
Guided interaction:
A mechanism to enable ad hoc service interaction

Phillipa Oaks and Arthur HM ter Hofstede
BPM Program, School of Information Systems

Faculty of Information Technology

Queensland University of Technology

GPO Box 2434, Brisbane, QLD 4001, Australia

Abstract

Ad hoc interaction between web services and their clients is a worthwhile but
seemingly distant goal. This paper presents guided interaction as an alternative
to the current mechanisms for web service interaction which will allow heteroge-
neous web services and their clients to interact in a relatively simple and direct
manner without pre-programmed calls to WSDL interfaces or human intervention
at runtime.

Guided interaction is based on the exchange of messages that explicitly declare
their intent and purpose. A service provider uses an internal plan to collect the
input data it requires from the client in order to deliver its capability. It is the
nature and sequence of the data requirements specified in the plan and the ability
of the client to provide the data that determine the path of a dialogue rather than
a pre-defined conversation protocol.

Clients do not have to know in advance a service’s operation signatures or the
order of operations. They can request further information about specific items
as they are guided through the data input process. Dynamic disambiguation of
terminology is an intrinsic feature of guided interaction.

1 Introduction

Automated ad hoc interaction between web-based applications is a desirable goal. Appli-
cations that can automatically locate and interact with software services without a priori
knowledge of their interfaces will be able to achieve many tasks that are beyond human
resources at present. These tasks can be as diverse as real-time monitoring and resource
reallocation; repetitive polling for events that require a tactical response; and gathering
of location dependent information for mobile devices.

The vision of real-time access to vast sources of information was described by Gelernter
in 1991 [17]. Now, having achieved that vision with the Internet, we are looking at how this

1

evolving collection of information and resources can be accessed and used effectively. This
is on the verge of becoming a reality with the development and proliferation of software
services designed to be accessed by programmatic means (i.e. from within a program and
without direct human intervention)1. The increasingly large number of software services
means that their use needs to be automated to the largest possible extent in order to fully
profit from the possibilities that they open.

Ad hoc is defined in Wordnet2 as “unplanned” or “without apparent forethought
or prompting or planning”. In an ad hoc interaction environment, a software client
could find, using for example a discovery mechanism, a software service that provides the
capability it (the client) requires at that time or place. Depending on the mechanism
used to find services, the client may have little or no knowledge about the inputs the
service requires, the dependencies between the data inputs, the order of invocation of its
operations, or the type and formatting information associated with these inputs.

Ad hoc interaction is very different from the present situation where software applica-
tions interact in a planned manner via interfaces. A software interface provides a static
view of the operation signatures provided by a software service. Operation signatures
detail the names of the operations and their input and output data types. If the client
uses the correct name, provides the correct type of information for the parameters in the
correct order and ensures any preconditions are satisfied, then the provider will do the
operation in the promised manner. This means that software client programs, including
web services, are pre-programmed to make “calls” to operations on the public interfaces
of service providers.

Interfaces providing the same functionality can differ from one another in several ways.
They can use different names for the same operations, they can use different names and
data types for parameters, and they can require the parameters in different orders. This
diversity is inherent to software and stems from developer idiosyncracies and enterprise
culture and conventions. The result of this is that a client programmed to use the interface
of one provider cannot switch at runtime to use the interface of another provider even if
those interfaces provide the same functionality.

The Internet and the world wide web have now made many different types of infor-
mation accessible on demand. The numbers of providers and the types of information
becoming available mean that the current interaction mechanisms based on prior knowl-
edge about software interfaces will not scale up to the potential benefits of ubiquitous web
accessibility. This is especially true with the increased use of mobile computing devices
which can move in and out of spaces that can house any number of context dependent
and independent services .

There are three main approaches to address or avoid the problems associated with ad
hoc service interaction:

1. Use standard interfaces which require all services providing the same functionality
to use the same interface.

1When accessible over Web-based standards, such software services are usually known as “Web ser-
vices”.

2wordnet.princeton.edu/

2

2. Use protocols of interaction to prescribe the order of message exchanges.
3. Use techniques to obtain information about the operation signatures of software

services at runtime such as dynamic CORBA and Java reflection.

In the standard interfaces3 solution all providers of a particular function use the same
interface. The solution relies on a common agreement between heterogeneous service
providers on the best interface for a particular operation or set of operations in a particular
domain.

The problem is that that standard interfaces limit ad hoc interaction in two ways.
Firstly, it is the responsibility of the client application’s programmer to know or find
out how to call the operations supplied by the interface4 in order to pre-program the
appropriate invocations. Secondly, it locks all providers into the same signature. If the
same task can be performed with the same inputs but formatted in a different manner or
with different sets of inputs the provider must supply (non-standard) interface operations
for each of these variants.

In reality, the number of service providers, the number of possible operations and the
different contexts in which those operations will be performed means the standard inter-
face solution will not scale to solve the problems of ad hoc interaction in the heterogeneous
web services environment.

The second proposal is for the use of interaction protocols. Interaction protocols are
message exchange plans that define the type of messages that can be sent, by whom, and
in which order. The argument for interaction protocols is that if both sides are aware of
the correct type and sequence of messages they can participate correctly in the interaction.

It is true that some conversations or dialogues follow repeatable patterns and for some
problems in clearly defined contexts where the data requirements are well understood by
all parties interaction protocols can be developed. A good example of this case is the
English auction protocol.

Much of the work that has been done in the area of conversational interaction for
software agents and lately web services is directed at specifying the order of messages in
a conversation. These interaction protocols are defined as either state charts [21] with
messages representing the transitions between states [20], as AUML interaction diagrams
[30], or as Coloured Petri Nets (CPN) [10]. For web services, BPEL5 and the Web
Services Choreography Description Language (WS-CDL)6 are XML based specifications
for describing the order of message exchanges.

However, ad hoc service interactions will take place in a context where the nature and
order of the information service providers require may not be known by clients. Unlike
auctions, each provider of the same capability may require different types of data or they
may use different terminology to describe the same data.

3www.learnxmlws.com/book/chapters/chapter11.htm
4Many common software development environments help the developer in this task by reading the

service interface and automatically generating the code necessary to interact with the service. However,
these tools are only usable if the interface of the service is available when the client application is
developed.

5www-106.ibm.com/developerworks/webservices/library/ws-bpel
6www.w3.org/TR/ws-cdl-10

3

Ontologies for protocol description have also been proposed such as the one in [35] and
another found at http://www.csl.sri.com/users/denker/sfw/wf/ip.owl. Ontologies
provide a way of “serializing” protocol descriptions into the Web Ontology Language7

(OWL) for sharing across the web. However, just as these two example ontologies have
different underlying conceptual models, so to, the protocols created using these ontologies
will differ depending on the needs, requirements and preferences of the parties defining
the protocols.

A problem with all of these approaches is how the interaction protocols are shared, un-
derstood, agreed upon, and enacted at runtime. The computational cost associated with
the effort required to agree on which protocol to use [31] and to ensure runtime compliance
[36] without human intervention is a serious problem that has not been addressed.

The lack of a shared understanding of the data requirements (as there is in the auction
context) means ad hoc interaction between heterogeneous services cannot be fully defined
in terms of a pre-set pattern of message exchanges. It is the nature and sequence of the
data requirements of each service provider and the ability of each client to provide the
data that should determine the direction of a dialogue.

The third possible approach to enable ad hoc interaction is the use of techniques
to obtain information about the operation signatures of software services at runtime.
These techniques are used by client programs to gather information such as the names of
operations and the data types the operations expect as input and return as output.

One of the difficulties of doing this on a large scale is that the information that is
available at runtime via reflection is syntactic rather than semantic. Client programs
need to interpret this derived syntactic information and create semantically correct re-
quest objects or messages to send to the provider at runtime. This interpretation effort
places a large computational burden on the client at runtime supported by the developer
programming the client software with context dependent discovery, interpretation and
message generation logic at development time.

The many diverse kinds of software services that will be developed in the coming
years and the promise and potential of ubiquitous service access means that the current
paradigm of pre-programmed one-on-one interactions with providers whose interfaces are
known at development time will not provide the flexibility required for dynamic interaction
with newly discovered services.

A means of interaction that is flexible and robust with a clear achievable semantics is
needed to advance the vision of “ad hoc interaction”. This mechanism must reduce the
computational burden on client programs allowing them rapid and flexible access to any
service that can fulfil their current needs.

This paper introduces a meta protocol called guided interaction that does not specify
what data should be exchanged as in standard interfaces, or specify the order of messages
as in interaction protocols, or require intensive computational effort on the part of client
programs. Guided interaction defines a language and rules for conversational interaction
between services [26].

Guided interaction uses a shared language for the exchange of information in messages.

7www.w3.org/2004/OWL/

4

These messages explicitly declare their intent and purpose. As in all computer interaction,
the intent of a message is to either ask for information or for an operation to be performed,
or tell an answer or the result of performing an operation. The purpose of a message is
described with a performative that describes the kind of information being sought or
sent. The intent, a limited set of performatives and six constraints provide the complete
semantics of the shared interaction language.

