
Verifying Workflows with Cancellation Regions and OR-joins:
An Approach Based on Reset Nets and Reachability Analysis

M.T. Wynn1, W.M.P. van der Aalst1,2, A.H.M. ter Hofstede1 and D. Edmond1

1.School of Information Systems, Queensland University of Technology
GPO Box 2434, Brisbane Qld 4001, Australia.
{m.wynn,d.edmond,a.terhofstede}@qut.edu.au

2.Department of Technology Management, Eindhoven University of Technology
PO Box 513, NIL-5600 MB Eindhoven, The Netherlands.

{w.m.p.v.d.aalst}@tm.tue.nl

Abstract. When dealing with complex business processes (e.g., in the context of aworkflow
implementation or the configuration of some process-aware information system), it is impor-
tant but sometimes difficult to determine whether a process contains any errors. Cancellation
and OR-joins are important features that are common in many business processes. The pres-
ence of cancellation and OR-joins makes it difficult to perform verification. Therefore, existing
approaches and tools are typically restricted to process models without such features. In this
paper, we explore verification techniques for processes with cancellation and OR-joins. We
present these techniques in the context of workflow language YAWL thatprovides direct sup-
port for these features. We have extended the graphical editor of YAWL with diagnostic features
based in the results presented in this paper. The approach relies on reset nets and can easily be
adapted to support other languages allowing for cancellations and OR-joins.
Keywords: Workflow management, Verification, Cancellation, OR-joins, Reset nets, YAWL.

1 Introduction

Verification of workflows is an important and necessary aspect of process modelling. Verification is
concerned with determining,in advance, whether a workflow exhibits certain desirable behaviours.
Significant organisational resources are needed when introducing new workflow processes and it is
important that proper consideration is given to the model atthe design stage. By performing this
analysis at design time, it is possible to identify potential problems, and if we can identify such
problems, the model can be modified before the workflow is executed. This will greatly improve the
reliability of a workflow specification.

There are certain desirable characteristics that we expectevery business process to exhibit.
Firstly, it is important to know that a process, when started, can complete. Secondly, it should not
have any other tasks still running for that process when the process ends. Thirdly, the process should
not contain tasks that will never be executed. These characteristics closely relate to the soundness
property [6]. In this paper, we explore how the introductionof cancellation and OR-joins can af-
fect these properties.Cancellationis used to capture the interference of one task in the execution
of others. If a task is within the cancellation region of another task, it may be prevented from being
started or its execution may be terminated. This is quite common behaviour that needs to be mod-
elled in workflows. For example, you might want to simply cancel other order processing tasks if a
customer’s credit card payment did not go though. Cancellation is useful but it makes it difficult to

verify workflows that use this feature. AnOR-joinis used in situations when we need to model “wait
and see” behaviour for synchronisation. For example, a purchase process could involve the separate
purchase of two different items and the customer can decide whether he/she wants to purchase one
or the other or both. The subsequent payment task is to be performed only once and this requires
synchronisation if the customer has selected both products. If the customer selects only one product,
no synchronisation is required before payment. Many commercial workflow systems and business
process modelling tools support OR-join-like constructs.However, they struggle with the semantics
and implementation of the OR-join because synchronisationmay depend on the analysis of future
execution paths. Like cancellation, OR-joins are useful but they make the verification process quite
challenging. For detailed discussion on OR-join semantics, we refer to [4, 7, 14, 15].

The OR-join and cancellation are two of the workflow patternsdescribed in [7]. An in-depth
analysis and a comparison of a number of commercially available workflow management systems
had been performed [7] and the findings highlight a need for anexpressive workflow language that
can support all of these workflow patterns including cancellation and OR-joins. Twenty workflow
patterns were proposed to address control flow requirementsin a language independent style [7].
The workflow language YAWL provides direct support for all butone of these patterns [6] and
verification will be performed in the context of this language.

