
Specifying, Discovering, and Monitoring Service
Flows: Making Web Services Process-Aware

W.M.P. van der Aalst and M. Pesic

Department of Technology Management, Eindhoven University of Technology,
P.O.Box 513, NL-5600 MB, Eindhoven, The Netherlands.

w.m.p.v.d.aalst@tm.tue.nl,m.pesic@tm.tue.nl

Abstract. BPEL has emerged as the de-facto standard for implement-
ing processes based on web services while formal languages like Petri nets
have been proposed as an “academic response” allowing for all kinds of
analysis. However, both are rather procedural and this does not fit well
with the autonomous nature of services. Therefore, we propose DecSer-
Flow as a Declarative Service Flow Language. Moreover, we link this
language to process mining where we focus on process discovery and
conformance testing. This makes it possible to uncover processes emerg-
ing in a service-oriented architecture. Moreover, it can be used to expose
services that do not follow the rules of the game.

1 Introduction

Web services, an emerging paradigm for architecting and implementing busi-
ness collaborations within and across organizational boundaries, are currently
of interest to both software vendors and scientists. In this paradigm, the func-
tionality provided by business applications is encapsulated within web services:
software components described at a semantic level, which can be invoked by
application programs or by other services through a stack of Internet standards
including HTTP, XML, SOAP, WSDL and UDDI [3, 18]. Once deployed, web
services provided by various organizations can be inter-connected in order to
implement business collaborations, leading to composite web services.

Today workflow management systems are readily available [6, 49, 59] and
workflow technology is hidden in many applications, e.g., ERP, CRM, and PDM
systems. However, their application is still limited to specific industries such as
banking and insurance. Since 2000 there has been a growing interest in web
services. This resulted in a stack of Internet standards (HTTP, XML, SOAP,
WSDL, and UDDI) which needed to be complemented by a process layer. Sev-
eral vendors proposed competing languages, e.g., IBM proposed WSFL (Web
Services Flow Language) [48] building on FlowMark/MQSeries and Microsoft
proposed XLANG (Web Services for Business Process Design) [71] building on
Biztalk. BPEL [16] emerged as a compromise between both languages.

The Business Process Execution Language for Web Services (BPEL4WS, or
BPEL for short) has become the de-facto standard for implementing processes

based on web services [16]. Systems such as Oracle BPEL Process Manager,
IBM WebSphere Application Server Enterprise, IBM WebSphere Studio Appli-
cation Developer Integration Edition, and Microsoft BizTalk Server 2004 support
BPEL, thus illustrating the practical relevance of this language. Although in-
tended as a language for connecting web services, its application is not limited
to cross-organizational processes. It is expected that in the near future a wide
variety of process-aware information systems [22] will be realized using BPEL.
Whilst being a powerful language, BPEL is difficult to use. Its XML repre-
sentation is very verbose and only readable to the trained eye. It offers many
constructs and typically things can be implemented in many ways, e.g., using
links and the flow construct or using sequences and switches. As a result only
experienced users are able to select the right construct. Several vendors offer
a graphical interface that generates BPEL code. However, the graphical rep-
resentations are a direct reflection of the BPEL code and are not intuitive to
end-users. Therefore, BPEL is closer to classical programming languages than
e.g. the more user-friendly workflow management systems available today.

In discussions, Petri nets [66] and Pi calculus [58] are often mentioned as two
possible formal languages that could serve as a basis for languages such as BPEL.
Some vendors claim that their systems are based on Petri nets or Pi calculus
and other vendors suggest that they do not need a formal language to base their
system on. In essence there are three “camps” in these discussions: the “Petri
net camp”, the “Pi calculus” (or process algebra) camp, and the “Practition-
ers camp” (also known as the “No formalism camp”). This was the reason for
starting the “Petri nets and Pi calculus for business processes” working group
(process-modelling-group.org) in June 2004. Two years later the debate is
still ongoing and it seems unrealistic that consensus on a single language will be
reached.

This chapter will discuss the relation between Petri nets and BPEL and show
that today it is possible to use formal methods in the presence of languages like
BPEL. However, this will only be the starting point for the results presented in
this chapter. First of all, we introduce a new language DecSerFlow. Second, we
show that process mining techniques can be very useful when monitoring web
services.

The language DecSerFlow is a Declarative Service Flow Language, i.e., it is
intended to describe processes in the context of web services. The main motiva-
tion is that languages like BPEL and Petri nets are procedural by nature, i.e.,
rather than specifying “what” needs to happen these languages describe “how”
things need to be done. For example, it is not easy to specify that anything
is allowed as long as the receipt of a particular message is never followed by
the sending of another message of a particular type. DecSerFlow allows for the
specification of the “what” without having to state the “how”. This is similar
to the difference between a program and its specification. One can specify what
an ordered sequence is without specifying an algorithm to do so.

In a service-oriented architecture a variety of events (e.g., messages being
sent and received) are being logged. This information can be used for process

mining purposes, i.e., based on some event log it is possible to discover processes
or to check conformance. The goal of process discovery is to build models with-
out a-priori knowledge, i.e., based on sequences of events one can look for the
presence or absence of certain patterns and deduce some process model from it.
For conformance checking there has to be an initial model. One can think of this
model as a “contract” or “specification” and it is interesting to see whether the
parties involved stick to this model. Using conformance checking it is possible to
quantify the fit (fewer deviations result in a better fit) and to locate “problem
areas” where a lot of deviations take place.

Moreover, there is a clear link between more declarative languages such as
DecSerFlow and process mining. It is possible to discover (part of) a DecSer-
Flow model or to project e.g. performance data on such a model. Moreover,
given a DecSerFlow model it is possible to measure conformance and to locate
deviations.

The remainder of this chapter is organized as follows. Section 2 describes the
“classical approach” to processes in web services, i.e., Petri nets and BPEL are
introduced and pointers are given to state-of-the-art mappings between them.
Section 3 first discusses the need for a more declarative language and then intro-
duces the DecSerFlow language. In Section 4 the focus shifts from languages to
process mining, i.e., first process discovery (Section 4.1) and then conformance
checking (Section 4.2) are discussed in the context of web services. Finally there
is a section on related work (Section 5) and a conclusion (Section 6).

2 BPEL and Petri Nets

2.1 Petri Nets

Petri nets [66] were among the first formalisms to capture the notion of concur-
rency. They combine an intuitive graphical notation with formal semantics and
an wide range of analysis techniques. In recent years they have been applied in
the context of process-aware information systems [22], workflow management [6,
8], and web services [55].

To illustrate the concept of Petri nets we use an example that will be used in
the remainder of this chapter. This example is inspired by electronic bookstores
such as Amazon and Barnes and Noble and taken from [14]. Figure 1 shows a
Petri-net that will be partitioned over four partners: (1) the customer, (2) the
bookstore (e.g., Amazon or Barnes and Noble), (3) the publisher, and (4) the
shipper.

The circles represent places and the squares represent transitions. Initially,
there is one token in place start and all other places are empty (we consider
one book order in isolation [6]). Transitions are enabled if there is a token on
each of input places. Enabled transitions can fire by removing one token from
each input place and producing one token for each output place. In Figure 1,
transition place c order is enabled. When it fires one token is consumed and two
tokens are produced. In the subsequent state (also called marking) transition

place_c_order handle_c_order

c_order

handle_c_order

place_b_order

b_order

eval_b_order

b_accept

b_reject

b_decline

rec_decl
c_decline

decide

c_accept

alt_publ

b_confirm

c_confirm

s_request

req_shipment

s_decline

s_confirm

s_reject
s_accept

eval_s_req

alt_shipper

inform_publ

prepare_b

send_book

prepare_s

ship

notify

book_to_s

book_to_c

notification

ship_info

send_bill

bill

payment

pay

rec_acc

rec_book
rec_bill

handle_payment

c_reject

start

end

Fig. 1. A Petri net describing the process as agreed upon by all four parties.

handle c order is enabled. Note that transitions rec acc and rec decl are not
enabled because only one of their input places is marked with a token.

Figure 1 represents an inter-organizational workflow that is initiated by a
customer placing an order (activity place c order). This customer order is sent
to and handled by the bookstore (activity handle c order). The electronic book-
store is a virtual company which has no books in stock. Therefore, the bookstore
transfers the order of the desired book to a publisher (activity place b order).
We will use the term “bookstore order” to refer to the transferred order. The
bookstore order is evaluated by the publisher (activity eval b order) and either
accepted (activity b accept) or rejected (activity b reject). In both cases an appro-
priate signal is sent to the bookstore. If the bookstore receives a negative answer,
it decides (activity decide) to either search for an alternative publisher (activ-
ity alt publ) or to reject the customer order (activity c reject). If the bookstore
searches for an alternative publisher, a new bookstore order is sent to another
publisher, etc. If the customer receives a negative answer (activity rec decl), then
the workflow terminates. If the bookstore receives a positive answer (activity
c accept), the customer is informed (activity rec acc) and the bookstore contin-
ues processing the customer order. The bookstore sends a request to a shipper
(activity req shipment), the shipper evaluates the request (activity eval s req)
and either accepts (activity s accept) or rejects (activity b reject) the request. If
the bookstore receives a negative answer, it searches for another shipper. This
process is repeated until a shipper accepts. Note that, unlike the unavailability
of the book, the unavailability of a shipper can not lead to a cancellation of the
order. After a shipper is found, the publisher is informed (activity inform publ),
the publisher prepares the book for shipment (activity prepare b), and the book
is sent from the publisher to the shipper (activity send book). The shipper pre-
pares the shipment to the customer (activity prepare s) and actually ships the
book to the customer (activity ship). The customer receives the book (activity
rec book) and the shipper notifies the bookstore (activity notify). The bookstore
sends the bill to the customer (activity send bill). After receiving both the book
and the bill (activity rec bill), the customer makes a payment (activity pay).
Then the bookstore processes the payment (activity handle payment) and the
inter-organizational workflow terminates.

The Petri net shown in Figure 1 is a so-called WF-net (WorkFlow-net) be-
cause it has one input place (start) and one output place (end) and all places
transitions are on a path from start to end. Using tools such as Woflan [75] or
ProM [21] we can show that the process is sound [2, 6]. Figure 2 shows a screen-
shot of the Woflan plug-in of ProM. This means that each process instance can
terminate without any problems and that all parts of the net can potentially be
activated. Given a state reachable from the marking with just a token in place
start it is always possible to reach the marking with one token place end. More-
over, from the initial state it is possible to enable any transition and to mark
any place.