A shared language for interaction is not sufficient on its own, it must also be possible
to interpret, manage, and generate messages in the language [12], such that the result of
the interaction satisfies goals or solves problems. Guided interaction also defines a way to
create dialogue plans which allow a plan interpreter to generate and interpret messages in
the language and manage the flow of each dialogue. These dialogue plans are an internal
structure of a service provider, clients do not need and do not have access to the plan.

Guided interaction is designed to facilitate interaction between software entities that
have not been explicitly pre-programmed to interact with one another. It can not achieve
this goal and at the same time display optimal computing efficiency. Clients with prior
knowledge or experience with a guide or service may not need to use this mechanism for
repeated interactions.

The purpose of guided interaction is to facilitate communication between two entities
that have no prior knowledge of one another. It is assumed however that the client is
aware of the function or information the service delivers which can be found in a pub-
lished “capability” description [28]. This means that the client has an independent goal
and has discovered a service (via some discovery mechanism) that can assist it with the
achievement of its goal. The functionality of the service is fixed and it is the responsibility
of the client to find services that promise the required functionality, it is not the services’
responsibility to adapt their functionality to serve the transient needs of individual clients.
The (AI) planning concerns of how client goals are represented, how they are decomposed
for discovery and matched to the capabilities delivered by service providers is out of the
scope of this work.

Guided interaction means clients do not have to know in advance a service’s operation
signatures or the order of operations before asking the provider to perform a capability.
However, the client should have access to appropriate data before engaging with the
service. For example, before engaging a bank service a client will have information relevant
to banking such as account numbers and transaction amounts. Clients can request further
information from the provider about specific items as they are guided through the data
input process. Dynamic disambiguation of terminology is an important feature of guided
interaction. A means of facilitating shared understanding of the syntax and semantics of
the terms used by the service provider are essential for loosely coupled ad hoc interaction.

The focus of guided interaction is not on specifying the order in which messages are
sent, but on specifying the information that is (still) required before the service provider
can execute the required service operation. It is the nature and sequence of the data
requirements specified in the plan and the ability of the client to provide the data that
determine the path of a dialogue rather than a pre-defined conversation protocol. The
service provider can use alternative ways of asking for input data and it can use alternative
data sets to provide a flexible interface for clients with different competencies and data

5

holdings.
The rest of the paper is structured as follows. The foundations section (section 2)

outlines several technologies which have influenced the definition of guided interaction.
Section 3 presents the details of guided interaction. Section (4) reviews several other
proposals for web service interaction. Paper concludes with a discussion in section 5.

Please note, several of the footnotes contain URL’s the string “http://” has been
removed to save space and should be pre-pended to all URLs before attempting to access
them in a browser.

2 Foundations

Various mechanisms, paradigms and technologies have contributed to guided interaction.
Several questions guided the exploration of the notion of ad hoc interacting services,
including: What kind of information do computer programs exchange? Can software
communicate using a means other than published interfaces? How do programs assist
their human users? Who is in control of the interaction? In this section the technologies
that have contributed to the answers to these questions are given a brief introduction and
the ideas which have influenced the proposals that follow are outlined.

Computer interaction mechanisms: In the early days of personal computers human
computer interaction involved using the command line interface [32]. To make a computer
do something users needed to enter the exact name of an executable program (command)
and its parameters in the correct order at the command prompt. Parameters are accessed
by position not by name so users have to know the command name and the correct
sequence of parameters in advance.

As programs became more sophisticated it was not always sufficient to have a fixed
set of parameters known at startup, it was sometimes necessary to get input from the
user at runtime. Programs could print a prompt on the screen to tell what kind of
data was required and users would enter the appropriate information during processing.
Alternatively the user would be offered a list of values from which they could pick an
appropriate value. To reduce the need to know program commands in advance the user
could be asked to select from a menu of items representing functions the system could
perform.

Point and click interfaces have greatly improved access to software for most people,
however they have not introduced any new mechanisms for gathering the input from the
user. These interfaces are still based on three input mechanisms: input of a single data
item, pick from a list of values and select a command from a menu representing an action
to be performed.

Linguistics: In linguistics four types of sentence, declarative, interrogative, imperative
and exclamatory8 are recognized. Declarative and exclamatory sentences declare facts,

8www.uottawa.ca/academic/arts/writcent/hypergrammar/sntpurps.html

6

interrogative sentences ask questions and imperative sentences give commands. Usually
only three (declarative, interrogative and imperative) are used in a technical context9.

In computer interaction, the purpose of an interrogative message is to ask for infor-
mation e.g. “get the current time” while the purpose of an imperative message is to ask
for an action to be performed e.g. “set the current time to 21-20-33.00”. The purpose
of a declarative message is to inform the recipient of information, either the answer to a
request for information (“the current time is 22-00-13.04”), or the result of performing an
action (“time set to 21-20-33.00”).

The concept of three types of messages accords with computer interaction mechanisms
i.e. ask for input information, ask for an action by selecting from a menu of commands,
and tell answers or results.

Intelligent Agents: Intelligent agents are proactive, reactive, autonomous goal seek-
ing, communicative, and possibly mobile software entities [14, 7]. They use Agent Com-
munication Languages (ACLs) to “talk” to one another. There are two primary agent
communication languages FIPA ACL [13] and KQML [27, 24].

KQML performatives and FIPA ACL Communicative Acts (CAs) are derived from
speech acts [34]. Performatives or CAs indicate the type or purpose of a message, such as
a query, a response or an action request. KQML and FIPA ACL also provide performatives
for networking or group communication and advertising capabilities to other agents.

ACL messages contain three types of information.

1. Contextual information including the name of the sender and receiver, and a refer-
ence to the language or ontology used for the content.

2. The performative.
3. The actual content that relates to the performative.

The main ideas taken from ACL’s are the ability for software entities to communicate
using a “conversation-like” exchange rather than a more typical “operations on interfaces”
type of interaction and the structured format for messages.

There are several performatives that are relevant for one to one service interaction.
These are the KQML Ask and Tell and FIPA ACL Query, QueryIf, QueryRef and Inform
in relation to information and Achieve, Request and Propose in relation to actions.

A recent discussion10 highlights the similarities and differences between agent and
service-oriented applications, with the difference between them being primarily related to
their degree of autonomy. Some of the participants in the discussion suggest there is a
convergence between agents, services and semantic web services. The guided interaction
mechanism presented in section 3 will further assist this convergence by providing a means
of communication to bridge the gap between the agent and service interaction mechanisms
in use at this time.

9mit.imoat.net/handbook/s-types.htm
10See sharon.cselt.it/projects/jade/jade-develop-archive/0321.html

7

Protocols: Performatives and the set of appropriate responses to them can be seen as
the building blocks for protocols. Burmeister et.al. [8] use three basic “building block”
performatives inform, query and command to build protocols of interaction.

The responses to the query and command performatives are variants of the inform mes-
sage: answer in response to a query and report or reject in response to a command. The
sender of a query performative is requesting information from the receiver, the receiver’s
response will be to tell an answer to the sender. The sender of a command performative
is requesting the receiver to perform some action. The receiver of the command can make
one of two possible responses; the first response is to report the results of performing the
action, and the alternative response is to reject the request.

P1 sends an OFFER to P2 declaring P1 will

do the OFFERed action for P2.

P2 can Reject the OFFER, or accept by

sending a COMMAND to P1.

P1 sends a COMMAND to P2 requesting P2

to perform an action.

P2 can Reject the COMMAND, or perform

the COMMAND and Report the result to P1.

P1 sends a QUERY to P2 asking

P2 to provide some information.

P2 INFORMs P1 of the Answer to

the QUERY.

OFFER

COMMAND

INFORM -

Reject

INFORM -

Report

INFORM -

Reject

INFORM -

Answer

QUERY COMMAND

INFORM -

Reject

INFORM -

Report

P1 sends PROPOSE to P2 declaring P1 will

do the PROPOSEed action for P2.

P2 can Reject the PROPOSE, or accept by

sending a COMMAND to P1, or make a

REQUEST for an alternative action.

REQUEST

OFFER

COMMAND

INFORM -

Reject

INFORM -

Report

INFORM -

Reject

INFORM -

Reject
PROPOSE

REQUEST

OFFER

COMMAND

INFORM -

Reject

INFORM -

Report

INFORM -

Reject

PROPOSE

COMMAND

INFORM -

Reject

INFORM -

Report

INFORM -

Reject

INFORM -

Reject
PROPOSE

P1 sends a REQUEST to P2 asking P2

to perform an action for P1.

P2 can Reject the REQUEST or make a

counter OFFER to P1, or PROPOSE an

alternative action to P1.

1a 1b

2

3

4

Figure 1: Protocol building blocks

8

Complex protocols can be built from these basic building blocks as shown in figure 1.
The two basic protocols, 1a and 1b, are shown at the top of, with 2,3 and 4 being new
protocols defined in terms of these two basic protocols.

Two of the ideas from Burmeister et.al. incorporated in the guided interaction mech-
anism are the use of the two basic building blocks query and command because they are
similar to the input and pick or select abstractions seen in computer interaction. The
second idea is that a protocol or performative is defined in terms of the responses that
can expected when it is used.

