
Verifying Workflows with Cancellation Regions and OR-joins:
An Approach Based on Reset Nets and Reachability Analysis

M.T. Wynn1, W.M.P. van der Aalst1,2, A.H.M. ter Hofstede1 and D. Edmond1

School of Information Systems, Queensland University of Technology
GPO Box 2434, Brisbane Qld 4001, Australia.
{m.wynn,d.edmond,a.terhofstede}@qut.edu.au

Department of Technology Management, Eindhoven University of Technology
PO Box 513, NIL-5600 MB Eindhoven, The Netherlands.

{w.m.p.v.d.aalst}@tm.tue.nl

Abstract. When dealing with complex business processes (e.g., in the context of a workflow
implementation or the configuration of some process-aware information system), it is impor-
tant but sometimes difficult to determine whether a process contains any errors. Cancellation
and OR-joins are important features that are common in many business processes. The pres-
ence of cancellation and OR-joins makes it difficult to perform verification. Therefore, existing
approaches and tools are typically restricted to process models without such features. In this
paper, we explore verification techniques for processes with cancellation and OR-joins. We
present these techniques in the context of workflow language YAWL that provides direct sup-
port for these features. We have extended the graphical editor of YAWL with diagnostic features
based in the results presented in this paper. The approach relies on reset nets and can easily be
adapted to support other languages allowing for cancellations and OR-joins.
Keywords: Workflow management, Verification, Cancellation, OR-joins, Reset nets, YAWL.

1 Introduction

Verification of workflows is an important and necessary aspect of process modelling. Verification is
concerned with determining,in advance, whether a workflow exhibits certain desirable behaviours.
Significant organisational resources are needed when introducing new workflow processes and it is
important that proper consideration is given to the model at the design stage. By performing this
analysis at design time, it is possible to identify potential problems, and if we can identify such
problems, the model can be modified before the workflow is executed. This will greatly improve the
reliability of a workflow specification.

There are certain desirable characteristics that we expect every business process to exhibit.
Firstly, it is important to know that a process, when started, can complete. Secondly, it should not
have any other tasks still running for that process when the process ends. Thirdly, the process should
not contain tasks that will never be executed. These characteristics closely relate to the soundness
property [6]. In this paper, we explore how the introduction of cancellation and OR-joins can af-
fect these properties.Cancellationis used to capture the interference of one task in the execution
of others. If a task is within the cancellation region of another task, it may be prevented from being
started or its execution may be terminated. This is quite common behaviour that needs to be mod-
elled in workflows. For example, you might want to simply cancel other order processing tasks if a
customer’s credit card payment did not go though. Cancellation is useful but it makes it difficult to



verify workflows that use this feature. AnOR-joinis used in situations when we need to model “wait
and see” behaviour for synchronisation. For example, a purchase process could involve the separate
purchase of two different items and the customer can decide whether he/she wants to purchase one
or the other or both. The subsequent payment task is to be performed only once and this requires
synchronisation if the customer has selected both products. If the customer selects only one product,
no synchronisation is required before payment. Many commercial workflow systems and business
process modelling tools support OR-join-like constructs. However, they struggle with the semantics
and implementation of the OR-join because synchronisation may depend on the analysis of future
execution paths. Like cancellation, OR-joins are useful but they make the verification process quite
challenging. For detailed discussion on OR-join semantics, we refer to [4, 7, 15, 16].

The OR-join and cancellation are two of the workflow patterns described in [7]. An in-depth
analysis and a comparison of a number of commercially available workflow management systems
had been performed [7] and the findings highlight a need for an expressive workflow language that
can support all of these workflow patterns including cancellation and OR-joins. Twenty workflow
patterns were proposed to address control flow requirements in a language independent style [7].
The workflow language YAWL provides direct support for all but one of these patterns [6] and
verification will be performed in the context of this language.

There are established results in the verification of workflow specifications using Petri nets [1, 19].
We explore how these results can be used for workflows with cancellation and OR-joins. We propose
to use reset nets which are Petri nets with reset arcs [11, 12]. For verification purposes, YAWL
specifications are divided into those with OR-joins and those without OR-joins. This distinction is
necessary as a different verification technique is needed in each case. A YAWL net without OR-
joins can be mapped to a reset net and it is possible to perform verification on the resulting reset net.
However, due to the non-local semantics of OR-joins, it is not possible to map a YAWL net with
OR-joins to a reset net (without some approximation) and it is not possible to detect the soundness
property for a YAWL net with OR-joins using verification techniques available for reset nets. We
therefore propose an alternative verification technique using YAWL formal semantics as defined
in [6, 21]. The verification techniques presented here are transferable to any other workflow langauge
that is expressive enough to support cancellation regions and OR-joins.

The remainder of this paper is organised as follows. Section 2 discusses correctness notions in
the context of YAWL. Section 3 provides the formal foundation for our approach, by introducing
reset nets and RWF-nets. Section 4 and 5 present the core results of the paper. First, we focus on
YAWL nets without OR-joins. Then, we provide results for YAWL nets with OR-joins. Section 6
describes the implementation of our approach in the YAWL editor. Section 7 discusses related work
and concludes the paper.