One can think of the Petri net shown in Figure 1 as the contract between the
customer, the bookstore, the publisher, and the shipper. Clearly there are many

Fig. 2. Two analysis plug-in of ProM indicate that the Petri net shown in Figure 1
is indeed sound. The top window shows some diagnostics related to soundness. The
bottom window shows part of the state space.

customers, publishers, and shippers. Therefore, the Petri net should be consid-
ered as the contract between all customers, publishers, and shippers. However,
since we model the processing of an order for a single book, we can assume, with-
out loss of generality, that only one customer, one publisher, and one shipper
(if any) are involved. Note that Figure 1 abstracts from a lot of relevant things.
However, given the purpose of this chapter we do not add more details.

Figure 3 shows the same process but now all activities are partitioned over
the four parties involved in the ordering of a book. It shows that each of the
parties is responsible for a part of the process. In terms of web services, we can
think of each of the four large shaded rectangles as a service. We can think of the
Petri-net fragments inside these rectangles as specifications of the corresponding
services. We can think of the whole diagram as the choreography or orchestration
of the four services.

2.2 BPEL

BPEL [16] supports the modeling of two types of processes: executable and ab-
stract processes. An abstract, (not executable) process is a business protocol,
specifying the message exchange behavior between different parties without re-
vealing the internal behavior for any one of them. This abstract process views
the outside world from the perspective of a single organization or (composite)
service. An executable process views the world in a similar manner, however,
things are specified in more detail such that the process becomes executable,
i.e., an executable BPEL process specifies the execution order of a number of
activities constituting the process, the partners involved in the process, the mes-

place_c_order handle_c_order
c_order

handle_c_order

place_b_order

b_order
eval_b_order

b_accept
b_reject

b_decline

rec_decl
c_decline

decide

c_accept

alt_publ

b_confirm

c_confirm

s_request

req_shipment

s_decline

s_confirm

s_reject
s_accept

eval_s_req

alt_shipper

inform_publ

prepare_b

send_book

prepare_s

ship

notify

book_to_s

book_to_c

notification

ship_info

send_bill

bill

payment

pay

rec_acc

rec_book
rec_bill

handle_payment

c_reject

customer bookstore

publisher

shipper

start

end

Fig. 3. The process as partitioned over (1) the customer, (2) the bookstore, (3) the
publisher, and (4) the shipper.

sages exchanged between these partners, and the fault and exception handling
required in cases of errors and exceptions.

In terms of Figure 3 we can think of abstract BPEL as the language to specify
one service, i.e., describing the desired behavior of a single Petri-net fragment
(e.g., shipper). Executable BPEL on the other hand can be used as the means
to implement the desired behavior.

A BPEL process itself is a kind of flow-chart, where each element in the pro-
cess is called an activity. An activity is either a primitive or a structured activity.
The set of primitive activities contains: invoke, invoking an operation on a web
service; receive, waiting for a message from an external source; reply, replying
to an external source; wait, pausing for a specified time; assign, copying data
from one place to another; throw, indicating errors in the execution; terminate,
terminating the entire service instance; and empty, doing nothing.

To enable the presentation of complex structures the following structured
activities are defined: sequence, for defining an execution order; switch, for con-
ditional routing; while, for looping; pick, for race conditions based on timing or
external triggers; flow, for parallel routing; and scope, for grouping activities to
be treated by the same fault-handler. Structured activities can be nested and
combined in arbitrary ways. Within activities executed in parallel the execution
order can further be controlled by the usage of links (sometimes also called con-
trol links, or guarded links), which allows the definition of directed graphs. The
graphs too can be nested but must be acyclic.

As indicated in the introduction, BPEL builds on IBM’s WSFL (Web Services
Flow Language) [48] and Microsoft’s XLANG (Web Services for Business Process
Design) [71] and combines the features of a block structured language inherited
from XLANG with those for directed graphs originating from WSFL. As a result
simple things can be implemented in two ways. For example a sequence can be
realized using the sequence or flow elements (in the latter case links are used to
enforce a particular order on the parallel elements), a choice based on certain
data values can be realized using the switch or flow elements, etc. However, for
certain constructs one is forced to use the block structured part of the language,
e.g., a deferred choice [7] can only be modeled using the pick construct. For
other constructs one is forced to use the links, i.e., the more graph-oriented
part of the language, e.g., two parallel processes with a one-way synchronization
require a link inside a flow. In addition, there are very subtle restrictions on
the use of links: “A link MUST NOT cross the boundary of a while activity,
a serializable scope, an event handler or a compensation handler... In addition,
a link that crosses a fault-handler boundary MUST be outbound, that is, it
MUST have its source activity within the fault handler and its target activity
within a scope that encloses the scope associated with the fault handler. Finally,
a link MUST NOT create a control cycle, that is, the source activity must
not have the target activity as a logically preceding activity, where an activity
A logically precedes an activity B if the initiation of B semantically requires
the completion of A. Therefore, directed graphs created by links are always
acyclic.” (see page 64 in [16]). All of this makes the language complex for end-

users. A detailed or complete description of BPEL is beyond the scope of this
chapter. For more details, the reader is referred to [16] and various web sites
such as the web site of the OASIS technical committee on WS-BPEL: http:
//www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel.

2.3 BPEL2PN and PN2BPEL

As shown, both BPEL and Petri nets can be used to describe the process-aspect
of web services. There are several process engines supporting Petri nets (e.g.,
COSA, YAWL, etc.) or BPEL (e.g., Oracle BPEL, IBM WebSphere, etc.). BPEL
currently has strong industry support while Petri nets offer a graphical language
and a wide variety of analysis tools (cf. Figure 2). Therefore, it is interesting to
look at the relation between two. First of all, it is possible to map BPEL onto
Petri nets for the purpose of analysis. Second, it is possible to generate BPEL
on the basis of Petri nets, i.e., mapping a graphical, more conceptual, language
onto a textual language for execution purposes.

Several tools have been developed to map BPEL onto Petri nets (see Sec-
tion 5). As a example, we briefly describe the combination formed by BPEL2PNML
and WofBPEL developed in a collaboration with QUT [62]. BPEL2PNML trans-
lates BPEL process definitions into Petri nets represented in the Petri Net
Markup Language (PNML). WofBPEL, built using Woflan [75], applies static
analysis and transformation techniques on the output produced by BPEL2PNML.
WofBPEL can be used to (i) simplify the Petri net produced by BPEL2PNML
by removing unnecessary silent transitions, and (ii) convert the Petri net into
a so-called WorkFlow net (WF-net) which has certain properties that sim-
plify the analysis phase. Although primarily developed for verification purposes,
BPEL2PNML and WofBPEL have also been used for conformance checking us-
ing abstract BPEL processes [5].

<?xml version="1.0" encoding="UTF-8"?>
<process xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
name="shipper" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.xmlsoap.org/ws/2003/03/business-process/
http://schemas.xmlsoap.org/ws/2003/03/business-process/"
targetNamespace="http://shipper">
 <sequence name="Sequence_F3">
 <receive name="eval_s_req" />
 <switch name="Switch_F2">
 <case condition="bpws:getVariableData('accept', 'accept', '//type')!=1">
 <invoke name="s_reject" />
 </case>
 <case condition="bpws:getVariableData('accept', 'accept', '//type')=1">
 <sequence name="Sequence_F1">
 <invoke name="s_accept" />
 <receive name="prepare_s" />
 <invoke name="ship" />
 <invoke name="notify" />
 </sequence>
 </case>
 </switch>
 </sequence>
</process>

Fig. 4. The Petri net describing the service offered by the shipper is mapped onto
BPEL code using WorkflowNet2BPEL4WS, a tool to automatically translate colored
Petri nets into BPEL template code.

Few people have been working on the translation from Petri nets to BPEL. In
fact, [8] is the only work we are aware of that tries to go from (colored) Petri nets
to BPEL. Using our ProM tool [21] we can export a wide variety of languages to
CPN Tools. For example, we can load Petri net models coming from tools such as
Protos, Yasper, and WoPeD, EPCs coming from tools such as ARIS, ARIS PPM,
and EPC Tools, and workflow models coming from tools such as Staffware and
YAWL, and automatically convert the control-flow in these models to Petri nets.
Using our ProM this can then be exported to CPN Tools where it is possible to
do further analysis (state space analysis, simulation, etc.). Moreover, WF-nets
in CPN Tools can be converted into BPEL using WorkflowNet2BPEL4WS [8].
To illustrate this, consider the shipper service shown in Figure 3. The WF-net
corresponding to the shipper process was modeled using the graphical editor
of the COSA workflow management system. This was automatically converted
by Woflan to ProM. Using ProM the process was automatically exported to
CPN Tools. Then using WorkflowNet2BPEL4WS the annotated WF-net was
translated into BPEL template code. Figure 4 shows both the annotated WF-
net in CPN Tools (left) and the automatically generated BPEL template code
(right).

The presence of the tools and systems mentioned in this section make it
possible to support service flows, i.e., the process-aspect of web services, at the
design, analysis, and enactment level. For many applications, BPEL, Petri nets,
or a mixture of both provide a good basis for making web services “process-
aware”. However, as indicated in the introduction we would now like to move the
focus to more declarative languages (Section 3) and process mining (Section 4).

3 Towards a Declarative Language for Specifying,
Enacting, and Monitoring of Web Services

The goal of this section is to provide a “fresh view” on process support in the
context of web services. We first argue why a more declarative approach is needed
and then introduce a concrete language.

3.1 The Need for More Declarative Languages

Petri nets and BPEL have in common that they are highly procedural, i.e., after
the execution of a given activity the next activities are scheduled.1 Seen from
the viewpoint of an execution language the procedural nature of Petri nets and
BPEL is not a problem. However, unlike the modules inside a classical system,
web services tend to be rather autonomous and an important challenge is that
all parties involved need to agree on an overall global process. Currently, terms
1 Note that both BPEL and Petri nets support the deferred choice pattern [7], i.e., it is

possible to put the system in a state where several alternative activities are enabled
but the selection is made by the environment (cf. the pick construct in BPEL). This
allows for more flexibility. However, it does not change the fact that in essence both
Petri nets and BPEL are procedural.

like choreography and orchestration are used to refer to the problem of agreeing
on a common process. Some researchers distinguish between choreography and
orchestration, e.g., “In orchestration, there’s someone – the conductor – who tells
everybody in the orchestra what to do and makes sure they all play in sync. In
choreography, every dancer follows a pre-defined plan - everyone independently
of the others.” We will not make this distinction and simply assume that chore-
ographies define collaborations between interacting parties, i.e., the coordination
process of interconnected web services all partners need to agree on. Note that
Figure 3 can be seen as an example of a choreography.