Wizards: Wizards are software programs that guide users through complex tasks, or
tasks that may have many steps and require those steps be taken in a prescribed sequence
[6]. Wizards are particulary useful for novice users who lack the necessary knowledge to
perform a task.

The main idea drawn from wizards is a view of service clients as equivalent to novice
human users. Wizards are a concrete demonstration of how complexity can be broken
down into a sequence of simple interactive steps.

Human Computer Voice Dialogue systems: Interactive voice response (IVRs) or
dialogue systems provide an interface between human users and computer systems. They
use recorded human voices or computer generated voices, to speak instructions and offer
options to human users. Dialogue systems are an application of the facade pattern [16]
in which the dialogue mechanism shields the client from back end applications.

Dialogue architectures are structured around the performance of three functions. The
first function is interpreting (spoken) user input, the second is managing the conversation
and the third function is generating output for the user. Allen et.al. [1] hypothesize that
within their domain of interest, which is free form human computer dialogue, most of
the complexity of interpretation and dialogue management is independent of the specific
task being performed. This of interest, because as long as a service (provider or client)
has the ability to receive, interpret, and send messages it can participate in any dialogue
regardless of the actual content of specific conversations.

Voice XML: VoiceXML11 (VXML) is a specification for the description of human com-
puter voice dialogues in XML for processing by a VXML engine. VXML is a means to
bridge the gap between human users and computers by collecting information from a hu-
man user for submission to back end applications. It is based on a document model with
each document describing the information to be gathered in the dialogue. VXML uses
two primary abstractions for collecting information, forms and menus.

Forms hold collections of one or more data items. Each item has an associated
“prompt” telling what kind of information is required. When the item is activated (usu-
ally in document order) the prompt is spoken to the user. An item may also contain a
grammar which enumerates the acceptable values the user can utter in response to the

11www.w3.org/TR/voicexml20/\#dmlAFIA

9

prompt. When all the required items in a form are collected from the user the set of
responses is submitted for processing.

The other means of eliciting information from users is a menu. Menus are used to
represent both pick lists of values and lists of selectable actions. A list of alternative
values is spoken to the user and they select one of these as their response.

The form, as a container for data items and menus which offer lists of alternatives to
be elicited from the human user, are abstractions that are similar to those in section 2.
The structured specification of dialogues in XML for processing by the VXML engine is
a useful implementation technique.

3 The guide: a dialogue mechanism for services

Guided interaction is based on a conversational or directed dialogue model [22]. A client
initiates a dialogue by requesting a service provider to perform a capability. A guide is a
type of mediator or facade which presents a “user friendly” interface to a back end service.
Clients may be other services, software agents or people. The guide or service provider
incrementally collects a set of parameter values from the client for submission to a back
end process.

Guided interaction has two parts. The first part, introduced in section 3.1 is a shared
language for the exchange of information between services. The second part, introduced
in section 3.2 is a language and mechanism for constructing interaction plans that are
used to generate and interpret messages using the information exchange language.

The shared language allows a guide, representing a service provider, to tell its clients
what its capabilities are, and to proactively seek the input data it needs to deliver the
capabilities. The language also allows clients to seek further information from the provider
to ensure mutual understanding of the requirements.

The mechanism frees the client from having to know in advance the specific names
and types of parameters, and the order of operations necessary to access the capability.
Clients using guided interaction can interact with any guide enabled service at runtime
rather than being tied to specific service implementations via hard-coded calls.

There are several ways guides could be used: a guide could be provided as an alterna-
tive means of accessing one or more capabilities represented by WSDL specifications or
other APIs. Guides could be implemented directly by service providers or by independent
third parties using publicly accessible interfaces.

A guide has been implemented as two communicating Coloured Petri Nets (CPN)12

shown in appendix A. CPN uses the CPM-ML language for declarations and net inscrip-
tions.

Two scenarios are outlined below which serve to illustrate how the parts of the mech-
anism are structured and how they work together to provide ad hoc interaction between
services.

In the first scenario, the client (a PDA) has been directed to a service that converts
an amount from one currency to another. The PDA/client is unsure of the exact terms

12wiki.daimi.au.dk/cpntools/cpntools.wiki

10

the provider uses to represent its capabilities so it asks the provider to provide the generic
capability “Menu” to find out what the provider can do. The provider however, restricts
its capabilities to those who register or login, so the first response from the provider
requests the client to select one of “Register”, “Login” or “Exit”. The client matches the
menu items with its internal list of goals and elects to login. The provider assists the client
through the login process by requesting the specific information items it requires. After
the login process is completed the provider offers the client a menu of the capabilities it
can deliver.

In the second scenario, the PDA (client) has been offered a list of capabilities and it
has selected “ConvertCurrency”. The provider responds with a request for the client to
tell it the amount of money to be converted. If the client is unable to provide an amount
then the service terminates with an error result. Once the provider has the amount it
asks for the source then destination currency codes. If the client does not understand the
request for a currency code the service can alternatively ask the client to pick a currency
code from a list. After the provider has collected the information it needs, it processes
the input and returns the result to the client.

3.1 A language for service conversations

Messages are the core mechanism for exchanging information between two parties. In free
form natural language dialogues the interpretation of the type, purpose and content of
messages is a complex process. There are several ways the complexity of the interpretation
process can be reduced to mitigate the cognitive load on participants [8, 11].

• Explicitly state the intent of a message.
• Explicitly state the purpose or type of a message.
• Define the set of allowable responses for each message.
• Change from free form dialogue (where anyone can say anything) to directed dia-

logue where the type of messages that can be sent in a given context is controlled.

Each of these techniques is employed in guided interaction.
The information contained in a guided interaction message is described in the message

schema shown in figure 2 as an ORM diagram [19]. ORM is used because it is a highly
expressive conceptual modeling language that allows the visual presentation of information
in a succinct format with a sample population.

There are two types of message, external and internal. External messages are ex-
changed between services and their clients. Internal messages are used within the guide
or dialogue manager. In addition to containing its intent, performative and application
dependent content each message contains contextual information. The context dependent
information includes conversation or process id’s for correlation supplied by each party
in the dialogue. Messages may also contain a message ids and a references to a previous
messages if appropriate. The identities of the sender and receiver of the message are also
part of the contextual information.

The service provider generates a conversation id (pid) internally for each conversation
because it cannot rely on external conversation ids being unique. For example, two clients

11

could use the same cid or the same client may reuse a cid. A new pid is generated to
identify sub-dialogues of the main dialogue.

Each message is uniquely identified by a combination of the cid, mid and sender. An
internal message is uniquely identified by a combination of a pid, cid and mid. These iden-
tity schemes are shown by the dashed lines connecting these elements to the uniqueness
constraints (a circled U) in figure 2.

A suggested message format is described in the message schema shown in figures 3
and 4. The actual structure of a message is flexible especially when implemented in XML,
because in XML the elements can be accessed by name rather than position.

Figures 2 and 3 demonstrate how a straightforward translation from ORM to XML
can be made.

ConversationId

Message

cidmsg

in conversation
m1 20
m2 20
sm3 20

msg mid

identified by
m1 250
m2 253
sm3 253

MessageId

msg mref

references
m1 0
m2 102

msg sender

sent by
m1 client.co
m2 client.co

msg receiver

received by
m1 service.co
m2 service.co

msg intent

has declared
m1 Ask
m2 Tell
sm3 Tell

msg perf

for purpose
m1 Result
m2 Input
sm3 Input

msg content

with
m1 “Menu”
m2 “Martha Smith”
sm3 “Martha Smith”

{Ask, Tell}

InternalMessage pidsmsg

has local
m1 0
m2 0
sm3 48

U

U

{Result, Input, Pick,
Select, Error,
Refuse, Pause,
Resume, Restart,
Cancel, Status}

Content

Participant
(uri)

Intent
(name)

Performative
(name)

ExternalMessage

Figure 2: Message schema

12

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.guided.org"
 xmlns="http://www.guided.org">
 <xsd:annotation>
 <xsd:documentation>
 Message schema
 </xsd:documentation>
 </xsd:annotation>

<xsd:simpleType name="ConversationId"><xsd:restriction base="xsd:anyURI"/></xsd:simpleType>
<xsd:simpleType name="ProcessId"><xsd:restriction base="xsd:anyURI"/></xsd:simpleType>
<xsd:simpleType name="MessageId"><xsd:restriction base="xsd:anyURI"/></xsd:simpleType>
<xsd:simpleType name="ParticipantId"><xsd:restriction base="xsd:anyURI"/></xsd:simpleType>
<xsd:simpleType name="Content"><xsd:restriction base="xsd:string"/></xsd:simpleType>
<xsd:simpleType name="Intent"><xsd:restriction base="xsd:string">
 <xsd:enumeration value="Ask"/>
 <xsd:enumeration value="Tell"/></xsd:restriction></xsd:simpleType>
<xsd:simpleType name="Performative"><xsd:restriction base="xsd:string">
 <xsd:enumeration value="Result"/>
 <xsd:enumeration value="Input"/>
 <xsd:enumeration value="Pick"/>
 <xsd:enumeration value="Select"/>
 <xsd:enumeration value="Help"/>
 <xsd:enumeration value="Error"/>
 <xsd:enumeration value="Refuse"/>
 <xsd:enumeration value="Status"/>
 <xsd:enumeration value="Pause"/>
 <xsd:enumeration value="Resume"/>
 <xsd:enumeration value="Restart"/>
 <xsd:enumeration value="Cancel"/></xsd:restriction></xsd:simpleType>

<xsd:element name="Message">
 <xsd:complexType>
 <xsd:all>
 <xsd:element name="cid" type="ConversationId"/>
 <xsd:element name="mid" type="MessageId"/>
 <xsd:element name="mref" type="MessageId"/>
 <xsd:element name="sender" type="ParticipantId"/>
 <xsd:element name="receiver" type="ParticipantId"/>
 <xsd:element name="intent" type="Intent"/>
 <xsd:element name="perf" type="Performative"/>
 <xsd:element name="content" type="Content"/>
 </xsd:all>
 </xsd:complexType>
</xsd:element>
</xsd:schema>

Figure 3: XML Schema for Messages

13

The remaining elements contained in the message, Intent, Performative and Content,
are introduced in the next sections.