2 Correctness in YAWL

2.1 Yet Another Workflow Language (YAWL)

A YAWL specification is made up of tasks, conditions and a flow relation between tasks and con-
ditions. YAWL uses the terms tasks and conditions to avoid confusion with Petri net terminology
(transitions and places). The overview of YAWL can be found in [6]. Figure 1 shows some of the
YAWL constructs used in this paper and we will explain these YAWL concepts using the example
process shown in Figure 2. This process model describes the “lifecycle” of a student that needs to

2



Fig. 1.Symbols in YAWL

take an exam and in parallel may already book a flight to go on holidays after passing the exam. In
this “holiday scenario”, a student decides to reward himself/herself by going on holidays if he/she
passes the exam and cancel the plans if he/she fails the exam. The first task of the process isInitiate
planswhich is directly connected to the start (input) condition. The AND-split behaviour of theIni-
tiate planstask indicates that the two tasksTake examandBook flightcould be done concurrently
afterInitiate planstask is completed. When a token is present in the conditionc2, theBook flighttask
is enabled. Similarly, taskTake examis enabled when there is a token inc1. After taking the exam,
the student waits for the exam results (pass or fail) and it is modelled as an XOR-split. If the student
passes the exam (a token inc4) and the fights have been booked (a token in c3), the student will go on
holidays (Take holiday). If the student fails the exam (a token inc5), he/she resits the exam and also
needs to stop holiday planning. This is modelled as a cancellation region linked toResit examtask
and includes the conditionsc2, c3 and the taskBook flight. If the holiday plans have been made, the
student might also need to contact the travel agent and cancel the flights (Cancel flight). This extra
taskCancel flightis modelled as an alternative route afterResit examtask. Regardless of whether
Take holiday, Resit examor Cancel flightcompletes,Finalise planstask will be enabled afterwards
(XOR-join behaviour). The process will end whenFinalise plansis completed and a token is placed
in the output (end) condition.

Fig. 2.Holiday scenario

A YAWL specification is formally defined as a nested collection of Extended Workflow Nets
(EWF-nets) [6]. A YAWL specification supports hierarchy and a composite task is unfolded into
another EWF-net. We refer the reader to [6] for formal definitions. In an EWF-net, it is possi-
ble for two tasks to have a direct connection (cf. see tasksResit ExamandFinalise Plansin Fig-
ure 2). We define the corresponding explicit EWF-net (E2WF-net) for an EWF-net by adding con-
ditions between tasks with direct connections [21]. An E2WF-net can be represented by the tu-
ple (C, i,o, T, F, split , join, rem,nofi) whereC is a set of conditions,T is a set of tasks,i, o are
unique input and output conditions,F is the flow relation,split andjoin specifies the split and join

3



behaviours of each task,rem specifies the cancellation region for a task andnofi specifies the multi-
plicity of each task. For simplicity, we propose synonyms a YAWL net and an eYAWL-net (explicit
YAWL net) for an EWF-net and an E2WF-net respectively. We assume here that all YAWL nets
considered in this paper are first transformed into eYAWL-nets.

Let N be an eYAWL-net andx an element ofN , we use•x andx• to denote the set of inputs and
outputs of a node. If the net involved cannot be understood from the context, we explicitly include it
in the notation and we writeN• x andx

N
• . A marking is denoted byM and, just as with ordinary Petri

nets, it can be interpreted as a vector, function, and multiset.M is anm-vector, wherem is the total
number of conditions. LetC be all possible conditions andM : C → N, whereC ⊆ C. M(c) returns
the number of tokens in a conditionc if c ∈ dom(M) and zero otherwise. We can use notations such
asM ≤ M ′, M + M ′, andM � M ′. M ≤ M ′ iff ∀c∈CM(c) ≤ M ′(c). M + M ′ andM � M ′ are
multisets such that∀c∈C : (M +M ′)(c) = M(c)+M ′(c) and(M � M ′)(c) = M(c) � M ′(c) 1. We
represent a multiset by simple enumerating the elements, e.g., 2a+3b+c is the multiset containing
two a’s, three b’s and one c. If X is a set over Y, it could also be interpreted as a bag which assigns
to each element a weight of 1.

2.2 Properties

We propose to detect the correctness of a YAWL specification by analysing whether it satisfiesthe
weak soundness propertyand the soundness property. An eYAWL-net is sound iff it satisfies the
following three criteria: option to complete, proper completion and no dead tasks. To detect the
soundness property, all reachable markings need to be generated and it is not possible to generate
reachable markings for a YAWL specification with infinite state space. Therefore, we propose a
weaker property called the weak soundness property that describes the minimal requirements for the
soundness property and that can be used for a YAWL specification with infinite state space. We also
present two other properties:reducible cancellation regionsandconvertible OR-joins. The concepts
of reachability and coverability are defined using YAWL semantics as in [6, 21].

Definition 1 (Soundness).LetN be an eYAWL-net,i, o be the input and output conditions of the net
andMi,Mo be the initial and end markings, i.e.,Mi = i is the initial state marking only condition
i andMo = o is the end state marking only conditiono. N is sound iff: 1) for every markingM
reachable fromMi, there exists a firing sequence leading fromM to Mo (Option to complete), 2)
the markingMo is the only marking reachable fromMi with at least one token in placeo (Proper
completion) and 3) for every transitiont ∈ T , there is a markingM reachable fromMi such thatt
is enabled atM (No dead transitions).

Definition 2 (Weak soundness).LetN be an eYAWL-net andi, o be the input and output conditions
of the net andMi = i andMo = o are the initial and end markings.N has weak soundness property
iff: 1) Mo is coverable fromMi (Weak option to complete), 2) there is no markingM coverable from
Mi such thatM > Mo (Proper completion) and 3) for every transitiont ∈ T , there is a markingM
coverable fromMi such thatt is enabled atM (No dead transitions).

