
A Generic Import Framework
For Process Event Logs

Christian W. Günther and Wil M.P. van der Aalst

Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

{c.w.gunther, w.m.p.v.d.aalst}@tm.tue.nl

Abstract. The application of process mining techniques to real-life cor-
porate environments has so far been of an ad-hoc nature, focused on
proving the concept. One major reason for this rather slow adoption
has been the complicated task of transforming real-life event log data
to the MXML format used by advanced process mining tools, such as
ProM. In this paper, the ProM Import Framework is presented, which
has been designed to bridge this gap and build a stable foundation for
the extraction of event log data from any given PAIS implementation.
Its flexible and extensible architecture, adherence to open standards, and
open source availability make it a versatile contribution to the general
BPI community.

1 Introduction

Process-Aware Information Systems (PAISs) are a commonplace part of the
modern enterprise IT infrastructure, as dedicated process management systems
or as workflow management components embedded in larger frameworks, such
as Enterprise Resource Planning (ERP) systems.

At this point in time, most business process monitoring solutions focus on
the performance aspects of process executions, providing statistical data and
identifying problematic cases. The area of Process Mining [3], in contrast, is
based on the a-posteriori analysis of process execution event logs. From this
information, process mining techniques can derive abstract information about
the different perspectives of a process, e.g. control flow, social network, etc.

There exists a great variety of PAIS implementations in field use, of which
each one follows a custom manner of specifying, controlling and interpreting busi-
ness processes. As an example, consider the utter difference in paradigm between
a traditional, rigid Workflow Management System (WFMS) like Staffwareon the
one side, and a flexible case handling [5] system like FLOWer [7] on the other.
This scale brings with it a corresponding plethora of event log formats, and
concepts for their storage and accessibility.

In order to render the design process mining techniques and tools indepen-
dent of the target PAIS implementation, the MXML event log format has been
devised. While this format has been designed to meet the requirements of process

2

Fig. 1. Positioning the ProM Import Framework in the BPI landscape

mining tools in the best possible way, the conversion from many PAIS’s custom
formats to MXML is a non-trivial task at best.

This combination of recurring and time-consuming tasks calls for a generic
software framework, which allows the implementation of import routines to con-
centrate on the core tasks which differentiate it from others. Providing a common
base for a large number of import routines further enables to leverage the com-
plete product with marginal additional implementation cost, e.g. by providing a
common graphical user interface (GUI) within the host application.

The ProM Import Framework addresses these requirements, featuring a flex-
ible and extensible plug-in architecture. Hosted import plug-ins are provided
with a set of convenience functionality at no additional implementation cost,
thus making the development of these plug-ins efficient and fast.

This paper is organized as follows. Section 2 introduces process mining and
the ProM framework, followed by an introduction to the underlying MXML
format in Section 3. Section 4 describes requirements, design, architecture, and
implementation of the ProM Import Framework. Subsequently, Section 5 gives
an overview about target systems for which import plug-ins have already been
developed, after which Section 6 draws conclusions.

2 Process Mining and ProM

Process-aware information systems, such as WfMS, ERP, CRM and B2B sys-
tems, need to be configured based on process models specifying the order in
which process steps are to be executed [1]. Creating such models is a complex
and time-consuming task for which different approaches exist. The most tradi-
tional approach is to analyze and design the processes explicitly making use of
a business process modeling tool. However, this approach has often resulted in
discrepancies between the actual business processes and the ones as perceived
by designers [3]; therefore, very often, the initial design of a process model is
incomplete, subjective, and at a too high level. Instead of starting with an ex-
plicit process design, process mining aims at extracting process knowledge from
“process execution logs”.

Process mining techniques such as the alpha algorithm [4] typically assume
that it is possible to sequentially record events such that each event refers to
an activity (i.e., a well-defined step in the process) and to a case (i.e., a process

3

instance). Moreover, there are other techniques explicitly using additional in-
formation, such as the performer and timestamp of the event, or data elements
recorded with the event (e.g., the size of an order).

This information can be used to automatically construct process models, for
which various approaches have been devised [6, 8, 12, 13]. For example, the alpha
algorithm [4] can construct a Petri net model describing the behavior observed
in the log. The Multi-Phase Mining approach [10] can be used to construct an
Event-driven Process Chain (EPC) [15] based on similar information. At this
point in time there are mature tools such as the ProM framework to construct
different types of models based on real process executions [11].

So far, research on process mining has mainly focussed issues related to con-
trol flow mining. Different algorithms and advanced mining techniques have been
developed and implemented in this context (e.g., making use of inductive learn-
ing techniques or genetic algorithms). Tackled problems include concurrency
and loop backs in process executions, but also issues related to the handling of
noise (e.g., exceptions). Furthermore, some initial work regarding the mining of
other model perspectives (e.g., organizational aspects) and data-driven process
support systems (e.g., case handling systems) has been conducted [2].

3 The MXML Format

The MXML format (as in M ining XML) is a generic XML-based format suitable
for representing and storing event log data. While focusing on the core informa-
tion necessary to perform process mining, the format reserves generic fields for
extra information that is potentially provided by a PAIS.

Fig. 2. Schema of the MXML format (UML diagram)

4

The structure of an MXML document is depicted in Figure 2, in the format of
an UML 2.0 class diagram. The root node of each MXML document is a Work-
flowLog, representing a log file. Every workflow log can potentially contain one
Source element, which is used to describe the system the log has been imported
from.

A workflow log can contain an arbitrary number of Processes as child el-
ements. Each element of type “Process” groups events having been occurred
during the execution of a specific process definition. The single executions of
that process definition are represented by child elements of type ProcessInstance.
Thus, each process instance represents one specific case in the system.

Finally, process instances each group an arbitrary number of AuditTrailEntry
elements as child nodes, each describing one specific event in the log. Every audit
trail entry must contain at least two child elements: The WorkflowModelElement
describes the process definition element to which the event refers, e.g. the name
of the task that was executed. The second mandatory element is the EventType,
describing the nature of the event, e.g. whether a task was scheduled, completed,
etc. Two further child elements of an audit trail entry are optional, namely the
Timestamp and the Originator. The timestamp holds the exact date and time
of when the event has occurred, while the originator identifies the resource,
e.g. person, program or component, which has triggered the event in the system.