There are established results in the verification of workflowspecifications using Petri nets [1, 17].
We explore how these results can be used for workflows with cancellation and OR-joins. We propose
to use reset nets which are Petri nets with reset arcs [10, 11]. For verification purposes, YAWL
specifications are divided into those with OR-joins and those without OR-joins. This distinction is
necessary as a different verification technique is needed ineach case. A YAWL net without OR-
joins can be mapped to a reset net and it is possible to performverification on the resulting reset net.
However, due to the non-local semantics of OR-joins, it is not possible to map a YAWL net with
OR-joins to a reset net (without some approximation) and it is not possible to detect the soundness
property for a YAWL net with OR-joins using verification techniques available for reset nets. We
therefore propose an alternative verification technique using YAWL formal semantics as defined
in [6, 19]. The verification techniques presented here are transferable to any other workflow langauge
that is expressive enough to support cancellation regions and OR-joins.

The remainder of this paper is organised as follows. Section2 discusses correctness notions in
the context of YAWL. Section 3 provides the formal foundationfor our approach, by introducing
reset nets and RWF-nets. Section 4 and 5 present the core results of the paper. First, we focus on
YAWL nets without OR-joins. Then, we provide results for YAWL nets with OR-joins. Section 6
describes the implementation of our approach in the YAWL editor. Section 7 discusses related work
and concludes the paper.

2 Correctness in YAWL

2.1 Yet Another Workflow Language (YAWL)

A YAWL specification is made up of tasks, conditions and a flow relation between tasks and con-
ditions. YAWL uses the terms tasks and conditions to avoid confusion with Petri net terminology
(transitions and places). The overview of YAWL can be found in[6]. Figure 1 shows some of the
YAWL constructs used in this paper and we will explain these YAWL concepts using the example
process shown in Figure 2. This process model describes the “lifecycle” of a student who is required

2

start

condition
end

conditioncondition remove

 tokens

AND-split

 task

XOR-split

 task
OR-split

task
AND-join

 task

XOR-join

 task

OR-join

 task

Fig. 1.Symbols in YAWL

to take an exam and in parallel may already book a flight to go onholidays after passing the exam.
In this “holiday scenario”, a student decides to reward himself/herself by going on holidays if he/she
passes the exam and cancel the plans if he/she fails the exam.The first task of the process isIniti-
ate planswhich is directly connected to the start (input) condition.The AND-split behaviour of the
Initiate planstask indicates that the two tasksTake examandBook flightcan be done concurrently
after Initiate planstask is completed. When a token is present in conditionc2, theBook flighttask
is enabled. Similarly, taskTake examis enabled when there is a token inc1. After taking the exam,
the student waits for the exam results (pass or fail). This ismodelled as an XOR-split. If the student
passes the exam (a token inc4) and the fights have been booked (a token in c3), the student will
go on holidays (Take holiday). If the student fails the exam (a token inc5), he/she resits the exam
and also needs to stop holiday planning. This is modelled as acancellation region linked to theResit
examtask and includes the conditionsc2, c3 and the taskBook flight. If the holiday plans have been
made, the student might also need to contact the travel agentand cancel the flights (Cancel flight).
This extra taskCancel flightis modelled as an alternative route after theResit examtask. Regardless
of whetherTake holiday, Resit examor Cancel flightcompletes, theFinalise planstask will be en-
abled afterwards (XOR-join behaviour). The process will end whenFinalise plansis completed and
a token is placed in the output (end) condition.

Initiate
plans

Finalise
plans

Book
flight

Take
exam

Resit
exam

c2

c1

Take
holiday

c3
Cancel
flight

c4

c5

Fig. 2.Holiday scenario

It is possible to create a reachability graph of this model and we can observe that the holiday
scenario as modelled in Figure 2 is sound. Figure 3 describesa slightly modified version that has
neither the weak soundness nor the soundness property. There are two differences:c3 is not in the
cancellation region ofResit exam, andCancel flightis now an AND-join task. Consider the case
where the student has failed the exam and has to resit the exam, after booking the flights. The way
this process is now modelled, it is possible for taskFinalise Plansto be executed, without performing