The holiday scenario as modelled in Figure 2 satisfies both weak soundness and soundness prop-
erties. Figure 3 describes a slightly modified version that does not have either the weak soundness or
the soundness property. There are two differences:c3 is not in the cancellation region ofResit exam,

1 For any natural numbersa, b: a � b is defined as max(a− b, 0).

4



Fig. 3.Holiday scenario - with error

andCancel flightis now an AND-join task. Consider the case where the student has failed the exam
and has to resit, after booking the flights. The way this process is now modelled, it is possible for
taskFinalise Plansto be executed, without performing taskCancel Flightfirst. Hence, the following
occurrence sequence is possible:2 i

I→ c1 + c2 B→ c1 + c3 E→ c3 + c5 R→ c3 + cRF
F→ c3 + o. A

token is left in conditionc3 when a token is put into the output conditiono which signals the end of
the process. Therefore, the model does not satisfies proper completion criterion. This example high-
lights how subtle differences in modelling business processes can adversely affect the correctness of
a YAWL specification.

In addition to the weak soundness property and the soundness property for YAWL nets, we pro-
pose two additional properties:Reducible cancellation regionsandConvertible OR-joinsfor YAWL
nets with cancellation regions and OR-joins. Reducible elements in a cancellation region of a task
represent elements that can never be cancelled while that task is being executed (e.g. conditions may
never contain tokens). We are interested in determining whether cancellation regions modelled in
the business processes are really necessary. For instance, in Figure 4, conditionc3 is modelled to be
in the cancellation region of taskCT . However, after executing taskA, a decision is made to either
execute taskB or CT but not both (XOR-split). Therefore, it is never possible for conditionc3 to
contain tokens while taskCT is executing.

Definition 3 (Reducible cancellation regions).LetN be an eYAWL-net.N has a reducible element
e, if there is a taskt such thate ∈ rem(t) ande can never be cancelled whent is being executed.

Fig. 4.a YAWL net with a reducible conditionc3 in cancellation region forCT

Non-local OR-join semantics in YAWL results in expensive runtime analysis [21]. It is therefore
desirable to determine in advance whether a more appropriate join structure could be found for a
task modelled as an OR-join in a YAWL net. A convertible OR-join task is where it is never possible
to mark more than one input condition of an OR-join task (more suitable as an XOR-join) or when
all the input conditions can always become marked (more suitable as an AND-join).

2 I stands forInitiate plans, B for Book flight, E for Take exam, R for Resit exam, F for Finalise plansand
cRF for the implicit condition between the two tasks,Resit examandFinalise plans.

5



Definition 4 (A convertible OR-join). LetN be an eYAWL-net andt be an OR-join task inN . OR-
join taskt is convertible to an XOR-join if only one condition in•t is always marked in the enabling
markings oft or to an AND-join if all conditions in•t are always marked in the enabling markings
of t.

3 Formal Foundation

While inspired by Petri nets [18], YAWL should not be seen as an extension of these. YAWL con-
structs such as the OR-join, cancellation and multiple instances are not directly supported by Petri
nets. The cancellation feature of YAWL is theoretically closely related to reset nets. The reset arcs
are used to underpin theremfunction that models the cancellation feature of YAWL. Our verification
approach involves translation of YAWL specifications in terms of reset nets. This translation is made
possible by abstracting from multiple instances and hierarchy in YAWL [21]. This approach allows
us to leverage existing results and techniques in the area of Petri nets and reset nets in particular [8,
10–14]. In this section, we present the definitions associated with reset nets.

3.1 Reset nets

A reset net is a Petri net with special reset arcs, that can clear the tokens in selected places [11, 12].
Reset arcs do not change the requirements of enabling a transition but when a transition fires, they
will removeall tokens from the specified places.

Definition 5 (Reset net).A Petri net is a tuple (P, T, F ) whereP is a set of places,T is a set of
transitions,P ∩ T = ∅ andF ⊆ (P × T ) ∪ (T × P ). A reset net is a tuple(P, T, F, R) where
(P, T, F ) is a Petri net andR ∈ T 9 P(P ) provides the reset places for a subset of transitions.

In the remainder of the paper, when we use the expressionF (x, y), it denotes 1 if(x, y) ∈ F and 0
if (x, y) 6∈ F . We writeF+ for the transitive closure of the flow relationF andF ∗ for the reflexive
transitive closure ofF . The notationIM(N) is used to represent possible markings of a reset netN .
Let N = (P, T, F, R) be a reset net, thenIM(N) = P → N.

When a transitiont of a reset netN is enabled at a markingM , it can fire and reach another
marking M ′ represented asM

N,t→ M ′. If there can be no confusion regarding the net, we will
abbreviate it asM

t→ M ′.

Definition 6 (Forward firing). LetN = (P, T, F, R) be a reset net andM,M ′ ∈ IM(N). A transi-
tion t ∈ T is enabled atM , denotedM [t〉, iff •t ≤ M .

M
N,t→ M ′ ⇔ •t ≤ M∧

M ′(p) =
{

M(p)− F (p, t) + F (t, p) if p ∈ P \R(t)
F (t, p) if p ∈ R(t).

Definition 7 (Occurrence sequence).Let N = (P, T, F, R) be a reset net andM ∈ IM(N). If

M
t1→ M1

t2→ ...
tn→ Mn are transition occurrences thenσ = t1t2...tn is an occurrence sequence

leading fromM to Mn and we writeM
σ→ Mn.

