
Translating BPMN to BPEL?

Chun Ouyang1, Wil M.P. van der Aalst2,1, Marlon Dumas1, and
Arthur H.M. ter Hofstede1

1 Faculty of Information Technology, Queensland University of Technology,
GPO Box 2434, Brisbane QLD 4001, Australia

{c.ouyang,m.dumas,a.terhofstede}@qut.edu.au
2 Department of Technology Management, Eindhoven University of Technology,

GPO Box 513, NL-5600 MB, The Netherlands
{w.m.p.v.d.aalst}@tm.tue.nl

Abstract. The Business Process Modelling Notation (BPMN) is a graph-
oriented language in which control and action nodes can be connected
almost arbitrarily. It is supported by various modelling tools but so far no
systems can directly execute BPMN models. The Business Process Exe-
cution Language for Web Services (BPEL) on the other hand is a mainly
block-structured language supported by several execution platforms. In
the current setting, mapping BPMN models to BPEL code is a necessary
step towards unified and standards-based business process development
environments. It turns out that this mapping is challenging from a scien-
tific viewpoint as BPMN and BPEL represent two fundamentally differ-
ent classes of languages. Existing methods for mapping BPMN to BPEL
impose limitations on the structure of the source model, especially with
respect to cycles. This report proposes a technique that overcomes these
limitations. Beyond its direct relevance in the context of BPMN and
BPEL, this technique addresses difficult problems that arise generally
when translating between flow-based languages with parallelism.

1 Introduction

The Business Process Execution Language for Web Services (BPEL) [4] is emerg-
ing as a de-facto standard for implementing business processes on top of web ser-
vices technology. Numerous platforms support the execution of BPEL processes
(see http://en.wikipedia.org/wiki/BPEL). Some of these platforms also pro-
vide graphical editing tools for defining BPEL processes. However, these tools
directly follow the syntax of BPEL without elevating the level of abstraction
to make them usable during the analysis and design phases of the development
cycle. On the other hand, the Business Process Modelling Notation (BPMN) [10]
has attained some level of adoption among business analysts and system archi-
tects as a language for defining business process blueprints for subsequent im-
plementation. Despite being a recent proposal, BPMN is already supported by

? This work is supported by the Australian Research Council under the Discovery
Grant “Expressiveness Comparison and Interchange Facilitation between Business
Process Execution Languages” (DP0451092).

more than 30 tools (see www.bpmn.org). Consistent with the level of abstraction
targeted by BPMN, none of these tools supports the execution of BPMN models
directly. Instead, some of them support the translation of BPMN to BPEL.
Close inspection of existing translations from BPMN to BPEL, e.g. the one

sketched in [10], shows that these translations fail to fulfill the following key
requirements: (i) completeness, i.e. applicable to any BPMN model; (ii) automa-
tion, i.e. capable of producing target code without requiring human intervention
to identify patterns in the source model; and (iii) readability, i.e. consistently
producing target code that is understandable by humans. The latter require-
ment is important since the BPEL definitions produced by the translation are
likely to require refinement (e.g. to specify partner links and data manipulation
expressions) as well as testing and debugging. If BPEL was only intended as a
language for machine consumption and not for human use, it could be replaced
by mainstream programming languages or even (virtual) machine languages, but
this would defeat the purpose of BPEL as a domain-specific language for service
composition.
The limitations of existing BPMN-to-BPEL translations are not surprising

given that BPMN and BPEL belong to two fundamentally different classes of
languages. BPMN is graph-oriented while BPEL is mainly block-structured (al-
beit providing graph-oriented constructs with syntactical limitations). Mapping
between graph-oriented and block-structured process definition languages is no-
toriously challenging. In the case of flowcharts, mapping unstructured charts
to structured ones is a well-understood problem. However, graph-oriented pro-
cess definition languages extend flowcharts with parallelism (i.e. AND-splits and
AND-joins) and other constructs such as deferred choice [1].
This paper addresses the challenge of proposing a translation from BPMN to

BPEL addressing all three requirements above. This is a first step towards model-
driven, standards-based tools for developing process-oriented web services. Be-
yond its direct relevance in this context, the proposed technique addresses diffi-
cult problems that arise when translating from graph-oriented process languages
(e.g. UML Activity Diagrams, YAWL, or Petri nets) to block-structured ones.
The remainder of the report is structured as follows. Section 2 gives an

overview of BPMN and BPEL and reviews related work. Section 3 presents
an algorithm for translating BPMN into BPEL. The translation algorithm is
then illustrated through a case study in Section 4. Finally, Section 5 concludes
and outlines future work.

2 Background and Related Work

2.1 BPEL and BPMN

BPEL [4] is essentially an extension of imperative programming languages with
constructs specific to web service implementations. A BPEL process definition
relates a number of activities. An activity is either a basic or a structured ac-
tivity. Basic activities correspond to atomic actions such as: invoke, invoking

2

an operation on a web service; receive, waiting for a message from a partner;
exit , terminating the entire service instance; empty , doing nothing; and etc. To
enable the presentation of complex structures the following structured activities
are defined: sequence, for defining an execution order; flow , for parallel routing;
switch, for conditional routing; pick , for race conditions based on timing or ex-
ternal triggers; while, for structured looping; and scope, for grouping activities
into blocks to which event, fault and compensation handlers may be attached.
In particular, an event handler is an event-action rule associated with a scope.
It is enabled when the associated scope is under execution and may execute con-
currently with the main activity of the scope. When an occurrence of the event
associated with an enabled event handler is registered (and this may be a mes-
sage receipt or a timeout), the body of the handler is executed. The completion
of the scope as a whole is delayed until all active event handlers have completed.
Fault and compensation handlers are designed for exception handling and are
not used further in this report.
There are over 20 execution engines supporting BPEL (see http://en.

wikipedia.org/wiki/BPEL for a list). Many of them come with an associated
graphical editing tool. However, the notation supported by these tools directly
reflects the underlying code, thus forcing users to reason in terms of BPEL
constructs (e.g., block-structured activities and syntactically restricted links).
Current practice suggests that the level of abstraction of BPEL is unsuitable for
business process analysts and designers. Instead, these user categories rely on
languages perceived as “higher-level” such as BPMN and various UML diagrams,
thus justifying the need for mapping languages such as BPMN into BPEL.
BPMN essentially provides a graphical notation for business process mod-

elling, with an emphasis on control-flow. It defines a Business Process Diagram
(BPD), which is a kind of flowchart incorporating constructs tailored to busi-
ness process modelling, such as AND-split, AND-join, XOR-split, XOR-join,
and deferred (event-based) choice. We describe BPMN in more detail when we
introduce the mapping.