3

Initiate

plans

Finalise

plans

Book

flight

Take

exam

Resit

exam

c2

c1

Take

holiday

c3
Cancel

flight

c4

c5

Fig. 3.Holiday scenario - with error

taskCancel Flightfirst. Hence, the following occurrence sequence is possible:1 i
I
→ c1 + c2

B
→

c1 + c3
E
→ c3 + c5

R
→ c3 + cRF

F
→ c3 + o. A token is left in conditionc3 when a token is put into

the output conditiono which signals the end of the process. Therefore, the model does not satisfy the
proper completion criterion. This example highlights how subtle differences in modelling business
processes can adversely affect the correctness of a YAWL specification.

A YAWL specification is formally defined as a nested collectionof Extended Workflow Nets
(EWF-nets) [6]. A YAWL specification supports hierarchy and a composite task is unfolded into
another EWF-net. We refer the reader to [6] for formal definitions. In an EWF-net, it is possi-
ble for two tasks to have a direct connection (cf. see tasksResit ExamandFinalise Plansin Fig-
ure 2). We define the corresponding explicit EWF-net (E2WF-net) for an EWF-net by adding con-
ditions between tasks with direct connections [19]. An E2WF-net can be represented by the tu-
ple (C, i,o, T, F, split , join, rem,nofi) whereC is a set of conditions,T is a set of tasks,i, o are
unique input and output conditions,F is the flow relation,split andjoin specifies the split and join
behaviours of each task,rem specifies the cancellation region for a task andnofi specifies the multi-
plicity of each task. For simplicity, we propose synonyms a YAWL net and an eYAWL-net (explicit
YAWL net) for an EWF-net and an E2WF-net respectively. We assumehere that all YAWL nets
considered in this paper are first transformed into eYAWL-nets.

Let N be an eYAWL-net andx an element ofN , we use•x andx• to denote the set of inputs and
outputs of a node. If the net involved cannot be understood from the context, we explicitly include it
in the notation and we writeN• x andx

N
• . A marking is denoted byM and, just as with ordinary Petri

nets, it can be interpreted as a vector, function, and multiset.M is anm-vector, wherem is the total
number of conditions. LetC be all possible conditions andM : C → N, whereC ⊆ C. M(c) returns
the number of tokens in a conditionc if c ∈ dom(M) and zero otherwise. We use notations such as
M ≤ M ′, M + M ′, andM ¦ M ′. M ≤ M ′ iff ∀c∈CM(c) ≤ M ′(c). M + M ′ andM ¦ M ′ are
multisets such that∀c∈C : (M + M ′)(c) = M(c) + M ′(c) and(M ¦ M ′)(c) = M(c) ¦ M ′(c)2. We
represent a multiset by simple enumerating the elements, e.g., 2a+3b+c is the multiset containing
two a’s, three b’s and one c. If X is a set over Y, it could also beinterpreted as a bag which assigns
to each element a weight of 1.

1 I stands forInitiate plans, B for Book flight, E for Take exam, R for Resit exam, F for Finalise plansand
cRF for the implicit condition between the two tasks,Resit examandFinalise plans.

2 For any natural numbersa, b: a ¦ b is defined as max(a − b, 0).

4

2.2 Structural properties

We now present four structural properties of an eYAWL-net:soundness, weak soundness, irreducible
cancellation regions, andimmutable OR-joins.

An eYAWL-net is sound if and only if it satisfies the following three criteria: option to complete,
proper completion and no dead tasks. The soundness propertyof an eYAWL-net (Definition 1) is
closely related to the soundness property of an RWF-net (Definition 18). The only difference is the
type of model being considered (RWF-net vs eYAWL-net).

Definition 1 (Soundness).LetN be an eYAWL-net andMi,Mo be the initial and end markings.N
is sound iff:

1. option to complete: for every markingM reachable fromMi, there exists an occurrence se-
quence leading fromM to Mo, and

2. proper completion: the markingMo is the only marking reachable fromMi with at least one
token in conditiono, and

3. no dead transitions: for every taskt ∈ T , there is a markingM reachable fromMi such that
M [t〉.