Definition 8 (Reachability). Let N = (P, T, F, R) be a reset net andM,M ′ ∈ IM(N). M ′ is
reachable in N fromM , if there exists an occurrence sequenceσ such thatM

σ→ M ′.

6



Definition 9 (Coverability). Let N = (P, T, F, R) be a reset net andM1,M2 ∈ IM(N). M2 is
coverable fromM1 in N, if there exists a reachable markingM ′ fromM1 such thatM ′ ≥ M2.

The notationM [P ′] restrictsM to a set of placesP ′, i.e., a projection. LetM1 = p1 + p2 + p3
and P ′ = {p1, p2}. M1[P ′] = p1 + p2 and dom(M1[P ′]) = {p1, p2}. Let M2 = p1 + 2p2,
M2[P ′] > M1[P ′] is true as the comparison betweenM andM ′ is restricted to a set of places inP ′

andM2 has more tokens inp2.

Definition 10 (Projection). Let N = (P, T, F, R) be a reset net,M ∈ IM(N) and P ′ ⊆ P .
M [P ′] returns a projection such that dom(M [P ′]) = dom(M)∩ P ′ and for all p ∈ dom(M [P ′])
M [P ′](p) = M(p).

Here, we define the notion of backward firing that will be used to analyse coverability [11, 13, 17].

Definition 11 (Backward firing [21]). Let(P, T, F, R) be a reset net andM,M ′ ∈ IM(N). M ′ 99Kt

M iff it is possible to fire a transitiont backwards starting fromM and resulting inM ′.

M ′ 99Kt M ⇔M [R(t)] ≤ t • [R(t)]∧

M ′(p) =
{

(M(p) � F (t, p)) + F (p, t) if p ∈ P \R(t)
F (p, t) if p ∈ R(t).

For any reset placep, M(p) ≤ F (t, p) because it is emptied when firing and thenF (t, p) tokens
are added. We do not requireM(p) = F (t, p) because the aim is coverability and not reachability.
M ′, i.e., the marking before (forward) firingt, shouldat leastcontain theminimalnumber of tokens
required for enabling and resulting in a marking of at leastM . Therefore, onlyF (p, t) tokens are
assumed to be present in a reset placep.

3.2 Reset WorkFlow Nets (RWF-nets)

In this subsection, we propose a subclass of reset nets called RWF-nets and define soundness and
weak soundness properties for these nets. An RWF-net satisfies the following restrictions. There is
a unique begin place and a unique end place and also every node in the graph is on a directed path
from the begin place to the end place.

Definition 12 (RWF-net).LetN = (P, T, F, R) be a reset net. The reset netN is an RWF-net iff 1)
there exists exactly onei ∈ P such that•i = ∅, 2) there exists exactly oneo ∈ P such thato• = ∅
and 3) for alln ∈ P ∪ T ; (i, n) ∈ F ∗ and(n, o) ∈ F ∗.

The soundness definition for an RWF-net is based on the soundness definition from [6] for WF-
nets. An RWF-net is sound iff it satisfies the following three criteria: option to complete, proper
completion and no dead transitions.

Definition 13 (Soundness).Let N = (P, T, F, R) be an RWF-net,i, o be the input and output
places of the net andMi,Mo be the initial and end markings.N is sound iff: 1) for every marking
M reachable fromMi, there exists a firing sequence leading fromM to Mo (Option to complete),
2) the markingMo is the only marking reachable fromMi with at least one token in placeo (Proper
completion) and 3) for every transitiont ∈ T , there is a markingM reachable fromMi such that
M [t〉 (No dead transitions).

7



This definition of soundness is very similar to the notion of soundness defined in Definition 1. The
main difference is that Definition 13 refers to RWF-nets rather than eYAWL-nets. Note that reacha-
bility is not decidable for reset nets [12] and hence, its applicability is limited to reset nets with finite
state space. As the soundness property definition relies on reachability results, the soundness prop-
erty is only decidable for an RWF-net with a finite state space. Fortunately, coverability is decidable
for a reset net using the backward firing rule of Definition 11[11–14]. Note that this even holds for
reset nets with an infinite state space. We thus propose a weaker property called weak soundness
property which can be decided using coverability results. Hence, the weak soundness property is
decidable for an RWF-net. The weak soundness definition for an RWF-net relaxes the first crite-
rion and reformulates the second and third criteria using coverability results. For the weak option
to complete criterion, it only checks whether it is possible to cover the final markingMo from Mi

(i.e. is there at least a path that leads fromMi to Mo). It does not check whether all paths lead to
the final marking and hence, it will not detect partial deadlocks. Therefore, if an RWF-net satisfies
the soundness property, it also satisfies the weak soundness property but not vice versa. Note that
Definition 14 is closely related to Definition 2. The only difference is the type of model considered
(RWF-net or eYAWL-net).

Definition 14 (Weak soundness).LetN = (P, T, F, R) be an RWF-net,i, o be the input and output
places of the net andMi = i,Mo = o be the initial and end markings.N has weak soundness
property iff: 1) Mo is coverable fromMi (Weak option to complete), 2) there is no markingM
coverable fromMi such thatM > Mo (Proper completion) and 3) for every transitiont ∈ T , there
is a markingM coverable fromMi such thatM [t〉 (No dead transitions).