2.2 Related Work

White [9,10] informally sketches a translation from BPMN to BPEL. However, as
acknowledged in [10] this translation is fundamentally limited, e.g. it excludes
diagrams with arbitrary topologies. Also, several steps in White’s translation
require human input to identify patterns in the source model.
Research into structured programming in the 60s and 70s led to techniques

for translating unstructured flowcharts into structured ones. However, these tech-
niques are not applicable when AND-splits and AND-joins are introduced. An
identification of situations where unstructured process diagrams cannot be trans-
lated into equivalent structured ones (under weak bisimulation equivalence) can
be found in [5, 7], while an approach to overcome some of these limitations for
processes without parallelism is sketched in [6]. However, these related work
only address a piece of the puzzle of translating from graph-oriented process
modelling languages to BPEL.

3

This paper combines insights from two of our previous publications. In [2],
we describe a case study where the requirements of a bank system are captured
as Coloured Workflow nets (a subclass of Coloured Petri nets) and the system
is then implemented in BPEL. In this study we use a semi-automated mapping
from (Coloured) Petri nets to BPEL [3] that has commonalities with a subset
of the translation discussed in this paper. In [8], we present a mapping from
a graph-oriented language supporting AND-splits, AND-joins, XOR-splits, and
XOR-joins, into BPEL. In the following section, we extend this previous mapping
to cover a broader set of BPMN constructs and to improve the readability of
the generated code. Whereas in [8] the generated code relies heavily on BPEL
event handlers, in this paper we make greater use of BPEL’s block-structured
constructs.

3 Mapping BPMN onto BPEL

This section presents a mapping from BPMN to BPEL. The mapping focuses on
the control-flow perspective. First, we define the syntax of a core subset of BPDs
used for mapping. Second, we discuss the transformation of a BPD from a graph
structure to a block structure. We use the term “components” to refer to subsets
of a BPD. A component may be well-structured so that it can be directly mapped
onto BPEL structured activities, whereas a component that does not preserve
such property can be translated into BPEL via event-action rules. We identify
these two categories of components and introduce the corresponding translation
approaches in two separate subsections. Finally, we propose the algorithm for
mapping an entire BPD onto BPEL.

3.1 Business Process Diagram (BPD)

BPMN uses BPDs to describe business processes. A BPD is made up of BPMN
elements. We consider a core subset of BPMN elements shown in Figure 1. There
are objects and sequence flow . The sequence flow links two objects in a BPD and
shows the control flow relation (i.e. execution order). An object can be an event ,
a task or a gateway . An event may signal the start of a process (start event),
the end of a process (end event), the immediate termination of a process (end
terminate event), a message that arrives or a specific time-date being reached
during a process (intermediate message/timer event). A task is an atomic activ-
ity and stands for work to be performed within a process. A gateway is a routing
construct used to control the divergence and convergence of sequence flow. There
are: parallel fork gateways for creating concurrent sequence flows, parallel join
gateways for synchronizing concurrent sequence flows, data/event-based XOR
decision gateways for selecting one out of a set of mutually exclusive alternative
sequence flows where the choice is based on either the process data (data-based)
or external event (event-based), and XOR merge gateways for joining a set of
mutually exclusive alternative sequence flows into one sequence flow.
A BPD, which is made up of the above core subset of BPMN elements, is

hereafter referred to as a core BPD .

4

Start Event
Intermediate

Message Event
Intermediate
Timer Event

Task Parallel Fork
Gateway

Parallel Join
Gateway

End Terminate EventEnd Event

Sequence
Flow

Event-based
XOR Decision

Gateway

receive

XOR Merge
Gateway

(or)

Data-based
XOR Decision

Gateway

(or)
c

~c

c

~c

Figure. 1. A core subset of BPMN elements.

Definition 1 (Core BPD). A core BPD is a tuple BPD = (O, T , E, G, T R,
ES, EI , EE, EI

M , EI
T , E

E
T , G

F , GJ , GD, GM , GV , F , Cond) where:

– O is a set of objects which can be partitioned into disjoint sets of tasks T ,
events E and gateways G,

– T R ⊆ T is a set of receive tasks,
– E can be partitioned into disjoint sets of start events ES, intermediate events
EI and end events EE,

– EI can be partitioned into disjoint sets of intermediate message events E I
M

and timer events EI
T ,

– EE
T ⊆ E

E is a set of end terminate events,
– G can be partitioned into disjoint sets of parallel fork gateways GF , parallel
join gateways GJ , data-based XOR decision gateways GD, event-based XOR
decision gateways GV , and XOR merge gateways GM ,

– F ⊆ O ×O is the control flow relation,
– Cond: F 9 C is a function mapping sequence flows within dom(Cond) =
F ∩ (GD ×O) to conditions.3

The relation F defines a directed graph with nodes (objects) O and arcs (se-
quence flows) F . For any node x ∈ O, input nodes of x are given by in(x) = {y ∈
O | yFx} and output nodes of x are given by out(x) = {y ∈ O | xFy}.
Definition 1 allows for graphs which are unconnected, not having start or

end events, containing objects without any input and output, etc. Therefore we
need to restrict the definition to well-formed core BPDs.

Definition 2 (Well-formed core BPD). A core BPD is well formed if rela-
tion F satisfies the following requirements:

– ∀ s ∈ ES, in(s) = ∅ ∧ |out(s)| = 1, i.e. start events have an indegree of zero
and an outdegree of one,

3 A condition is a boolean function operating over a set of propositional variables that
can be abstracted out of the control flow definition. The condition may evaluate to
true or false, which determines whether or not the associated sequence flow is taken
during the process execution.