To detect the soundness property, all reachable markings need to be generated and it is not pos-
sible to generate reachable markings for a YAWL specificationwith infinite state space. Therefore,
we propose a weaker property calledweak soundnessthat describes minimal requirements for the
soundness property and that can be used for a YAWL specification with an infinite state space. Def-
inition 19 is closely related to Definition 2. The only difference is the type of model considered
(RWF-net vs eYAWL-net). The concept of reachability is definedusing YAWL semantics as in [6,
19].

Definition 2 (Weak soundness).LetN be an eYAWL-net andMi,Mo be the initial and end mark-
ings.N satisfies the weak soundness property iff:

1. weak option to complete:Mo is coverable fromMi, and
2. proper completion: there is no markingM coverable fromMi such thatM > Mo, and
3. for every taskt ∈ T , no dead transitions: there is a markingM coverable fromMi such that

M [t〉.

The concept of weak soundness and soundness are discussed indetail using a number of exam-
ples. In these examples, we identify a task by it name when no confusion can occur. Also from this
point onwards, whenever the term net is left unqualified it refers to a eYAWL-net.

Figure 4 describes a net with an OR-split task A and an AND-join task D. LetMi and Mo

the initial and end markings. First, let us see whether this net satisfies theweak option to complete
criterion for the weak soundness property. As A is an OR-split task, it is possible to enable B or C
or both after firing A. The following occurrence sequence is possible:i

A
→ c1 + c2

B
→ c1 + c3

C
→

c3 + c4
D
→ o. Therefore,Mo is reachable fromMi and hence,Mo is also coverable fromMi.

Thus, this net satisfies theweak option to completecriterion. The option to complete criterion for
the soundness property states that from all reachable markings fromMi, Mo should be reachable.
Due to the OR-split behaviour of A, there are three possible reachable markings after firing A,c1,
c2 andc1 + c2. It has been noted thatc1 + c2 can reachMo. As for the two reachable markings
the following occurrence sequences are possible:i

A
→ c1

C
→ c4 andi

A
→ c2

B
→ c3. It can be seen

5

Fig. 4.A YAWL net with an OR-split task A and an AND-join task D

that these two sequences cannot reachMo due to the AND-join behaviour of D and the model will
deadlock. As these are reachable markings fromMi that cannot reachMo, it does not satisfy the
option to complete criterion for the soundness property.

By following the same principle, we can test whether it satisfies the proper completion and the
dead transitions criteria. It is not possible to reach a marking larger thano and therefore, the net
satisfies the proper completion criterion. Also, all tasksA, B, C andD can be enabled at some
reachable markings and therefore, no dead transitions criterion is also satisfied. Finally, we can
conclude that the net isweak soundbut notsoundas it does not satisfy option to complete criterion
for thesoundnessproperty.

Next, we present a net with cancellation in Figure 5 that doesnot satisfy neither theweak sound-
ness propertynor thesoundness property. In this net, A is an AND-split task, D is an AND-join task
and the cancellation region for task C includesc2, c3 and B. Now, consider a possible occurrence
sequence:i

A
→ c1 + c2

B
→ c1 + c3

C
→ c4. Note that when C fires at the markingc1 + c3, a token

has been removed fromc3 and the markingc4 is reached. From the markingc4, it is not possible to
enable D (AND-join) and the net is in deadlock. AsMo is not coverable fromMi, the net does not
satisfy the weak option to complete criterion and hence, it is notweak sound. If the net is not weak
sound, then it is also notsound.