The elements described above provide the basic set of information used by
current process mining techniques. To enable the flexible extension of this for-
mat with additional information extracted from a PAIS, all mentioned elements
(except the child elements of AuditTrailEntry) can also have a generic Data child
element. The data element groups an arbitrary number of Attributes, which are
string-based pairs of one key and an associated value each, thus providing a flex-
ible and extensible means to capture name-referenced, additional information.

4 The ProM Import Framework

While the ProM tool suite, which is based on interpreting event log data in the
MXML format, has matured over the last couple of years, there is still a gap in
actually getting these logs in the MXML format. Creating event logs in MXML
has, in the past, been mostly achieved by artificial means, i.e. simulation, or by
ad-hoc solutions which are not applicable to production use.

The ProM Import Framework steps in to bridge this gap. Its incentive is, on
the one hand, to provide an adequate and convenient means for process mining
researchers to actually acquire event logs from real production systems. On the
other hand, it gives the owners of processes, i.e. management in organizations
relying on PAIS operations, a means for productively applying process mining
analysis techniques to their installations.

The subsequent subsection introduces the incentives and high-level goals
which have triggered the development of the ProM Import Framework. Sec-
tion 4.2 derives from these goals a set of prominent design decisions, which form
the basis of the system architecture, introduced in Section 4.3.

5

4.1 Goals and Requirements

In order to further progress the field of process mining it is essential to adapt and
tailor both present and future techniques towards real-life usage scenarios, such
that process mining can evolve into production use. This evolution fundamentally
depends on the availability of real-life event log data, as only these can provide
the necessary feedback for the development of process mining techniques.

Conversely, the process of actually applying process mining techniques in
real world scenarios has to be eased and streamlined significantly. While several
successful projects have proved the concept, it is a necessity to improve tool
support for the entire process mining procedure from beginning to end.

A practical process mining endeavor is characterized by three, mainly inde-
pendent, phases: At first, the event log data has to be imported from the source
system. Secondly, the log data needs to be analyzed using an appropriate set
of process mining techniques. Third and last, the results gained from process
mining need thorough and domain-dependent interpretation, to figure out what
the results mean in the given context, and what conclusions can be drawn.

The process mining specialist is required in the second and third phase, while
the user, or process owner, is involved mainly in the third phase. What makes
the first phase stick out is, that it is at the moment the one task which can
be performed with the least domain and process mining knowledge involved.
Therefore, it is the logical next step for the progression of process mining to
provide adequate and convenient tool support for the event log extraction phase.

A tool for supporting the event log extraction phase should thus address the
following, high-level goals:

– The tool must be relatively easy to operate, such that also less qualified
personnel can perform the task of event log extraction. This requirement
implies, that:

– By separating a configuration and adjustment phase from the extraction
phase, which can potentially run unattended, the whole process can be lever-
aged and rendered more efficient.

– While ease of use is among the top goals, it must not supersede flexibility
and configurability of the application. It must be applicable in as great an
array of PAIS installations as possible.

– The tool must provide an extensible and stable platform for future develop-
ment.

– It is advisable to provide the tool on a free basis, in order to encourage its
widespread use and lower potential barriers for user acceptance. Further,
providing the code under an open source license is expected to attract also
external developers to participate. This enables the application to benefit
from community feedback and contribution, thereby greatly leveraging the
tool and, ultimately, process mining as a whole.

The subsequent section introduces the design decisions which were derived
from these high-level goals.

6

4.2 Design Decisions

The ProM Import Framework has been developed from scratch, with the fun-
damental goal to provide a most friendly environment for developing import
filters1. Consequently, a strong focus has been on extensibility and stability of
the design, while including as much functionality as possible in the framework
itself.

This emphasis has led to six crucial design choices, which have served as the
cornerstone for developing the architecture of the system:

1. Extensibility: The design must incorporate a strict separation between gen-
eral framework code and extension components. An additional requirement
is to shift as much application logic as possible into the core framework, to
prevent code duplication and ease the development of extensions.

2. Anonymization of log information: The framework shall enable users to
anonymize sensitive information contained in event logs in a transparent and
convenient manner, thereby providing a means to protect the log owner’s
intellectual property.

3. Flexible log-writing pipeline: A logical log-writing pipeline shall be im-
plemented, allowing to transparently chain a random number of log data-
altering algorithms between event extraction and final storage.

4. Decoupled configuration management: It shall be sufficient for an im-
port routine to specify its configuration options, and their corresponding
types. Based on this information, the framework should transparently han-
dle presenting these options to the user and allowing him to change them in
a convenient manner.

5. Decoupled dependencies management: One further requirement towards
the framework is to transparently satisfy all import routines’ external re-
quirements, e.g. database connectivity libraries.

6. Convenient and decoupled user interface: The application shall be rel-
atively easy to use, i.e. it shall not require the user to have knowledge about
process mining internals or the process of importing the event log data.

These design principles, together with the high-level goals presented in Sec-
tion 4.1, have been used as an imperative in shaping the application’s concrete
architecture, which is presented in the subsequent section.

4.3 Architecture

The architecture reflects the design principles stated in Section 4.2, and thus
directly supports the high-level goals of Section 4.1. Figure 3 describes the ab-
stract architecture of the framework, identifying the major classes involved and
their mutual relationships in form of a UML 2.0 class diagram.

A flexible plug-in architecture satisfies the requirement for extensibility. For
every target PAIS implementation, one dedicated import filter is supposed to
1 The distribution is available at http://promimport.sourceforge.net.

7

Fig. 3. Architecture of the ProM Import Framework, core components (UML diagram)

be implemented in form of a plug-in. Each import filter plug-in is contained
within one dedicated class, derived from the abstract superclass ImportFilter.
From this base class, every import filter plug-in inherits a set of methods which
it can call in its constructor, to notify the system of its configuration options
and external dependencies. For the actual import routine, the plug-in is passed
an object implementing the interface FilterEnvironment, connecting the import
filter to fundamental framework capabilities during the import procedure.