5

– ∀ e ∈ EE, out(e) = ∅ ∧ |in(e)| = 1, i.e., end events have an outdegree of
zero and an indegree of one,

– ∀ x ∈ T ∪EI , |in(x)| = 1 and |out(x)| = 1, i.e. tasks and intermediate events
have an indegree of one and an outdegree of one,

– ∀ g ∈ GF ∪GD∪GV : |in(g)| = 1 ∧ |out(g)| > 1, i.e. fork or decision gateways
have an indegree of one and an outdegree of more than one,

– ∀ g ∈ GJ ∪ GM , |out(g)| = 1 ∧ |in(g)| > 1, i.e. join or merge gateways have
an outdegree of one and an indegree of more than one,

– ∀ g ∈ GV , out(g) ⊆ EI ∪ T R, i.e. event-based XOR decision gateways must
be followed by intermediate events or receive tasks,

– ∀g ∈ GD, ∃x ∈ out(g), Cond((g, x)) = ¬
∧

y∈out(g)\{x} Cond((g, y)), i.e. (g, x)
is the default flow among all the outgoing flows from g,

– ∀ x ∈ O, ∃ (s, e) ∈ ES × EE, sF∗x ∧ xF∗e,4 i.e. every object is on a path
from a start event to an end event.

In the remainder we only consider well-formed core BPDs, and will use a
simplified notation BPD = (O, F , Cond) for their representation. Moreover,
without losing generality we assume that both ES and EE are singletons, i.e.
ES = {s} and EE = {e}.

3.2 Decomposing a BPD into components

We would like to achieve two goals when mapping BPMN onto BPEL. One is
to define an algorithm which allows us to translate each well-formed core BPD
into a valid BPEL process, the other is to generate readable and compact BPEL
code. To map a BPD onto (readable) BPEL code, we need to transform a graph
structure into a block structure. For this purpose, we decompose a BPD into
components. A component is a subset of the BPD that has one entry point and
one exit point. We then try to map components onto suitable “BPEL blocks”. For
example, a component holding a purely sequential structure should be mapped
onto a BPEL sequence construct while a component holding a parallel structure
should be mapped onto a flow construct.
The next two subsections describe how to map components of a BPD onto

BPEL constructs. Before describing the mapping, this section first formalizes
the notion of components. To facilitate the definitions, we specify an auxiliary
function elt over a domain of singletons, i.e., if X = {x}, then elt(X) = x.

Definition 3 (Component). Let BPD = (O, F , Cond) be a well-formed core
BPD. C = (Oc, Fc, Condc) is a component of BPD if and only if:

– Oc ⊆ O\(E
S ∪ EE),

– |(
⋃

x∈Oc

in(x))\Oc| = 1, i.e., there is a single entry point outside the compo-
nent, which can be denoted as entry(C) = elt((

⋃

x∈Oc

in(x))\Oc),
– |(

⋃

x∈Oc

out(x))\Oc| = 1, i.e., there is a single exit point outside the compo-
nent, which can be denoted as exit(C) = elt((

⋃

x∈Oc

out(x))\Oc),

4 F∗ is a reflexive transitive closure of F , i.e. xF∗y if there is a path from x to y in
BPD.

6

– there exists a unique source object ic ∈ Oc and a unique sink object oc ∈ Oc

and ic 6= oc, such that entry(C) ∈ in(ic) and exit(C) ∈ out(oc),
– Fc = F ∩ (Oc ×Oc),
– Condc=Cond[Fc], i.e. the Cond function where the domain is restricted to F c.

Note that all event objects in a component are intermediate events. Also, a
component contains at least two objects: the source object and the sink object.
A BPD without any component, which is referred to as a trivial BPD , has only
a single task or intermediate event between the start event and the end event.
Translating a trivial BPD into BPEL is straightforward and will be included in
the final translation algorithm in Section 3.5.
The decomposition of a BPD helps to define an iterative approach which al-

lows us to incrementally transform a “componentized” BPD to a block-structured
BPEL process. Below, we define function Fold that replaces a component by a
single task object in a BPD. This function can be used to perform iterative re-
duction of a componentized BPD until no component is left in the BPD. The
function will play a crucial role in the final translation algorithm where we in-
crementally replace BPD components by BPEL constructs.

Definition 4 (Fold). Let BPD=(O,F ,Cond) be a well-formed core BPD and
C=(Oc,Fc,Condc) be a component of BPD. Function Fold replaces C in BPD
by a task object tc /∈ O, i.e. Fold(BPD, C, tc) = (O

′, F ′, Cond′) with:

– O′ = (O\Oc) ∪ {tc},
– if T c denotes the set of tasks in C and T ′ denotes the set of tasks in

Fold(BPD, C, tc), then T c ⊆ Oc, T
′ ⊆ O′, and T ′ = (T \T c) ∪ {tc},

– F ′ = (F ∩ (O\Oc ×O\Oc)) ∪ {(entry(C), tc), (tc, exit(C)},

– Cond ′ =

{

Cond[F ′] if entry(C) /∈ GD

Cond[F ′] ∪ {((entry(C), tc), (entry(C), ic))} otherwise

3.3 Structured activity-based translation

As mentioned before, one of our goals for mapping BPMN onto BPEL is to
generate readable BPEL code. For this purpose, BPEL structured activities
comprising sequence, flow, switch, pick and while, have the first preference if
the corresponding structures appear in the BPD. Components that can be suit-
ably mapped onto one of these five structured constructs are considered well-
structured. Below, we classify different types of well-structured components re-
sembling these five structured constructs.