Within the Web Services Choreography Working Group of the W3C, a work-
ing draft defining version 1.0 of the Web Services Choreography Description Lan-
guage (WS-CDL) has been developed [46]. The scope of WS-CDL is defined as
follows: “Using the Web Services Choreography specification, a contract con-
taining a global definition of the common ordering conditions and constraints
under which messages are exchanged, is produced that describes, from a global
viewpoint, the common and complementary observable behavior of all the par-
ties involved. Each party can then use the global definition to build and test
solutions that conform to it. The global specification is in turn realized by a
combination of the resulting local systems, on the basis of appropriate infras-
tructure support. The advantage of a contract based on a global viewpoint as
opposed to any one endpoint is that it separates the overall global process be-
ing followed by an individual business or system within a domain of control (an
endpoint) from the definition of the sequences in which each business or system
exchanges information with others. This means that, as long as the observable
sequences do not change, the rules and logic followed within a domain of con-
trol (endpoint) can change at will and interoperability is therefore guaranteed.”
[46]. This definition is consistent with the definition of choreography just given.
Unfortunately, like most standards in the web services stack, CDL is verbose
and complex. Somehow the essence as shown in Figure 3 is lost. Moreover, the
language again defines concepts such as “sequence”, “choice”, and “parallel” in
some ad-hoc notation with unclear semantics. This suggests that some parts of
the language are an alternative to BPEL while they are not.

However, the main problem is that WS-CDL, like Petri nets and BPEL, is
not declarative. A choreography should allow for the specification of the “what”
without having to state the “how”. This is similar to the difference between
the implementation of a program and its specification. For example, it is close
to impossible to describe that within a choreography two messages exclude one
another. Note that such an exclusion constraint is not the same as making a
choice! To illustrate this, assume that there are two actions A and B. These
actions can correspond to exchange of messages or some other type of activity
which is relevant for the choreography. The constraint that “A and B exclude
one another” is different from making a choice between A or B. First of all,
A and B may be executed multiple times, e.g., the constraint is still satisfied
if A is executed 5 times while B is not executed at all. Second, the moment
of choice is irrelevant for the constraint. Note that the modeling of choices in

a procedural language forces the designer to indicate explicit decision points
which are evaluated at explicit decision times. Therefore, there is a tendency to
over-specify things.

Therefore, we propose a more declarative approach based on temporal logic
[52, 64] as described in the following subsection.

3.2 DecSerFlow: A Declarative Service Flow Language

Languages such as Linear Temporal Logic (LTL) [32, 36, 37] allow for the a more
declarative style of modeling. These languages include temporal operators such
as nexttime (©F), eventually (3F), always (2F), and until (F tG). However,
such languages are difficult to read. Therefore, we define a graphical syntax for
some typical constraints encountered in service flows. The combination of this
graphical language and the mapping of this graphical language to LTL forms
the Declarative Service Flow (DecSerFlow) Language . We propose DecSerFlow
for the specification of a single service, simple service compositions, and more
complex choreographies.

Developing a model in DecSerFlow starts with creating activities. The no-
tion of an activity is like in any other workflow-like language, i.e., an activity
is atomic and corresponds to a logical unit of work. However, the nature of the
relations between activities in DecSerFlow can be quite different than in tradi-
tional procedural workflow languages (like Petri nets and BPEL). For example,
places between activities in a Petri net describe causal dependencies and can be
used specify sequential, parallel, alternative, and iterative routing. Using such
mechanisms it is both possible and necessary to strictly define how the flow
will be executed. We refer to the relations between activities in DecSerFlow as
constraints. Each of the constraints represents a policy (or a business rule). At
any point in time during the execution of a service, each constraint evaluates to
true or false. This value can change during the execution. If a constraint has the
value true, the referring policy is fulfilled. If a constraint has the value false, the
policy is violated. The execution of a service is correct (according to the Dec-
SerFlow model) at some point in time if all constraints (from the DecSerFlow
model) evaluate to true. Similarly, a service has completed correctly if at the end
of the execution all constraints evaluate to true. The goal of the execution of
any DecSerFlow model is not to keep the values of all constraints true at all
times during the execution. A constraint which has the value false during the
execution is not considered an error. Consider for example the LTL expression
2(A −→ 3B) where A and B are activities, i.e., each execution of A is eventually
followed by B. Initially (before any activity is executed), this LTL expression
evaluates to true. After executing A the LTL expression evaluates to false and
this value remains false until B is executed. This illustrates that a constraints
may be temporarily violated. However, the goal is to end the service execution
in a state where all constraints evaluate to true.

To create constraints in DecSerFlow we use constraint templates. Each con-
straint template consists of a formula written in LTL and a graphical represen-
tation of the formula. An example is the “response constraint” which is denoted

by a special arc connecting two activities A and B. The semantics of such an arc
connecting A and B are given by the LTL expression 2(A −→ 3B), i.e., any
execution of A is eventually followed by B. We have developed a starting set
of constraint templates and we will use these templates to create a DecSerFlow
model for the electronic bookstore example. This set of templates is inspired by
a collection of specification patterns for model checking and other finite-state
verification tools [24]. Constraint templates define various types of dependen-
cies between activities at an abstract level. Once defined, a template can be
reused to specify constraints between activities in various DecSerFlow models.
It is fairly easy to change, remove and add templates, which makes DecSerFlow
an “open language” that can evolve and be extended according to the demands
form different domains. There are three groups of templates: (1) “existence”, (2)
“relation”, and (3) “negation” templates. Because a template assigns a graphical
representation to an LTL formula, we will refer to such a template as a formula.

A B

C

 [](A -> <> B),
i.e., every A is

eventually
followed by B

D

1..*

20..*

0..*

B is executed
twice

<> D, i.e., D is
executed at least

once

<D> -> <>C, i.e.,
if D is executed
at least once, C
is also executed

at least once.
if A is executed
at least once, C

is never
executed and

vice versa.

A can be
executed an

arbitrary number
of times

Fig. 5. A DecSerFlow model showing some example notations.

Before giving an overview of the initial set of formulas and their notation,
we give a small example explaining the basic idea. Figure 5 shows a DecSerFlow
model consisting of four activities: A, B, C, and D. Each activity is tagged with
a constraint describing to the number of times the activity should be executed,
these are the so-called “existence formulas”. The arc between A and B is an ex-
ample of a “relation formula” and corresponds to the LTL expression discussed
before: 2(A −→ 3 B). The connection between C and D denotes another
relation formula: 3 D −→ 3 C, i.e., if D is executed at least once, C is also
executed at least once. The connection between B and C denotes a “negation
formula” (the LTL expression is not show here). Note that it is not easy to pro-
vide a classical procedural model (e.g., a Petri net) that allows for all behaviour
modeled Figure 5.

Existence formulas. Figure 6 shows the so-called “existence formulas”. These
formulas define the cardinality of an activity. For example, the first formula

I) E
X

IS
T

E
N

C
E

 F
O

R
M

U
LA

S

2. A
B

S
E

N
C

E

form
ula absence_A

(A
: activity)

[](activity !=
 A

);

1. E
X

IS
T

E
N

C
E

form

ula existence(A
: activity)

<
>

(activity =
=

 A
);

1.a. E
X

IS
T

E
N

C
E

_2
form

ula existence2(A
: activity)

<
>

((activity =
=

 A
 /\ _O

(existence(A
))));

0

A

2..*

A

1.b. E
X

IS
T

E
N

C
E

_3
form

ula existence3(A
: activity)

<
>

((activity =
=

 A
 /\ _O

(existence2(A
))));

3..*

A

N
..*

A

1.c. E
X

IS
T

E
N

C
E

_N

form
ula existenceN

(A
: activity)

<
>

((activity =
=

 A
 /\ _O

(existence_N
-1(A

))));

3.a. A
B

S
E

N
C

E
_2

form
ula absence2(A

: activity)
!(existence2(A

));

3.b. A
B

S
E

N
C

E
_3

form
ula absence3(A

: activity)
!(existence3(A

));

0..2

A

0..N

A

3.c. A
B

S
E

N
C

E
_N

form

ula absenceN
(A

: activity)
!(existenceN

+
1(A

));

0..1

A
2

A
N

A
 1

A

4.a. E
X

A
C

T
LY

_1
form

ula exactly1(A
: activity)

(existence(A
) /\ []((activity =

=
 A

 ->
 _O

(absence(A
)))));

(existence(A
) /\ (activity !=

 A
 _U

(activity =
=

 A
 /\ _O

(exactly1(A
)))));

(existence(A
) /\ (activity !=

 A
 _U

(activity =
=

 A
 /\ _O

(exactlyN
-1(A

)))));

4.b. E
X

A
C

T
LY

_2
form

ula exactly2(A
: activity)

4.c. E
X

A
C

T
LY

_N

form
ula exactlyN

(A
: activity)

N
..*

A

0..N

A
N

A

A

1..*

F
ig

.
6
.
N

o
ta

tio
n
s

fo
r

th
e

“
ex

isten
ce

fo
rm

u
la

s”
.

is called existence. The name and the formula heading are shown in the first
column. From this, we can see that it takes one parameter (A), which is the
name of an activity. The body of the formula is written in LTL and can be seen
in the second column. In this case the LTL expression 3(activity == A) ensures
that the activity given as the parameter A will execute at least once. Note that
we write 3(activity == A) rather than 3(A). The reason is that in a state we
also want to access other properties, i.e., not just the activity name but also
information on data, time, and resources. Therefore, we need to use a slightly
more verbose notation (activity == A). The diagram in the third column is
the graphical representation of the formula, which is assigned to the template.
Parameter A is an activity and it is represented as a square with the name of
the activity. The constraint is represented by a cardinality annotation above the
square. In this case the cardinality is at least one, which is represented by 1..*.
The first group of existence formulas are of the cardinality “N or more”, denoted
by N..*. Next, the formula absence ensures that the activity should never execute
in the service. The group of formulas with names absenceN uses negations of
existenceN to specify that an activity can be executed at most N-1 times. The
last group of existence formulas defines an exact number of executions of an
activity. For example, if a constraint is defined based on the formula exactly2,
the referring activity has to be executed exactly two times in the service.