3.1.1 Intent

In computer interaction there are only two reasons for communicating: to ask questions
and to tell answers. This is true for any software interface from command lines to win-
dows and APIs . A client, be they human or software can only ask for information or
actions, and tell information or the result of actions, and a provider (human or software)
can only ask for information or actions and tell information or results. This is also seen
in linguistics where only three types of sentences are used in a technical context, interrog-
ative, imperative and declarative. Interrogative and imperative sentences request either
information or actions and declarative sentences tell information or the result of actions.

This leads to the definition of the Intent of a message, Ask or Tell. At this level it is
not distinguished whether a request is for information or actions. A conversation is the
exchange of Ask and Tell messages with two constraints:

C 1 For each Ask message there is only one corresponding Tell message in response.
C 2 A Tell message can only be sent in response to an Ask message.

This mechanism does not “chat”.
An explicit statement of the Intent of a message allows both parties to understand their

exact responsibilities in regard to the message. The use of only two intentions, mirrors
the commonly used and well understood “Get” and “Set” operations of APIs and the
“Get”, “Put” and “Post” operations in the REST architecture. From an implementation
perspective, both the client and provider require a very simple interface with only two
operations, one for receiving Ask messages and the other for receiving Tell messages.

3.1.2 Performative

The purpose or type of the message is described by a Performative. The performative
acts like a prompt, it indicates what kind of information is being sought or what kind

<?xml version='1.0' ?>

<msg:Message xmlns:msg="http://www.guided.org"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.guided.org/Message.xsd">

<cid>234</cid> <mid>445</mid> <mref>232</mref>

<sender>client.co</sender> <receiver>service.co</receiver>

<intent>Ask</intent> <perf>Result</perf> <content>Menu</content>

</msg:Message>

Figure 4: Message example in XML

14

of response is required. A small set of performatives is defined based on ACLs, agent
communication protocols, and human computer dialogues (section 2). These performa-
tives reflect core information gathering abstractions and dialogue management or control
mechanisms.

• The functionality of a service is requested and delivered by the performatives
Result, Input, Pick, Select and Help.

• The service management performative Status, provides information about the
state of the dialogue at runtime.

• The dialogue control performatives are Pause, Resume, Restart and Cancel.
• The performatives Error and Refuse provide alternative responses.

The performative Result starts a conversation. It is sent by a client to the service to
request the capability named in the content of the message. The intention behind the use
of the word “Result” rather than “Do”, “Perform” or “Start” is, a dialogue is initiated by
a client requesting the service to perform its advertised capability and to tell the result.
So, a message containing Ask, Result, “ConvertCurrency” should be read as “Ask (for
the) Result (of performing the) ConvertCurrency (capability)”. Although this may seem
a little awkward it is necessary to ensure every performative has exactly the same name
for the request and its response.

The performative Input requests input data for a single item (parameter) similar in
function to a text box or form item. As it is unrealistic to assume two heterogeneous ser-
vices will use exactly the same terminology and data structures, the focus is on describing
what kind of content is required and the datatype the service expects rather than the
value of content (as done by VXML grammars).

Clients have to match the provider’s request for input with the data they hold. If the
client does not understand the terms used in the request they can ask for Help from the
guide. This means every internal parameter definition should include a set of alternative
parameter names and datatypes which are equivalent in this context. This will allow
the provider to offer alternative information to the client. Ideally these names and their
alternatives a references to web accessible sources such as public ontologies or dictionaries
such as Wordnet [29]. A more sophisticated provider may offer the client pointers to
other services to convert or reformat data into a useful form, or it may make use of these
services directly.

The performative Pick asks the client to select from a list of acceptable values such
as (AUD, GBP, USD, ERD, NZD) for currency codes. Its function is similar to a list box
in Windows.

Select offers a menu of choices representing the capabilities of the provider. Select
can be used to offer more finely grained capabilities than those described in a service
advertisement e.g. from “ConvertCurrency” to “ConvertUSDtoGBP” or “ConvertUSD-
toAny”. Select could also be used with a generic interface to a service provider. For
example, if a client sends Ask Result “Menu” to determine which capabilities a service
can provide the provider could respond with an Ask Select “...” message containing a list
of its capabilities.

15

Informally, the difference between Tell Error and Refuse is an error is returned if the
service (or client) tried but cannot generate a correct response. Refuse means the service
(or client) will not provide the required response such as in the case of privacy or security
concerns. The distinction depends on the context of the participants.

The dialogue management performatives Pause, Resume, Restart and Cancel have
the effect indicated by their names. Both participants (client and provider) can use these
performatives. If, for example the provider sends an Ask Pause message to the client, the
client does whatever is necessary and sends a Tell Pause (or Error or Refuse) message
in reply. When the provider is ready to resume, it sends an Ask Resume message to the
client and the client responds with Tell Resume (or Error or Refuse).

The Status performative interrogates the state of the dialogue rather than the back
end processing of the capability. Although this is an incomplete view of the service, it
does enable reporting on whether the provider is waiting for input from the client, or
processing the last response, or has passed the client input to the back end processor.

An important feature of this set of performatives is that they are context and content
independent. This allows them to be used for the collection of input data for services in
any domain.

There is one constraint that applies to all performatives except Error and Refuse. For
each Ask performative message there are only three valid responses:

C 3 Tell (the same) performative, Tell Error or Tell Refuse.

The advantage of constraining the allowable responses is that the dialogue is predictable
and manageable.

There are three constraints on the types of messages that can be sent by providers or
clients.

C 4 Service providers cannot Ask for a Result from clients, i.e. a service cannot ask
its client to perform a capability while it is performing a capability for that client.
It could however, in the context of a new conversation request a capability from
another service, which may be its current client.

C 5 Providers and clients cannot Ask for an Error or Refuse. These performatives are
reserved for Telling the unsuccessful results of Ask requests.

C 6 Clients cannot Ask for Input, Pick or Select from the service provider. If the client
requires more information it can Ask for Help.

These six constraints combined with the specified values for Intent and Performatives give
the complete semantics of the dialogue language.

3.1.3 Content

In so far as possible the dialogue language and interaction mechanism are independent of
the actual content of messages. Thus guided interaction is a generic dialogue model that
is not tied to specific types of services or domains. Implementations could use XML for
the content of messages, with the structure described with an XML schema.

16

A simple structure comprising a parameter name and datatype can be used for the
input and pick performatives. Several of the other performatives lend themselves to
further structuring. For example a help request could contain the parameter name and
datatype and the reason help is being sought e.g. not understood or not recognized.

3.2 A language for conversation plans

A vocabulary for interaction was described in the previous section but a complete language
specification also needs a description of how the language is used in practice.

There are several activities it is desirable a dialogue management system should per-
form particularly in the context of ad hoc heterogeneous service interaction.

• Provide help and disambiguation to mitigate data description mismatches.
• Provide alternative input sets, for services that can operate with different types of

inputs, and to accommodate clients who cannot provide certain types of information.
• Use sub-dialogues to collect commonly recurring sets of input parameters such as

credit card details.
• Provide context sensitive reports when fatal errors are encountered.
• Evaluate client input to determine the dialogue flow.
• Allow multiple concurrent dialogues about the same or different capabilities.

The rest of this section describes the data structures necessary to hold information
within a dialogue manager.

3.2.1 Instructions

Dialogues are directed the service provider using an internal plan to guide the collection
of parameter information for a capability. A plan is a set of instructions detailing which
inputs are required for a capability or operation. A client does not need access to the
plan.

When the service provider receives and accepts an Ask Result message a capability
plan is instantiated by inserting the cid from the clients request message and an internal
pid into each instruction in the plan. In this way plans are uniquely tied to specific
conversations, and multiple instances of the same plan can be activated concurrently.
Processing starts with the first instruction in a plan.

Instructions have several parts as shown in the schema (figure 5). The purpose of an
instruction is to describe which item a value should be collected for. When an instruction
is selected for processing (i.e. becomes the current instruction) the item it references is
instantiated and a request message to the client seeking an input value for the item is
generated.

The type of request message depends on the type of the item, this is discussed further
in section 3.2.3. After the request message is sent the dialogue manager waits until a
response is received from the client.