Definition 5 (Well-structured components). Let BPD = (O,F ,Cond) be
a well-formed core BPD and C = (Oc, Fc, Condc) be a component of BPD. ic is
the source object of C and oc is the sink object of C. The following components
are well-structured:

(a) C is a SEQUENCE-component if Oc ⊆ T ∪ EI (i.e. ∀ x ∈ Oc, |in(x)| =
|out(x)| = 1) and entry(C) /∈ GV . C is a maximal SEQUENCE-component if
C is a SEQUENCE-component and there is no other SEQUENCE-component
C′ such that Oc ⊂ O

′
c where O

′
c is the set of objects in C

′,

7

(b) C is a FLOW-component if
- ic ∈ G

F ∧ oc ∈ G
J ,

- Oc ⊆ T ∪ E
I ∪ {ic, oc},

- ∀ x∈Oc\{ic, oc}, in(x)={ic} ∧ out(x)={oc}.
(c) C is a SWITCH-component if

- ic ∈ G
D ∧ oc ∈ G

M ,
- Oc ⊆ T ∪ E

I ∪ {ic, oc},
- ∀ x∈Oc\{ic, oc}, in(x)={ic} ∧ out(x)={oc}.

(d) C is a PICK-component if
- ic ∈ G

V ∧ oc ∈ G
M ,

- Oc ⊆ T ∪ E
I ∪ {ic, oc},

- ∀ x ∈ out(ic), ∃ y ∈ Oc\({ic} ∪ out(ic)),
in(y) = {x} ∧ in(x) = {y},

- ∀ y′∈Oc\({ic, oc} ∪ out(ic)), out(y′)={oc}.
(e) C is a WHILE-component if

- ic ∈ G
M ∧ oc ∈ G

D ∧ x ∈ T ∪ EI ,
- Oc = {ic, oc, x},
- Fc = {(ic, oc), (oc, x), (x, ic)}.

(f) C is a REPEAT-component if
- ic ∈ G

M ∧ oc ∈ G
D ∧ x ∈ T ∪ EI ,

- Oc = {ic, oc, x},
- Fc = {(ic, x), (x, oc), (oc, ic)}.

(g) C is a REPEAT+WHILE-component if
- ic ∈ G

M ∧ oc ∈ G
D ∧ x1, x2 ∈ T ∪ E

I ∧ x1 6= x2,
- Oc = {ic, oc, x1, x2},
- Fc = {(ic, x1), (x1, oc), (oc, x2), (x2, ic)}.

Figure 2 depicts examples of mapping each of the components mentioned
above onto the corresponding BPEL structured activities. Using function Fold
in Definition 4, a component C is replaced by a single task tc attached with the
corresponding BPEL translation of C. For simplicity, we assume that an initial
task object (t1, ..., or tn) in component C is mapped onto an invoke activity.
However, it should be noted that based on the nature of these task objects they
may be mapped onto any types of BPEL activities.
In Figure 2(a) to (e), the mappings of the five components, SEQUENCE,

FLOW, SWITCH, PICK and WHILE, are straightforward. Note that in a PICK-
component (Figure 2(d), an event-based XOR decision gateway must be fol-
lowed by receive tasks or intermediate message or timer events. For this reason,
a SEQUENCE-component (Figure 2(a)) cannot be preceded by an event-based
XOR decision gateway.
In Figure 2(f) and (g), the two components, REPEAT and REPEAT+WHILE,

represent repeat loops which are also structured loops. Repeat loops are the op-
posite of while loops. A while loop (see Figure 2(e)) evaluates the loop condition
before the body of the loop is executed, so that the loop is never executed if the
condition is initially false. In a repeat loop, the condition is checked after the
body of the loop is executed, so that the loop is always executed at least once.
Accordingly, it is not difficult to transform a repeat loop into a while loop. In

8

(e) WHILE-component

(g) REPEAT+WHILE-component

(a) SEQUENCE-component

(b) FLOW-component

(c) SWITCH-component

(d) PICK-component

(f) REPEAT-component

<sequence>
 <invoke name="t1"/>
 <receive name="e1"/>
 . . .
 <invoke name="tn"/>
</sequence>

tc

<flow>
 <invoke name="t1"/>
 <wait name="e2"/>
 . . .
 <invoke name="tn"/>
</flow>

tc

<switch>
 <case condition="c1">
 <invoke name="t1"/>
 </case>
 <case condition="c2">
 <receive name="e1"/>
 </case>
 . . .
 <otherwise>
 <empty/>
 </otherwise>
</switch>

tc

tc

<pick>
 <onMessage name="e1"/>
 <invoke name="t1"/>
 </onMessage>
 <onAlarm name="e2">
 <empty/>
 </onAlarm>
 . . .
 <onMessage name="tr">
 <invoke name="tn"/>
 </onMessage>
</pick>

<while condition="c1">
 <invoke name="t1"/>
</while>

tc

<sequence>
 <invoke name="t1"/>
 <while condition="c1">
 <invoke name="t1"/>
 </while>
</sequence>

tc

<sequence>
 <invoke name="t1"/>
 <while condition="c1">
 <sequence>
 <invoke name="t2"/>
 <invoke name="t1"/>
 </sequence>
 </while>
</sequence>

tc

t1

e1

tn

t1

tn

e2

tn

t1

tr
(receive)

e1

e2

c1

~c1

t1

C

C

C

C

c1

~c1
t1

C

c1

~c1
t1

t2
C

t1

c2

default

c1

e1

C

Figure. 2. Examples of folding a well-structured component C into a single task object
tc attached with the corresponding BPEL translation of C.

9

Figure 2(f), the semantics of a repeat loop of task t1 is equivalent to a single
execution of t1 followed by a while loop of t1. In Figure 2(g), a repeat loop
of task t1 is combined with a while loop of task t2, and both loops share one
loop condition. In this case, task t1 is always executed once before the initial
evaluation of the condition, which is then followed by a while loop of sequential
execution of t2 and t1.

3.4 Event-action rule-based translation

A well-formed core BPD may contain components that are not well-structured,
e.g. components capturing multi-merge patterns [1] or unstructured loops. To
map these components onto BPEL, the structured activity-based approach men-
tioned above is no longer applicable.

Definition 6 (Non-well-structured components). Let C = (Oc, Fc, Condc)
be a component of a well-formed core BPD. C is not well structured if it does
not match any of the “patterns” given in Definition 5. C is a minimal non-well-
structured component if C is not well structured and there is no other component
C′ = (O′

c, F
′
c, Condc

′) such that O′
c ⊂ Oc.