All elements of the log-writing pipeline implement the LogFilter interface,
which allows for their flexible arrangement within the pipeline at will. This in-
terface is used in a sequential manner, i.e. it incorporates methods to start and
finish log files, processes and process instances, and a method for passing au-
dit trail entries. The final endpoint of the log-writing pipeline is marked by an
object derived from the abstract class LogWriter providing basic MXML format-
ting, while actual writing to permanent storage is implemented in LogWriter’s
subclasses.

Intermediate elements of the log-writing pipeline, such as the LogAnonymizer,
are derived from the abstract class LogFilterProxy, implementing their transpar-
ent integration into the pipeline. At this point in time the anonymizer component
is the only intermediate pipeline transformer available.

The FilterManager groups the set of import filters, provides named access to
them, and provides their configuration within the framework for abstract access
and modification. The ImportController, which incorporates the filter manager,
manages the persistency of configuration data for the whole application and
transparently manages and satisfies import filters’ external requirements.

The class ImportFilterFrame implements the main graphical user interface
of the application, including basic user interaction logic.

4.4 Disk-buffered Event Sorting

The log writing pipeline in the framework expects process instances to be trans-
mitted one after another, while audit trail entries are supposed to be transmitted

8

in their natural order (i.e., order of occurrence). As not all import routines can
expect their events in an ordered fashion, the framework provides the plug-in
developer with a simple interface for transmitting unsorted event data, while
ensuring that the sorting takes place in a transparent, resource-efficient manner.

Fig. 4. Disk-buffered sorting in the framework

As this concept implies that all audit trail entries of an import session have to
be buffered, before the first of them can be written, the process instance buffers
are implemented to swap their content partially to disk storage.

This disk-buffered sorting mechanism is described in Figure 4.

1. Every buffer is equipped with a fixed-size buffer residing in heap space. This
heap buffer is filled, as new audit trail entries are added to the process
instance buffer.

2. When the heap buffer is completely filled with audit trail entries, it needs to
be flushed. First, the events contained within the heap buffer are sorted using
a Quicksort [14] algorithm. Then, all events in the heap buffer are appended
to a swap file. Thus, the swap file contains subsequent segments, of which
each contains a fixed number of sorted audit trail entries corresponding to
one flush operation.

3. After all events have been received, the buffer needs to be emptied into the
log writing pipeline in a sorted manner. An array called the merge table,
with one cell per flush segment in the swap file, is initially filled with the
first audit trail entry from each segment. Then, a modified merge sort [16]
algorithm picks the first (in terms of logical order) event from the merge
table, writes it to the log writing pipeline, and replaces it with the next
entry from the respective flush segment in the swap file. This procedure is
repeated, until all audit trail entries from the swap file have been loaded and
the merge table is empty.

The presented disk-buffered sorting mechanism manages to effectively limit
memory usage of the application. At the same time, a performance lag due to
disk I/O is minimized by pre-buffering and sorting events in the heap buffer.
Notice that the algorithm scales well with the degree, in which incoming audit
trail entries are already ordered. The less audit trail entries are in wrong order,
the faster the initial sorting can be performed.

9

4.5 User Interface

Fig. 5. User interface of the ProM Import Framework

The graphical user interface, which is depicted in Figure 5, is kept rather
simple. On the left, an overview list allows the user to pick the import filter
plug-in to be used. The upper right part shows general import filter properties,
such as name, description, and author. Further, this part includes controls for
the import procedure and the log anonymizer component.

The lower right part of the interface can either display a console view, or a
configuration pane allowing to modify configuration settings for import filters.
When the import procedure is started, the view switches to show the console,
wich is used to display feedback and error messages to the user.

5 Target Systems

The number of target systems, for which import plug-ins have been developed,
has been steadily growing and diversifying since the development of the ProM
Import Framework began2. On the one hand, this development is driven by
advances in industry and practice, making ever more real-life PAIS implemen-
tations available for process mining research. On the other hand, this research
triggers new applications from within, thus extending the field of “interesting”
target systems.

In both directions, the flexible and extensible architecture of the ProM Im-
port Framework has allowed developers to quickly implement solid and versatile
solutions, taking advantage of the broad set of support functionality and clean
2 The current distribution of the framework, including all plug-ins, can be downloaded

from http://promimport.sourceforge.net.

10

user interface which the framework provides. At the time of this writing, there
exist import plug-ins for the following target systems:

FLOWer : This product is an implementation of the case handling paradigm,
which represents an utmost flexible, data-driven approach within the greater
family of workflow management systems.

WebSphere Process Choreographer: As a part of IBM’s WebSphere suite,
the Process Choreographer is used to implement high-level business pro-
cesses, based on the BPEL language.

Staffware: A workflow management system in a traditional sense, which has
an impressive market coverage.

PeopleSoft Financials: Part of the PeopleSoft suite for Enterprise Resource
Planning (ERP), this module is concerned with financial administration
within an organization.

CPN Tools: CPN Tools provides excellent tool support for modelling Colored
Petri Nets (CPN), a family of high-level Petri Nets, including a simulation
engine for executing models. An extension to CPN tools has been developed,
allowing to create synthetic event logs during a model simulation.

CVS: The process of distributed software development, as reflected in the com-
mits to a source code repository like CVS, can also be analyzed with tech-
niques from the process mining family.

Subversion: The Subversion system addresses fundamental flaws present in
CVS, providing change logs that can also be interpreted by means of process
mining.

Apache 2: As the access logs of web servers, like Apache 2, reveal the identity of
users from their IP, the exact time and items requested, it is straightforward
to distill process event logs from them.

As diverse as this list may read, it shows the impressive capabilities of the
framework in enabling rapid development of import capabilities. The complexity
of demanding import filters is significantly reduced by standard functionality
offered by the framework. On top of that, the existence of a powerful framework
allows for rapid prototyping of event log import capabilities.

Thereby it stimulates and supports experiments with less obvious systems,
which may otherwise have been deemed not worth the effort. These can serve
as effective and efficient means to evaluate the feasibility and usefulness of an
import effort. An excerpt of ad-hoc solutions to import custom data sets, which
were rapidly and successfully implemented using the ProM Import Framework,
includes:

– Import of event logs describing the process of patient treatments ,from raw
database tables provided by a Dutch hospital.