An input value for the item received in a tell message is evaluated (input checked with)
using the boolean Evaluation Function identified by name in the current instruction. If

17

the evaluation returns true, the instruction identified by next on success is selected for
processing and the input value is place in the item and stored. If the evaluation fails
the instruction identified by next on failure is selected for processing and the item is
discarded.

The intuition behind only two choices of which instruction to select next (next on
success and next on failure) is that input from the client is either valid or invalid. In the
case of valid input the plan can proceed to the next step. In the case of invalid input
there are two alternatives, either the item is critical to the provision of the capability and
invalid input means the capability cannot be performed so a fatal error must be reported
to the client. The other choice is to request input for an alternative item.

There are two ways alternative items can be used. The first is to ask the same question
in a different way the second is to ask a different question. For example in the first case,
when failing to elicit a value for a parameter when the name and datatype of the parameter
were used to “prompt” the client, the plan can switch to asking the client to pick a value
from a list of acceptable values. In the second case the plan could switch to a different
input set, for example, a service that can perform its capability with either a text file or
a URL reference can switch to asking the client for a URL if they could not supply a text
file.

In this way, the path of the dialogue is driven by what the service needs to know,
which in turn depends on the information the client has been able to supply for previous
items. The dialogue is driven by the remaining data requirements rather than an external
conversation protocol or policy.

There are three special instruction ids, INERROR, FINALIZE, and CALL. An instruc-

item instr

…/ references

73 1

65 2

69 3

71 4

69 5

71 6

ConversationId

instrpid

…/ with

47 1

47 2

47 3

47 4

47 CALL

47 5

47 6

instrcid

…/ is in

20 1

20 2

20 3

20 4

20 CALL

20 5

20 6

ProcessId

Item

(id)

instr instr

next on success

1 2

2 3

3 FINALIZE

4 FINALIZE

CALL 5

5 FINALIZE

6 FINALIZE

instr text

gives

1 “No amount”

4 “No target currency”

CALL“No source currency”

6 “No target currency”

Reason for error

instritem

…/ submits

73 3

65 3

69 3

73 4

65 4

71 4

73 5

67 5

69 5

instr instr

next on failure

1 INERROR

2 CALL

3 4

4 INERROR

CALL INERROR

5 6

6 INERROR

instr text

is submitted to

3 “Convert”

4 “Convert”

CALL “PickFrom”

6 “Convert”

CapabilityId
Instruction

(id)

{CALL,

 FINALIZE,

 INERROR,

 0..n}

evalinstr

input checked with

1 NotEmpty

2 NotEmpty

3 NotEmpty

4 NotEmpty

5 NotEmpty

6 NotEmpty

Evaluation
Function

(name)
{menu,

 0..n}

evalfn testval

uses

TestValue

instrinstr

call returns to

CALL 5

CALL INERROR

Figure 5: Instruction schema

18

tion with FINALIZE (as the next instruction) means the collection of inputs is complete
and the values collected for the listed items should be submitted to the specified process
or service. INERROR represents a fatal error that cannot be resolved by using alternative
items. An INERROR instruction means the client is sent a message containing the reason
for error detailed in the instruction and the dialogue terminates.

Figures 6 and 7 show that capability plans are binary trees with every branch of the
tree terminating at a leaf node with a FINALIZE or an INERROR instruction id.

Success Failure

Success Failure

Success Failure

Success Failure

Success Failure

Success Failure

Success Failure

ConvertCurrency

s=F, f=4

69 (to)

3

s=2, f=E

73 (amount)

1

“No source”

INERROR

s=5, f=E

“PickFrom”(67)

CALL

s=F, f=6
69 (to)

5

s=F, f=E
71 (pick to)

4

73,65,69
“Convert”

FINALIZE

s=F, f=E

71 (pick to)

6

73,67,69

“Convert”

FINALIZE

“No target”

INERROR

73,65,71

“Convert”

FINALIZE

73,67,71

“Convert”

FINALIZE

“No target”

INERROR

“No amount”

INERROR

s=3, f=CALL

65 (from)

2

Figure 6: A tree representation of the “ConvertCurrency” capability plan

The other special instruction id, CALL, indicates that a subdialogue (representing
another capability) is to be initiated. Subdialogues are modeled in the same way as
dialogues, i.e. they terminate with FINALIZE or INERROR instructions. The advantage
of not using an explicit return instruction is that all capability plans are described in the
same way, i.e. not differentiating between main and sub-dialogues. This means a provider
can call a capability such as “PickFrom” from within another plan (as a sub-dialogue) or
expose the “PickFrom” capability directly to clients.

An extension to the CALL mechanism could allow requests for a capability to be made
to an external provider if the capability is not available internally. An implementation of
this facility would require a mechanism to discover external services providing the required
capability. The same evaluation procedure would apply to the results returned from an
external provider and the dialogue would continue as specified in the CALL instruction.
Use of the CALL mechanism to make external calls in this way shows how service providers
can become clients of external providers while engaging in conversations with their own
clients.

Calls to subdialogues are managed with a CallStack. The conversation id and process
id of the process making a CALL are recorded in the CallStack along with the process id

19

generated for the “called” process. When the dialogue manager encounters a FINALIZE
or INERROR instruction id it checks the call stack to see if the instruction is terminating
a previous call. If so, it removes the CALL record from the call stack and resumes the
interrupted process using the cid, pid and the instruction id stored on the call stack.

The ConvertCurrency capability scenario introduced earlier is used to illustrate how
instructions are used to generate requests, evaluate their responses and determine the
next instruction to process. A tree view of the convert currency plan is shown in figure 6.

A path through the tree is illustrated by describing how to get to the FINALIZE node
at the bottom of the tree where the items 73, 67 and 71 are submitted to the “Convert”
service.

The guide initially gets an amount to convert from the client (item 73) and instruction
2 is selected for processing. Instruction 2 asks for a source currency code from the client
(item 65 - from). The client cannot supply a value so the guide calls a sub-dialogue to
gather item (67 - pick from).

A call is used here to describe how calls to sub-dialogues are made and return back to
the calling dialogue. The sub-dialogue (shown in figure 7) uses item 67 to offer the client
a list of currency codes to pick a value for the source currency. When the client picks
a value it is evaluated and the call terminates with a FINALIZE if the value is valid or
INERROR if not.

PickFrom

s=F, f=E

67 (pickfrom)

1

Success Failure

67

“convert”

FINALIZE

“No source”

INERROR

Figure 7: A tree representation of the “PickFrom” plan

The subdialogue returns successfully to instruction 5 (specified in the call). Instruction
5 requests the destination currency code (item 69 - to). As before if the client cannot tell
a value the guide uses the alternative parameter (item 71 - pick to), which offers another
pick list of currency codes to the client. A valid destination currency value returned from
the client finishes the capability with the items 73, 67 and 71 submitted for processing.

To summarize, the items necessary for the performance of a capability are gathered
according to the order of instructions specified in the capability plan. The plan has a
binary tree structure with each leaf of the tree either a FINALIZE or INERROR instruc-
tion. This structure allows the definition of alternative input parameters such as “Input”
a value or “Pick” a value from a list. Alternative input sets can be defined such as “Input

20

a flight number” or “Input an airline and a destination”. A plan can “call” another plan
as a subdialogue.

The plan language allows developers to incorporate context sensitive help messages at
each point in the plan where fatal errors can occur. This provides clients with information
for focussed problem solving. Error information is also useful for reviewing operating
performance and compliance checking.

Plans are structured as binary trees with each branch of the tree terminating at a
leaf node with either a call to a back end process or a fatal error. Main dialogues and
sub-dialogues are modeled in the same way. This allows sub-dialogues to be exposed to
users as stand alone capabilities. It also allows capabilities to be requested from external
sources.

The following summary shows how the plan language delivers the requirements out-
lined at the beginning of this section.

• The provision of help and disambiguation is enabled by the Help performative using
alternative terms from the item descriptions.

• Alternative input sets can be described using instructions to gather alternative in-
formation when necessary.

• The modeling of all dialogues in the same manner means any capability plan can
be run as a main or sub-dialogue.

• Context sensitive help can be included in the instruction to give specific information
at the point of failure.

• All client input is evaluated to determine the dialogue flow.
• Multiple concurrent dialogues about the same or different capabilities are enabled by

using a conversation id and a process id to identify each dialogue and sub-dialogue.

3.2.2 Obligations and expectations

Obligations and expectations are the means by which the guide maintains the context and
state of multiple asynchronous conversations. The receipt of an Ask message generates
an obligation to reply [2] and an expectation is created when Ask messages are sent.
Obligations are discharged when reply messages are sent and expectations are discharged
when they are matched with replies.

An obligation (shown in figure 8), records the conversation id (cid), the id of this
message (mid) and the id of a previous message (mref), if appropriate, from the received
message. Finally, the identities (URLs) of the sender and receiver are recorded in an
obligation along with the performative being requested. The performative is recorded to
ensure the Tell message which eventually corresponds to this Ask message is a correct
response to the request. Expectations have a similar structure to obligations, with the
addition of the message identifier for the message being sent. Expectations keep a record
of what information has been requested from the other party.

