-
or XOR-configurations).

5.2.1 Constraints related to functions

All configurable and non-configurable functions have a frequency as recorded
in the frequency profile FP.

∀f ∈ dom(FP) : freqf = FP(f) (4)

An arc ending in a function has a frequency that is equal to the frequency of
the arc starting from that function.

∀f ∈ F ∀(x1, y1), (x2, y2) ∈ A, (y1 = x2 = f) : freq (x1,y1) = freq (x2,y2) (5)

f
(x

1
,y

1
) (x

2,
y

2
)

Fig. 11. Illustration of equation 5

23

All arcs starting or ending in a non-configurable function or event have a
frequency that equals the frequency of that function or event.

∀x ∈ (F\FC) ∪ E ∀(y, z) ∈ A, x ∈ {y, z} : freq (y,z) = freqx (6)

x
(y,z)

x
(y,z)

Fig. 12. Two illustrations of equation 6

All arcs starting or ending in a configurable function that has been configured
ON, have a frequency that equals the frequency of that function.

∀f ∈ FC ∀(x, y) ∈ A, f ∈ {x, y} : conf f = ON ⇒ freq (x,y) = freqf (7)

All arcs starting or ending in a configurable function that has been configured
OPT, have a frequency that is greater than or equal to the frequency of that
function.

∀f ∈ FC ∀(x, y) ∈ A, f ∈ {x, y} : conf f = OPT ⇒ freq (x,y) ≥ freqf (8)

A configurable function that has been configured OFF, has a frequency 0.

∀f ∈ FC : conf f = OFF ⇒ freqf = 0 (9)

f
(x,y)

f
(x,y)

Fig. 13. Two illustrations of equations 7, 8 and 9

5.2.2 Constraints related to concrete AND-connectors

A non-configurable AND-connector has a frequency that equals the frequency
of each of the arcs starting from that AND-connector.

∀c ∈ C\CC , l(c) = & ∀(x, y) ∈ A, x = c : freq (x,y) = freqc (10)

A non-configurable AND-connector has a frequency that is less than or equal
to the frequency of each of the arcs ending in that AND-connector, and equals
the frequency of at least one of the arcs ending in that AND-connector.

∀c ∈ C\CC , l(c) = & ∀(x, y) ∈ A, y = c : freq (x,y) ≥ freqc (11)

∀c ∈ C\CC , l(c) = & ∃(x, y) ∈ A, y = c : freq (x,y) = freqc (12)

24

(x,y)

V

c

(x,y)

V

c

Fig. 14. Illustrations of equation 10 (left) and equations 11 and 12 (right)

5.2.3 Constraints related to concrete XOR-connectors

A non-configurable XOR-connector has a frequency that equals the sum of
the frequencies of all arcs starting from that XOR-connector.

∀c ∈ C\CC , l(c) = XOR :
∑

(x,y)∈A
x=c

freq (x,y) = freqc (13)

A non-configurable XOR-connector has a frequency that equals the sum of
the frequencies of all arcs ending in that XOR-connector.

∀c ∈ {C\CC |l(c) = XOR} :
∑

(x,y)∈A
y=c

freq (x,y) = freqc (14)

c

(x,y)

X

(x,y)

X

c

Fig. 15. Illustrations of equation 13 (left) and equation 14 (right)

5.2.4 Constraints related to concrete OR-connectors

A non-configurable OR connector has a frequency that is less than or equal to
the sum of the frequencies of each of the arcs ending in, respectively starting
from that OR-connector.

∀c ∈ C\CC , l(c) = OR :
∑

(x,y)∈A
c∈{x,y}

freq (x,y) ≥ freqc (15)

A non-configurable OR-connector has a frequency that is greater than or equal
to the frequency of each of the arcs ending in, respectively starting from that
OR-connector.

∀c ∈ C\CC , l(c) = OR ∀(x, y) ∈ A, c ∈ {x, y} : freq (x,y) ≤ freqc (16)

25

(x,y)

V

c

(x,y)

V

c

Fig. 16. Illustrations of equations 15 and 16

5.2.5 Constraints related to SEQx-configurations

A connector that has been configured SEQx, has a frequency that is equal to
the frequency of the arc starting from that connector and ending in node x.

∀c ∈ CC , x ∈ E ∪ F ∪ C, (c, x) ∈ A : conf c = SEQx ⇒ freq (c,x) = freqc(17)

An arc starting from a connector that has been configured SEQx and ending
in any other node than x has a frequency 0.

∀c ∈ CC , x ∈ E ∪ F ∪ C, (c, x) ∈ A ∀y ∈ c•, y 6= x : (18)

conf c = SEQx ⇒ freq (c,y) = 0

An arc starting from any node and ending in a connector that has been con-
figured SEQx has a frequency equal to the frequency of that connector.

∀c ∈ CC , x ∈ E ∪ F ∪ C, (c, x) ∈ A ∀z ∈ •c : (19)

conf c = SEQx ⇒ freq (z,c) = freqc

A connector that has been configured SEQx, has a frequency that is equal to
the frequency of the arc starting from node x and ending in that connector.

∀c ∈ CC , x ∈ E ∪ F ∪ C, (x, c) ∈ A : conf c = SEQx ⇒ freq (x,c) = freqc(20)

An arc ending in a connector that has been configured SEQx and starting
from any other node than x has a frequency 0.

∀c ∈ CC , x ∈ E ∪ F ∪ C, (x, c) ∈ A ∀y ∈ •c, y 6= x : (21)

conf c = SEQx ⇒ freq (y,c) = 0

An arc starting from a connector that has been configured SEQx and ending
in any node has a frequency equal to the frequency of that connector.

26

∀c ∈ CC , x ∈ E ∪ F ∪ C, (x, c) ∈ A ∀z ∈ c• : (22)

conf c = SEQx ⇒ freq (c,z) = freqc

(c,x)

?

(c,y)

conf
c
=SEQ

x

(z,c)
(x,c)

?

(y,c)

conf
c
=SEQ

x

(c,z)

Fig. 17. Illustrations of equations 17, 18 and 19 (left) and equations 20, 21 and 22
(right)

5.2.6 Constraints related to AND-configurations

Consider a configurable connector. If this connector has been configured a
concrete AND, this connector has a frequency that equals the frequency of
each of the arcs starting from that connector.

∀c ∈ CC , (x, y) ∈ A, x = c : conf c = AND ⇒ freq (x,y) = freqc (23)

Consider a configurable connector. If this connector has been configured a
concrete AND, this connector has a frequency that less than or equal to the
frequency of each of the arcs ending in that connector.