Relation formulas. Figure 7 shows the so-called “relations formulas”. While an
“existence formula” describes the cardinality of one activity, a “relation formula”
defines relation(s) (dependencies) between two activities. All relation formulas
have two activities as parameters and two activities in the graphical representa-
tion. The line between the two activities in the graphical representation should
be unique for the formula, and reflect the semantics of the relation. The re-
sponded existence formula specifies that if activity A is executed, activity B also
has to be executed either before or after the activity A. According to the co-
existence formula, if one of the activities A or B is executed, the other one has
to be executed also.

While the first two formulas do not consider the order of activities, formulas
response, precedence and succession do consider the ordering of activities. For-
mula response requires that every time activity A executes, activity B has to be
executed after it. Note that this is a very relaxed relation of response, because
B does not have to execute straight after A, and another A can be executed
between the first A and the subsequent B. For example, the execution sequence
[B,A,A,A,C,B] satisfies the formula response. The formula precedence requires
that activity B is preceded by activity A. i.e., it specifies that if activity B was
executed, it could not have been executed until the activity A was executed.
According to this formula, the execution sequence [A,C,B,B,A] is correct. The
combination of the response and precedence formulas defines a bi-directional ex-
ecution order of two activities and is called succession. In this formula, both
response and precedence relations have to hold between the activities A and B.
Thus, this formula specifies that every activity A has to be followed by an ac-

II) R
E

LA
T

IO
N

 B
E

T
W

E
E

N
 E

V
E

N
T

S
 F

O
R

M
U

LA
S

3. R
E

S
P

O
N

S
E

form

ula A
_response_B

(A
: activity, B

: activity)
 []((activity =

=
 A

 ->
 existence(B

)));

4. P
R

E
C

E
D

E
N

C
E

form

ula A
_precedence_B

(A
: activity, B

: activity)
(existence_A

(B
) ->

 (!(activity =
=

 B
) _U

 activity =
=

 A
));

5. S
U

C
C

E
S

S
IO

N

form
ula A

_succession_B
(A

: activity, B
: activity)

(A
_response_B

(A
,B

) /\ A
_precedence_B

(A
,B

));

9. C
H

A
IN

 R
E

S
P

O
N

S
E

form

ula chain_A
_response_B

(A
: activity, B

: activity)
[]((activity =

=
 A

 ->
 _O

(activity =
=

 B
)));

10. C
H

A
IN

 P
R

E
C

E
D

E
N

C
E

form

ula chain_A
_precedence_B

(A
: activity, B

: activity)
 (A

_precedence_B
(A

,B
) /\ []((_O

(activity =
=

 B
) ->

 activity =
=

 A
)));

11. C
H

A
IN

 S
U

C
C

E
S

S
IO

N

form
ula chain_A

_succession_B
(A

: activity, B
: activity)

(chain_A
_response_B

(A
,B

) /\ chain_A
_precedence_B

(A
,B

));

1. R
E

S
P

O
N

D
E

D
 E

X
IS

T
E

N
C

E

form
ula existence_A

_response_B
(A

: activity, B
: activity)

(existence_A
(A

) ->
 existenceA

(B
));

2. C
O

-E
X

IS
T

E
N

C
E

form

ula co_existence_A
_and_B

(A
: activity, B

: activity)
(existence(A

) <
->

 existence(B
));

6. A
LT

E
R

N
A

T
E

 R
E

S
P

O
N

S
E

form

ula A
_alternate_response_B

(A
: activity, B

: activity)
(A

_response_B
(A

,B
) /\ B

_alw
ays_betw

een_A
(A

,B
)*);

7. A
LT

E
R

N
A

T
E

 P
R

E
C

E
D

E
N

C
E

form

ula A
_alternate_precedence_B

(A
: activity, B

: activity)
(A

_precedence_B
(A

,B
) /\ B

_alw
ays_betw

een_A
(B

,A
)*);

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

8. A
LT

E
R

N
A

T
E

 S
U

C
C

E
S

S
IO

N

form
ula A

_alternate_succession_B
(A

: activity, B
: activity)

 (A
_alternate_precedence_B

(A
,B

) /\ A
_alternate_response_B

(A
,B

));

A

B

A

B

A

B

* subform
ula B

_alw
ays_betw

een_A
(A

: activity, B
: activity)

[]((activity =
=

 A
 ->

 _O
(A

_precedence_B
(B

,A
))));

F
ig

.
7
.
N

o
ta

tio
n
s

fo
r

th
e

“
rela

tio
n

fo
rm

u
la

s”
.

tivity B and there has to be an activity A before every activity B. For example,
the execution sequence [A,C,A,B,B] satisfies the succession formula.

Formulas alternate response, alternate precedence and alternate succession
strengthen the response, precedence and succession formulas, respectively. If ac-
tivity B is alternate response of the activity A, then after the execution of an
activity A activity B has to be executed and between the execution of each two
activities A at least one activity B has to be executed. In other words, after
activity A there must be an activity B, and before that activity B there can not
be another activity A. The execution sequence [B,A,C,B,A,B] satisfies the al-
ternate response. Similarly, in the alternate precedence every instance of activity
B has to be preceded by an instance of activity A and the next instance of ac-
tivity B can not be executed before the next instance of activity A is executed.
According to the alternate precedence, the execution sequence [A,C,B,A,B,A]
is correct. The alternate succession is a combination of the alternate response
and alternate precedence and the sequence [A,C,B,A,B,A,B] would satisfy this
formula.

Even more strict ordering relations formulas are chain response, chain prece-
dence and chain succession, which require that the executions of the two activ-
ities (A and B) are next to each other. In the chain response the next activity
after the activity A has to be activity B and the execution [B,A,B,C,A,B] would
be correct. The chain precedence formula requires that the activity A is the first
preceding activity before B and, hence, the sequence [A,B,C,A,B,A] is correct.
Since the chain succession formula is the combination of the chain response and
chain precedence formulas, it requires that activities A and B are always exe-
cuted next to each other. The execution sequence [A,B,C,A,B,A,B] is correct
with respect to this formula.

Negation formulas. Figure 8 shows the “negation formulas”, which are the
negated versions of the “relation formulas”. The first two formulas negate the
responded existence and co-existence formulas. The responded absence formula
specifies that if activity A is executed activity B must never be executed (not
before nor after the activity A). The not co-existence formula applies responded
absence from A to B and from B to A. However, if we look at the responded
absence formula we can see that if existence of A implies the absence of B and
we first execute activity B, it will not be possible to execute activity A anymore
because the formula will become permanently incorrect. This means that the for-
mula responded absence is symmetric with respect to the input, i.e., we can swap
the roles of A and B without changing the outcome. Therefore formula responded
absence will be skipped and we will use only the not co-existence formula. The
graphical representation is a modified representation of the co-existence formula
with the negation symbol in the middle of the line. An example of a correct exe-
cution sequence for the formula not co-existence is [A,C,A,A], while the sequence
[A,C,A,A,B] would not be correct.

The negation response formula specifies that after the execution of activity A,
activity B can not be executed. According to the formula negation precedence
activity B can not be preceded by activity A. These two formulas have the

III) N
E

G
A

T
IO

N
 R

E
LA

T
IO

N
 B

E
T

W
E

E
N

 E
V

E
N

T
S

 F
O

R
M

U
LA

S

13.c. N
E

G
A

T
IO

N
 S

U
C

C
E

S
S

IO
N

form

ula notA
_succession_notB

(A
: activity, B

: activity)
(A

_response_notB
(A

,B
) /\

notA
_precedence_B

(A
,B

));

12.b. N
O

T
 C

O
_E

X
IS

T
E

N
C

E

form
ula existence_A

_response_notB
(A

: activity, B
: activity)

(existence_A
_response_notB

(A
,B

) /\
existence_A

_response_notB
(B

,A
));

A

B

A

B

17.c. N
E

G
A

T
IO

N
 C

H
A

IN
 S

U
C

C
E

S
S

IO
N

form

ula chain_A
_notsuccession_B

(A
: activity, B

: activity)
(chain_A

_response_notB
(A

,B
) /\

chain_notA
_precedence_B

(A
,B

));
A

B

12.a. R
E

S
P

O
N

D
E

D
 A

B
S

E
N

C
E

form

ula existence_A
_response_notB

(A
: activity, B

: activity)
(existence_A

(A
) ->

 absence(B
));

13.a. N
E

G
A

T
IO

N
 R

E
S

P
O

N
S

E

form
ula A

_response_notB
(A

: activity, B
: activity)

[]((activity =
=

 A
 ->

 absence(B
)));

13.b. N
E

G
A

T
IO

N
 P

R
E

C
E

D
E

N
C

E

form
ula notA

_precedence_B
(A

: activity, B
: activity)

[]((existence(B
) ->

 activity !=
 A

));

A

B

A

B

A

B

A

B

A

B

14. N
E

G
A

T
IO

N
 A

LT
E

R
N

A
T

E
 R

E
P

O
N

S
E

form

ula A
_not_alternate_response_B

(A
: activity, B

: activity)
B

_never_betw
een_A

(A
,B

)**;

15. N
E

G
A

T
IO

N
 A

LT
E

R
N

A
T

E
 P

R
E

C
E

D
E

N
C

E

form
ula

A
_not_alternate_precedence_B

(A
: activity, B

: activity)
B

_never_betw
een_A

(B
,A

)**;

16. N
E

G
A

T
IO

N
 A

LT
E

R
N

A
T

E
 S

U
C

C
E

S
S

IO
N

A

_not_alternate_succession_B
(A

: activity, B
: activity)

(A
_not_alternate_precedence_B

(A
,B

) /\
A

_not_alternate_response_B
(A

,B
));

A

B

A

B

A

B

17.a.. N
E

G
A

T
IO

N
 C

H
A

IN
 R

E
S

P
O

N
S

E

form
ula chain_A

_response_notB
(A

: activity, B
: activity)

[]((activity =
=

 A
 ->

 _O
(activity !=

 B
)));

17.b. N
E

G
A

T
IO

N
 C

H
A

IN
 P

R
E

C
E

D
E

N
C

E

form
ula chain_notA

_precedence_B
(A

: activity, B
: activity)

[]((_O
(activity =

=
 B

) ->
 activity !=

 A
));

A

B

A

B

A

B

** subform
ula B

_never_betw
een_A

(A
: activity, B

: activity)
[]((activity =

=
 A

 ->
 _O

((<
>

(activity =
=

 A
) ->

 (activity !=
 B

 _U
 activity =

=
 A

)))));

F
ig

.
8
.
N

o
ta

tio
n
s

fo
r

th
e

“
n
eg

a
tio

n
s

fo
rm

u
la

s”
.

same effect because it is not possible to have activity B executed after activity
A and it is not possible to have activity A executed before activity B. Since
the formula negation succession combines these two formulas, it also has the
same effect and we will use only the negation succession formula. The graphical
representation of this formula is a modified representation of the succession
formula with a negation symbol in the middle of the line. The execution sequence
[B,B,C,A,C,A,A] is an example of a correct sequence, while [A,C,B] would be
an incorrect execution.