21

3.2.3 Items

The input request sent to a client is similar in function to a prompt. The type of request
(Input, Pick or Select) and the information it should contain are determined by examining
the item identified in the current instruction. It is the type of the item that determines
what type of request message is sent to the client.

Items are used to hold parameters. The separation of items and their parameters allows
parameter descriptions to be reused in different items. The item can provide additional
information about a parameter when it is relevant in the context of a particular capability.
A conceptual schema for items is shown in figure 9.

An item, identified by an id, is instantiated in the context of a specific conversation.
The item has two counters used when a client requests help to iterate through the lists of
alternative names and datatypes specified in the parameter.

The parameter belonging to an item contains the lists of alternative or substitutable
names and datatypes as discussed in section 3.1.2. The alternative names and types are

ConversationId

ProcessId

MessageId

Performative

{Result, Input,

Pick, Select, Error,
Refuse, Pause,
Resume, Restart,
Cancel, Status}

obmid

has input
200 ob1
218 ob2
200 ex1
109 ex2

obmref

references previous
0 ob1
112 ob2
0 ex1
0 ex2

expmout

…/ output
0 ex1
0 ex2

ob sender

is to sender
ob1 www.client.co
ob2 www.client.co
ex1 www.service.co
ex2 www.client.co

ob receiver

from receiver
ob1 www.service.co
ob2 www.service.co
ex1 www.client.co
ex2 www.service.co

ob perf

requests performative
ob1 Result
ob2 Help
ex1 Result
ex2 Input

Expectation

cidob

belongs to
ob1 20
ob2 29
ex1 20
ex2 22

ob pid

is in context of
ob1 47
ob2 0
ex1 0
ex2 49

Participant
(uri)

Obligation

or

Expectation

has type
Obligation ob1
Obligation ob2
Expectationex1

Expectaton ex2

ObOrExpType {Obligation,
Expectation}

each Expectation is an Obligation or
Expectation that isof ObOrExpType
Expectation

Contentob content

requests performative
ob1 “Menu”
ob2 “name”
ex1 “Menu”
ex2 “name”

Figure 8: Obligation and expectation schema

22

those that are equivalent in this context. The parameter value is placed in the value slot
when it is received from the client.

Parameter

(name)

param value

has value
“name” “Martha Smith”
“pickfrom” “”

Datatype

(name)

param param

alternative parameter names
“name” “name”
“name” “fullName”
“pickfrom” “from”
“pickfrom” “source”
“pickfrom” “convert from”

param types

alternative datatype names
“name” “xsd string”
“name” “xml schema string”

Item

(id)

item nctr

has name
1 0
6 1
67 0

item tctr

has type
1 0
6 0
67 0

item value

lists value options
67 “USD”
67 “AUD”
67 “SGD”

item param

contains
1 “menu”
6 “name”
67 “pickfrom”

ciditem

belongs to
1 20
6 20
67 20

ConversationId

Parameter

Value

Counter

(int)

has been asked
1
6

item cap
offers menu options
1 Register
1 Login
1 Exit

CapabilityId

Figure 9: Item and parameter schema

The ability to provide alternative names, grounded in external sources, is a key feature
of this interaction mechanism. It is the means by which ad hoc disambiguation can occur.
Instead of relying on shared definitions, each service is made responsible for providing
equivalent alternatives for the terms it exposes to clients.

An item may contain one of two lists which provide context specific information. The
first, is a pick list of alternative values that are relevant or appropriate for this item in this
context. The second, is a list of menu options representing capabilities the service can
offer. An item can not contain both lists as shown by the exclusion constraint between
the menu options and value options roles in figure 9.

There are three performatives for input request messages Select, Pick and Input.

• An Ask Select message asks the client to select one of the offered capabilities. An
Ask Select message is generated from an item containing a menu options list.

23

• An Ask Pick message asks the client to pick a value from the list of values provided.
An Ask Pick message is generated from an item containing a value options list.

• An Ask Input message requests a data value from the client. An Ask Input message
is generated from an item description that does not contain a value options list or
a menu options list.

When a value is received from the client in response to an Ask Input or Ask Pick message,
if the value is validated it is inserted into the parameter’s value slot and the item is stored
for later use. If the value is invalid the item is discarded.

A client also has a collection of parameters (or items) which hold the values it has
obtained. There are several sources a client may have obtained data values from. The
client may have obtained data directly from a human user, or the client may have had
data values provided during instantiation. The client may have received parameter values
as the output of previously requested capabilities. Finally, the client could have received
parameter values from a client of its own, in the same way this provider is receiving values
from this client.

A client receiving an Ask Input message from a service will check within its list of
parameters for a matching name and datatype. If the client can match the request with
one of its parameter names, it will send a Tell Input message containing the parameter’s
value as the content. If it cannot match the request to a parameter name directly, it will
have to look into the lists of alternative names contained in its parameters.

If the client cannot make a match between the providers request and any of the names
in its collection of parameters, it can send an Ask Help message to the provider, to get an
alternative name (or datatype). This process can be repeated until a match is found or
the list of alternative names is exhausted. The failure to make a match means the client
must return a Tell Error message.

The client also has to match the parameter name when it receives an Ask Pick message
containing the name of the parameter required and a list of possible values. If the client
matches the parameter name, it will then try to match the value it holds for that parameter
with the list of values contained in the message. If a match is made the value is returned
in a Tell Pick message, otherwise a Tell Error message is sent.

An Ask Select message contains a list of capability ids representing the capabilities
the service can provide. In this case, it is assumed the client has a list of goals it needs to
satisfy or a list of capabilities it requires. The client tries to make a match between the
offered capabilities and its list of goals. There may be priorities associated with the goals
which determine which one will be selected. The selection is returned in a Tell Select
message or a Tell Error message is sent.

The representation of client goals and how these goals can be matched to the list of
capability ids offered by the service is not addressed in this work.

3.3 Future work

Guided interaction is designed to facilitate interaction between software entities that have
not been explicitly pre-programmed to interact with one another. The dialogue mecha-

24

nism as implemented asks separately for each input parameter value. This is appropriate
behaviour with clients who have no prior knowledge of the service’s requirements and
when item specific help may be necessary but it can be an inefficient mechanism for
repeated interactions.

Future efforts could be directed at optimizing of the collection of inputs for clients who
have prior knowledge of the services requirements for example, from the input signature
definitions in the service’s capability advertisement. These clients could be asked for input
for several items in one message rather than individual requests as at present.

Another interesting avenue for further work would be to explore how a guided inter-
action could be used for software clients to “learn” how to interact with a service. Clients
could learn enough during a guided interaction to be able to use the more traditional,
and efficient, interface based means of communication for repeated interactions.

Capability plans are a list of zero or more input items to collect in a more or less
sequential order. A more sophisticated processor could allow sets of items to be submitted
for intermediate processing and modifications to the current plan depending on the results.
If new or altered plans are adopted during processing the new plan would need to specify
if previously collected items are reused or collected anew.

4 Related work

IBM’s Conversational Support for Web Services (CPXML) [20] describes Conversation
Policies (CP)13 which are a state chart rendered in an XML document with elements that
describe the state and transitions involved in a conversation. There are three possible
states: normal, inchild or terminal. Message transitions detail which message is being
sent or received. Transitions, to and from sub-dialogues (child states) are treated in a
special manner. Although there is a good motivation for service conversations, including
“peer-to-peer, proactive, dynamic, loosely coupled interaction” this is not clearly realized
by the specifications.

The SELF-SERV platform is the implementation vehicle for the conceptual modeling
of conversations described in [4]. This mechanism also uses a state chart based repre-
sentation. A conversation manager, implemented on the SELF-SERV platform, uses the
state chart representation of a conversation which extracted into a control table. The
control table associates the conversation states and transitions with events, conditions
and actions (ECA Rules). Transitions can be explicitly triggered by messages or implic-
itly by internal actions. The nature of the messages is not elaborated but it seems likely
these are messages defined in WSDL. Although there is the possibility that states may
not be exited due to a failure to satisfy the conditions or other errors this situation is not
addressed. There is no facility for runtime disambiguation if clients do not understand
the service providers terminology. Clients have no control over the management of the
dialogue, such as requests to pause and resume etc.

The Web Services Conversation Language (WSCL) from Hewlett Packard [23, 15]
models the conversation as the third party in an interaction. A conversation controller

13www.research.ibm.com/convsupport/examples/ConversationPolicy2.0.xsd

25

keeps track of a conversation and changes state based on the types of messages i.e. the
type of the XML document the message contains. There is a heavy reliance on document
types being correctly identified and containing correct data. This means both parties
must understand the document types and correct data before interacting. Missing or
incorrect information will terminate the conversation. There is no mention of the problems
introduced by alternative outputs such as errors or help requests and the explosion of
states these alternative paths can generate.

WSCL version 1.0 is a more recent proposal from Hewlett Packard. WSCL 1.014

is also based on the document exchange model with interactions and transitions. Five
types of interaction: send, receive, send-receive, receive-send and empty are defined.
Each interaction specifies which document types are exchanged between the service and
its client. A conversation is modeled as a collection of interactions with the order of
interactions specified by transitions.