∀c ∈ CC , (x, y) ∈ A, y = c : conf c = AND ⇒ freq (x,y) ≥ freqc (24)

∀c ∈ CC ∃(x, y) ∈ A, y = c : confc = & ⇒ freq (x,y) = freqc (25)

(x,y)

?conf
c
=AND

(x,y)

? conf
c
=AND

c c

Fig. 18. Illustrations of equation 23 (left) and equations 24 and 25 (right)

5.2.7 Constraints related to XOR-configurations

Consider a configurable connector. If this connector has been configured a
concrete XOR, this connector has a frequency that equals the sum of the
frequencies of each of the arcs starting from that connector.

∀c ∈ CC : conf c = XOR ⇒ ∑
(x,y)∈A

x=c

freq (x,y) = freqc (26)

27

Consider a configurable connector. If this connector has been configured a
concrete XOR, this connector has a frequency that equals the sum of the
frequencies of each of the arcs ending in that connector.

∀c ∈ CC : conf c = XOR ⇒ ∑
(x,y)∈A

y=c

freq (x,y) = freqc (27)

(x,y)

?conf
c
 =XOR

c

(x,y)

? conf
c
=XOR

c

Fig. 19. Illustrations of equation 26 (left) and equation 27 (right)

5.2.8 Constraints related to OR-configurations

Consider a configurable connector. If this connector has been configured a
concrete OR, this connector has a frequency that is less than or equal to the
sum of the frequencies of each of the arcs ending in , respectively starting from
that connector.

∀c ∈ CC : conf c = OR ⇒ ∑
(x,y)∈A
c∈{x,y}

freq (x,y) ≥ freqc (28)

Consider a configurable connector. If this connector has been configured a
concrete OR, this connector has a frequency that is greater than or equal to
the frequency of each of the arcs ending in , respectively starting from that
connector.

∀c ∈ CC , (x, y) ∈ A, c ∈ {x, y} : conf c = OR ⇒ freq (x,y) ≤ freqc (29)

(x,y)

? l(c)=OR

(x,y)

?conf
c
 =OR

c c

Fig. 20. Illustrations of equations 28 and 29

5.3 Objective function

Up to now, we have formulated the system variables and the decision variables,
which enabled us to formulate the constraints of our Integer Programming
problem. In this subsection, we define the objective function.

28

As outlined in Section 4.3, the resulting EPC should be as specific as possible,
still meeting the requirements of the C-EPC and the frequency profile. Fur-
thermore, if possible, we prefer configuration of connectors over configuration
of functions. The objective function can now be formulated as: minimize the
sum of the objective function due to the configuration of all configurable con-
nectors and the objective function due to the configuration of all configurable
functions. Based on the ideas of Section 4.3 for the configuration of functions
and connectors, the resulting objective function is formulated as follows:

Minimize:

∑

f∈F C

100 (conf f = OPT)

1 (conf f = OFF)

0 (conf f = ON)

+
∑

c∈CC

2 (conf c = OR)

1 (conf c = AND)

1 (conf c = XOR)

0 (otherwise)

(30)

Note that to avoid the configuration of functions to OPT as much as possi-
ble, we assigned a weight of 100. In situations with a trade-off between con-
figurations with OR/ON combinations at one hand and configurations with
AND/OPT combinations on the other hand, we enforce the first combination.

5.4 Further steps to define the IP-problem

In the previous subsections, we made some steps to show that finding the
best configuration for a given C-EPC and frequency profile can be considered
an Integer Programming problem. To be able to use Integer Programming
software, we need a number of additional variables. This is necessary because
we used three types of constructs that are not allowed in Integer Programming:

(1) ∃-constructions (for AND-connectors and AND-configurations);
(2) ⇒-constructions (for configurable nodes);
(3) {-constructions (in the objective function).

However, with the help of additional variables, each of these constructs can
be reformulated into allowed Integer Programming constructions [26]. Such a
translation is rather verbose and mechanical; therefore we omit this step.

29

5.5 Example

In the previous subsections we formulated the derivation of a configuration
based on a C-EPC and frequency profile in such a way that it can be con-
sidered an Integer Programming problem. In this subsection, we show this
approach for a concrete example. Consider the C-EPC shown in Figure 7 and
frequency profile FP(fA) = 100, FP(fB) = 40, FP(fC) = 60 and FP (fD =
80). The C-EPC consists of three functions, of which f3 is configurable, and of
4 connectors, of which c2 and c3 are configurable. The corresponding Integer
Programming problem is defined as follows (for explanation of the variables
and constraints in this example, see appendix A).

min
∑

f∈F C

100 (conf f = OPT)

1 (conf f = OFF)

0 (conf f = ON)

+
∑

c∈CC

2 (conf c = OR)

1 (conf c = &)

1 (conf c = XOR)

0 (otherwise)

s.t. freqfA
= FP(fA) = 100

freqfB
= FP(fB) = 40

freqfC
= FP(fC) = 60

freqfD
= FP(fD) = 80

freq (e0,fA) = freq (fA,e1)

freq (c2,fB) = freq (fB ,c3)

freq (c2,fC) = freq (fC ,c3)

freq (c1,fD) = freq (fD,c4)

freqe0
= freq (e0,fA)

freq (e0,fA) = freqfA

freqfA
= freq (fA,e1)

freq (fA,e1) = freqe1

freqe1
= freq (e1,c1)

freq (c2,fB) = freqfB

freqfB
= freq (fB ,c3)

freq (c2,fC) = freqfC

freqfC
= freq (fC ,c3)

freq (c4,e2) = freqe2)

conf fD
= OFF ⇒ freqfD

= 0

conf fD
= OPT ⇒ freqfD

≤ freq (c1,fD)

conf fD
= OPT ⇒ freqfD

≤ freq (fD,c4)

30

conf fD
= ON ⇒ freqfD

= freq (c1,fD)

conf fD
= ON ⇒ freqfD

= freq (fD,c4)

freqc1 = freq (c1,c2)

freqc1 = freq (c1,fD)

freq (fD,c4) ≥ freqc4 ∧ freq (c3,c4) = freqc4

freq (c3,c4) = freqc4 ∨ freq (fD,c4) = freqc4

conf c2 = SEQfB
⇒ freq (c2,fB) = freqc2

conf c2 = SEQfC
⇒ freq (c2,fC) = freqc2

conf c2 = SEQfB
⇒ freq (c2,fC) = 0

conf c2 = SEQfC
⇒ freq (c2,fB) = 0

conf c2 = SEQfB
⇒ freq (c1,c2) = freq (c2,fB)

conf c2 = SEQfC
⇒ freq (c1,c2) = freq (c2,fC)

conf c3 = SEQfB
⇒ freq (fB ,c3) = freqc3

conf c3 = SEQfC
⇒ freq (fC ,c3) = freqc3

conf c3 = SEQfB
⇒ freq (fC ,c3) = 0

conf c3 = SEQfC
⇒ freq (fB ,c3) = 0

conf c3 = SEQfB
⇒ freq (fB ,c3) = freq (c3,c4)