In the following, We present an approach that can be used to translate a non-
well-structured component into a scope activity by exploiting the “event handler”
construct in BPEL. An event handler is an event-action rule associated with a
scope, and thus the corresponding translation approach is based on event-action
rules. It should be mentioned that the so-called event-action rule-based approach
can be applied to translating any component to BPEL. However, this approach
produces less readable BPEL code and hence we resort only to this approach
when there are only non-well-structured components left in the BPD.
As the first step in the event-action rule-based translation, we generate a set

of preconditions for each object within a component. The term “precondition”
is used to capture one possible way that leads to the execution of an object, and
thus a set of preconditions associated with the object encodes all possible ways
of reaching that object.
Figure 3 shows an algorithm for generating all precondition sets for a com-

ponent. The algorithm is sketched using a functional programming notation. It
defines three functions. The first one, namely AllPreCondSets, generates a set of
precondition sets for all objects (given by the set Objects(C)) in component C by
relying on a second function named PreCondSet. PreCondSet computes the set of
preconditions for an object by relying on a third function named EventOnFlow.
Function EventOnFlow takes as input a sequence flow f and produces a single

event5 resulting from the execution of the source object of the flow (denoted
as Source(f)). If the flow’s source object xs is outside the component to which
the flow’s target object (Target(f)) belongs, it implies that the flow’s target
object x is the source object of the above component (Component(x)). In this

5 Note that these are events within the context of event-action rules, and are different
from BPMN event objects.

10

case, the function returns an event (Start(Component(x))) signalling to start
the execution of this component. Otherwise, the function operates based on
the type of xs (ObjectType(xs)). If xs is one of the objects (tasks, events, or
join or merge gateways) that have only one outgoing flow, an event (end(xs)) is
returned indicating the end of the execution of xs. Intuitively, this means that
the flow in question (f) may be taken when the object xs has completed its
execution. Otherwise, xs could be one of the objects (fork or decision gateways)
with multiple outgoing flows. Assume that x is an output object of xs. If xs is
a fork gateway, an event (flow(xs,x)) is returned indicating the control flow is
splitting from xs to x. Next, if xs is a data-based decision gateway, an event
(switch(xs,x,c)) is returned indicating the control flow is leaving from xs to x
given that condition c holds. Finally, if xs is an event-based decision gateway,
an event (pick(xs,x)) is returned indicating the control flow is leaving from xs to
x on the occurrence of a trigger that leads to the execution of x.

Now we look closer into the second function PreCondSet. It operates based on
the object type of the input parameter x. If x is one of the objects (tasks, events,
or decision or fork gateways) that have a single incoming flow (InFlow(x)), the
function returns a precondition set comprising just one precondition capturing
a single event. Otherwise, if x is a merge gateway (resp. a join gateway), there
exist multiple incoming flows (given by the set InFlows(x)), and the resulting
precondition set contains a number of single events (resp. a conjunction of single
events) from these incoming flows, to capture the fact that when any (resp. all)
of these events occurs (resp. occur) the corresponding merge (resp. join) gateway
may be executed.

In the second step, we transform the above precondition sets with their as-
sociated objects into a set of event-action rules. An event-action rule can be
written in the form of E{A}: E is a single event or a conjunction of single events
(namely a composite event) causing the rule to be triggered, and A is a list of
actions being executed when the rule is triggered. The list of actions can be ex-
ecuted in sequence (a1; a2) or in parallel (a1||a2). If an event-action rule allows
the use of single events only, it is called a simple event-action rule; otherwise, it
is a composite event-action rule.

Figure 4 lists the event-action rules translated from the precondition sets
related to different types of objects. There are three new notations: Flow(fg),
Switch(dg) and Pick(eg).

Let out(fg) = {x1, ..., xn}, out(dg) = {y1, ..., yn} and ci = Cond((dg,yi))
(i = 1, ..., n), and out(eg) = {z1, ..., zn}, then

- Flow(fg) = {flow(fg, x1), ..., flow(fg, xn)},
- Switch(dg) = {switch(dg, y1, c1), ..., switch(dg, yn, cn)},
- Pick(eg) = {pick(eg, z1), ..., pick(eg, zn)}.

In Figure 4, most of the translations are straightforward except the following
issue that is worth mentioning. The precondition set for a join gateway comprises
just one precondition capturing a composite event, and in the general case, this
leads to a composite event-action rule. However, BPEL only supports simple

11

AllPreCondSets(C: Component):
Al let {x1, ..., xn} = Objects(C) in
Alllet return {PreCondSet(x1), ..., PreCondSet(xn)}

PreCondSet(x: Object):
Pre if ObjectType(x) ∈ {“task”, “event”, “data-based decision”,
Preif ObjectType(x) ∈ { “event-based decision”, “fork”}
Preif return {EventOnFlow(InFlow(x))}
Pre else if ObjectType(x) = “merge”
Preif let {f1, ..., fn} = InFlows(x) in
Preif let return {EventOnFlow(f1), ..., EventOnFlow(fn)}
Pre else if ObjectType(x) = “join”
Preif let {f1, ..., fn} = InFlows(x) in
Preif let return {EventOnFlow(f1) ∧ ... ∧ EventOnFlow(fn)}

EventOnFlow(f: Flow):
Pre let xs = Source(f) and x = Target(f)
Prelet if xs /∈ Objects(Component(x))
Prelet if return Start(Component(x))
Prelet else if ObjectType(xs) ∈ {“task”, “event”, “join”, “merge”}
Prelet else if return end(xs)
Prelet else if ObjectType(xs) = “fork”
Prelet else if return flow(xs, x)
Prelet else if ObjectType(xs) = “data-based decision”
Prelet else if let c = Cond(f) in
Prelet else if let return switch(xs, x, c)
Prelet else if ObjectType(x) = “event-based decision”
Prelet else if return pick(xs, x)

Figure. 3. Algorithm for deriving precondition sets from a component of a well-formed
core BPD.

event-action rules. To address this issue, we translate the above composite event-
action rule to a simple event-action rule, by separating the first single event (e1)
from the rest in the initial composite event. Although the resulting rule can be
triggered by event e1, the action “invoke end(jg)” will not be performed until
occurrences of all the remaining events e2 to en have been registered.

task/event (a)
Event-Action RuleObject

fork gateway (fg)
data-based decision

gateway (dg)

Precondition Set
{ e }

event-based decision
gateway (eg)

{ e }

{ e }

{ e }

merge gateway (mg)

join gateway (jg) { e1 . . . en }v v

{ e1, . . ., en }

e { do a ; invoke end(a) }
e { execute Flow(fg) }

e { execute Switch(dg) }

e { execute Pick(eg) }

e1 { invoke end(mg) }
. . .

en { invoke end(mg) }

e1 { on e2 || . . . || on en ;
invoke end(jg) }

Figure. 4. Event-action rules translated from precondition sets for different types of
objects.