Note that with a slight modification to the cancellation region in Figure 5, it is possible to create
a net that satisfies the weak soundness property. Let us assume now that the cancellation region only
containsc2 and B and notc3. Using the same occurrence sequence as before, it is now possible
to havei

A
→ c1 + c2

B
→ c1 + c3

C
→ c3 + c4

D
→ o. In this case, the net satisfies theweak option

to completecriterion asMo is coverable fromMi and is thereforeweak sound. However, it is still
not soundas the following occurrence sequence is possible:i

A
→ c1 + c2

C
→ c4 where a token is

removed fromc2 after firing C atc1 + c2. Markingc4 is a reachable marking fromMi and fromc4,
Mo cannot be reached. Therefore, theoption to completecriterion for thesoundness propertycannot
be fulfilled.

These examples illustrate that it is not easy to detect potential problems without performing the
full state space analysis and they motivate us to develop an analysis technique for detecting the
correctness of YAWL specifications. In addition to the weak soundness property and the soundness
property for YAWL nets, two additional properties for nets with cancellation regions and OR-joins
are proposed:irreducible cancellation regionsandimmutable OR-joins. These properties are propose
to decide whether a net contains any unnecessary OR-joins and cancellation regions.

Reducible elements in the cancellation region of a task represent elements that can never be active
and therefore, can never be cancelled by the task. For instance, in Figure 6, conditionc3 is modelled

6

Fig. 5.A YAWL net with cancellation

to be in the cancellation region of taskCT . However, after executing taskA, a decision is made to
either execute taskB or CT but not both as A is an XOR-split. Therefore, it is never possible to
mark conditionc3 while taskCT is executing. In the above example, the term “executing” hasbeen
used loosely. According to the YAWL semantics in [6], a task can be in one of the three task states
mi et, exect, and mict

3. These states represent the intermediate states for enabling, executing and
completing a YAWL task. For our purpose, we consider a task to be executing if there is a token in
any one of these three states. We denote this set of places fora taskt asQE

t = {mi et, exect, mi ct}.

Definition 3 (Reducible cancellation element).Let N be an eYAWL-net.N has a reducible can-
cellation elementx, iff there is a taskt ∈ T such thatx ∈ rem(t) and

– if x ∈ C, a marking wheret is executing andx is marked is not coverable fromMi, i.e.,
∀p∈QE

t
¬∃M∈N [Mi〉(M ≥ p + x),

– if x ∈ T , a marking where botht andx are executing is not coverable fromMi, i.e.,∀p∈QE
t
∀q∈QE

x
¬∃M∈N [Mi〉(M ≥

p + q).

Fig. 6.A YAWL net with a (reducible) conditionc3 in the cancellation region ofCT

3 There is one other state for a YAWL task, miat, which is used for multiple instances.

7

Definition 4 (Irreducible cancellation regions). Let N be an eYAWL-net.N satisfies the irre-
ducible cancellation regions property iff for allx ∈ ran rem, x is not a reducible cancellation
element.

An OR-join task is said to be convertible, when it could be better represented as either an XOR-
join or an AND-join task. Such tasks arise in two circumstances: (i) when it is never possible to
reach a marking which marks more than one input conditions ofthe task and (ii) when all input
conditions of the task are marked in all markings that enables the OR-join task. The objective is
to detect unnecessary OR-join tasks at design time as the non-local semantics of OR-join requires
expensive runtime analysis. This can be detected by lookingat markings in the reachability set that
enable an OR-join task. In Figure 7, OR-join taskD is only enabled when all input conditions are
marked (due to an AND-split taskA) and therefore,D should be modelled as an AND-join instead
of an OR-join.

Definition 5 (Convertible OR-join). Let N be an eYAWL-net andt be an OR-join task inN . OR-
join taskt can be modelled as

– an XOR-join if only one condition in•t is ever marked in the enabling markings oft, i.e.,
∀M∈N [Mi〉(M [t〉 =⇒ ∃!p∈•t(M(p) > 0)),

– an AND-join if for all conditions in•t are always marked in the enabling markings oft, i.e.,
∀M∈N [Mi〉(M [t〉 =⇒ ∀p∈•t(M(p) > 0)).

Fig. 7.A YAWL net with a (convertible) OR-join taskD

Definition 6 (Immutable OR-joins). Let N be an eYAWL-net.N satisfies the immutable OR-joins
property iff for all t ∈ T , join(t) = OR implies thatt is not a convertible OR-join.