conf c3 = SEQfC
⇒ freq (fC ,c3) = freq (c3,c4)

conf c2 = & ⇒ freq (c2,fB) = freqc2 ∧ freq (c2,fC) = freqc2

conf c3 = & ⇒ freq (fB ,c3) ≥ freqc3 ∧ freq (fC ,c3) ≥ freqc3

conf c3 = & ⇒ freq (fB ,c3) = freqc3 ∨ freq (fC ,c3) = freqc3

conf c2 = XOR ⇒ freq (c2,fB) + freq (c2,fC) = freqc2

conf c3 = XOR ⇒ freq (fB ,c3) + freq (fC ,c3) = freqc3

conf c2 = OR ⇒ freq (c2,fB) + freq (c2,fC) ≥ freqc2

conf c3 = OR ⇒ freq (fB ,c3) + freq (fC ,c3) ≥ freqc3

conf c2 = OR ⇒ freq (c2,fB) ≤ freqc2 ∧ freq (c2,fC) ≤ freqc2

conf c3 = OR ⇒ freq (fB ,c3) ≤ freqc3 ∧ freq (fC ,c3) ≤ freqc3

In this example, the solution of the system of equations is conf fD
= OPT ,

conf c2 ∈ {OR,XOR} and conf c3 ∈ {OR,XOR}. It is easy to verify that
conffD

= OPT , confc2 = XOR and confc3 = XOR is the solution of this
Integer Programming problem.

31

6 Mining C-EPCs: From EPC-Max to C-EPC

Up to now, we assumed that a reference model represented by a C-EPC was
available, and from a conceptual viewpoint reference models of configurable en-
terprise information systems should indeed be configurable. In practice, these
models are not configurable yet and can be characterized as upper bound or
maximal process models. The second step in our research takes this traditional
reference model, an EPC-Max, as a starting point. Additionally we have one
particular log, i.e. a frequency profile that shows the frequency that particular
process steps have been executed. This process results in a configurable EPC
and a configuration that fits the log (see Section 6.1). It is evident that the
resulting C-EPC and configuration depend on this only log and probably are
different when based on another log or multiple logs. This step is elaborated
in Section 6.2.

6.1 Deriving ‘a’ C-EPC

Although the application of non-configurable reference models is current prac-
tice, this is not an ideal situation. When mining process models from config-
urable enterprise information systems the concept of configurable reference
models supports mining the actual processes. Additionally, the derived con-
figurable reference model is a useful spin-off.

Problem 2 Consider a frequency profile FP ∈ (F 6→ N) and an EPC EPC=
(E,F,C,l,A). Find a C-EPC CEPC = (E, F, C, l, A, FC , CC) and a configura-
tion lC ∈ (FC → ON ,OFF ,OPT) ∪ (CC → CT) such that the frequency
profile, the C-EPC and the configuration match.

6.1.1 Approach

When mining a process model from an EPC-Max, we start to find the C-
EPC. We will demonstrate that the approach developed in Section 4 is also
applicable for this type of process mining.

We first define the term flexible EPC, this is a C-EPC that resembles the
EPC completely, however, all concrete connectors are mapped onto their con-
figurable counterparts and all functions are changed into configurable ones.

Definition 13 (flexible EPC) Let EPC=(E,F,C,l,A). Then flex(EPC) =
(E ′, F ′, C ′, l′, A′,
FC , CC) with E ′ = E,F ′ = F,C ′ = C, l′ = l, A′ = A,FC = F, CC = C.

32

We use flexible EPCs as an intermediary result for our mining approach. Re-
call that this approach included two steps: the matching function and the
objective function. The function match is used to decide whether a particular
configuration, C-EPC (in this case flex(EPC)) and frequency profile match
and the objective function to decide for all matching configurations which
configuration fits best.

6.1.2 Example

Consider the EPC in Figure 4, a simple EPC-Max containing a XOR con-
nector. In Table 4 two frequency profiles for this EPC is shown. Frequency
profile A is a log of an enterprise that only manufactured product B, whereas
frequency profile B is a log of an enterprise that manufactured both product
B and C, but not in the same production order.

frequency frequency

function profile A profile B

A 100 140

B 100 100

C 0 40

D 100 140

Table 4
Two frequency profiles for the C-EPC in Figure 4

The first step is transform this EPC-Max (left-hand side of Figure 21) into a
flexible EPC (right-hand side of Figure 21).

The second step is to find all matching configurations. With reference to Def-
inition 6, the XORC-connector can be configured XOR, or SEQ. Since we
departed from a XOR-connector in the EPC-Max, at this point we choose to
stick to lC(c1) = (XOR, XOR) and lC(c2) = (XOR, XOR) and we come back
on this in the next subsection.

With respect to the functions, we see the following alternatives:

• For frequency profile A, functions A, B and D can be non-configurable, and
if configurable these may be configured ON or OPT. Function C may also
be configured OFF.

• For frequency profile B, all functions can be non-configurable, and if con-
figurable these may be configured ON or OPT.

It is easy to verify that match(flex(EPC),lC ,FP-A) = true for the configura-
tions in Table 5.

33

flexible EPCconcrete EPC

1

A

2

X

CB

5

3

6

X

4

D

1

A

2

X

CB

5

3

6

X

4

D

Fig. 21. From EPC to flexible C-EPC

The third step is to calculate the objective function. The results for frequency
profile A are summarized in the rightmost column of Table 5, for frequency
profile B this can be done in the same way. For both frequency profiles we
see that the (XOR,XOR) configuration with all functions configured ON fits
best.

Our last step in deriving a definitive C-EPC is to consider whether config-
urable nodes should remain configurable; i.e. configurable functions that are
always ON become normal functions and connectors that are mapped onto
their identity connector become concrete connectors. All other nodes need to
be configurable. Since only one frequency profile is available, after this step
indeed no configurable connectors exist.