4 YAWL nets without OR-joins

In this section, we focus our attention on verification techniques for YAWL nets without OR-joins.
We propose to transform an eYAWL-net (without OR-joins) into an RWF-net to exploit the analysis
techniques available for reset nets [21]. This is achieved by first abstracting from multiple instances
and hierarchy in YAWL and then applying functiontransE2WFto transform an eYAWL-net into an
RWF-net. Formal definition oftransE2WFis given in [21]. The transformation returns an RWF-net
where input and output conditionsi,o ∈ C map to unique begin and end placesi,o ∈ P in the
corresponding RWF-net and where every node in the graph(P ∪ T ′, F ′) is on a directed path from
i to o.

Lemma 1. LetN = (C, i,o, T, F, split , join, rem,nofi) be an eYAWL-net without OR-joins.N ′ =
transE2WF(N) = (P, T ′, F ′, R) is an RWF-net.

Figure 5 shows the RWF-net corresponding to the YAWL net in Figure 2. Placesi ando represent
unique input and output places. We use the following abbreviations for the tasks:Initiate plans- I,
Take exam- E, Book flight- B, Resit exam- R, Cancel flight- C, Finalise plans- F. Each task in
the eYAWL-net has been transformed into the corresponding start and end transitions. For instance,
taskInitiate plansis now represented asIstart andIend with the internal placepI . The cancellation
region associated with theResit examtask is represented by double-headed reset arcs from the places
c2, c3 andpB (the internal place forBook flight) to the end transitions ofResit examtask,RF

end and
RC

end.

8



Fig. 5.Holiday scenario - RWF-net (note: double-headed reset arcs fromc2, c3 andpB to transitionsRF
end and

RC
end)

A series of coverability questions will be asked to determine whether the weak soundness prop-
erty of an RWF-net holds by using the three criteria defined in Definition 14. TheCoverablepro-
cedure described in [21] is used to determine whether a marking is coverable from another marking
of a reset net. The procedure makes use of the backwards firing rule as described in Section 3. We
can made the following observations about an eYAWL-net without OR-joins by using coverability
results from the corresponding RWF-net.

Observation 1 Given an eYAWL-net without OR-joins, the weak option to complete can be decided
by testing whetherMo is coverable fromMi in the corresponding RWF-net.

To detect proper completion criterion, the test is whether there is a conditionc ∈ C such thato + c
is coverable fromMi. If one of these markings is found to be coverable then the net does not have
proper completion.

Observation 2 Given an eYAWL-net without OR-joins, proper completion can be decided by testing
whethero + c is not coverable fromMi in the corresponding RWF-net for allc ∈ C.

To detect dead transitions, the test is whether a markingpt is coverable fromMi for all transitions
t ∈ T . Note thatpt represents the internal place for a transition in the eYAWL-net. Therefore, for
any t ∈ T if a markingpt is coverable fromMi in the corresponding RWF-net, thent could be
enabled in the eYAWL-net andt is not a dead transition.

Observation 3 Given an eYAWL-net without OR-joins, no dead transitions criterion can be decided
by testing whetherpt is coverable fromMi in the corresponding RWF-net for allt ∈ T .

As it is possible to decide these three criteria for weak soundness using coverability results for an
eYAWL-net without OR-joins, the weak soundness property is decidable.

Theorem 1. Given an eYAWL-net without OR-joins, weak soundness (Definition 1) is decidable.
Proof: Follows from observations 1, 2 and 3.

Similarly, we can make the following observations regarding the existence of reducible cancellation
regions.

9



Observation 4 Given an eYAWL-net without OR-joins, a reducible conditionc in a cancellation
region of t can be decided by testing whetherc + pt is coverable fromMi in the corresponding
RWF-net.

Observation 5 Given an eYAWL-net without OR-joins, a reducible tasktx in a cancellation region
of t can be decided by testing whetherptx + pt is coverable fromMi in the corresponding RWF-net.

Theorem 2. Given an eYAWL-net without OR-joins, whether there is a reducible element (a condi-
tion or a task) in a cancellation region of a task is decidable.
Proof: Follows from observations 4 and 5.

For an eYAWL-net without OR-joins with a finite state space, it is possible to decide the soundness
property by generating a reachability graph for the corresponding RWF-net. Figure 6 shows the
reachability graph for the reset net in Figure 5. It is easy to see whether an RWF-net satisfies the
soundness property by testing the three criteria of Definition 13. If the corresponding RWF-net is
sound, then the eYAWL-net without OR-joins is sound and if the corresponding RWF-net has the
weak soundness property, then the eYAWL-net without OR-joins has the weak soundness property.

Fig. 6.Reachability graph for the RWF-net in Figure 5

Observation 6 Given an eYAWL-net without OR-joins and a finite reachability graph, soundness
and weak soundness are decidable.

To determine whether a net has infinite state space, we do not have a formal means of detecting this.
We take a pragmatic approach and start the generation of reachable markings. If a certain duration
has passed and the reachable markings generation is not completed, we decide that the model has
infinite state space.