– Production unit test logs from an international manufacturer of IC chip
production equipment.

– Conversion of spreadsheets containing patient treatment processes, from an
ambulant care unit in Israel and a large Dutch hospital.

– Versatile and highly configurable import from the WFMS Adept [17], which
is known for its rich set of features addressing flexibility.

11

6 Conclusions

The MXML format is the most widely adopted standard for the storage of pro-
cess event logs in process mining research. This is most notably due to the fact
that the ProM framework, providing a wide selection of process mining analysis
techniques, relies on MXML for reading event logs.

However, due to a lack of convenient conversion tools, the availability of real-
life event logs in MXML format has not been satisfactory so far. On the one
hand, this lack of actual logs had a serious impact on the credibility of process
mining techniques with respect to real-life applications. On the other hand, these
techniques could not be used to analyze and improve industrial processes, and
could thus not be put to use in real-life organizations.

In this paper, we have presented the ProM Import Framework, which is effec-
tively bridging this gap. It represents a typical enabling technology, connecting
formerly separate areas to their mutual benefit. In its current release, this appli-
cation already features import plug-ins supporting seven process-aware informa-
tion systems. Most notably, the support for commercial systems like FLOWer,
WebSphere, and Staffware covers an immense installed base of users. Additional
functionality that has been shifted into the framework makes the development
of additional import plug-ins a convenient, time-effective task.

We hold this extension to the process mining tool landscape to be crucial with
respect to the quality and credibility of process mining research. Real-life event
log data often exhibits awkward and strange properties, which are unforeseen on
a theoretical level, and which have to be taken into account in order to obtain
meaningful results. It is only after process mining techniques have been proven
to successfully analyze real-life logs, and thus to benefit businesses in their daily
operations, that these techniques can grow into productive tools for business
process optimization.

7 Acknowledgements

This research is supported by the Technology Foundation STW, applied sci-
ence division of NWO and the technology programme of the Dutch Ministry of
Economic Affairs.

References

1. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

2. W.M.P. van der Aalst and M. Song. Mining Social Networks: Uncovering Interac-
tion Patterns in Business Processes. In J. Desel, B. Pernici, and M. Weske, editors,
International Conference on Business Process Management (BPM 2004), volume
3080 of Lecture Notes in Computer Science, pages 244–260. Springer-Verlag, Berlin,
2004.

12

3. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

4. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

5. W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case Handling: A New
Paradigm for Business Process Support. Data and Knowledge Engineering,
53(2):129–162, 2005.

6. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Work-
flow Logs. In Sixth International Conference on Extending Database Technology,
pages 469–483, 1998.

7. Pallas Athena. Case Handling with FLOWer: Beyond workflow. Pallas Athena
BV, Apeldoorn, The Netherlands, 2002.

8. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215–249, 1998.

9. A.K. Alves de Medeiros and C.W. Günther. Process mining: Using cpn tools to
create test logs for mining algorithms. In K.Jensen, editor, Proceedings of the Sixth
Workshop on the Practical Use of Coloured Petri Nets and CPN Tools (CPN 2005),
volume 576 of DAIMI, Aarhus, Denmark, October 2005. University of Aarhus.

10. B.F. van Dongen and W.M.P. van der Aalst. Multi-Phase Process Mining: Building
Instance Graphs. In P. Atzeni, W. Chu, H. Lu, S. Zhou, and T.W. Ling, editors, In-
ternational Conference on Conceptual Modeling (ER 2004), volume 3288 of Lecture
Notes in Computer Science, pages 362–376. Springer-Verlag, Berlin, 2004.

11. B.F. van Dongen, A.K. de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The prom framework: A new era in process mining tool
support. In G. Ciardo and P. Darondeau, editors, Proceedings of the 26th Interna-
tional Conference on Applications and Theory of Petri Nets (ICATPN 2005), vol-
ume 3536 of Lecture Notes in Computer Science, pages 444–454. Springer-Verlag,
Berlin, 2005.

12. D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and M.C. Shan. Business
process intelligence. Computers in Industry, 53(3):321–343, 2004.

13. J. Herbst and D. Karagiannis. An Inductive Approach to the Acquisition and
Adaptation of Workflow Models. In M. Ibrahim and B. Drabble, editors, Proceed-
ings of the IJCAI’99 Workshop on Intelligent Workflow and Process Management:
The New Frontier for AI in Business, pages 52–57, Stockholm, Sweden, August
1999.

14. C.A.R. Hoare. Algorithm 64: Quicksort. Commun. ACM, 4(7):321, 1961.
15. G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Processmodellierung auf

der Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des
Instituts für Wirtschaftsinformatik, Heft 89 (in German), University of Saarland,
Saarbrücken, 1992.

16. D.E. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching.
Addison Wesley, Reading, MA, USA, 2 edition, 1998.

17. M. Reichert and P. Dadam. ADEPTflex: Supporting Dynamic Changes of
Workflow without Loosing Control. Journal of Intelligent Information Systems,
10(2):93–129, 1998.

13

A Import Plug-ins 3

A.1 FLOWer

The case handling system FLOWer is an excellent object for process mining re-
search, due to its feature set which greatly exceeds the capabilities of traditional
workflow management systems. The subsequent sections introduce FLOWer,
give an overview about the event log data available and its location, and sketch
the conversion process implemented in the respective import plug-in.

Introduction Case handling systems are of particular interest for process min-
ing research. Due to their high flexibility in process enactment, the resulting
event logs exhibit a large degree of variation between process instances. Fur-
ther, the fact that case handling systems are inherently data-driven provides the
opportunity to also obtain event logs on a data modification level.

Fig. 6. Process designer component of FLOWer

The process designer component of FLOWer is depicted in Figure 6. For
every task three distinct roles can be defined, determining the set of users who
can “execute”, “skip” and “redo” this task. The first role allows traditional usage,
while the second enables authorized users to bypass this task, thereby providing
an elegant way to model exceptional behavior. Finally, users who have been
granted the “redo” role can roll back this task, by which the implicit modeling
of loops and iterations becomes feasible.