6.1.3 Further restriction of the C-EPC

The above outlined approach is applicable for decisions that are made at
runtime, or at least for frequency profiles from which we cannot conclude that
a decision is made at runtime or at configuration time. However, there is an
important class of frequency profiles that shows that the decision appears to
be made at configuration time. In case a frequency profile is (co-incidently?)
more specific than the concrete connector in the EPC-max required (in our
example in case of frequency profile A), it is possible to further restrict the
flex(EPC) to determine a C-EPC, while still preserving the match condition.
This si called ’overfitting’. This step introduces two questions: (1) what is the

34

lC lC(A) lC(c1) lC(B) lC(C) lC(c2) lC(D) Objective function

1 ON XOR ON ON XOR ON 0+1+0+0+1+0=2

2 ON XOR ON ON XOR OPT 0+1+0+0+1+100=102

3 ON XOR ON OPT XOR ON 0+1+0+100+1+0=102

4 ON XOR ON OPT XOR OPT 0+1+0+100+1+100=202

5 ON XOR ON OFF XOR ON 0+1+0+1+1+0=3

6 ON XOR ON OFF XOR OPT 0+1+0+1+1+100=103

7 ON XOR OPT ON XOR ON 0+1+100+0+1+0=102

8 ON XOR OPT ON XOR OPT 0+1+100+0+1+100=202

9 ON XOR OPT OPT XOR ON 0+1+100+100+1+0=202

10 ON XOR OPT OPT XOR OPT 0+1+100+100+1+100=302

11 ON XOR OPT OFF XOR ON 0+1+100+1+1+0=103

12 ON XOR OPT OFF XOR OPT 0+1+100+1+1+100=203

13 OPT XOR ON ON XOR ON 0+1+0+0+1+0=102

14 OPT XOR ON ON XOR OPT 0+1+0+0+1+100=202

15 OPT XOR ON OPT XOR ON 0+1+0+100+1+0=202

16 OPT XOR ON OPT XOR OPT 0+1+0+100+1+100=302

17 OPT XOR ON OFF XOR ON 0+1+0+1+1+0=103

18 OPT XOR ON OFF XOR OPT 0+1+0+1+1+100=203

19 OPT XOR OPT ON XOR ON 0+1+100+0+1+0=202

20 OPT XOR OPT ON XOR OPT 0+1+100+0+1+100=302

21 OPT XOR OPT OPT XOR ON 0+1+100+100+1+0=302

22 OPT XOR OPT OPT XOR OPT 0+1+100+100+1+100=402

23 OPT XOR OPT OFF XOR ON 0+1+100+1+1+0=203

24 OPT XOR OPT OFF XOR OPT 0+1+100+1+1+100=303

Table 5
Configurations for the flex(EPC) in Figure 21 and frequency profile FP-A

scope of the EPC-max, the reference model we started from, and (2) what is
de scope of the C-EPC, the reference model that we are deriving. The answer
on the first question can very well be a broad scope, e.g., all organizations that
might use SAP R/3. The answer on the second question very much depends
on the scope of our modelling domain, e.g. a particular branch of industry

35

or only all business units in our company. It is clear that this step requires
additional information and cannot be performed automatically.

If we decide to allow further restrictions as described above, we have to pay
special attention to (partial) C-EPCs that might include SEQn solutions, be-
cause SEQn is merely a configuration setting instead of a connector type.
Basically we have three alternatives:

• The node remains configurable (XORC) and the configuration setting is
SEQn;

• Although SEQn is a configuration instead of a connector type, we admit
concrete SEQn connectors;

• If possible, the connector is removed and the graph structure might change.

We use alternative 1 in our approach, because alternative 2 introduces a new
node type which is not necessary and alternative 3 complicates the derivation
of C-EPCs based on multiple logs. Consequently, this approach may result in
one configurable connector (XORC) which is configured SEQn.

6.1.4 Summary

If we want to determine a C-EPC and configuration based on an EPC-max
and a frequency profile, we go through the following steps:

(1) transform the EPC-max into a flexible C-EPC
(2) find all matching configurations
(3) minimize the objective function
(4) restrict the resulting C-EPC if possible

6.2 From EPC-Max to ‘the’ C-EPC

The mining process can very well be based on a single log; in practice, how-
ever, also a number of logs may be available. These logs may come from the
same company but covering another period of time, or these may come from
other business units or even from competing businesses. The scope of the con-
figurable reference model being developed is dependent on the origin of the
set of logs. In case of multiple logs of one particular company, the accuracy of
the reference model will increase, in case of multiple logs of competitors, the
scope of the reference model will be enlarged.

Problem 3 Consider a set of frequency profiles FP1 ∈ (F 6→ N) – FPn ∈
(F 6→ N) and an EPC EPC=(E,F,C,l,A). Find a C-EPC CEPC = (E, F, C, l,
A, FC , CC) and a configuration lC ∈ (FC → ON ,OFF ,OPT) ∪ (CC → CT)

36

such that the frequency profiles, the C-EPC and the configurations match.

The third step in our research also takes the traditional reference model, an
EPC-Max, as a starting point. Additionally we have a set of logs, i.e. frequency
profiles. This process results in a configurable EPC and a configuration that
fits all logs. It is evident that the resulting EPC and configuration depend
on this set of logs. Although it is more likely to be the correct C-EPC than
when based on one particular log, the result may be different when based on
another class of logs. For example, the set of logs may originate from a number
of business units within an enterprise, but also from a number of enterprises
within a particular industry sector (e.g. utilities, automotive, etc.) or across
industry sectors.

6.2.1 Searching for the C-EPC

Starting from an EPC-Max containing a (concrete) XOR connector and two
logs (frequency profiles), we are constructing a C-EPC that fits both logs.
Consider the EPC of Figure ?? and frequency profiles A and B in Table ??.
In Section ?? we have shown that FP-A results in the C-EPC at the left part
of Figure 22 and for FP-B at the middle part of Figure 22. Intuitively this
results in a combined C-EPC that is shown at the right part of Figure 22.

EPC based

on FP-A

EPC based

on FP-B

EPC based on

FP-A and FP-B

XORC->

SEQe
2

e
1

f
A

e
2

XOR

f
C

f
B

e
5

e
3

e
6

XOR

e
4

XORC->

SEQe
4 f

D

XORC->

SEQe
3

e
1

f
A

e
2

XOR

f
C

f
B

e
5

e
3

e
6

XOR

e
4

XORC->

SEQe
5 f

D

e
1

f
A

e
2

XOR

f
C

f
B

e
5

e
3

e
6

XOR

e
4

f
D

Fig. 22. Aggregation of C-EPCs

37

6.2.2 Approach to derive ‘the’ C-EPC

To derive a C-EPC that fits n logs, we use the approach for 1 log (see Section
6.1) and apply this n times. The result is a set of C-EPCs that can be analyzed
with respect to differences in configuration settings. In case of a difference be-
tween two C-EPCs, the least common multiple is chosen. Again we start with
connectors, and within the configuration of connectors we configure the func-
tions. Note that we assume that the C-EPCs have the same graph structure.
The least common multiple for two connectors is based on the idea it should be
as specific as possible on the one hand, and cover the scope of both connectors
on the other hand. For example, for two OR-nodes this results in a new OR-
node; a XOR-node and a SEQ-node result in a XORC-node, and an &-node
and a XOR-node result in a ORC-node. The least common multiple for func-
tions is defined the same way. If two functions have the same configurations,
the common multiple is equal to this. If the configuration of two functions is
different, the least common multiple is F with lC(F) ∈ {ON ,OPT ,OFF}.
The least common multiple for connectors and functions is depicted in Figure
23.