5 YAWL nets with OR-joins

Section 4 shows how a YAWL net without OR-joins can be transformed and analysed using the
corresponding RWF-net. In this section, we focus our attention on YAWL nets with OR-joins. The
informal semantics of OR-joins is that an OR-join task is enabled at a marking iff at least one of
its input conditions is marked and it is not possible to reach a marking that still marks all currently
marked input conditions (possibly with fewer tokens) and at least one that is currently unmarked. If it
is possible to place tokens in the unmarked input conditions of an OR-join in the markings reachable
from the current marking, then the OR-join task should not be enabled and wait until either more

10



input conditions are marked or until it is no longer possible to mark more input conditions [21].
Figure 7 shows a YAWL net with an OR-join task E. Task A is an OR-split task and after firing A,
it is possible to enable any combination of tasks B, C and D. The possible reachable markings are
c1+c2+c3, c1+c2, c2+c3, c1+c3, c1, c2 andc3. Let us consider the following occurrence sequence:
i

A→ c1+c2 C→ c1+c5. At the markingc1+c5, the OR-join enabling algorithm for E will be applied
as there is a token in one of the input conditions for E (c5). This algorithm transforms the YAWL
net into a reset net and checks whetherc5 + c6 is coverable from the current markingc1 + c5 [21].
As it is not possible to reach a marking that marks bothc5 andc6 from the current markingc1 + c5,
task E is enabled. In this case, the effect is the same as if task E was an XOR-join task. Now, let
us consider the following occurrence sequence instead:i

A→ c1 + c2 + c3 C→ c1 + c3 + c5. At the
markingc1 + c3 + c5, the OR-join enabling algorithm for E is called as there is a token inc5. As it
is possible to reachc1 + c5 + c6 by firing task D first, E will wait for synchronisation and will not
be enabled at the current markingc1 + c3 + c5. In this case, the effect is the same as if task E was
an AND-join task. Detailed discussion on the formal semantics of OR-joins can be found in [21].

Fig. 7.A YAWL net with an OR-join task E

Due to the non-local semantics of OR-joins, a YAWL net with OR-joins cannot be mapped
directly into a reset net [21]. Even though YAWL nets with OR-joins are difficult to define formally,
they occur quite frequently in business scenarios and the correctness of these models is crucial.
Therefore, it is important that we explore which properties can be detected for YAWL nets with
OR-joins. To do this, we propose to translate all OR-joins in a YAWL net into XOR-joins first. This
idea is based on the optimistic approach for treatment of OR-joins as shown in [21]. The treatment
of OR-joins in the YAWL net as XOR-joins is considered optimistic as it assumes an OR-join can be
enabled if there is at least one token in its preset. After replacing all OR-joins with XOR-joins, it is
now possible to transform the YAWL net into an RWF-net using the transformation rule mentioned
in Section 4.

Fig. 8.Comparative markings between an eYAWL-net with an OR-join and the corresponding eYAWL-net with
an XOR-join

Even though an XOR-join translation cannot capture the exact semantics of an OR-join, it pro-
vides some insights into the three criteria for the weak soundness property. We show here that there

11



is a direct relationship between the sets of reachable markings generated by the two eYAWL-nets and
that a reachable marking after firing an XOR-join task is larger than or equal to the reachable marking
after firing the corresponding OR-join task. Figure 8 illustrates the comparative markings for these
two nets. LetNOR be an eYAWL-net with an OR-join task,tOR, andNXOR the corresponding
eYAWL-net with the XOR-join task,tXOR. Let MOR

j = MXOR
j be the reachable markings where

tXOR andtOR are enabled. WhentOR fires atMOR
j , a token is removed from all marked conditions

in its preset and we can reachMOR
j+1 . WhentXOR fires atMXOR

j , a token is removed from one of
the marked conditions in its preset and we can reachMXOR

j+1 . Hence, the marking reached after firing
the XOR-join tasktXOR is larger than or equal to the marking reached after firing the OR-join task
tOR (i.e.,MXOR

j+1 ≥ MOR
j+1). As a marking with more tokens can enable at least the same transitions

as a marking with less tokens, ifMOR
o is a reachable marking inNOR, MXOR

o is also reachable in
NXOR whereMXOR

o ≥ MOR
o . Therefore, we conclude that ifNOR has the weak option to com-

plete thenNXOR will have the weak option to complete. Similarly, IfNOR has no dead transitions
thenNXOR will have no dead transitions. IfNOR does not have proper completion thenNXOR will
not have proper completion.

Observation 7 Given an eYAWL-net with OR-joins, if it has weak option to complete then the corre-
sponding eYAWL-net without OR-joins (where OR-joins are transformed into XOR-joins) has weak
option to complete.

Note that this observation does not hold in the opposite direction. A counter example is given in
Figure 9. The model has an AND-split task A, an OR-join task D and an AND-join task E. The
following occurrence sequence is possible:i

A→ c1 + c2 B→ c2 + c3 C→ c3 + c4 D→ c5. OR-join
task D will wait for both tasks B and C to complete, before firing and the only reachable marking
from D is c5. To enable E, there should be a reachable markingc4 + c5. As it is not possible to
reachc4 + c5, the model always deadlocks at E. Hence, the model does not satisfy the weak option
to complete criterion. Now, consider the translated version where task D is treated as an XOR-join
task instead. In this case, the following occurrence sequence is possible:i

A→ c1 + c2 B→ c2 + c3 C→
c3 + c4 D→ c4 + c5 E→ o. Therefore, the translated net has the weak option to complete property
when the original net with OR-joins does not.

Fig. 9.This YAWL net with an OR-join taskD always deadlocks atE.

Observation 8 Given an eYAWL-net with OR-joins, if it has no dead transitions then the corre-
sponding eYAWL-net without OR-joins (where OR-joins are transformed into XOR-joins) has no
dead transitions.

Observation 9 Given an eYAWL-net with OR-joins, if it does not have proper completion then the
corresponding eYAWL-net without OR-joins (where OR-joins are transformed into XOR-joins) does
not have proper completion.