The WSDL Message Exchange Patterns [18] largely mirror the WSCL interactions.
There are 7 message exchange patterns identified, In-Only, Robust In-Only, In-Out, In-
Optional-Out, Out-Only, Robust Out-Only, Out-In and Out-Optional-In. The robustness
identified in the pattern name is the result of there being an optional fault message in
response to the message sent (Robust Out-Only) or received (Robust In-Only). This
makes them very similar to Out-Optional-In and In-Optional-Out, the difference being
in the type of optional message (normal or fault). The similarities are inevitable, the
message patterns describe the exchange of one or more content carrying messages in one
or two directions with the possible addition of an optional fault message. Many interesting
interactions will comprise more than two messages and this means the patterns would need
to be composed into sequences or conversations. The composition, sequencing and/or
possible overlapping of patterns is not addressed in the specification.

Guiding clients using WSDL service descriptions is proposed in [3]. In this work,
clients are told by the service which of its operations can be called next. The interactions
are still performed in the context of the WSDL description, so no guidance about the
types of inputs the service requires can be given. The path of interaction is driven by the
client deciding which of the operations will elicit the desired result.

The design of capability plans, in terms of what information is required to perform the
capability, the specification of alternative sets of information and checking coverage and
reachability is beyond the scope of this paper. There is however, a good body of published
work in designing web applications [9, 25, 33]. This work approaches application design
from various perspectives (organizational, data or user centric). Although it is directed
more at web site design and providing context sensitive data and navigation options
to human users, several of the methodologies and techniques described could generate
effective capability plans.

14www.w3.org/TR/wscl10/

26

5 Conclusion

This work addressed the problem of ad hoc interaction between services that have no prior
knowledge of one another. A mechanism was described that allows heterogeneous services
to communicate in the pursuit of their goals. The mechanism includes an interaction
language based on well understood communication primitives and a plan language that
allows service providers to describe the information they need. It has been demonstrated
how messages in the interaction language could be generated and interpreted by service
providers and their clients and how the plan language would be used in a dialogue manager
to collect a set of data from clients.

The interaction mechanism is based on well understood primitives that have a broad
basis of support, it is easy to understand and can model simple or complex interactions
with error handling and help. The mechanism is executable and will allow loosely coupled
services to interact with one another at runtime without prior agreements in place. The
language is structured to allow efficient, unambiguous and easy interpretation of messages.

Flexible and robust capability plans are built by offering alternative styles of input
request (Input and Pick) and alternative sets of inputs when the client cannot satisfy
the initial demand for input. Flexibility is also provided by allowing clients to request
alternative names for parameters and datatypes to those used in the initial request.

Dynamic disambiguation of terminology is an important feature of this interaction
mechanism. It is the way help is provided to ad-hoc interaction partners where there
are no agreements in place on the syntax and semantics of the service’s operations. A
means of facilitating shared understanding between interaction partners is necessary to
advance the vision of the semantic web [5] and the runtime interaction of loosely coupled
heterogeneous services.

The plan language allows developers to incorporate error messages into each point
in the plan where fatal errors can occur. This context sensitive error reporting provides
clients with information to allow focussed problem solving. Error information is also
useful for reviewing operating performance and compliance checking.

The interaction language provides performatives that give both providers and clients
the means to control the dialogue in a cooperative manner at runtime.

This interaction mechanism supports loose coupling by not imposing requirements
on the behaviour of clients beyond that clearly defined by the interaction language. The
primary advantage of a loosely coupled solution to the problem of ad hoc interaction is that
clients are not tied to specific service providers and implementations. This gives clients
the flexibility to engage with any provider who can deliver the required functionality at
runtime.

An implementation of the guide/dialogue manager in CPN (see appendix A) has
demonstrated the interaction language and the plan language can be used together to
interpret and generate messages and manage concurrent dialogues. The CPN implemen-
tation does not use or rely on proprietary technologies, and could be easily implemented
in other programming languages.

A useful extension to the dialogue manager was suggested in section 3.2. Currently
when a sub-dialogue is called it is assumed the capability is available locally. Extending

27

the guide with a service discovery mechanism could allow external service providers to
be engaged to fulfil local sub-dialogue requests. In this way the service provider becomes
the client of another service. This use of service providers by service providers shows how
on-the-fly service composition is both achievable and useful.

Guided interaction provides the means to exchange information via conversational
dialogue enabling web services and their clients to interact with one another in an ad hoc
way at runtime without prior knowledge of (WSDL) service interfaces.

Acknowledgments The presentation of this research was funded by SAP Research
Centre, Brisbane. Thanks to David Edmond and Marlon Dumas for their feedback on
earlier drafts of this paper.

References

[1] Allen, J., D. Byron, M. Dzikovska, G. Ferguson, L. Galescu, and A. Stent: 2000, ‘An
Architecture for a Generic Dialogue Shell’. NLENG: Natural Language Engineering,
Cambridge University Press 6.

[2] Allen, J. F., G. Ferguson, and A. Stent: 2001, ‘An architecture for more realis-
tic conversational systems’. In: Proceedings of the 6th international conference on
Intelligent user interfaces. pp. 1–8.

[3] Ardissono, L., A. Goy, and G. Petrone: 2003, ‘Enabling conversations with Web
Services’. In: Proceedings of the second international joint conference on Autonomous
agents and multiagent systems. pp. 819–826.

[4] Benatallah, B., F. Casati, F. Toumani, and R. Hamadi: 2003, ‘Conceptual Modelling
of Web Service Conversations’. In: 15th International Conference on Advanced In-
formation Systems Engineering (CAiSE 2003), Proceedings. Klagenfurt/Velden, Aus-
tria, pp. 449–467.

[5] Berners-Lee, T., J. Hendler, and O. Lassila: 2001, ‘The Semantic Web’. Scientific
American.

[6] Bollaert, J.: 2001, ‘Crafting a wizard’. Available from IBM Developer Works: Us-
ability. www-106.ibm.com, (25 September 2001).

[7] Bradshaw, J. M. (ed.): 1997, Software Agents. AAAI Press/The MIT Press, Menlo
Park, California, USA.

[8] Burmeister, B., A. Haddadi, and K. Sundermeyer: 1993, ‘Generic, Configurable,
Cooperation Protocols for Multi-Agent Systems’. In: From Reaction to Cognition -
Fifth European Workshop on Modelling Autonomous Agents in a Multi-Agent World,
MAAMAW-93, (LNAI Volume 957).

28

[9] Ceri, S., P. Fraternali, M. Matera, and A. Maurino: 201, ‘Designing multi-role, col-
laborative Web sites with WebML: a conference management system case study’. In:
First International Workshop on Web-Oriented Software Technology, Proceedings.
Valencia, Spain. Available from: www.dsic.upv.es/~west2001/iwwost01/files/

contributions/StefanoCeri/Cer%iEtAl.pdf, (20 January 2004).

[10] Cost, R. S., Y. Chen, T. Finin, Y. Labrou, and Y. Peng: 2000, ‘Using Colored Petri
Nets for Conversation Modeling’. In: F. Dignum and M. Greaves (eds.): Lecture
Notes in AI: Issues in Agent Communication.

[11] Durfee, E. H.: 1999, ‘Practically Coordinating’. AI Magazine pp. 99–115.

[12] Erbach, G.: 2001, ‘Languages for the Annotation and Specification of Dialogues’.
ESSLLI 01 Presentation, available from: www.coli.uni-sb.de/~erbach/esslli01/
index.html, (12 June 2003).

[13] Foundation for Intelligent Physical Agents: 2000, ‘FIPA Communicative Act Library
Specification’. www.fipa.org, (9 March 2001).

[14] Franklin, S. and A. Graesser: 1996, ‘Is it an Agent, or Just a Program?: A Taxonomy
for Autonomous Agents’. In: J. P. Muller, M. J. Wooldridge, and N. R. Jennings
(eds.): Intelligent Agents III Agent Theories, Architectures, and Languages. ECAI
Workshop (ATAL) Proceedings. Budapest, Hungary, pp. 21–35.

[15] Frolund, S. and K. Govindarajan: 2003, ‘cl: A Language for Formally Defining Web
Service Interactions’. Technical Report HPL-2003-208, HP Laboratories, Palo Alto.

[16] Gamma, E., R. Helm, R. Johnson, and J. Vlissides: 1995, Design Patterns: Elements
of Reuseable Object-Oriented Software. Reading, Mass: Addison-Wesley Longman
Inc.

[17] Gelernter, D.: 1991, Mirror Worlds: Or the Day Software Puts the Universe in
Shoebox...How it Will Happen and What it Will Mean. New York: Oxford University
Press.

[18] Gudgin, M., A. Lewis, and J. Schlimmer (eds): 2004, ‘Web Services Description
Language (WSDL) Version 2.0 Part 2: Message Exchange Patterns, W3C Working
Draft.’. Available from:www.w3.org/TR/wsdl20-patterns/, (5 July 2004).

[19] Halpin, T.: 2001, Information Modeling and Relational Databases: from conceptual
analysis to logical design. San Diego, CA, USA: Morgan Kaufmann Publishers.