12

As the last step, we translate event-action rules to BPEL. A simple event-
action rule e{A} is realised by a BPEL event handler (onEvent) encoded as:

<onEvent e>
<!-- BPEL translation of A -->

</onEvent>

The list of actions A can be mapped to BPEL as shown in Figure 5. Based on
this, we translate the set of event-action rules derived from a component C to
a BPEL scope. Let m+1 be the number of event-action rules derived from C,
{Start(C), e1, ..., em} be the set of events for triggering each of these rules, C can
be mapped onto a scope encoded as:

<scope name="tc">
<onEvent e1> . . . </onEvent>
. . .
<onEvent em> . . . </onEvent>
<invoke Start(C)/>

</scope>

The main activity of the scope is to invoke event Start(C). The occurrence of
Start(C) triggers the execution of the source object of C, and the entire scope
completes after its main activity and all active event handlers have completed.

 <invoke end(x)/>
 <flow name="fg">
 <invoke flow(fg, x1)/>
 ...
 <invoke flow(fg, xn)/>
 </flow>

 <switch name="dg">
 <case condition="c1">
 <invoke switch(dg, y1, c1)/>
 </case>
 ...
 <case condition="cn">
 <invoke switch(dg, yn, cn)/>
 </case>
 </switch>

 <pick name="eg">
 <onEvent name="z1">
 <invoke pick(eg, z1)/>
 </onEvent>
 ...
 <onEvent name="zn">
 <invoke pick(eg, zn)/>
 </onEvent>
 </pick>

 invoke end(x)

Action BPEL Translation

execute Flow(fg)

execute Switch(dg)

execute Pick(eg)

 do a an appropriate activity named "a"
 on e <receive e/>

; <sequence> ... </sequence>

|| <flow> ... </flow>

Figure. 5. BPEL translation of actions.

13

Finally, it should be mentioned that the above events for triggering event-
action rules are performed by a BPEL invoke activity via a local partner link
between the final BPEL process (i.e. the mapping of the BPD to which the
component C belongs) and itself. The interested reader may refer to [8] for def-
initions of a local partner link and an event being invoked or consumed via a
local partner link.

3.5 Translation algorithm

Based on the mapping of each of the components aforementioned, we now define
the algorithm to translate a well-formed core BPD into BPEL. The basic idea
behind this algorithm is to select a component in the BPD, provide its BPEL
translation, and fold the component. This is repeated until no component is left
in the BPD. Below, the set of components of a BPD (X) is denoted as [X]c.

Definition 7 (Algorithm). Let BPD be a well-formed core BPD with one start
event and one end event.

(1) X := BPD

(2) if [X]c = ∅ (i.e., X is initially a trivial BPD), output the BPEL translation
of the single task or event object between the start and end events in X, and
goto (5).

(3) while [X]c 6= ∅ (i.e., X is a non-trivial BPD)

(3-a) if there is a maximal SEQUENCE-component C ∈ [X]c, selected it and
goto (3-d).

(3-b) if there is a well-structured (non-sequence) component C ∈ [X]c, select it
and goto (3-d).

(3-c) if there is a minimal non-well-structured component C ∈ [X]c, select it.

(3-d) Attach BPEL translation of C to task object tc.

(3-e) X := Fold(X, C, tc) and return to (3).

(4) Output the BPEL code attached to the task object tc.

(5) Start event and end event are translated into a pair of <process> and
</process> tags to enclose the BPEL code generated in steps (2) or (4). In
addition, for an end terminate event, add <exit/> activity after the above
BPEL code (and before </process>).

In the above algorithm, the translation of components is done in step (3-d)
followed by the folding in step (3-e). The component to be translated is selected
in steps (3-a) to (3-c). In order to keep the translation as compact as possible,
the selection always starts from a maximal SEQUENCE-component after each
folding. Only if there are no sequences left in the BPD, other well-structured
components are considered. Since all well-structured non-sequence components
are disjoint, the order of selecting these components is irrelevant. Finally, the
minimal non-well-structured components are considered.

14

4 Case Study

Consider the complaint handling process model shown in Figure 6. It is described
as a well-formed core BPD. First the complaint is registered (task register), then
in parallel a questionnaire is sent to the complainant (task send questionnaire)
and the complaint is processed (task process complaint). If the complainant
returns the questionnaire within two weeks (event returned-questionnaire), task
process questionnaire is executed. Otherwise, the result of the questionnaire is
discarded (event time-out). In parallel the complaint is evaluated (task evaluate).
Based on the evaluation result, the processing is either done or continues to
task check processing. If the check result is not ok, the complaint requires re-
processing. Finally task archive is executed. Note that labels DONE , CONT , OK

and NOK on the outgoing flows of each data-based XOR decision gateway, are
abstract representations of conditions on these flows.

register

 send
questionnaire

 process
questionnaire

evaluate
 check
processing

archive

OK

NOK

process
complaint

DONEtime-out

returned-questionnaire

CONT

Figure. 6. A complaint handling process model.