OR
C

ANDCXORC

ORXOR AND

F

F

l
c
=OFF

F F

l
c
=OPT

Fig. 23. Least common multiple for connectors and functions

6.2.3 Summary

Summarizing, if we want to determine a C-EPC based on an EPC and n
frequency profiles FP1-FPn, we apply the approach for one log n times, and
merge the results by calculating the least common multiple for the resulting
C-EPCs and configurations. This results in the following approach:

(1) transform the EPC in a flexible C-EPC
(2) for each FP:

• find all matching configurations
• minimize the objective function
• restrict the resulting C-EPC

(3) determine the least common multiple for the set of C-EPCs

38

7 Related work

The work described in this paper has been inspired by process mining from
event logs [5,6,9,15–18,24,25,36–38,42–44]. The basic idea was to test the pro-
cess mining techniques developed in workflow and case-handling environments
in a more general enterprise information systems environment. We found that
in general not all requirements for process mining were met, i.e. (i) each event
refers to an activity, (ii) each event refers to a case, and (iii) events are to-
tally ordered. Apart from process mining tools and techniques, we considered
Social Network Analysis [8] and its implications for mining Social Networks
from event logs [4]. This approach is based on the same requirements as pro-
cess mining, and additionally requires that each event refers to a performer.
For the same reasons, this approach is a good source for inspiration, but in
its current form not generally applicable for mining enterprise information
systems.

We have high expectations of mining enterprise information systems from a
business perspective since it may contribute to (re)configuration and upgrades
of such systems at one hand, and it allows for process performance analysis
on the other hand.

In the area of (re)configuration and upgrading of enterprise information sys-
tems, a lot of work has been done with respect to reference models in general
[10] and related to particular enterprise information systems [13,41]. Further-
more, we already addressed the requirements to have more intuitive, exe-
cutable and configurable business process models as described in [27,31,32].
Such reference models are very helpful to mine Enteprise Systems in case event
logs as described before are not available.

In the area of performance analysis, two types of analysis should be distin-
guished: analysis based on descriptive models and analysis based on how pro-
cesses are actually executed. Analysis based on descriptive models can be
done, e.g., by making use of mathematical models or simulation models. How-
ever, any approach based on descriptive models lack sufficient feedback from
real life. On the latter subject we already discussed two tools: Reverse Busi-
ness Engineer [34,28] and ARIS Process Performance Manager [19]. Both tools
have limitations with respect to process mining: these tools still require process
knowledge prior to application of the tool, whereas our approach only requires
existence of standard reference models. To the knowledge of the authors, no
academic publications in this area are available yet.

39

8 Conclusions and further research

8.1 Conclusions

This paper proposes a solution for process mining from incomplete system logs.
Existing mining approaches can be applied when an event log is composed of
at least a combination of case-ids and task-ids. In this paper, we discussed
how process mining can be applied if this combination of case-ids and task-ids
is not available.

The approach that we followed is based on the frequency that a particular
transaction has been executed, recorded in a frequency log. Additionally we
make use of existing reference models, especially Event-driven Process Chains
(EPCs) and the configurable couterpart (C-EPCs).

First we elaborated the idea to derive a configuration of the reference model
based on a C-EPC and a frequency profile. To be able to do so, we defined the
function match to decide whether a C-EPC, a configuration and a frequency
profile match, and we defined the objective function to decide which of the
matching configurations fits best.

In the approach to decide whether C-EPC, configuration and frequency profile
match, the (C)-EPC is considered to be a graph consisting of different nodes;
each node and each arc have a frequency. Subsequently we consider a system
of equations generated by the arcs, making use of the characteristics of nodes
(e.g. ‘an arc ending in a function has a frequency that is equal to the frequency
of the arc starting from that function’ or ‘a XOR-node has a frequency that
equals the sum of the frequencies of all arcs staring from that XOR-node’).

The function match can be applied on the (finite) set of possible configura-
tions and results in the set of configurations that match with the particular
frequency profile. The objective function yields the configuration that matches
the frequency profile best.

The approach that we followed (find all solutions of a system of equations and
then minimize a particular objective function) can be performed in one step
by making use of Integer Programming techniques. This has an additional
advantage since standard software for solving Integer Programming problems
is generally available.

From a conceptual viewpoint reference models of configurable enterprise in-
formation systems should be configurable. In practice, these models are not
configurable yet and can be characterized as upper bound or maximal process

40

model. Therefore, the second step in our research takes a frequency profile and
a traditional reference model as a starting point.

We showed that we can re-use our approach to find the best matching con-
figuration based on the function match, the objective function and Integer
Programming techniques. To be able to do so, we need one step in advance, to
transform the EPC into a C-EPC. This step results in a configuration, from
which we can derive the process model. Additionally we should restrict the
C-EPC as much as possible, to be able to reuse the C-EPC as a configurable
reference model.

To improve the quality of the derived reference model, the derivation should
be based on a number of frequency profiles, in stead of the one log that we used
up to now. If we take this into account, we can follow the same approach for
each of the frequency profiles, and then determine the least common multiple
for the set of C-EPCs.

8.2 Further research

Dependent on the type of enterprise information system subject to study and
the way a particular system has been designed and structured, the approach
how to mine the system, may differ. This is caused by the fact that different
system designs may lead to different ways to store data. And relevant for
process mining, this may or may not allow for the derivation of relations
between these data. In this paper we elaborated mining from incomplete logs,
making use of configurable reference models. In general, the following phases
can be distinguished:

(1) Traditional form of mining assuming a log with case id-s rather than
function frequencies. (M1)

(2) Mining based on a EPC-Max and a log allowing for the derivation of
function frequencies, resulting in an EPC augmented with frequencies
(i.e., functions with frequency zero are greyed out). (M2)

(3) Mining based on a EPC-Max and a log allowing for the derivation of
function frequencies, resulting in a C-EPC and a configuration which fits
the log. (M3)

(4) Mining based on a EPC-Max and several logs allowing for the derivation
of function frequencies, resulting in a C-EPC and a configuration for each
log. Note that this allows for the derivation of requirements/guidelines.
(M4)

(5) Mining based on a EPC-Max and several logs allowing for the derivation
of function frequencies and including meta data, resulting in a C-EPC, a
configuration for each log, and requirements/guidelines taking the meta

41

data into account. (M5)
(6) Mining based on a C-EPC and a log allowing for the derivation of function

frequencies, resulting in a configuration which fits the log. (M6)

Phases M1 and M2 are current practice already. In this paper, we elaborated
three other phases. Section 6.1 contributes to M3, Section 6.2 contributes to
M4 and Section 4 to M6. Further research should be done to improve the
C-EPC by making use of meta data and resulting in an C-EPC accompanied
by guidelines and requirements.