[20] Hanson, J. E., P. Nandi, and S. Kumaran: 2002, ‘Conversation support for Business
Process Integration’. In: Proceedings 6th IEEE International Enterprise Distributed
Object Computing Conference (EDOC-2002). pp. 65–74.

[21] Harel, D. and A. Naamad: 1996, ‘The STATEMATE Semantics of Statecharts’. ACM
Transactions on Software Engineering and Methodology 5(4), 293–333.

29

[22] Hulstijn, J.: 1999, ‘Modelling Usability: Development Methods for Dialogue Sys-
tems’. In: J. Alexandersson (ed.): Proceedings of the IJCAI’99 Workshop on Knowl-
edge and Reasoning in Practical Dialogue Systems. Stockholm.

[23] Kuno, H. and M. Lemon: 2001, ‘A Lightweight Dynamic Conversation Controller for
E- Services’. Technical Report HPL-2001-25R1, Hewlett Packard Laboratories, Palo
Alto.

[24] Labrou, Y. and T. Finin: 1998, ‘Semantics for an agent communication language’.
In: M. Wooldridge, J. Muller, and M. Tambe (eds.): Agent Theories, Architectures
and Languages IV., Lecture Notes in Artificial Intelligence. Springer Verlag.

[25] Martinez, A., J. Castro, O. Pastor, and H. Estrada: 2003, ‘Closing the gap be-
tween Organizational Modeling and Information System Modeling’. In: WER03 -
VI Workshop em Engenharia de Requisitos, 2003. Piracicaba, Brasil.

[26] Meandzija, B.: 1990, ‘Integration through meta-communication’. In: Proceedings of
IEEE INFOCOM. pp. 702–709.

[27] Neches, R., R. Fikes, T. Finin, T. Gruber, R. Patel, T. Senator, and W. R. Swartout:
1991, ‘Enabling technology for knowledge sharing’. AI Magazine 12(3).

[28] Oaks, P., A. ter Hofstede, and D. Edmond: 2003a, ‘Capabilities: Describing What
Services Can Do’. In: M. E. Orlowska, S. Weerawarana, M. P. Papazoglou, and J.
Yang (eds.): First International Conference on Service Oriented Computing (ICSOC
2003), Proceedings. Trento, Italy, pp. 1–16.

[29] Oaks, P., A. H. M. ter Hofstede, D. Edmond, and M. Spork: 2003b, ‘Extending
Conceptual Models for Web Based Applications’. In: G. Goos, J. Hartmanis, and
J. van Leeuwen (eds.): 22nd International Conference on Conceptual Modeling (ER
2003), Proceedings. Chicago, USA, pp. 216–231.

[30] Odell, J. J., H. V. D. Parunak, and B. Bauer: 2001, ‘Representing Agent Interaction
Protocols in UML’. In: P. Ciancarini and M. Wooldrige (eds.): Agent-Oriented
Software Engineering. Springer-Verlag, pp. 121–140.

[31] Paurobally, S. and J. Cunningham: 2002, ‘Achieving Common Interaction Proto-
cols in Open Agent Environments’. In: Proceedings of the 1st International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS02). Bologna,
Italy.

[32] Preece, J.: 1995, Human Computer Interaction. Reading, MA.: Addison-Wesley
Publishing Company.

[33] Schwabe, D., L. Esmeraldo, G. Rossi, and F. Lyardet: 2001, ‘Engineering Web
Applications for Reuse’. IEEE Multimedia 8(1), 20–31.

30

[34] Searle, J.: 1969, Speech Acts: An Essay in the Philosophy of Language. New York:
Cambridge University Press.

[35] Toivonen, S. and H. Helin: 2003, ‘Representing Interaction Protocols in DAML’.
In: L. van Elst, V. Dignum, and A. Abecker (eds.): Agent Mediated Knowledge
Management International Symposium AMKM 2003, Stanford, CA, USA, March
24-26, 2003, Revised and Invited Papers. pp. 310–321. Lecture Notes in Artificial
Intelligence , Vol. 2926.

[36] Venkatraman, M. and M. P. Singh: 1999, ‘Verifying Compliance with Commitment
Protocols: Enabling Open Web-Based Multiagent Systems’. In: N. Jennings (ed.):
Autonomous Agents and Multi-Agent Systems, Vol. 2. Kluwer Academic Publishers,
pp. 217–236.

A CPN models of a guide and a generic client

ob

exp

msgmsg

MakeOb(0,msg)

MakeMsg(mid,msg)

mid

mid+1

msg

msg

msg

HelpReceived(msg1,msg)

msg

TellAnswer(msg,params)

msg

AskHelp(msg)

exp

CmakeExpect(msg,mid)

msg

MakeMsg(mid,msg)

mid

mid+1

msg

WaitForHelp(msg)

msg1

msg

TellSelection(msg,goals)

respond

[TellResponse(msg,ob)]

cap::goals

cid

cid+1

DoAsk(cap,cid)

Obligations

OBL

askMsg

[AskingForInput(msg)]

Input

MSG

request

[AskRequest(msg)]

Results

MSG

ConvId

CID

20

askResult

tellHelp

[TellHelp(msg,msg1,exp)]

InputFromService

MSG
In

Output MSG

tellMessage

[IsResult(msg, exp)]

MsgId

MID

250

OutputToService

MSG
Out

AllItems

PARAMS

CParams

WaitingHelp

MSG

Expectations

EXP

Plans

NAMES

["Menu"]

askHelp

[NeedHelp(msg,params)]

paramsparams

tellInputPick

[CanAnswer(msg,params)]

menu

[ChooseOp(msg)]

Goals

NAMES

["Login","ConvertCurrency","Exit"]

goals

goals

Figure 10: A service client

31

msg

msg

exp

msg

IntMsg(exp,msg)

sm

mid

mid+1

ob

AskClient(sm,ob, mid)

MakeExp(sm, ob, mid)

sm

ob

mid

mid+1

TellError(goto)MakeOb(0,msg)

it

UpdateNCtr(msg,it)

TellClient(ob, sm, mid)

AskTellError(msg)
msg

msg

ins

sm
GetGoto(sm, ins)

goto

goto

msg

ExtMsg(pid, msg)

MakeOb(pid,msg)

sm

plansplans

allitemsallitems

ins

GetCurrentItem(ins, allitems,it)

SetInstr(sm,plans,instrlist)

items

SetItem(sm,ins,GetI(ins,it),items)

it

goto GetNextInst(goto, instrs)

instrsinstrs

it
AskForInput(ins, it)

SetAsked(ins,it)

ins

allitems

NoItem(ins)

pid

pid+1

SubmitContent(goto, items)

contcont

cont

TellResult(goto, cont)

items

instrlist

(goto,lock)
(goto,lock)

TellCHelp(msg,it)

goto

goto

pid
pid+1

InternalAsk(goto,pid,0)

MakeCall(goto,pid,calls)

calls

MkGoto(goto,calls)

msg

plans

TellNoCapability(msg)

lock
lock

plans

calls

calls

ClearCall(goto,calls)

MakeFirstGoto(sm)

ins

it

ClearItem(sm,ins,it)

InternalObligation(pid,ob)

ob

ob

ob

TellClient(ob,sm,mid)

mid

mid+1

instrs
ClearInst(sm,instrs)

sm

ins

it

SetSelection(sm,ins,it)

otherAskTellMsgs

[OtherTell(msg) orelse
 OtherAsk(msg)]

respond

[TellMsg(sm,ob)]

tellAnswer

[TellRes(sm,ob)]

Procid

PID

47

CurrentInstruction

INSTR

CallStack

Calls

[]

getNextInstruction

[Running(goto)]

Instructions

INSTRS

[]

DialogueMessages

MSG

(*Other messages include:
 Cancel, Restart, Status, Pause, Resume*)

call

[IsCall(goto,ob)]

tellMessage

[MatchExp(msg, exp)]

notItem

[ItemNotAvail(ins,allitems)
orelse NoItemId(ins)]

evalSelection

[Selection(sm,ins,it)]

request

[AskMsg(sm,ob)]

cannotDoCap

[NoCap(msg,plans)]

askOrtellError

[BadMsg(msg)]

InputTell

SMSG

OutputToClient
MSG

network

Client1

sm

InputFromClient

MSG

CapabilityPlans

PLANS

Capabilities

setUpInputAsk

SMSG

askMessage

[AskResult(msg,plans)]

CondtionResult

Goto

InputFromProc

STRING

processing OutputtoProc

STRING

CompletedItems

ITEMS

[]

result

LinkDetail

KEY

Lock

STRING

"ready"

finished

[Finished(goto) andalso
 NotCall(goto,calls)]

askHelp

[HelpRequest(msg,it)]

CurrentItems

ITEMS

[]

error

[IsError(goto) andalso
 NotCall(goto,calls)]

getcurrentItem

[ItemAvail(ins, allitems,it)]

inputRequired

[MatchInstItem(ins, it)]

AllItems

ITEMS

Allitems

return

[HasCall(goto,ob,calls)]

Output

SMSG

Obligation

OBL

Expectation

EXP

Msgid

MID

100

evalInput

[Evaluate(sm, ins, it)]

ClearItem(sm,ins,it)

calls

Figure 11: A guide represents the service provider

32