Following the algorithm in Section 3, we now translate the above BPD to
a BPEL specification. Figure 7 sketches the translation procedure which shows
how this BPD can be reduced to a trivial BPD. Six components are identified.
Each component is named Ci where i specifies in what order the components
are processed, and Ci is folded into a task object named ti

c. Also, we assign an
identifier ai to each task or intermediate event in the initial BPD, and use these
identifiers to refer to the corresponding objects in the following translation. It
should be mentioned that since we focus on the control-flow perspective, the
resulting BPEL specification will be presented in simplified BPEL syntax which
defines the control flow for the process but omits all details related to data
definitions such as partners, messages and variables.

1st Translation. The algorithm first tries to locate SEQUENCE-components.
In the initial BPD shown in Figure 6, the component C1 consisting of tasks a6

and a7 is the only SEQUENCE-component that can be identified. Hence, C1 is
folded into a task t1c attached with the BPEL translation sketched as:

<sequence name="t1c">
<invoke name="process complaint".../>

<invoke name="evaluation".../>

</sequence>

15

tc
6

register archive

a1 a9
tc

3

tc
4

C5

register archive

a1 a9

tc
5

C6

register

 send
questionnaire

 process
questionnaire

evaluate
 check
processing

archive

OK

NOK

process
complaint

DONE

a1

a2

a5

a6 a7

a8

a9

time-out

a4

a3

C2

returned-questionnaire

C1 CONT

register

 send
questionnaire

 check
processing

archive

OK

NOK

DONE

a1

a2

a8

a9

tc
1

tc
2

C3

C4
CONT

g1 g2
g3 g4

Figure. 7. Translating the complaint handling process model in Figure 6 into BPEL.

2nd Translation. When no SEQUENCE-components can be identified, the al-
gorithm tries to discover any well-structured non-sequence component. As a
result, the component C2 is selected. It is a PICK-component and is folded into
a task t2c attached with the BPEL translation sketched as:

<pick name="t2c">
<onMessage operation="returned-questionnaire"...>

<invoke name="process questionnaire".../>

</onMessage>

<onAlarm for=‘P14DT’>

<empty/>

</onAlarm>

</pick>

Assume that the maximal waiting period for the returned questionnaire is two
weeks, i.e. 14 days. In BPEL, this is encoded as P14DT.

3rd Translation. Folding C2 into t2c introduces a new SEQUENCE-component
C3 consisting of tasks a2 and t2c . C3 is folded into a task t3c attached with the
BPEL translation sketched as:

<sequence name="t3c">
<invoke name="send questionnaire".../>

<pick name="t2c"> ... </pick>
</sequence>

16

4th Translation. After the above three components C1 to C3 have been folded
into the corresponding tasks t1c to t3c , there is no well-structured components left
in the BPD. The algorithm continues to identify any minimal non-well-structured
component. As a result, the component C4 is selected. It is translated into a scope
with a number of event handlers through the following steps:

Step 1: Generating Precondition Sets. The component C4 consists of a set of six
objects {g1, t

1
c , g2, a8, g3, g4}. The source object is g1 and the sink object is g4.

The precondition sets for each of the six objects are:

PreCondSet(g1) = {Start(C4), switch(g3, g1, NOK)}
PreCondSet(t1c) = {end(g1)}
PreCondSet(g2) = {end(t

1
c)}

PreCondSet(a8) = {switch(g2, a8, CONT)}
PreCondSet(g3) = {end(a8)}
PreCondSet(g4) = {switch(g2, a4, DONE), switch(g3, a4, OK)}

Step 2: Generating Event-Action Rules. All the precondition sets above can be
translated into the set of (simple) event-action rules listed below, where for “for
xi” is a shortened form of “for execution of object xi”.

For g1: Start(C4){invoke end(g1)}
For g1: switch(g3, g1, NOK){invoke end(g1)}
For t1c : end(g1){do t1c ; invoke end(t

1
c)}

For g2: end(t
1
c){execute Switch(g2)}

For a8: switch(g3, a8, CONT){do a8; invoke end(a8)}
For g3: end(a8){execute Switch(g3)}
For g4: switch(g2, g4, DONE){invoke end(g4)}
For g4: switch(g3, g4, OK){invoke end(g4)}

Step 3: Deriving the BPEL Code. The above event-action rules can be translated
into a BPEL scope activity of which the XML code is sketched below. Note that
the rule triggered by event Start(C4) is mapped to the main activity of the scope,
while the rest of the rules are mapped to event handlers.

<scope name="t4c">
<onEvent Start(C4)>

<invoke end(g1)/>

</onEvent>

<onEvent switch(g3,g1,NOK)>

<invoke end(g1)/>

</onEvent>

<onEvent end(g1)>

<sequence>

<sequence name="t1c"> ... </sequence>
<invoke end(t1c)/>

</sequence>

</onEvent>

17

<onEvent end(t1c)>
<switch name="g2">

<case condition="DONE ">
<invoke switch(g2,g4,DONE)/>

</case>
<case condition="CONT ">

<invoke switch(g2,a8,CONT)/>
</case>

</switch>

</onEvent>

<onEvent switch(g2,a8,CONT)>

<sequence>

<invoke name="check processing".../>

<invoke end(a8)/>

</sequence>

</onEvent>

<onEvent end(a8)>

<switch name="g3">
<case condition="OK ">

<invoke switch(g3,g4,OK)/>
</case>
<case condition="NOK ">

<invoke switch(g3,g1,NOK)/>
</case>

</switch>

</onEvent>

<onEvent switch(g2,g4,DONE)>

<invoke end(g4)/>

</onEvent>

<onEvent switch(g3,g4,OK)>

<invoke end(g4)/>

</onEvent>

<invoke Start(C4)/>

</scope>

5th Translation. Folding C3 to t3c and C4 to t4c introduces a FLOW-component
C5. C5 is folded into a task t5c attached with the BPEL code sketched as:

<flow name="t5c">
<sequence name="t3c"> ... </sequence>

<scope name="t4c"> ... </scope>

</flow>

6th Translation. After C5 has been folded into t5c , a new SEQUENCE-component
C6 is introduced. This is also the only component left between the start event
and the end event in the BPD. Folding C6 into task t6c leads to the end of the
translation, and the final BPEL specification is sketched as:

18

<process name="complaint handling">

<sequence name="t6c">
<invoke name="register">

<flow name="t5c"> ... </flow>

<invoke name="archive">

</sequence>

</process>

For clarity, a complete listing of the XML code for the BPEL specification of
the complaint handling process shown in Figure 6 is given in the appendix.