The approach discussed in this paper is working for the examples as illustrated
in Section 5.5 and the appendix. For real-life examples we have to elaborate the
Integer Programming problem in such a way that we can use standard Integer
Programming software tools. Therefore, we are building software to convert the
following constructions to the standard Integer Programming constructions:

(1) ∃-constructions (for AND-connectors and AND-configurations);
(2) ⇒-constructions (for configurable nodes);
(3) {-constructions (in the objective function).

A second issue that we have to tackle when implementing our approach for
real-life examples is the existence of noise: differences in frequencies that can-
not be explained by the number of cases alone. Such differences may occur as
an effect of the measuring period, when some functions are and some functions
are not yet executed for a particular case. Differences may also occur because
of noise or contamination in the actual process. To be able to analyze the
data in our approach we could introduce a threshold value of say 5%, which
means that we consider a value range [x+5%,x-5%] when we find a frequency
x. Further research should reveal the correct functioning of this method.

To conclude our program of further research, we like to research the type of
logs in current enterprise information systems. In workflow management and
case handling systems, we typically found event logs with events referring to
both case’s and tasks, and frequently also referring to performer, task type or
time stamp. In these systems logging on the level of business process allows
for business process management. For the type of logs described in this paper,
this is not the case, and we developed a solution based on the characteristics
of these systems. We realize that other types of system logs may have different
characteristics, and also that these may change over time. We aim to analyze
the underlying business processes, regardless of the type of system logs.

42

A Example Integer Programming problem

In Section 5.5 we defined the Integer Programming problem for the C-EPC
shown in Figure 7 and the frequency profile FP(fA) = 100, FP(fB) = 40,
FP(fC) = 60 and FP(fD = 80). In this appendix we explain which variables
and constraints have been applied, and we define the solution space and the
solution. The references refer to the equations in Section 5.

A.1 Variables

A.1.1 Variables related to frequencies (equation 1)

:

• For events: freqe0
, freqe1

, freqe2
∈ N

• For functions: freqfA
, freqfB

, freqfC
, freqfD

∈ N
• For connectors: freqc1 , freqc2 , freqc3 , freqc4 ∈ N
• For arcs: freq (e0,fA), freq (fA,e1), freq (e1,c1), freq (c1,c2), freq (c2,fB), freq (c2,fC),

freq (fB ,c3), freq (fC ,c3), freq (c3,c4), freq (c1,fD), freq (fD,c4), freq (c4,e2)

A.1.2 Variables related to configurations (equations 2 and 3)

• conf fD
∈ {ON ,OFF ,OPT}

• conf c2 ∈ {OR,XOR, &, SEQfB
, SEQfC

}
• conf c3 ∈ {OR,XOR, &, SEQfB

, SEQfC
}

A.2 System of equations

A.2.1 Constraints related to the frequency profile (equation 4)

• freqfA
= FP(fA) = 100

• freqfB
= FP(fB) = 40

• freqfC
= FP(fC) = 60

• freqfD
= FP(fD) = 80

A.2.2 Constraints related to functions (equation 5)

• freq (e0,fA) = freq (fA,e1)

• freq (c2,fB) = freq (fB ,c3)

• freq (c2,fC) = freq (fC ,c3)

43

• freq (c1,fD) = freq (fD,c4)

A.2.3 Constraints related to non-configurable functions and events (equation
6)

• freqe0
= freq (e0,fA)

• freq (e0,fA) = freqfA

• freqfA
= freq (fA,e1)

• freq (fA,e1) = freqe1

• freqe1
= freq (e1,c1)

• freq (c2,fB) = freqfB

• freqfB
= freq (fB ,c3)

• freq (c2,fC) = freqfC

• freqfC
= freq (fC ,c3)

• freq (c4,e2) = freqe2)

A.2.4 Constraints related to configurable functions (equations 7, 8 and 9)

• conf fD
= OFF ⇒ freqfD

= 0
• conf fD

= OPT ⇒ freqfD
≤ freq (c1,fD)

• conf fD
= OPT ⇒ freqfD

≤ freq (fD,c4)

• conf fD
= ON ⇒ freqfD

= freq (c1,fD)

• conf fD
= ON ⇒ freqfD

= freq (fD,c4)

A.2.5 Constraints related to concrete AND-connectors (equations 10, 11 and
12)

• freqc1 = freq (c1,c2)

• freqc1 = freq (c1,fD)

• freq (fD,c4) ≥ freqc4 ∧ freq (c3,c4) = freqc4

• freq (c3,c4) = freqc4 ∨ freq (fD,c4) = freqc4

A.2.6 Constraints related to concrete XOR-connectors (equations 13 and 14)

NA.

A.2.7 Constraints related to concrete OR-connectors (equations 15 and 16)

NA.

44

A.2.8 Constraints related to SEQx-configurations, split (equations 17, 18 and
19)

• conf c2 = SEQfB
⇒ freq (c2,fB) = freqc2

• conf c2 = SEQfC
⇒ freq (c2,fC) = freqc2

• conf c2 = SEQfB
⇒ freq (c2,fC) = 0

• conf c2 = SEQfC
⇒ freq (c2,fB) = 0

• conf c2 = SEQfB
⇒ freq (c1,c2) = freq (c2,fB)

• conf c2 = SEQfC
⇒ freq (c1,c2) = freq (c2,fC)

A.2.9 Constraints related to SEQx-configurations, join (equations 20, 21 and
22)

• conf c3 = SEQfB
⇒ freq (fB ,c3) = freqc3

• conf c3 = SEQfC
⇒ freq (fC ,c3) = freqc3

• conf c3 = SEQfB
⇒ freq (fC ,c3) = 0

• conf c3 = SEQfC
⇒ freq (fB ,c3) = 0

• conf c3 = SEQfB
⇒ freq (fB ,c3) = freq (c3,c4)

• conf c3 = SEQfC
⇒ freq (fC ,c3) = freq (c3,c4)

A.2.10 Constraints related to AND-configurations (equations 23, 24 and 25)

• conf c2 = & ⇒ freq (c2,fB) = freqc2 ∧ freq (c2,fC) = freqc2

• conf c3 = & ⇒ freq (fB ,c3) ≥ freqc3 ∧ freq (fC ,c3) ≥ freqc3

• conf c3 = & ⇒ freq (fB ,c3) = freqc3 ∨ freq (fC ,c3) = freqc3

A.2.11 Constraints related to XOR-configurations (equations 26 and 27)

• conf c2 = XOR ⇒ freq (c2,fB) + freq (c2,fC) = freqc2

• conf c3 = XOR ⇒ freq (fB ,c3) + freq (fC ,c3) = freqc3

A.2.12 Constraints related to OR-configurations (equations 28 and 29)