Formulas negation alternate response, negation alternate precedence and nega-
tion alternate succession are easy to understand. The formula negation alternate
response specifies that the activity B can not be executed between the two sub-
sequent executions of the activity A. According to this formula the execution
sequence [B,A,C,A,B] is correct. In the case of the negation alternate prece-
dence activity A can not be executed between two subsequent executions of the
activity B. The execution sequence [A,B,C,B,A] is correct for negation alternate
precedence. The formula negation alternate succession requires both negation al-
ternate response and negation alternate precedence to be satisfied. An example
of a correct execution sequence for the negation alternate succession formula
is [B,C,B,A,C,A]. Graphical representations of these three formulas are similar
to the representations of alternate response, alternate precedence and alternate
succession with the negation symbol in the middle of the line.

The last three formulas are negations of formulas chain response, chain prece-
dence and chain succession. According to the formula negation chain response,
activity B can not be executed directly after the activity A. Formula negation
chain precedence specifies that activity B can never be directly preceded by
activity A. These two formulas have the same effect because they forbid the
activities A and B to be executed directly next to each other. Since the formula
negation chain succession requires both negation chain response and negation
chain precedence to be executed, these three formulas all have the same effect and
we will use only negation chain succession. The graphical representation of this
formula is a modified version of the representation of the chain succession for-
mula with the negation symbol in the middle of the line. The execution sequence
[B,A,C,B,A] is correct according to the negation chain succession formula, while
the sequence [B,A,B,A] would not be correct.

Figures 7 and 8 show only binary relationships. However, these can easily
be extended to deal with more activities. Consider for example the response
relationship, i.e., 2(A −→ 3B). We will allow multiple arcs to start from the
same dot, e.g., an arc to B, C, and D. The meaning is 2(A −→ 3(B ∨C ∨D)),
i.e., every occurrence of A is eventually followed by an occurrence of B, C, or
D.

The amazon.com example in DecSerFlow. We use the amazon.com example to
show how DecSerFlow language can be used to model services. For this purpose,
we will model the customer service using existence, relation and negation for-
mulas. In this way, we will use the defined templates for formulas, apply them
to activities form our example and thus create real constraints in our DecSer-

Flow model. In addition to this model of a single service, we will also show
how the communication between services can be presented with DecSerFlow by
modelling the communication of the customer service with other services. We
start by removing all arcs and places from the example model. This results in
an initial DecSerFlow model populated only by unconnected activities. Next,
we create necessary constraints for the customer. Adding constraints to the rest
of the model is straightforward and easy but not necessary for illustrating the
DecSerFlow language.

Figure 9 shows the new model with DecSerFlow constraints for the customer.
We added existence constraints for all activities which can be seen as cardinality
specifications above activities. Activity place c order has to be executed exactly
one time. Activities rec acc and rec decl can be executed zero or one time, de-
pending on the reply of the bookstore. Similarly, activities rec book, rec bill and
pay can be executed at most one time.

Constrains formulated as relation and negation formulas are added to de-
scribe dependencies between activities. There is a branched response from the
activity place c order. It has two branches: one to the activity rec acc and the
other to the activity rec decl. Figure 7 only defines a binary response relation-
ship. However, as indicated these binary relationships can be extended in a
straightforward manner. In this case every occurrence of place c order is even-
tually followed by at least one occurrence of rec acc or rec decl. However, it is
possible that both activities are executed, and to prevent this we add the not
co-existence constraint between activities rec acc and rec decl. So far, we have
managed to make sure that after the activity place c order one of the activi-
ties rec acc and rec decl will execute in the service. One problem remains to be
solved – we have to specify that neither of the activities rec acc and rec decl
can be executed before the activity place c order. We achieve this by creating
two precedence constraints: (1) the one between the activities place c order and
rec acc making sure that the activity rec acc can be executed only after the activ-
ity place c order was executed, and (2) the one between activities place c order
and rec decl makes sure that the activity rec decl can be executed only after
the activity place c order was executed. The next decision to be made is the
dependency between the activities rec acc and rec book. In the old model we had
a clear sequence between these two activities. However, due to some problems or
errors in the bookstore it might happen that, although the order was accepted
(the activity rec acc is executed), the book does not arrive (the activity rec book
is not executed). However, we assume that the book will not arrive before the
order was accepted. The constraint precedence between the activities rec acc and
rec book specifies that the activity rec book can be executed only after the ac-
tivity rec acc was executed. The old model specified that the bill arrives after
the book. This may not be always true. Since the bill and the book are shipped
by different services through different channels, the order of their arrival might
vary. For example, it might happen that the shipper who sends the book is closer
to the location of the customer and the bookstore is on another continent, or
the other way around. In the first scenario the book will arrive before the bill,

and in the second one the bill will arrive before the book. Therefore we choose
not to create an ordering constraint between the activities rec book and rec bill.
Even more, our DecSerFlow model accepts the error when the bill arrives even
without the book being sent. This could happen in the case of an error in the
bookstore when a declined order was archived as accepted, and the bill was sent
without the shipment of the book. However, we assume that every bookstore
that delivers a book, also sends a bill for the book. We specify this with the
responded existence constraint between the rec book activity and the rec bill ac-
tivity. This constraint forces that if the activity rec book is executed, then the
activity rec bill must have been executed before or will be executed after the
activity rec book. Thus, if the execution of the activity rec book exists, then also
the execution of the activity rec bill exists. The constraint precedence between
the activities rec bill and pay means that the customer will only pay after the
bill was received. However, after the bill was received the customer does not nec-
essarily pay, like in the old model. It might happen that the received book was
not the one that was ordered or it was damaged. In these cases, the customer
can decide not to pay the bill.

Besides for the modelling of a single service, DesSerFlow langauge can as well
be used to model the communication between services. In Figure 9 we can see how
constraints specify the communication of the customer with the bookstore and
the shipper. First, the succession constraint between the activity place c order
and handle c order specifies that after the activity place c order the activity
handle c order has to be executed, and that the activity handle c order can
be executed only after the activity place c order. This means that every order
of a customer will be handled in the bookstore, but the bookstore will han-
dle the order only after it was placed. The same holds (constraint succession)
for the pairs of activities (c accept, rec acc), (c reject, rec decl) and (pay, han-
dle payment). The relations between the pairs of activities (ship, rec book) and
(send bill, rec bill) are more relaxed than the previous relations. These two rela-
tions are not succession, but precedence. We can only specify that the book will
be received after it was sent, but we can not claim that the book that was sent
will indeed be received. It might happen that the shipment is lost or destroyed
before the customer receives the book. The same holds for the bill. Because of
this we create the two precedence constraints. The first one is between the activ-
ity ship and rec book to specify that the activity rec book can be executed only
after the activity ship was executed. The second one is between the activities
send bill and rec bill, according to which the activity rec bill can be executed
only after the activity send bill was executed.

Figure 9 shows how DecSerFlow language can be used to specify services.
While the old Petri net model specified the strict sequential relations between
activities, with DecSerFlow we were able to create many different relations be-
tween the activities in a more natural way. For the illustration, we developed
constraints only for the customer service and its communication with other ser-
vices, but developing of the rest of the model is as easy and straightforward.

handle_c_orderhandle_c_order

place_b_order eval_b_order

b_accept
b_rejectdecide

c_accept

alt_publ

req_shipment

s_reject
s_accept

eval_s_req

alt_shipper

inform_publ

prepare_b

send_book

prepare_s

ship

notify

send_bill

handle_payment

c_reject

customer bookstore

publisher

shipper

responseresponse

place_c_order
1

rec_acc
0..1

rec_decl
0..1

pay
0..1

rec_bill
0..1

rec_book
0..1

precedence

precedence

precedence

re
sp

on
de

d
ex

is
te

nc
e

not co-existence

succession

succession

succession

precedence

precedence

succession

precedence

Fig. 9. DecSerFlow model.

3.3 Specifying, Enacting, and Monitoring of Service Flows

DecSerFlow can be used in many different ways. Like abstract BPEL it can
be used to specify services but now in a more declarative manner. However,
like executable BPEL we can also use it as an execution language. The DecSer-
Flow language can be used as an execution language because it is based on LTL
expressions. Every constraint in a DecSerFlow model has both a graphical rep-
resentation and a corresponding LTL formula. The graphical notation enables
a user-friendly interface and masks the underlying formula. The formula, writ-
ten in LTL, captures the semantics of the constraint. The core of a DecSerFlow
model consists of a set of activities and a number of LTL expressions that should
all evaluate to true at the end of the model execution.

Every LTL formula can be translated into an automaton [45]. Algorithms for
translating LTL expressions into automatons are given in [31, 78]. The possibil-
ity to translate an LTL expression into an automaton and the algorithms to do
so, have been extensively used in the field of model checking [45]. Moreover, the
initial purpose for developing such algorithms comes from the need to, given a
model, check if certain properties hold in the model. The Spin tool [41] can be
used for the simulation and exhaustive formal verification of systems, and as a
proof approximation system. Spin uses an automata theoretic approach for the
automatic verification of systems [73]. To use Spin, the system first has to be
specified in the verification modelling language Promela (PROcess MEta LAn-
guage) [41]. Spin can verify the correctness of requirements, which are written as
LTL formulas, in a Promela model using the algorithms presented in [31, 39, 40,
42, 43, 73, 65, 77]. When checking the correctness of an LTL formula, Spin first
creates an automaton for the negation of the formula. If the intersection of the
automaton and the system model is empty, the model is correct with respect to
the requirement described in LTL. When the system model does not satisfy the
LTL formula, the intersection of the model and the automaton for the negated
formula will not be empty, i.e., this intersection is a counterexample that shows
how the formula is violated. The approach based on the negation of the for-
mula is quicker, because the Spin runs verification until the first counterexample
is found. In the case of the formula itself, the verifier would have to check all
possible scenarios to prove that a counterexample does not exist.

curse prayresponse bless

Fig. 10. A simple model in DecSerFlow.