5 Conclusions

In this paper, we presented an algorithm to translate models captured in a core
subset of BPMN into BPEL. The translation algorithm is capable of generat-
ing readable BPEL code by discovering “patterns” in the BPMN models that
can be mapped onto BPEL structured constructs. The algorithm also exploits
BPEL event handlers for unstructured subsets of the BPMN models. As a result,
the algorithm can handle any BPMN model composed of tasks, events, parallel
gateways, and XOR gateways (both data-based and event-based) connected in
arbitrary topologies.
Implementation of the algorithm is ongoing. A first version of the imple-

mentation supports the translation of a smaller subset of BPMN models (called
Standard Process Models) into BPEL event handlers and is available at http:
//www.bpm.fit.qut.edu.au/projects/babel/tools. We are now extending
this tool with the ability to detect patterns in the BPMN models and to map
these onto BPEL structured constructs.
Other ongoing work aims at exploring the use of BPEL’s non-structured

constructs called control links in the translation. Control links support the def-
inition of precedence, synchronization and conditional dependencies on top of
those captured by the structured activity constructs. They allow the definition
of directed graphs but with syntactical limitations. Our previous work [3] shows
that a larger class of “patterns” could be mapped onto BPEL’s flow construct
by making greater use of control links. However, since control links enable dead
path elimination, such an extension, if not performed carefully, may hide errors
such as deadlocks and livelocks in the source model during the translation, thus
requiring verification technology for detection.

References

1. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(3):5–51, July 2003.

2. W.M.P. van der Aalst, J.B. Jørgensen, and K.B. Lassen. Let’s Go All the Way:
From Requirements via Colored Workflow Nets to a BPEL Implementation of a
New Bank System. In R. Meersman and Z. Tari et al., editors, On the Move to

19

Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE: OTM Confeder-
ated International Conferences, CoopIS, DOA, and ODBASE 2005, volume 3760
of Lecture Notes in Computer Science, pages 22–39. Springer-Verlag, 2005.

3. W.M.P. van der Aalst and K.B. Lassen. Translating Workflow Nets to BPEL4WS.
BETA Working Paper Series, WP 145, Eindhoven University of Technology, Eind-
hoven, 2005.

4. A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, C. K. Liu,
S. Thatte, P. Yendluri, and A. Yiu, editors. Web Services Business Process Exe-
cution Language Version 2.0. Working Draft. WS-BPEL TC OASIS, May 2005.

5. B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On structured workflow
modelling. In Proceedings of 12th International Conference on Advanced Informa-
tion Systems Engineering (CAiSE 2000), volume 1789 of Lecture Notes in Com-
puter Science, pages 431–445, London, UK, 2000. Springer-Verlag.

6. J. Koehler and R. Hauser. Untangling Unstructured Cyclic Flows - A Solution
Based on Continuations. In R. Meersman, Z. Tari, W.M.P. van der Aalst, C. Bus-
sler, and A. Gal et al., editors, OTM Confederated International Conferences,
CoopIS, DOA, and ODBASE 2004, volume 3290 of Lecture Notes in Computer
Science, pages 121–138, 2004.

7. R. Liu and A. Kumar. An analysis and taxonomy of unstructured workflows.
In Proceedings of the International Conference on Business Process Management
(BPM2005), volume 3649 of Lecture Notes in Computer Science, pages 268–284,
Nancy, France, 2005. Springer-Verlag.

8. C. Ouyang, M. Dumas, S. Breutel, and A.H.M. ter Hofstede. Translating standard
process models to BPEL. Technical Report BPM-05-27, BPMcenter.org, November
2005. Available via http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/

2005/BPM-05-27.pdf.
9. S. White. Using BPMN to Model a BPEL Process. BPTrends, 3(3):1–18, 2005.

10. S. A. White. Business Process Modeling Notation (BPMN) Version 1.0. Business
Process Management Initiative, BPMI.org, May 2004.

Appendix

This appendix provides a complete listing of the XML code for the BPEL spec-
ification of the complaint handling process model shown in Figure 6.

<process name="complaint handling">

<sequence name="t6c">
<invoke name="register">

<flow name="t5c">
<sequence name="t3c">

<invoke name="send questionnaire".../>

<pick name="t2c">
<onMessage operation="returned-questionnaire"...>

<invoke name="process questionnaire".../>

</onMessage>

<onAlarm for=‘P14DT’>

<empty/>

</onAlarm>

20

</pick>

</sequence>

<scope name="t4c">
<onEvent Start(C4)>

<invoke end(g1)/>

</onEvent>

<onEvent switch(g3,g1,NOK)>

<invoke end(g1)/>

</onEvent>

<onEvent end(g1)>

<sequence>

<sequence name="t1c">
<invoke name="process complaint".../>

<invoke name="evaluation".../>

</sequence>

<invoke end(t1c)/>
</sequence>

</onEvent>

<onEvent end(t1c)>
<switch name="g2">

<case condition="DONE ">
<invoke switch(g2,g4,DONE)/>

</case>
<case condition="CONT ">

<invoke switch(g2,a8,CONT)/>
</case>

</switch>

</onEvent>

<onEvent switch(g2,a8,CONT)>

<sequence>

<invoke name="check processing".../>

<invoke end(a8)/>

</sequence>

</onEvent>

<onEvent end(a8)>

<switch name="g3">
<case condition="OK ">

<invoke switch(g3,g4,OK)/>
</case>
<case condition="NOK ">

<invoke switch(g3,g1,NOK)/>
</case>

</switch>

</onEvent>

<onEvent switch(g2,g4,DONE)>

<invoke end(g4)/>

</onEvent>

21

<onEvent switch(g3,g4,OK)>

<invoke end(g4)/>

</onEvent>

<invoke Start(C4)/>

</scope>

</flow>

<invoke name="archive">

</sequence>

</process>

22