Figure 7 shows the end user interface of FLOWer. The so-called “wavefront”,
visible in the window on the upper right, indicates the status of tasks within a
process instance and presents them to the user. This status is not defined explic-
itly, like committing a task in a workflow management system, but determined
3 We would like to point out that we do not intend to include this appendix in the

final workshop contribution. However, we feel that the additional information given
here may be a useful reference for the editors.

14

Fig. 7. End user interface of FLOWer (wavefront and form)

by the system. For each task, a set of data objects has to be defined which have
to be set before the task is considered to be finished. This concept provides a
great share of flexibility in case handling systems, as boundaries between tasks
become less meaningful.

Data Source FLOWer provides event log information on two distinct levels.
Next to recording the life-cycle changes of tasks in a process instance, the system
also provides fine-grained events referring to changes made to single data objects.
It is worthwhile to mention that events in the latter kind of logs are recorded in
a very precise manner, i.e. as soon as an input field on a form has been confirmed
a respective event is recorded by the system.

Audit trails are not recorded by default in FLOWer, the process designer
rather needs to explicitly enable logging for each process definition. In this, the
recording of events can be turned on and off in a fine-grained manner for each
single task, which allows limit the amount of log data created.

Regarding the storage of event log data, FLOWer supports both recording
audit trails to a database and writing a comparable set of information to plain
text files, while both options can be enabled independently. The import filter
plug-in for FLOWer does, at the time of writing, only support the conversion
of audit trail information kept in a database.

Conversion The plug-in implementation directly connects to the database
where the event logs are stored. While we cannot disclose the concise struc-
ture of the FLOWer database, it can be said that accessing the information
necessary requires multiple cascaded SQL queries, involving joins among several
tables, for each event. Part of the logic which is assembling the necessary data
is performed on the database server, by interpreting the SQL queries, while a
decent amount of pre- and post-processing is implemented in the plug-in itself.

FLOWer is among the systems for which the most advanced support exists
within the framework. Thus the import plug-in provides an extensive set of

15

options for pre-processing the information, tuning the plug-in to the concrete
FLOWer installation at hand, and selecting the subset of information to be
recorded.

Logs on the task level and data modification level are exported separately,
and can even optionally be split up with respect to the layers of abstraction
defined in the FLOWer process definition.

A.2 WebSphere Process Choreographer

The Process Choreographer is part of IBM’s WebSphere suite, providing a means
to implement high-level business processes based on the BPEL language. In
the last years, the paradigm of a service-oriented architecture (SOA), in which
the orchestration of web services via BPEL plays a vital role, has increasingly
gained in importance. Thus, WebSphere, as one of the implementations with the
strongest industry backing, is an obvious and promising source of event logs.

Fig. 8. Process designer component of WebSphere

Introduction The BPEL language allows for the specification of business pro-
cesses which are essentially composed of web services, which serve as implemen-
tation for the defined tasks. As the interface represented by a web service is
very generic, any application or system can, at least partially, be wrapped and
presented in the form of one or multiple web services.

This paradigm allows for building heterogeneous and distributed applications
in the form of business processes, which can again be exposed as web services to

16

be used in further settings. In this way, BPEL allows for the successive assembly
of high-level business logic from previously disconnected components, including
legacy systems.

IBM provides an environment for implementing BPEL-based business pro-
cesses with the Process Choreographer, as part of their WebSphere suite.It in-
tegrates a BPEL enactment engine with a Java 2 Platform, Enterprise Edition
(J2EE) application server, thus creating a very flexible and extensible platform.

The process designer component of WebSphere Process Choreographer is
shown in Figure 8. It is based on the popular Eclipse SDK, and provides means
for e.g. graphically designing BPEL process definitions, developing J2EE com-
ponents, and testing process definitions on a built-in test server.

Data Source In WebSphere Process Choreographer, just as in FLOWer, the
recording of audit trail information has to be explicitly enabled for each busi-
ness process. The resulting information is stored in a database audit-log table.
WebSphere Process Choreographer records events related to state transitions of
process instances, basic activities, staff activities (i.e. tasks performed by hu-
man resources), invoke activities, and Java snippets. These events are based
on defined state-transition models and allow the concise traceability of process
executions in the system.

In addition to storing audit trail events in a database, WebSphere also sup-
ports the so-called “Common Event Infrastructure” (CEI). This infrastructure
decouples event emitters from event consumers by an intermediary event server,
which disperses events to registered listeners in an asynchronous manner.

Conversion The current implementation of the import plug-in for the Web-
Sphere Process Choreographer is limited to extracting audit trail events from
the respective database table. These events are straightforward to access, how-
ever their interpretation requires a number of mappings to MXML. For example,
as the state-transition model of WebSphere differs from that of MXML, event
types have to be mapped, which is in some cases not trivial.

In order to be able to limit the overwhelming set of information that Web-
Sphere Process Choreographer provides in its event logs, the import plug-in
features a number of configuration options for that end. Further, the database
connection settings can be adjusted to the concrete installation of WebSphere
at hand.

A.3 Staffware

Staffware is a typical example of a traditional workflow management system. Its
comprehensive market penetration renders this system an import candidate for
process event log conversion.

17

Introduction Staffware is a workflow management system in the traditional
sense, i.e. it supports the distributed execution of rigidly predefined process def-
initions. Although it is a rather inflexible system when it comes to dynamically
adapting or evolving process definitions, its high performance in process execu-
tion makes it the preferred choice for many organizations.

Fig. 9. Process designer component of Staffware

Figure 9 shows the process designer component of Staffware. For defining
processes, Staffware uses a custom modeling language, which is burdened with
a number of ambiguous and confusing properties.

Case 2
Diractive Description Event User yyyy/mm/dd hh:mm
--

Start rick@staffw_e 2005/04/11 17:09
TASKA Processed To rick@staffw_e 2005/04/11 17:09
TASKA Released By rick@staffw_e 2005/04/11 17:09
TASKB Processed To martin@staffw_e 2005/04/11 17:09
TASKB Released By martin@staffw_e 2005/04/11 17:10
TASKC Processed To rick@staffw_e 2005/04/11 17:10
TASKC Released By rick@staffw_e 2005/04/11 17:10
TASKE Processed To tania@staffw_e 2005/04/11 17:10
TASKE Released By tania@staffw_e 2005/04/11 17:11

Terminated 2005/04/11 17:11

Logfile 1: Excerpt of a Staffware event log file.