• conf c2 = OR ⇒ freq (c2,fB) + freq (c2,fC) ≥ freqc2

• conf c3 = OR ⇒ freq (fB ,c3) + freq (fC ,c3) ≥ freqc3

• conf c2 = OR ⇒ freq (c2,fB) ≤ freqc2 ∧ freq (c2,fC) ≤ freqc2

• conf c3 = OR ⇒ freq (fB ,c3) ≤ freqc3 ∧ freq (fC ,c3) ≤ freqc3

45

A.3 Solution of the system of equations

A.3.1 System variables

• For events:
· freqe0

= 100
· freqe1

= 100
· freqe2

= 100
• For functions:
· freqfA

= 100
· freqfB

= 40
· freqfC

= 60
· freqfD

= 80
• For connectors:
· freqc1 = 100
· freqc2 = 100
· freqc3 = 100
· freqc4 = 100

• For arcs:
· freq (e0,f0) = 100
· freq (f0,e1) = 100
· freq (e1,c1) = 100
· freq (c1,c2) = 100
· freq (c2,f1) = 40
· freq (c2,f2) = 60
· freq (f1,c3) = 40
· freq (f2,c3) = 60
· freq (c3,c4) = 100
· freq (c1,f3) = 100
· freq (f3,c4) = 100
· freq (c4,e2) = 100

A.3.2 Decision variable c2

Connector c2 is a configurable OR-split. To be able to find possible alternatives
for the configurable OR-connector, we apply the following rule from predicate
logic: A ⇒ B is equivalent with ¬ B ⇒ ¬ A.

• Checking SEQfB
: freq (c2,fB) = 40 6= 100 ⇒ conf c2 6= SEQfB

(equation 19)
• Checking SEQfC

: freq (c2,fC) = 60 6= 100 ⇒ conf c2 6= SEQfC
(equation 19)

• Checking XOR: freq (c2,fB)+freq (c2,fC) = 40+60 = freqc2 (equation 26). From
the fact that the right part is true, we cannot conclude whether conf c2=
XOR.

46

• Checking AND:freq (c2,fB) 6= freqc2 ∧ freq (c2,fC) 6= freqc2 ⇒ conf c2 6= & (equa-
tion 23)

• Checking OR:
· freq (c2,fB) + freq (c2,fC) = 40 + 60 ≥ freqc2 (equation 28)
· freq (c2,fB) ≤ freqc2 ∧ freq (c2,fC) ≤ freqc2 (equation 29)
From the fact that the right part is true, we cannot conclude whether
conf c2= OR.

From this overview we conclude conf c2 ∈ {OR, XOR}

A.3.3 Decision variable c3

Connector c3 is a configurable OR-join. To be able to find possible alternatives
for the configurable connector c3, we apply the following rule from predicate
logic: A ⇒ B is equivalent with ¬ B ⇒ ¬ A.

• Checking SEQfB
: freq (fB ,c3) = 40 6= 100 ⇒ conf c3 6= SEQf1 (equation 20)

• Checking SEQfC
:

freq (fC ,c3) = 60 6= 100 ⇒ conf c3 6= SEQf2 (equation 20)
• Checking XOR: freq (fB ,c3)+freq (fC ,c3) = 40+60 = freqc3 (equation 27). From

the fact that the right part is true, we cannot conclude whether conf c3 =
XOR.

• Checking AND: freq (fB ,c3) 6= freqc3 ∧ freq (fC ,c3) 6= freqc3 ⇒ conf c3 6= &
(equation 25)

• Checking OR:
· freq (fB ,c3) + freq (fC ,c3) = 40 + 60 ≥ freqc3 (equation 28)
· freq (fB ,c3) ≤ freqc3 ∧ freq (fC ,c3) ≤ freqc3 (equation 29)
From the fact that the right part is true, we cannot conclude whether
conf c3= OR.

From this overview we conclude conf c3 ∈ {OR, XOR}

A.3.4 Decision variable fD

To be able to find possible alternatives for the configuration of function f3,
we apply the following rule from predicate logic: A ⇒ B is equivalent with ¬
B ⇒ ¬ A.

• conf fD
= OFF ⇒ freqfD

= 0. Since freqf3
= 80 6= 0 this results in conf fD

6=
OFF (equation 9).

• conf fD
= OPT ⇒ freqfD

≤ freq (c1,fD) (equation 9). From the fact that 80 ≤
100, the right part is true, and we cannot conclude whether conf fD

= OPT
or not.

47

• conf fD
= ON ⇒ freqfD

= freq (c1,fD). Since freqfD
6= freq (c1,fD) this results

in conf fD
6= ON (equation 7).

From this overview we conclude conf fD
= OPT because freqfD

= 60 ∧
freq (c1,fD) = 100 ⇒ conf fD

6= OFF ∧ conf fD
6= ON

A.3.5 Solution

The system of equations resulted in a number of possible solutions. The objec-
tive function is used to select the solution that we consider ‘best’, see Section
4.3 The objective function is to minimize the sum of the values due to the
configuration of all configurable functions (i.e. fD) and the values due to the
configuration of all configurable connectors (i.e. c2 and c3), see equation 30.
In this small example it is easy to verify that the objective function yields
conf fD

= OPT, conf c2 = XOR and conf c3 = XOR.

References

[1] W.M.P. van der Aalst. Formalization and Verification of Event-driven Process
Chains. Information and Software Technology, 41(10):639–650, 1999.

[2] W.M.P. van der Aalst, J. Desel, and E. Kindler. On the Semantics of EPCs: A
Vicious Circle. In M. Nüttgens and F.J. Rump, editors, Proceedings of the EPK
2002: Business Process Management using EPCs, pages 71–80, Trier, Germany,
November 2002. Gesellschaft für Informatik, Bonn.

[3] W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors. Business Process
Management: Models, Techniques, and Empirical Studies, volume 1806 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2000.

[4] W.M.P. van der Aalst and M. Song. Mining Social Networks: Uncovering
interaction patterns in business processes. In M. Weske, B. Pernici, and
J. Desel, editors, International Conference on Business Process Management
(BPM 2004), pages ??–??, 2004.

[5] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm,
and A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches.
Data and Knowledge Engineering, 47(2):237–267, 2003.

[6] R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from
Workflow Logs. In Sixth International Conference on Extending Database
Technology, pages 469–483, 1998.

[7] J. Becker, M. Kugeler, and M. Rosemann (eds.). Process Management. Berlin
et al., 2003.

48

[8] R.S. Burt and M Minor. Applied Network Analysis: A Methodological
Introduction. Sage, Newbury Park CA, 1983.

[9] J.E. Cook and A.L. Wolf. Event-Based Detection of Concurrency. In
Proceedings of the Sixth International Symposium on the Foundations of
Software Engineering (FSE-6), pages 35–45, 1998.

[10] T. Curran and G. Keller. SAP R/3 Business Blueprint: Understanding the
Business Process Reference Model. Upper Saddle River, 1997.