Unlike Spin, which generates an automaton for the negation of the formula,
we can execute a DecSerFlow model by constructing an automata for the for-
mula itself. We will use a simple DecSerFlow model to show how processes can be
executed by translating LTL formulas into automatons. Figure 10 shows a Dec-
SerFlow model with three activities: curse, pray, and bless. The only constraint

in the model is the response constraint between activity curse and activity pray.
This constraint specifies that if a person curses, (s)he should eventually pray af-
ter this. Note that there is no restriction on the execution of the activities pray
and bless. There are no existence constraints in this model, because all three
activities can be executed an arbitrary number of times.

A_response_B(curse,pray) = [](curse -> <>pray);

p2p1 p2

bless

pray pray

curse
curse,bless

Fig. 11. Automaton for the formula response.

Using the example depicted in Figure 10, we briefly show the mapping of LTL
formulas onto generalized Buchi automata [31]. A generalized Buchi automaton
is a Buchi automaton with multiple accepting (final) states. Formally, a Buchi
automaton is a five tuple 〈Σ, Q, ∆,Q0, F 〉 such that [45]: (1) Σ is the infinite
alphabet, (2) Q is the finite set of states, (3) ∆ ⊆ Q × Σ × Q is the transition
relation, (4) Q0 ⊆ Q is the set of initial states, and (4) F ⊆ Q is the set of
accepting states. A more detailed explanation about the automata theory and
the creation of the Buchi automatons from LTL formulas is out of scope of this
article and we refer the interested readers to [31, 39, 45].

Figure 11 shows a graph representation of the automaton which is generated
for the response constraint [31].2. The set of nodes of the graph corresponds to
the set of states in the automaton. The set of edges in the graph corresponds to
the transition relation. An initial state is represented by an incoming edge with
no source node. An accepting state is represented as a node with a double-lined
border. The automaton in Figure 11 has two states: p1 and p2. State p1 is both
the initial and accepting state. Note that such automaton can also be generated
for a DecSerFlow model with multiple constraints, i.e., for more than one LTL
formula, by constructing one big LTL formula as a conjunction of each of the
constraints.

The mapping for LTL constraints onto Buchi automata allows for the guid-
ance of people, e.g., it is possible to show whether a constraint is in an accepting
state or not. Moreover, if the automaton of a constraint is not in an accepting
state, it is possible indicate whether it is still possible to reach an accepting

2 Note that based on the LTL expression typically a non-deterministic Buchi automa-
ton is generated. To simplify the presentation, we show a deterministic automaton.
However, is is easy to develop a “workflow engine” able to deal with non-determinism
by simply using a set of possible current states.

state. This way we can color the constraints green (in accepting state), yellow
(accepting state can still be reached), or red (accepting state can not be reached
anymore). Using the Buchi automaton some engine could even enforce a con-
straint.

As indicated in the introduction, we would like to link DecSerFlow to our
work on process mining. Note that essentially a DecSerFlow specification is a
set of rules, i.e., we could try to discover these rules by observing web services.
Moreover, given a DecSerFlow specification we can also check whether each party
involved in a choreography actually sticks to the rules agreed upon. Within the
ProM framework there is a so-called LTL-checker. This LTL-checker can be used
to check DecSerFlow specification relative to some execution log. In the next
section, we will elaborate on these two aspects of process mining, i.e., process
discovery and conformance checking.

4 Process Mining

In [5] we showed that it is possible to translate abstract BPEL into Petri nets
and SOAP messages exchanged between services into event logs represented
using our MXML format (i.e., the format used by our process mining tools).
As a result we could compare the modeled behavior (in terms of a Petri net)
and the observed behavior (in some event log). This comparison could be used
for monitoring deviations and to analyze the most frequently used parts of the
service/choregraphy. In this chapter, we would like to take a broader perspective
without going into too much detail.

For process mining it is crucial that it is possible to obtain an event log giving
insight into the actual processes as they are carried out. Based on our experi-
ences reported in [5] this is possible, but not completely trivial. For example,
when using Oracle BPEL it is possible to monitor SOAP messages using TCP
Tunneling technique. In the context of WebSphere one can use IBM’s Data Col-
lector logging the content and context of SOAP messages and then load them
into the Web Services Navigator [63]. Although possible, it is typically not easy
to link events (e.g., SOAP messages) to process instances (cases) and activities.
However, as pointed out by many researchers, the problem of correlating mes-
sages needs to be addressed anyway. Hence, in the remainder, we assume that it
is possible to obtain an event log where each event can be linked to some process
instance and some activity identifier.

Note that the collection of event logs can take place different levels. One can
log the interactions of a single service. However, one can also log all interactions
in a choreography. In the latter case it is essential have an infrastructure allowing
for this (e.g., all interactions going through a central messaging service).

4.1 Process Discovery

The basic idea of process discovery is to derive a model from some event log.
This model is typically a process model. However, there are also techniques to

discover organization models, social networks, and more data-oriented models
such as decision trees. To illustrate the idea of process mining consider the log
shown in Table 1. Such a log could have been obtained by monitoring the SOAP
messages the shipper service in Figure 3 exchanges with it its environment. Note
that we do not show the content of the massage. Moreover, we do not show
additional header information (e.g., information about sender and receiver).

Table 1. An event log.

case identifier activity identifier time data

order290166 s request 2006-04-02T08:38:00 ...

order090504 s request 2006-04-03T12:33:00 ...

order290166 s confirm 2006-04-07T23:55:00 ...

order261066 s request 2006-04-15T06:43:00 ...

order160598 s request 2006-04-19T20:13:00 ...

order290166 book to s 2006-05-10T07:31:00 ...

order290166 book to c 2006-05-12T08:43:00 ...

order160598 s confirm 2006-05-20T07:01:00 ...

order210201 s request 2006-05-22T09:20:00 ...

order261066 s confirm 2006-06-08T10:29:00 ...

order290166 notification 2006-06-13T14:44:00 ...

order160598 book to s 2006-06-14T16:56:00 ...

order261066 book to s 2006-07-08T18:01:00 ...

order090504 s decline 2006-07-12T09:00:00 ...

order261066 book to c 2006-08-17T11:22:00 ...

order210201 s decline 2006-08-18T12:38:00 ...

order160598 book to c 2006-08-25T20:42:00 ...

order261066 notification 2006-09-27T09:51:00 ...

order160598 notification 2006-09-30T10:09:00 ...

Using process mining tools such as ProM it is possible to discover a process
model as shown in Figure 12. The figure shows the result of three alternative
process discovery algorithms: (1) the alpha miner shows the result in terms of a
Petri net, (2) the multi-phase miner shows the result in terms of an EPC, and (3)
the heuristics miner shows the result in terms of a heuristics net.3 They are all
able to discover the shipper service as specified in Figure 3. Note that Figure 12
shows the names of the messages rather than the activities because this is the
information shown in Table 1.

4.2 Conformance Checking

For process discovery we do not assume that there is some a-priori model, i.e.,
without any initial bias we try to find the actual process by analyzing some event

3 Note that ProM allows for the mapping from one format to the other if needed.
Figure 12 shows the native format of each of the three plug-ins.

Fig. 12. The output of three process discovery algorithms supported by ProM when
analyzing the event log shown in Table 1.

log. However, in many applications there is some a-priori model. For example, we
can have some abstract BPEL process, a Petri net specification like in Figure 3,
or some more declarative specification (e.g., a DecSerFlow model). If there is
such an a-priori model, it is interesting the compare it with the event log. This
is what we call conformance checking.

To illustrate this, assume that we add an additional process instance to Ta-
ble 1 where the notification is sent before the book is shipped to the customer
(i.e., in Figure 3 activity notify takes place before activity ship).

If we assume there is some a-priori model in terms of a Petri net, we can
use the conformance checker plug-in of ProM. Figure 13 shows the result of
this analysis (top-right corner). It shows that the fitness is 0.962 and also high-
lights the part of the model where the deviation occurs (the place connecting
ship/book to c and notify/notification). An event log and Petri net “fit” if the
Petri net can generate each trace in the log. In other words: the Petri net describ-
ing the choreography should be able to “parse” every event sequence observed by
monitoring e.g. SOAP messages. In [67] it is shown that it is possible to quantify
fitness as a measure between 0 and 1. Unfortunately, a good fitness only does not
imply conformance, e.g., it is easy to construct Petri nets that are able to parse
any event log. Although such Petri nets have a fitness of 1 they do not provide
meaningful information. Therefore, we use a second dimension: appropriateness.
Appropriateness tries to capture the idea of Occam’s razor, i.e., “one should not
increase, beyond what is necessary, the number of entities required to explain
anything”. The ProM Conformance Checker supports both the notion of fitness
and the notion of appropriateness.

Fig. 13. Both the conformance checker plug-in and the LTL checker plug-in are able
to detect the deviation.

The DecSerFlow language presented in this chapter shows that one can also
think of processes in a more declarative manner, i.e., as something satisfying a set
of LTL formulas. To illustrate this Figure 13 shows the LTL checker plug-in while
checking the response property on book to c and notification. This check shows
that indeed there is one process instance where activity notify takes place before
activity ship. This example shows that it is possible to compare a DecSerFlow
specification and an event log and to locate the deviations, i.e., a declarative
style of modeling fits well with conformance checking.

5 Related Work

Since the early nineties, workflow technology has matured [30] and several text-
books have been published, e.g., [6, 22]. Most of the available systems use some
proprietary process modeling language and, even if systems claim to support
some “standard”, there are often all kinds of system-specific extensions and lim-
itations. Petri nets have been used for the modeling of workflows [6, 19, 22] but
also the orchestration of web services [56]. Like most proprietary languages and
standards, Petri nets are highly procedural. This is the reason we introduced the
DecSerFlow language in this paper.

Several attempts have been made to capture the behavior of BPEL [16] in
some formal way. Some advocate the use of finite state machines [27], others
process algebras [26], and yet others abstract state machines [25] or Petri nets [61,
53, 70, 74]. (See [61] for a more detailed literature review.) For a detailed analysis
of BPEL based on the workflow patterns [7] we refer to [76]. Few approach go
into the other direction, e.g., translating (Colored) Petri nets into BPEL [8].

Clearly, this chapter builds on earlier work on process discovery, i.e., the
extraction of knowledge from event logs (e.g., process models [13, 15, 20, 28, 29,
38] or social networks [10]). For example, the well-known α algorithm [13] can
derive a Petri net from an event log. In [5] we used the conformance checking
techniques described in [67] and implemented in our ProM framework [21] and
applied this approach to SOAP messages generated from Oracle BPEL. The
notion of conformance has also been discussed in the context of security [9],
business alignment [1], and genetic mining [57].