12



Observation 10 Given an eYAWL-net with OR-joinsN , let N ′ be the corresponding eYAWL-net
without OR-joins andRN be the equivalent RWF-net forN ′. The following holds: 1) ifRN does
not have weak option to complete thenN does not have weak option to complete, 2) ifRN has dead
transitions thenN has dead transitions and 3) ifRN has proper completion, thenN has proper
completion.

For a YAWL net with OR-joins that has a finite state space, we propose to create a reachability graph
by taking into account OR-join semantics. We can construct such a reachability graph using enabling
and firing rules as defined in [6, 21]. Figure 10 shows a reachability graph for the YAWL net with
OR-joins in Figure 7. From such a graph, it is possible to decide whether a YAWL net with OR-joins
has the soundness property or not. In this example, the net does not have soundness property as a
marking greater thano is reachable fromi.

Fig. 10.Reachability graph for the YAWL net in Figure 7

Observation 11 Given an eYAWL-net with OR-joins and a finite reachability graph, soundness and
weak soundness properties are decidable.

Using a finite reachability graph, we can also detect convertible OR-join tasks. Enabling markings
for an OR-join task can be observed from the reachability graph of a YAWL-net. An OR-join task
can be converted to an XOR-join task, if all enabling markings for that OR-join only mark one
input condition and not more than one input conditions. On the other hand, an OR-join task can
be converted to an AND-join task, if all enabling markings for that OR-join always mark all input
conditions of the OR-join.

Observation 12 (XOR-join) Given an eYAWL-net with OR-joins and a finite reachability graph,
whether an OR-join could be an XOR-join can be decided by testing whether a reachable marking
that marks exactly one input condition of the OR-join task enables the OR-join and a marking that
marks more than one input conditions to the OR-join task is not in the set of reachable markings.

13



Observation 13 (AND-join) Given an eYAWL-net with OR-joins and a finite reachability graph,
whether an OR-join could be an AND-join can be decided by testing whether a reachable marking
that marks all input conditions to the OR-join task enables the OR-join and a reachable marking
that marks less input conditions to the OR-join task is not an enabling marking for that OR-join.

Theorem 3. Given an eYAWL-net with OR-joins and a finite reachability graph, whether an OR-join
task can be replaced by an XOR-join or an AND-join is decidable.
Proof: Follows from observations 12 and 13.

6 Verification in YAWL

Although the results of this paper have been presented in the context of YAWL, it is important to
realise that the basic ideas can also be applied to other languages supporting cancellation and OR-
joins. The reason that we selected YAWL is that it is a compact language with formal semantics
that is highly expressive. Moreover, the YAWL language is supported by a YAWL editor to cre-
ate diagrams and the YAWL engine to enact processes. Both the editor and the engine have been
downloaded by more than 9000 times. Both can be obtained via www.yawl-system.com.

We have extended the YAWL editor to support the verification approach presented in this pa-
per. The verification function can perform four checks: the weak soundness property, the soundness
property, reducible cancellation regions and convertible OR-joins. The designer can select appropri-
ate options for a given specification. If a YAWL specification has hierarchical structure (i.e., contains
multiple YAWL nets), diagnosis is given for every YAWL net individually. A typical usage scenario
is as follows: a process designer uses the YAWL editor to describe a YAWL specification, performs
verification, observes the outcomes, and then makes appropriate changes if necessary. Verification
messages are shown either as warnings or observations. Figure 11 shows verification messages for
the YAWL net of Figure 3. As reachability algorithm can only be used for specifications with fi-
nite state spaces, we allow for the setting of a maximal number of markings. We also detectout of
memoryerror and it is taken as indication that the model possibly has infinite state space.

Fig. 11.Holiday Scenario with errors

14



7 Related Work and Conclusion

This paper focuses on the verification of YAWL specifications with and without OR-joins. The use of
Petri nets for workflow verification have been studied before [1, 2, 5, 19]. In [3], the author describes
how structural properties of a workflow net can be used to detect the soundness property. In [9],
the authors discuss an approach for cyclic workflows using hierarchical decomposition. In [20], the
authors present an alternative approach for deciding relaxed soundness property using invariants.
The approach taken results in an approximation of OR-join semantics and transformation of YAWL
nets into Petri nets with inhibitor arcs. However, the use of inhibitor arcs instead of reset arcs means
that this approach cannot detect problems in certain YAWL specifications with cancellation features.
For example, this approach cannot detect problems in the erroneous holiday scenario described in
Figure 3.

The use of reset nets in workflow verification is original and it has been proposed here to deal
with cancellation and OR-join features of workflows. Our approach involves translation of YAWL
specifications in terms of a subclass of reset nets (RWF-nets) and the use of coverability and reacha-
bility results from reset nets for verification [10–14]. We define four desirable properties for YAWL
specifications:weak soundness property, soundness property, reducible cancellation regionsand
convertible OR-joins. We explore how these properties can be detected in YAWL specifications. For
YAWL nets without OR-joins, reachability and coverability results on the corresponding RWF-nets
are used to detect the soundness property and the weak soundness property. A different approach is
needed for YAWL nets with OR-joins. To detect the weak soundness property, the net is first trans-
formed into a corresponding YAWL net with XOR-joins. We then transform the net into an RWF-net
to determine the weak option to complete, proper completion and no dead transitions criteria. To de-
tect the soundness property of YAWL nets with OR-joins and finite state space, reachability analysis
is performed using YAWL semantics. The main findings in the paper are as follows:

– For YAWL nets without OR-joins, weak soundness and reducible cancellation regions are de-
cidable using coverability results for reset nets.