[11] J. Dehnert and P. Rittgen. Relaxed Soundness of Business Processes. In
K.R. Dittrich, A. Geppert, and M.C. Norrie, editors, Proceedings of the
13th International Conference on Advanced Information Systems Engineering
(CAiSE’01), volume 2068 of Lecture Notes in Computer Science, pages 157–170.
Springer-Verlag, Berlin, 2001.

[12] L. Fischer, editor. Workflow Handbook 2001, Workflow Management Coalition.
Future Strategies, Lighthouse Point, Florida, 2001.

[13] T. Forsberg and J. Vikstroem G. Roenne. Process modeling in erp projects - a
discussion of potential benefits. Technical report.

[14] J. A. Gulla and T. Brasethvik. On the challenges of business modeling in large
scale reengineering projects. In Proceedings of the 4th International Conference
on Requirements Engineering, Schaumburg, Ill.

[15] J. Herbst. Dealing with Concurrency in Workflow Induction. In U. Baake,
R. Zobel, and M. Al-Akaidi, editors, European Concurrent Engineering
Conference. SCS Europe, 2000.

[16] J. Herbst. Ein induktiver Ansatz zur Akquisition und Adaption von Workflow-
Modellen. PhD thesis, Universität Ulm, November 2001.

[17] J. Herbst and D. Karagiannis. An Inductive Approach to the Acquisition
and Adaptation of Workflow Models. In M. Ibrahim and B. Drabble, editors,
Proceedings of the IJCAI’99 Workshop on Intelligent Workflow and Process
Management: The New Frontier for AI in Business, pages 52–57, Stockholm,
Sweden, August 1999.

[18] J. Herbst and D. Karagiannis. Integrating Machine Learning and Workflow
Management to Support Acquisition and Adaptation of Workflow Models.
International Journal of Intelligent Systems in Accounting, Finance and
Management, 9:67–92, 2000.

[19] IDS Scheer. Measure, Analyse and Optimise your Business Process
Performance! - ARIS Process Performance Managemr (ARIS PPM)
whitepaper, 2003.

[20] S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts,
Architecture, and Implementation. International Thomson Computer Press,
London, UK, 1996.

49

[21] G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Processmodellierung auf
der Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen
des Instituts für Wirtschaftsinformatik, Heft 89 (in German), University of
Saarland, Saarbrücken, 1992.

[22] P. Langner, C. Schneider, and J. Wehler. Petri Net Based Certification of Event
driven Process Chains. In J. Desel and M. Silva, editors, Application and Theory
of Petri Nets 1998, volume 1420 of Lecture Notes in Computer Science, pages
286–305. Springer-Verlag, Berlin, 1998.

[23] F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

[24] L. Maruster, A.J.M.M. Weijters, W.M.P. van der Aalst, and A. van den Bosch.
Process Mining: Discovering Direct Successors in Process Logs. In Proceedings
of the 5th International Conference on Discovery Science (Discovery Science
2002), volume 2534 of Lecture Notes in Artificial Intelligence, pages 364–373.
Springer-Verlag, Berlin, 2002.

[25] M.K. Maxeiner, K. Küspert, and F. Leymann. Data Mining von Workflow-
Protokollen zur teilautomatisierten Konstruktion von Prozemodellen. In
Proceedings of Datenbanksysteme in Büro, Technik und Wissenschaft, pages
75–84. Informatik Aktuell Springer, Berlin, Germany, 2001.

[26] K.G. Murty. Operations research: deterministic optimization models.
Englewood Cliffs: Prentice Hall, 1995.

[27] P. Fettke and P. Loos. Classification of reference models - a methodology and
its application. Information Systems and e-Business Management, 1(1):35–53,
2003.

[28] Ch. Reiter. SAP ExpertenReport - Modellbasierte
Analyse und Redokumentation von SAP Enterprise Solutions. WCM Online
(http://www.newmediasales.com/), 2003.

[29] P. Rittgen. Modified EPCs and their Formal Semantics. Technical report 99/19,
University of Koblenz-Landau, Koblenz, Germany, 1999.

[30] C. Rolland and N. Prakash. Bridging the gap between organisational needs and
erp functionality. Requirements Engineering, 5:180, 2000.

[31] M. Rosemann. Using reference models within the enterprise resource planning
lifecycle. Australian Accounting Review, 10:19, 2000.

[32] M. Rosemann and W.M.P. van der Aalst. A Configurable Reference Modelling
Language. QUT Technical report, FIT-TR-2003-05, Queensland University of
Technology, Brisbane, 2003.

[33] F. Rump. Geschäftsprozessmanagement auf der Basis ereignisgesteuerter
Prozessketten. Reihe Wirtschaftsinformatik, Teubner Verlag, Germany, 1999.

[34] SAP AG. Reverse Business Engineering - training material nr 50046489, 2001.

50

[35] A.-W. Scheer. Business Process Modelling. 3rd edition, 2000.

[36] G. Schimm. Process Mining elektronischer Geschäftsprozesse. In Proceedings
Elektronische Geschäftsprozesse, 2001.

[37] G. Schimm. Process Mining linearer Prozessmodelle - Ein Ansatz zur
automatisierten Akquisition von Prozesswissen. In Proceedings 1. Konferenz
Professionelles Wissensmanagement, 2001.

[38] G. Schimm. Process Miner - A Tool for Mining Process Schemes from Event-
based Data. In S. Flesca and G. Ianni, editors, Proceedings of the 8th European
Conference on Artificial Intelligence (JELIA), volume 2424 of Lecture Notes in
Computer Science, pages 525–528. Springer-Verlag, Berlin, 2002.

[39] L. Silverston. The Data Model Resource Book, Volume 1, A Library of Universal
Data Models for all Enterprises. revised edition, 2001.

[40] L. Silverston. The Data Model Resource Book, Volume 2, A Library of Data
Models for Specific Industries. revised edition, 2001.

[41] M. Verbeek. On Tools & Models, in: Dynamic Enterprise Innovation -
Establishing Continuous Improvement in Business. Baan Business Innovation,
3rd edition, 1998.

[42] A.J.M.M. Weijters and W.M.P. van der Aalst. Process Mining: Discovering
Workflow Models from Event-Based Data. In B. Kröse, M. de Rijke,
G. Schreiber, and M. van Someren, editors, Proceedings of the 13th Belgium-
Netherlands Conference on Artificial Intelligence (BNAIC 2001), pages 283–
290, 2001.

[43] A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models
from Event-Based Data. In V. Hoste and G. de Pauw, editors, Proceedings
of the 11th Dutch-Belgian Conference on Machine Learning (Benelearn 2001),
pages 93–100, 2001.

[44] A.J.M.M. Weijters and W.M.P. van der Aalst. Workflow Mining: Discovering
Workflow Models from Event-Based Data. In C. Dousson, F. Höppner,
and R. Quiniou, editors, Proceedings of the ECAI Workshop on Knowledge
Discovery and Spatial Data, pages 78–84, 2002.

51