It is impossible to give a complete overview of process mining here. Therefore,
we refer to a special issue of Computers in Industry on process mining [12] and a
survey paper [11]. Process mining can be seen in the broader context of Business
(Process) Intelligence (BPI) and Business Activity Monitoring (BAM). In [34,
35, 68] a BPI toolset on top of HP’s Process Manager is described. The BPI
toolset includes a so-called “BPI Process Mining Engine”. In [60] Zur Muehlen
describes the PISA tool which can be used to extract performance metrics from
workflow logs. Similar diagnostics are provided by the ARIS Process Performance
Manager (PPM) [44]. The latter tool is commercially available and a customized
version of PPM is the Staffware Process Monitor (SPM) [72] which is tailored
towards mining Staffware logs.

The need for monitoring web services has been raised by other researchers.
For example, several research groups have been experimenting with adding mon-
itor facilities via SOAP monitors in Axis http://ws.apache.org/axis/. [47]
introduces an assertion language for expressing business rules and a framework
to plan and monitor the execution of these rules. [17] uses a monitoring approach
based on BPEL. Monitors are defined as additional services and linked to the
original service composition. Another framework for monitoring the compliance
of systems composed of web-services is proposed in [51]. This approach uses event
calculus to specify requirements. [50] is an approach based on WS-Agreement
defining the Crona framework for the creation and monitoring of agreements.
In [33, 23], Dustdar et al. discuss the concept of web services mining and en-
vision various levels (web service operations, interactions, and workflows) and
approaches. Our approach fits in their framework and shows that web-services
mining is indeed possible. In [63] a tool named the Web Service Navigator is
presented to visualize the execution of web services based on SOAP messages.
The authors use message sequence diagrams and graph-based representations of
the system topology. Note that also in [4] we suggested to focus less on languages
like BPEL and more on questions related to the monitoring of web services.

This chapter discussed the idea of conformance checking by comparing the
observed behavior recorded in logs with some predefined model. This could be
termed “run-time conformance”. However, it is also possible to address the issue
of design-time conformance, i.e., comparing different process models before en-
actment. For example, one could compare a specification in abstract BPEL with
an implementation using executable BPEL. Similarly, one could check at design-
time the compatibility of different services. Here one can use the inheritance
notions [2] explored in the context of workflow management and implemented

in Woflan [75]. Axel Martens et al. [53–55, 69] have explored questions related
to design-time conformance and compatibility using a Petri-net-based approach.
For example, [54] focuses on the problem of consistency between executable and
abstract processes and [55] presents an approach where for a given composite
service the required other services are generated.

6 Conclusion

This chapter presented service flows in both a more traditional and a more
pioneering setting.

First, we discussed more traditional approaches based on Petri nets and
BPEL. We showed that Petri nets provide a nice graphical representation and a
wide variety of analysis techniques, and mentioned that BPEL has strong indus-
try support making it a viable execution platform. We also showed that there are
mappings from BPEL to Petri net for the purpose of analysis (cf. BPEL2PNML
and WofBPEL). Moreover, it is possible to translate graphical languages such a
Petri nets to BPEL (cf. WorkflowNet2BPEL4WS).

Although the first author has been involved in the development of these tools
and that these tools are mature enough to be applied in real-life applications,
both Petri nets and BPEL are rather procedural and this does not fit well with
the autonomous nature of services. Therefore, we proposed a new, more declara-
tive language: DecSerFlow. Although DecSerFlow is graphical, it is grounded in
temporal logic. It can be used for the enactment of processes, but it is particu-
larly suited for the specification of a single service or a complete choreography. In
the last part of this chapter, the focus shifted from languages to process mining.
We showed that both process discovery and conformance checking are useful
in the setting of web services. Moreover, we showed that the declarative na-
ture of DecSerFlow fits well with the conformance-checking techniques currently
implemented in ProM (cf. the LTL checker plug-in).

To conclude we would like to mention that all of the presented analysis and
translation tools can be downloaded from various websites: www.processmining.
org (ProM), www.bpm.fit.qut.edu.au/projects/babel/tools/ (BPEL2PNML
and WofBPEL), and www.daimi.au.dk/∼krell/WorkflowNet2BPEL4WS/ (Work-
flowNet2BPEL4WS).

References

1. W.M.P. van der Aalst. Business Alignment: Using Process Mining as a Tool for
Delta Analysis. In J. Grundspenkis and M. Kirikova, editors, Proceedings of the 5th
Workshop on Business Process Modeling, Development and Support (BPMDS’04),
volume 2 of Caise’04 Workshops, pages 138–145. Riga Technical University, Latvia,
2004.

2. W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An Approach
to Tackling Problems Related to Change. Theoretical Computer Science, 270(1-
2):125–203, 2002.

3. W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Web Service Compo-
sition Languages: Old Wine in New Bottles? In G. Chroust and C. Hofer, editors,
Proceeding of the 29th EUROMICRO Conference: New Waves in System Architec-
ture, pages 298–305. IEEE Computer Society, Los Alamitos, CA, 2003.

4. W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, N. Russell, H.M.W. Ver-
beek, and P. Wohed. Life After BPEL? In M. Bravetti, L. Kloul, and G. Zavattaro,
editors, WS-FM 2005, volume 3670 of Lecture Notes in Computer Science, pages
35–50. Springer-Verlag, Berlin, 2005.

5. W.M.P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and H.M.W. Verbeek.
Choreography Conformance Checking: An Approach based on BPEL and Petri
Nets (extended version). BPM Center Report BPM-05-25, BPMcenter.org, 2005.

6. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

7. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

8. W.M.P. van der Aalst, J.B. Jørgensen, and K.B. Lassen. Let’s Go All the Way:
From Requirements via Colored Workflow Nets to a BPEL Implementation of a
New Bank System Paper. In R. Meersman and Z. Tari et al., editors, On the Move
to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE: OTM Con-
federated International Conferences, CoopIS, DOA, and ODBASE 2005, volume
3760 of Lecture Notes in Computer Science, pages 22–39. Springer-Verlag, Berlin,
2005.

9. W.M.P. van der Aalst and A.K.A. de Medeiros. Process Mining and Security:
Detecting Anomalous Process Executions and Checking Process Conformance. In
N. Busi, R. Gorrieri, and F. Martinelli, editors, Second International Workshop
on Security Issues with Petri Nets and other Computational Models (WISP 2004),
pages 69–84. STAR, Servizio Tipografico Area della Ricerca, CNR Pisa, Italy, 2004.

10. W.M.P. van der Aalst and M. Song. Mining Social Networks: Uncovering Interac-
tion Patterns in Business Processes. In J. Desel, B. Pernici, and M. Weske, editors,
International Conference on Business Process Management (BPM 2004), volume
3080 of Lecture Notes in Computer Science, pages 244–260. Springer-Verlag, Berlin,
2004.

11. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

12. W.M.P. van der Aalst and A.J.M.M. Weijters, editors. Process Mining, Special
Issue of Computers in Industry, Volume 53, Number 3. Elsevier Science Publishers,
Amsterdam, 2004.

13. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

14. W.M.P. van der Aalst and M. Weske. The P2P approach to Interorganizational
Workflows. In K.R. Dittrich, A. Geppert, and M.C. Norrie, editors, Proceedings of
the 13th International Conference on Advanced Information Systems Engineering
(CAiSE’01), volume 2068 of Lecture Notes in Computer Science, pages 140–156.
Springer-Verlag, Berlin, 2001.

15. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Work-
flow Logs. In Sixth International Conference on Extending Database Technology,
pages 469–483, 1998.

16. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process
Execution Language for Web Services, Version 1.1. Standards proposal by BEA
Systems, International Business Machines Corporation, and Microsoft Corpora-
tion, 2003.

17. L. Baresi, C. Ghezzi, and S. Guinea. Smart Monitors for Composed Services. In
ICSOC ’04: Proceedings of the 2nd International Conference on Service Oriented
Computing, pages 193–202, New York, NY, USA, 2004. ACM Press.

18. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, 2001.

19. P. Chrzastowski-Wachtel. A Top-down Petri Net Based Approach for Dynamic
Workflow Modeling. In W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske,
editors, International Conference on Business Process Management (BPM 2003),
volume 2678 of Lecture Notes in Computer Science, pages 336–353. Springer-
Verlag, Berlin, 2003.

20. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215–249, 1998.

21. B. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The ProM framework: A New Era in Process Mining Tool
Support. In G. Ciardo and P. Darondeau, editors, Application and Theory of Petri
Nets 2005, volume 3536 of Lecture Notes in Computer Science, pages 444–454.
Springer-Verlag, Berlin, 2005.

22. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Infor-
mation Systems: Bridging People and Software through Process Technology. Wiley
& Sons, 2005.

23. S. Dustdar, R. Gombotz, and K. Baina. Web Services Interaction Mining. Technical
Report TUV-1841-2004-16, Information Systems Institute, Vienna University of
Technology, Wien, Austria, 2004.

24. M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Patterns in Property Specifications
for Finite-State Verification. In ICSE ’99: Proceedings of the 21st international
conference on Software engineering, pages 411–420, Los Alamitos, CA, USA, 1999.
IEEE Computer Society Press.

25. D. Fahland and W. Reisig. ASM-based semantics for BPEL: The negative control
flow. In D. Beauquier and E. Börger and A. Slissenko, editor, Proc. 12th Interna-
tional Workshop on Abstract State Machines, pages 131–151, Paris, France, March
2005.

26. A. Ferrara. Web services: A process algebra approach. In Proceedings of the 2nd
international conference on Service oriented computing, pages 242–251, New York,
NY, USA, 2004. ACM Press.

27. J.A. Fisteus, L.S. Fernández, and C.D. Kloos. Formal verification of BPEL4WS
business collaborations. In K. Bauknecht, M. Bichler, and B. Proll, editors, Pro-
ceedings of the 5th International Conference on Electronic Commerce and Web
Technologies (EC-Web ’04), volume 3182 of Lecture Notes in Computer Science,
pages 79–94, Zaragoza, Spain, August 2004. Springer-Verlag, Berlin.