18

Data Source In the Staffware system, process event logs are exported in plain
text, while for every process instance one log file is created. The files are struc-
tured in a human-readable, tabular manner. An example of a log file for one
process instance is shown in Logfile 1.

Conversion The import plug-in for Staffware takes as input a collection of log
files, or alternatively a folder which is supposed to contain such files. These files
are subsequently parsed, while the first line provides the name of the process
instance (which is “Case 2” in the excerpt shown in Logfile 1). The second and
third line are skipped, as they always contain the same table headings.

The rest of the file features information about the events having occurred in
that process instance, one event per line. These events are converted to audit
trail entries, buffered and sorted, and finally written to the log writing pipeline.

A.4 PeopleSoft Financials

PeopleSoft Financials is a module of the Enterprise Resource Planning (ERP)
system PeopleSoft, which can be used for the financial administration of an
organization.

Fig. 10. User interface of PeopleSoft Financials

Introduction The PeopleSoft system consists of an application server, which
is backed by a database system. This application server uses a web-based user
interface, which is shown in Figure 10 to communicate with the users.

High-level tasks within the financial domain are represented by sub-modules,
which can be selected on the left pane of the user interface. This will trigger the

19

application server to display a set of pages on the right display pane, between
which the user can navigate back and forth. These pages contain input fields
and controls on web forms, and allow the user to enter the requested data into
the system.

PSAPPSRV.2396 1-22265 16.47.13 0.000 Cur#2.FFAC RC=0 Dur=0.000
Connect=FFAC/SYSADM/

PSAPPSRV.2396 1-22266 16.47.13 0.000 Cur#2.FFAC RC=0 Dur=0.000
COM Stmt=SELECT COUNT(*) FROM PSMSGNODEDEFN

PSAPPSRV.2396 1-22267 16.47.13 0.000 Cur#2.FFAC RC=0 Dur=0.000
COM Stmt=SELECT MSGNODENAME FROM PSMSGNODEDEFN ORDER BY MSGNODENAME

PSAPPSRV.2396 1-22268 16.47.13 0.000 Cur#2.FFAC RC=0 Dur=0.000
Disconnect

PSAPPSRV.2396 1-22269 16.47.13 0.031 Cur#1.FFAC RC=0 Dur=0.000
COM Stmt=select PT_CTI_AGENTID, PT_CTI_QUEUE, PT_CTI_CONFIGID from PS_PT_CTI_AGENT A
where OPRID = :1 AND EFFDT = (SELECT MAX(EFFDT) FROM PS_PT_CTI_AGENT B WHERE
A.OPRID= B.OPRID AND EFFDT <= TO_DATE(TO_CHAR(SYSDATE,’YYYY-MM-DD’),’YYYY-MM-DD’))

PSAPPSRV.2396 1-22270 16.47.13 0.000 Cur#1.FFAC RC=0 Dur=0.000
Bind-1 type=2 length=6 value=875273

PSAPPSRV.2396 1-22271 16.47.13 0.000 Cur#2.FFAC RC=0 Dur=0.000
Connect=FFAC/SYSADM/

PSAPPSRV.2396 1-22272 16.47.13 0.000 Cur#2.FFAC RC=0 Dur=0.000
COM Stmt=SELECT MCFUQAGENTID, MCFREN_LOG_RTENT, MCFREN_PHYS_RTENT, MCFUQQUEUEID,
MCFUQSKILLLEVEL, MCFUQMAXWKLD FROM PSMCFUQAGENTQ WHERE MCFUQAGENTID = :1

PSAPPSRV.2396 1-22273 16.47.13 0.000
Cur#2.FFAC RC=0 Dur=0.000 Bind-1 type=2 length=6 value=875273

PSAPPSRV.2396 1-22274 16.47.13 0.000
Cur#2.FFAC RC=0 Dur=0.000 Disconnect

Logfile 2: Excerpt of a PeopleSoft Financials trace file.

Data Source In the PeopleSoft system, it is possible to enable a very fine-
grained and verbose kind of logging for certain modules or sub-modules. Logfile 2
shows an excerpt of such a PeopleSoft log. As these logs are very detailed, it is
not practicable to record them over an extended period of time.

One can see that, among further information, this log contains SQL queries.
These queries have been used by the application server to request data for con-
structing the single pages of a sub-module.

Conversion The import filter plug-in for PeopleSoft analyzes these low-level
logs for commands which correspond to the creation of pages. Every creation
of a page is considered an event, and stored in audit trial entries accordingly.
Subsequently, it extracts from the corresponding SQL query the set of primary
keys used for assembling each respective page. By comparing the sets of primary
keys used for each page, the plug-in heuristically tries to group audit trail entries
of pages, which are supposed to have been part of one sequence, i.e. sub-module.

The described import filter implementation is the most successful of three
different attempts to extract logs from the PeopleSoft Financials system. How-
ever, its results can not be used for productive process mining analysis, as they
are not sufficiently reliable.

20

A.5 CPN Tools Simulation

Apart from its outstanding modeling and analysis support for Colored Petri Nets
(CPNs), CPN Tools provides the means to execute and simulate models. With
the help of an extension, the simulation engine of CPN Tools can be used to
create synthetic test logs for research purposes.

Fig. 11. CPN Tools

Introduction CPNs are a high-level variant of Petri nets, which are enhanced
with structured data definitions (i.e “colors”) for tokens and places. In addition,
transitions and arc inscriptions can be enhanced with expressions in the Stan-
dard ML programming language. These features make CPN a versatile modeling
language, which can be employed in a number of different applications.

The application CPN Tools provides excellent support for modeling CPN
models. Further, it has extensive features that allow for formal correctness check-
ing, and for the simulated execution of models.

Log File Generation In order to exploit the powerful modeling and simula-
tion capabilities of CPN Tools for process mining research, an extension to this
application was developed in Standard ML. This extension can be used within
models, providing functions for writing audit trail entries e.g. when particular
transitions have been fired.

The output of simulating a CPN model which was enhanced with these log-
ging functions is a set of text files. Each of these files includes all audit trail
entries for one process instance, formatted in MXML.