– For YAWL nets without OR-joins and a finite state space, weak soundness and soundness prop-
erties are decidable using reachability results for reset nets.

– For YAWL nets with OR-joins, only limited results are available using coverability results for
reset nets by first replacing OR-joins with XOR-joins.

– For YAWL nets with OR-joins and a finite state space, the soundness property and convertible
OR-joins are decidable using reachability results from YAWL without translating the net into
reset nets.

Acknowledgements.We would like to thank Lindsay Bradford and Lachlan Aldred for their
assistance during implementation of verification functionality in the YAWL Editor.

References

1. W.M.P van der Aalst. Verification of workflow nets. InProceedings of Application and Theory of Petri
Nets, volume 1248 ofLNCS, pages 407–426, Toulouse,France, 1997. Springer-Verlag.

2. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.The Journal of Circuits,
Systems and Computers, 8(1):21–66, 1998.

3. W.M.P. van der Aalst. Workflow verification: Finding control-flow errors using peti net-based techniques.
In Business Porcess Management:Models, Techniques and Empirical Studies, volume 1806 ofLNCS, page
161. Springer-Verlag, 2000.

15



4. W.M.P van der Aalst, J. Desel, and E. Kindler. On the Semantics of EPCs: A Vicious Circle. InProceed-
ings of the EPK 2002: Business Process Management using EPCs, pages 71–80, Trier, Germany, 2002.
Gesellschaft f̈ur Informatik, Bonn.

5. W.M.P. van der Aalst, A. Hirnschall, and E. Verbeek. An alternative way to analyze workflow graphs. In
Proceedings of the 14th International Conference on Advanced Information Systems Engineering (27-31
May), volume 2348 ofLNCS, pages 534–552, Toronto, Canada, 2002. Springer-Verlag.

6. W.M.P. van der Aalst and A.H.M ter Hofstede. YAWL: Yet Another Workflow Language.Information
Systems, 30(4):245–275, June 2005.

7. W.M.P van der Aalst, A.H.M ter Hofstede, B.Kiepuszewski, and A.P.Barros. Workflow Patterns.Dis-
tributed and Parallel Databases, 14:5–51, 2003.

8. P.A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theorems for infinite-state
systems. InProceedings of the 11th Annual IEEE Symposium on Logic in Computer Science (27 - 30 July),
pages 313–321, New Brunswick, NJ, July 1996. IEEE Computer Society.

9. Y. Choi and J. Zhao. Decomposition-based Verification of Cyclic workflows. InProceedings of Automated
Technology for Verification and Analysis(ATVA 2005) 4-7 October, volume 3707 ofLNCS, pages 84–98,
Taipei,Taiwan, 2005. Springer-Verlag.

10. P. Darondeau. Unbounded Petri net Synthesis. InLectures on Concurrency and Petri Nets, Advances in
Petri Nets, volume 3098 ofLNCS, pages 413–428, Eichstätt,Germany, 2003. Springer-Verlag.

11. C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset Nets Between Decidability and Undecidability. In
Proceedings of the 25th International Colloquium on Automata, Languages and Programming, volume
1443 ofLNCS, pages 103–115, Aalborg, Denmark, July 1998. Springer-Verlag.

12. C. Dufourd, P. Jaňcar, and Ph. Schnoebelen. Boundedness of Reset P/T Nets. InLectures on Concurrency
and Petri Nets, volume 1644 ofLNCS, pages 301–310, Prague, Czech Republic, July 1999. Springer-
Verlag.

13. A. Finkel, J.-F. Raskin, M. Samuelides, and L. van Begin. Monotonic Extensions of Petri Nets: Forward
and Backward Search Revisited.Electronic Notes in Theoretical Computer Science, 68(6):1–22, 2002.

14. A. Finkel and Ph. Schnoebelen. Well-structured Transition Systems everywhere!Theoretical Computer
Science, 256(1–2):63–92, April 2001.

15. B. Kiepuszewski.Expressiveness and Suitability of Languages for Control Flow Modelling in Workflows.
PhD thesis, Queensland University of Technology, Brisbane, Australia, 2003.

16. E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious Circle. InProceedings
of 2nd International Conference on Business Process Management, volume 3080 ofLNCS, pages 82–97,
Potsdam, Germany, 2004. Springer–Verlag.

17. M. Leuschel and H. Lehmann. Coverability of Reset Petri Nets and other Well-Structured Transition
Systems by Partial Deduction. InProceedings of Computational Logic 2000, volume 1861 ofLNAI, pages
101–115, London, UK, 2000. Springer-Verlag.

18. T. Murata. Petri nets: Properties, Analysis and Applications.Proceedings of the IEEE, 77(4):541–580, Apr
1989.

19. H.M.W. Verbeek.Verification of WF-nets. PhD thesis, Eindhoven University of Technology, Eindhoven,
The Netherlands, June 2004.

20. H.M.W. Verbeek, A.H.M ter Hofstede, and W.M.P. van der Aalst. Verifying Workflows with Cancellation
Regions and OR-joins: An Approach Based on Invariants. Technical Report BPM centre report, Eindhoven
University of Technology, Eindhoven, The Netherlands, December 2005.

21. M.T. Wynn, D. Edmond, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Achieving a General, Formal and
Decidable Approach to the OR-join in Workflow using Reset nets. InProceedings of the 26th International
conference on Application and Theory of Petri nets and Other Models of Concurrency (20 - 25 June),
volume 3536 ofLNCS, pages 423–443, Miami, USA, June 2005. Springer-Verlag.

16