28. W. Gaaloul, S. Bhiri, and C. Godart. Discovering Workflow Transactional Be-
havior from Event-Based Log. In R. Meersman, Z. Tari, W.M.P. van der Aalst,
C. Bussler, and A. Gal et al., editors, On the Move to Meaningful Internet Systems
2004: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences,
CoopIS, DOA, and ODBASE 2004, volume 3290 of Lecture Notes in Computer Sci-
ence, pages 3–18, 2004.

29. W. Gaaloul and C. Godart. Mining Workflow Recovery from Event Based Logs. In
W.M.P. van der Aalst, B. Benatallah, F. Casati, and F. Curbera, editors, Business
Process Management (BPM 2005), volume 3649, pages 169–185. Springer-Verlag,
Berlin, 2005.

30. D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Manage-
ment: From Process Modeling to Workflow Automation Infrastructure. Distributed
and Parallel Databases, 3:119–153, 1995.

31. R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple On-The-Fly Automatic
Verification of Linear Temporal Logic. In Proceedings of the Fifteenth IFIP WG6.1
International Symposium on Protocol Specification, Testing and Verification XV,
pages 3–18, London, UK, 1996. Chapman & Hall, Ltd.

32. D. Giannakopoulou and K. Havelund. Automata-Based Verification of Temporal
Properties on Running Programs. In Proceedings of the 16th IEEE International
Conference on Automated Software Engineering (ASE’01), pages 412–416. IEEE
Computer Society Press, Providence, 2001.

33. R. Gombotz and S. Dustdar. On Web Services Mining. In M. Castellanos and
T. Weijters, editors, First International Workshop on Business Process Intelligence
(BPI’05), pages 58–70, Nancy, France, September 2005.

34. D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and M.C. Shan. Business
Process Intelligence. Computers in Industry, 53(3):321–343, 2004.

35. D. Grigori, F. Casati, U. Dayal, and M.C. Shan. Improving Business Process Qual-
ity through Exception Understanding, Prediction, and Prevention. In P. Apers,
P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and R. Snodgrass, ed-
itors, Proceedings of 27th International Conference on Very Large Data Bases
(VLDB’01), pages 159–168. Morgan Kaufmann, 2001.

36. K. Havelund and G. Rosu. Monitoring Programs Using Rewriting. In Proceedings
of the 16th IEEE International Conference on Automated Software Engineering
(ASE’01), pages 135–143. IEEE Computer Society Press, Providence, 2001.

37. K. Havelund and G. Rosu. Synthesizing Monitors for Safety Properties. In Pro-
ceedings of the 8th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2002), volume 2280 of Lecture Notes
in Computer Science, pages 342–356. Springer-Verlag, Berlin, 2002.

38. J. Herbst. A Machine Learning Approach to Workflow Management. In Proceedings
11th European Conference on Machine Learning, volume 1810 of Lecture Notes in
Computer Science, pages 183–194. Springer-Verlag, Berlin, 2000.

39. G.J. Holzmann. The Model Checker SPIN. IEEE Trans. Softw. Eng., 23(5):279–
295, 1997.

40. G.J. Holzmann. An Analysis of Bitstate Hashing. Form. Methods Syst. Des.,
13(3):289–307, 1998.

41. G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Boston, Massachusetts, USA, 2003.

42. G.J. Holzmann and D. Peled. An Improvement in Formal Verification. In FORTE
1994 Conference, Bern, Switzerland, 1994.

43. G.J. Holzmann, D. Peled, and M. Yannakakis. On nested depth-first search. In The
Spin Verification System, Proceedings of the 2nd Spin Workshop.), pages 23–32.
American Mathematical Society, 1996.

44. IDS Scheer. ARIS Process Performance Manager (ARIS PPM): Measure, Ana-
lyze and Optimize Your Business Process Performance (whitepaper). IDS Scheer,
Saarbruecken, Gemany, http://www.ids-scheer.com, 2002.

45. E.M. Clarke Jr., O. Grumberg, and D.A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts and London, UK, 1999.

46. N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon. Web Services
Choreography Description Language, Version 1.0. W3C Working Draft 17-12-04,
2004.

47. A. Lazovik, M. Aiello, and M. Papazoglou. Associating Assertions with Business
Processes and Monitoring their Execution. In ICSOC ’04: Proceedings of the 2nd
International Conference on Service Oriented Computing, pages 94–104, New York,
NY, USA, 2004. ACM Press.

48. F. Leymann. Web Services Flow Language, Version 1.0, 2001.

49. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

50. H. Ludwig, A. Dan, and R. Kearney. Crona: An Architecture and Library for
Creation and Monitoring of WS-agreements. In ICSOC ’04: Proceedings of the
2nd International Conference on Service Oriented Computing, pages 65–74, New
York, NY, USA, 2004. ACM Press.

51. K. Mahbub and G. Spanoudakis. A Framework for Requirents Monitoring of Ser-
vice Based Systems. In ICSOC ’04: Proceedings of the 2nd International Con-
ference on Service Oriented Computing, pages 84–93, New York, NY, USA, 2004.
ACM Press.

52. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York, 1991.

53. A. Martens. Analyzing Web Service Based Business Processes. In M. Cerioli, editor,
Proceedings of the 8th International Conference on Fundamental Approaches to
Software Engineering (FASE 2005), volume 3442 of Lecture Notes in Computer
Science, pages 19–33. Springer-Verlag, Berlin, 2005.

54. A. Martens. Consistency between executable and abstract processes. In Proceedings
of International IEEE Conference on e-Technology, e-Commerce, and e-Services
(EEE’05), pages 60–67. IEEE Computer Society Press, 2005.

55. P. Massuthe, W. Reisig, and K. Schmidt. An Operating Guideline Approach to
the SOA. In Proceedings of the 2nd South-East European Workshop on Formal
Methods 2005 (SEEFM05), Ohrid, Republic of Macedonia, 2005.

56. M. Mecella, F. Parisi-Presicce, and B. Pernici. Modeling E-service Orchestration
through Petri Nets. In Proceedings of the Third International Workshop on Tech-
nologies for E-Services, volume 2644 of Lecture Notes in Computer Science, pages
38–47. Springer-Verlag, Berlin, 2002.

57. A.K.A. de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Using Ge-
netic Algorithms to Mine Process Models: Representation, Operators and Results.
BETA Working Paper Series, WP 124, Eindhoven University of Technology, Eind-
hoven, 2004.

58. R. Milner. Communicating and Mobile Systems: The Pi-Calculus. Cambridge
University Press, Cambridge, UK, 1999.

59. M. zur Muehlen. Workflow-based Process Controlling: Foundation, Design and
Application of workflow-driven Process Information Systems. Logos, Berlin, 2004.

60. M. zur Mühlen and M. Rosemann. Workflow-based Process Monitoring and Con-
trolling - Technical and Organizational Issues. In R. Sprague, editor, Proceedings
of the 33rd Hawaii International Conference on System Science (HICSS-33), pages
1–10. IEEE Computer Society Press, Los Alamitos, California, 2000.

61. C. Ouyang, W.M.P. van der Aalst, S. Breutel, M. Dumas, , and H.M.W. Verbeek.
Formal Semantics and Analysis of Control Flow in WS-BPEL. BPM Center Report
BPM-05-15, BPMcenter.org, 2005.

62. C. Ouyang, E. Verbeek, W.M.P. van der Aalst, S. Breutel, M. Dumas, and A.H.M.
ter Hofstede. WofBPEL: A Tool for Automated Analysis of BPEL Processes. In
B. Benatallah, F. Casati, and P. Traverso, editors, Proceedings of Service-Oriented
Computing (ICSOC 2005), volume 3826 of Lecture Notes in Computer Science,
pages 484–489. Springer-Verlag, Berlin, 2005.

63. W. De Pauw, M. Lei, E. Pring, L. Villard, M. Arnold, and J.F. Morar. Web Ser-
vices Navigator: Visualizing the Execution of Web Services. IBM Systems Journal,
44(4):821–845, 2005.

64. A. Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th IEEE
Annual Symposium on the Foundations of Computer Science, pages 46–57. IEEE
Computer Society Press, Providence, 1977.

65. A. Puri and G.J. Holzmann. A Minimized automaton representation of reachable
states. In Software Tools for Technology Transfer, volume 3. Springer Verlag, 1993.

66. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

67. A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring the Fit
and Appropriateness of Event Logs and Process Models. In C. Bussler et al., editor,
BPM 2005 Workshops (Workshop on Business Process Intelligence), volume 3812
of Lecture Notes in Computer Science, pages 163–176. Springer-Verlag, Berlin,
2006.

68. M. Sayal, F. Casati, U. Dayal, and M.C. Shan. Business Process Cockpit. In Pro-
ceedings of 28th International Conference on Very Large Data Bases (VLDB’02),
pages 880–883. Morgan Kaufmann, 2002.

69. B.H. Schlingloff, A. Martens, and K. Schmidt. Modeling and model checking web
services. Electronic Notes in Theoretical Computer Science: Issue on Logic and
Communication in Multi-Agent Systems, 126:3–26, mar 2005.

70. C. Stahl. Transformation von BPEL4WS in Petrinetze (In German). Master’s
thesis, Humboldt University, Berlin, Germany, 2004.

71. S. Thatte. XLANG Web Services for Business Process Design, 2001.
72. TIBCO. TIBCO Staffware Process Monitor (SPM). http://www.tibco.com, 2005.
73. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program

verification. In In Proceedings of the 1st Symposium on Logic in Computer Science,
pages 322–331, Cambridge, Massachusetts, USA, 1986.

74. H.M.W. Verbeek and W.M.P. van der Aalst. Analyzing BPEL Processes using Petri
Nets. In D. Marinescu, editor, Proceedings of the Second International Workshop
on Applications of Petri Nets to Coordination, Workflow and Business Process
Management, pages 59–78. Florida International University, Miami, Florida, USA,
2005.

75. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow
Processes using Woflan. The Computer Journal, 44(4):246–279, 2001.

76. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analysis of
Web Services Composition Languages: The Case of BPEL4WS. In I.Y. Song, S.W.
Liddle, T.W. Ling, and P. Scheuermann, editors, 22nd International Conference
on Conceptual Modeling (ER 2003), volume 2813 of Lecture Notes in Computer
Science, pages 200–215. Springer-Verlag, Berlin, 2003.

77. P. Wolper and D. Leroy. Reliable hashing without collision detection. In Proc. 5th
Int. Conference on Computer Aided Verification, pages 59–70, 1993.

78. P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about Infinite Computation
Paths. In Proceedings of the 24th IEEE symposium on foundation of cumputer
science, pages 185–194, Tucson, Arizona, November 1983.