21

After simulating a CPN model, these files can be assembled to standard-
compliant MXML files using the CPN Tools import filter plug-in in the frame-
work. The implementation of this plug-in is rather simple, as it only concatenates
the supplied input files, adding proper environments for process definitions and
process instances.

Although rather simple, this feature has proven to be very effective for re-
search purposes. It can be employed for rapid prototyping of test logs, simply
by quickly modeling and simulating a respective example process in CPN Tools.
On the other hand, existing models can be extended with logging capabilities
in a straightforward manner, which allows for their subsequent analysis using
process mining techniques.

For an extensive description of the CPN Tools logging extensions, the reader
is referred to [9].

A.6 CVS

The “Concurrent Versioning System” (CVS) is a source code management (SCM)
system, and as such does not represent a process-aware information system in
the traditional sense. However, as the software development process is well re-
flected in the sequence of commit operations to a source code repository, these
systems are interesting objects of research for several process mining techniques.

Introduction Of all SCM systems on the market, CVS is certainly one of
those which have been around for the longest time. This fact, however, does not
seem to influence its active usage in any negative way. CVS is still the de-facto
standard for SCM solutions in research, industry, and most notably open source
projects around the world.

This fact is most likely strongly due to excellent and widespread tool sup-
port for CVS, with client software being integrated in almost every development
environment. The system itself consists of a server component, which manages
repositories of files and servers them to authenticated users over the network.

Data Source The CVS server does not store a log of repository operations in
a dedicated file. However, valid users can export a so-called “change log” from
the server, using the command “cvs log” in a terminal. This results in printing
information summaries for commits to the repository to the standard output.
An excerpt of such a change log is shown in Logfile 3.

Conversion Logfile 3 shows an excerpt of a CVS change log. The excerpt shows
the commit history for one particular file in the repository, namely “splashos2.rc”
(as referenced in the first two lines). After giving some general information about
the artifact itself, the actual revision history starts after a separator line made
of a sequence of “=” characters.

22

RCS file: /cvsroot/mozilla/mail/app/splashos2.rc,v
Working file: mozilla/mail/app/splashos2.rc
head: 1.4
branch:
locks: strict
access list:
symbolic names:

THUNDERBIRD_1_5rc1_RELEASE: 1.4
MOZILLA_1_8rc1_RELEASE: 1.4
FIREFOX_1_5rc1_RELEASE: 1.4

[...]
keyword substitution: kv
total revisions: 4; selected revisions: 4
description:

revision 1.2
date: 2004/09/07 22:24:44; author: darin%meer.net; state: Exp; lines: +0 -9
fixes bug 258217 "Windows DDE code should extract application name from nsXREAppData"

revision 1.1
date: 2003/11/25 18:25:07; author: mkaply%us.ibm.com; state: Exp;
RC file for Os/2 thunderbird
===

Logfile 3: Excerpt of a CVS change log file.

The import plug-in implementation regards each combination of an artifact
and an associated commit revision as an event. As can be seen in Logfile 3,
revision entries are separated by lines containing only dashes (“-”).

The challenge in converting CVS change logs to process event logs lies in
the fact, that CVS orders its change logs by modified artifacts (i.e. source code
files). However, the MXML format specifies that events be ordered in a strictly
occurrence-based fashion (i.e. the order in the log should represent the order of
occurrence).

Thus, all parsed events are buffered and aggregated before transmitting them
to the log writing pipeline. The result is one global process and process instance,
which contains an event for each committed revision for each versioned file in
the repository.

A.7 Subversion

The Subversion SCM system has been developed to address a number of short-
comings in the CVS architecture. It is increasingly gaining supporters and users
throughout the industry, and particularly with open source projects.

Introduction While the usage paradigm of Subversion is clearly based on CVS,
its main goal is to address a number of shortcomings in CVS as perceived by
a majority of users. The list of enhancements includes transaction support, an
enhanced algorithm for determining the differences between two revisions of a
versioned file (making the differentiation between binary and text-based files
known from CVS obsolete), and many more.

23

Subversion is based on a repository, which can be accessed by a number of dif-
ferent servers, each using different communication protocols and authentication
mechanisms. There exists both a command line client, a number of graphical
standalone clients, and clients integrated in development environments for all
major platforms.

--
r95 | christian | 2006-03-06 20:14:37 +0100 (Mon, 06 Mar 2006) | 3 lines
Changed paths:

M /PromImport/.classpath
M /PromImport/build.xml
A /PromImport/src/org/processmining/importfilter/filters/TestDriver.java
M /PromImport/src/org/processmining/importfilter/gui/ImportFilterFrame.java
A /PromImport/src/org/processmining/importfilter/gui/MemoryGauge.java
M /PromImport/src/org/processmining/importfilter/sorting/ATESortingProxy.java
M /PromImport/src/org/processmining/importfilter/sorting/SortedATEDiskBuffer.java
M /PromImport/src/org/processmining/importfilter/sorting/SortedEventLogs.java
A /PromImport/src/org/processmining/importfilter/util/LogWriterDevNull.java

Fully integrated the sorting infrastructure into the framework.
Added dummy filter for generating audit trail entries and dummy sink (logwriter) for
discarding output of the pipeline.
Interface is enhanced with memory gauge below the filter list.
--
r94 | akamedeiros | 2006-03-06 13:49:19 +0100 (Mon, 06 Mar 2006) | 1 line
Changed paths:

M /PromImport/src/org/processmining/importfilter/filters/EastmanWorkflow.java

EastmanWorkflow.java

Logfile 4: Excerpt of a Subversion change log file.

Data Source Similar to CVS, the change log of a Subversion repository can
be exported with the command “svn log <repository url>” from a terminal.
An example excerpt of the resulting output is shown in Logfile 4.

Conversion CVS works on a artifact basis, which is why it lists the history of
the repository per-file in change logs. Subversion, on the other hand, supports
transactions, which clearly shows in its change logs. Every commit to the repos-
itory is atomic, can affect any subset of the artifacts versioned in the repository,
and is equipped with a unique revision number.

Thus, the change log is organized as follows. The first line of each commit
entry gives the revision number, the user having committed this revision, and
the exact date and time of the commit. This is followed by a list of artifacts
modified by this commit revision. A line starting with “M” indicates that the
artifact has been modified, while lines starting with “A” indicate artifacts which
have been added to the repository with this commit.

This list of affected files is followed by a blank line, after which the user com-
ment given for this commit is printed. Commit revision entries in the change log

24

are separated by lines featuring only a sequence of the “=” character (i.e. Log-
file 4 shows two revisions: Revision 94 and 95).

As the change log is ordered backwards (i.e. the latest revision is featured at
the beginning of the change log file), events need to be buffered and re-ordered
before passing them to the log writing pipeline. For each commit revision parsed,
one event is created for every artifact affected (i.e. Revision 95 in Logfile 4 would
lead to nine events in the resulting MXML log).

A.8 Apache

Web server access logs are not a typical object for process mining research.
However, depending on their interpretation the application of process mining
algorithms can reveal interesting information. Moreover, the widespread avail-
ability of web server access logs makes them ideal for anybody just wanting to
play around with process mining on their very own log files.

Introduction The Apache foundation develops and maintains the most suc-
cessful web server to date, released free of charge under an open source license.
It is available for all major platforms and operating systems, and it can be cus-
tomized and extended in numerous ways, using modules and scripts which are
freely available on the web.

129.49.77.149 - - [03/Jul/2005:01:43:03 +0200] "GET /research/patterns/_themes/modular/amodrule.gif HTTP/1.1"

200 200 "http://is.tm.tue.nl/research/patterns/" "Opera/7.23 (Windows NT 5.1; U) [en]"

129.49.77.149 - - [03/Jul/2005:01:43:10 +0200] "GET /research/patterns/_derived/standards.htm_cmp_modular110_vbtn.gif HTTP/1.1"

200 452 "http://is.tm.tue.nl/research/patterns/" "Opera/7.23 (Windows NT 5.1; U) [en]"

207.46.98.76 - - [03/Jul/2005:01:43:13 +0200] "GET /staff/anorta/XRL/bottom.htm HTTP/1.0"

200 685 "-" "msnbot/1.0 (+http://search.msn.com/msnbot.htm)"

129.49.77.149 - - [03/Jul/2005:01:43:17 +0200] "GET /research/patterns/_derived/products.htm_cmp_modular110_vbtn.gif HTTP/1.1"

200 443 "http://is.tm.tue.nl/research/patterns/" "Opera/7.23 (Windows NT 5.1; U) [en]"

129.49.77.149 - - [03/Jul/2005:01:43:17 +0200] "GET /research/patterns/_derived/patterns.htm_cmp_modular110_vbtn.gif HTTP/1.1"

200 372 "http://is.tm.tue.nl/research/patterns/" "Opera/7.23 (Windows NT 5.1; U) [en]"

129.49.77.149 - - [03/Jul/2005:01:43:24 +0200] "GET /research/patterns/_derived/yawl.htm_cmp_modular110_vbtn.gif HTTP/1.1"

200 361 "http://is.tm.tue.nl/research/patterns/" "Opera/7.23 (Windows NT 5.1; U) [en]"

129.49.77.149 - - [03/Jul/2005:01:43:30 +0200] "GET /research/patterns/_derived/wscl.htm_cmp_modular110_vbtn.gif HTTP/1.1"

200 361 "http://is.tm.tue.nl/research/patterns/" "Opera/7.23 (Windows NT 5.1; U) [en]"

129.49.77.149 - - [03/Jul/2005:01:43:31 +0200] "GET /research/patterns/_derived/what’s_new.htm_cmp_modular110_vbtn.gif HTTP/1.1"

200 410 "http://is.tm.tue.nl/research/patterns/" "Opera/7.23 (Windows NT 5.1; U) [en]"

192.91.147.35 - - [03/Jul/2005:01:43:33 +0200] "GET /research/patterns/_derived/home_cmp_modular110_home_a.gif HTTP/1.0"

304 - "-" "Mozilla/4.0 (compatible;)"

129.49.77.149 - - [03/Jul/2005:01:43:37 +0200] "GET /research/patterns/_derived/links.htm_cmp_modular110_vbtn.gif HTTP/1.1"

200 355 "http://is.tm.tue.nl/research/patterns/" "Opera/7.23 (Windows NT 5.1; U) [en]"

Logfile 5: Excerpt of an Apache 2 access log file.

Data Source Apache logs every request for a file, usually issued by web browser
software, in so-called “access logs”. An example excerpt of an access log is shown
in Logfile 5: Every line in these logs represents one request, including the IP
address and browser software of the requesting party, HTTP status codes, the
exact time and date of the request, and the resource which was requested.

25

The format of these access logs can be altered by the administrator, which
makes web server logs potentially non-standardized. However, most administra-
tors choose to use the standard logging configuration specified in the configura-
tion file shipped with Apache.

The exact location of web server logs differs between operating systems, and
can be changed at will by the administrator. However, typical locations include
“/var/log/httpd” (Debian GNU/Linux and Mac OS X) and “/var/www/logs”
(when running in a chroot on OpenBSD).

Conversion In its standard configuration, the import filter plug-in for Apache
assumes that all recorded events belong to a single process instance of the same
process definition. From each line of the access log exactly one audit trail entry
is parsed, which has the IP address (or host name, if available) of the request-
ing party in the originator field. The workflow model element is made up by
the requested file, while the time stamp is merely converted to fit the MXML
standard.

A.9 MXML Pipe

Due to its modular and extensible log writing pipeline design, the ProM Import
Framework is able to offer additional functionality, exceeding simple import and
writing of event logs. The MXML Pipe plug-in makes this functionality available
also to event log data which is already stored in the MXML format.

There are sometimes occasions, where one has imported a large amount of
event logs from a system installation, but one has forgotten to anonymize this
data appropriately. The MXML Pipe makes re-importing the affected data su-
perfluous, as one can simply re-pipe the already imported MXML logs through
the framework with the anonymizer settings adjusted accordingly.

The functionality of the MXML Pipe is rather straightforward to explain:
Event logs are read from a file, parsed and transmitted into the log writing
pipeline. This makes the event log data subject to the settings applied to the log
writing pipeline once more, allowing users to tweak data long after the actual
import session.