3 Formal Foundation

While inspired by Petri nets [16], YAWL should not be seen as an extension of these. YAWL con-
structs such as the OR-join, cancellation and multiple instances are not directly supported by Petri
nets. The cancellation feature of YAWL is theoretically closely related to reset nets. The reset arcs
are used to underpin theremfunction that models the cancellation feature of YAWL. Our verification
approach involves translation of YAWL specifications in terms of reset nets. This translation is made

8

possible by abstracting from multiple instances and hierarchy in YAWL [19]. This approach allows
us to leverage existing results and techniques in the area ofPetri nets and reset nets in particular [8–
13]. In this section, we present the definitions associated with reset nets.

3.1 Reset nets

A reset net is a Petri net with special reset arcs, that can clear the tokens in selected places [10, 11].
Reset arcs do not change the requirements of enabling a transition but when a transition fires, they
will removeall tokens from the specified places.

Definition 7 (Reset net).A Petri net is a tuple (P, T, F) whereP is a set of places,T is a set of
transitions,P ∩ T = ∅ andF ⊆ (P × T) ∪ (T × P). A reset net is a tuple(P, T, F,R) where
(P, T, F) is a Petri net andR ∈ T 9 P(P) provides the reset places for a subset of transitions.

In the remainder of the paper, when we use the expressionF (x, y), it denotes 1 if(x, y) ∈ F and 0
if (x, y) 6∈ F . We writeF+ for the transitive closure of the flow relationF andF ∗ for the reflexive
transitive closure ofF . The notationIM(N) is used to represent possible markings of a reset netN .
Let N = (P, T, F,R) be a reset net, thenIM(N) = P → N. A transition isenabledwhen there are
enough tokens in its input places. Note that reset arcs do notchange the requirements of enabling a
transition.

Definition 8 (Enabling rule). LetN be a reset net,t ∈ T , andM ∈ IM(N). Transitiont is enabled
at M , denoted asM [t〉, if and only if∀p ∈ •t : M(p) ≥ 1.

The concept of firing a transitiont in a netN is formally defined in Definition 9 and denoted
asM

N,t

→ M ′. If there can be no confusion regarding the net, we will abbreviate the expression to
M

t
→ M ′ and if the transition is not relevant we writeM → M ′.

Definition 9 (Forward firing). LetN = (P, T, F,R) be a reset net,t ∈ T andM,M ′ ∈ IM(N).

M
N,t

→ M ′ ⇔ M [t〉∧

M ′(p) =

{

M(p) − F (p, t) + F (t, p) if p ∈ P \ R(t)
F (t, p) if p ∈ R(t).

It is possible to fire a sequence of transitions from a given marking in a reset net resulting in a
new marking using the forward firing rule defined above. This sequence of transitions is represented
as an occurrence sequence.

Definition 10 (Occurrence sequence).Let N = (P, T, F,R) be a reset net andM,M1, ...,Mn ∈

IM(N). If M
t1→ M1

t2→ ...
tn→ Mn are firing occurrences thenσ = t1t2...tn is an occurrence

sequence leading fromM to Mn and we writeM
σ
→ Mn.

We now define the concepts of reachability and coverability of markings from a given marking
in a reset net. A markingM ′ is reachable from another markingM in a reset net, if there is an
occurrence sequence leading fromM to M ′.

Definition 11 (Reachability). Let N = (P, T, F,R) be a reset net andM,M ′ ∈ IM(N). M ′ is
reachable in N fromM , denotedM

N
→ M ′, if there exists an occurrence sequenceσ such that

M
σ
→ M ′.

9

Definition 12 (Coverability). Let N = (P, T, F,R) be a reset net andM1,M2 ∈ IM(N). M2 is
coverable fromM1 in N, if there exists a reachable markingM ′ fromM1 such thatM ′ ≥ M2.

Next, we present two notations:projectionandfiltering to allow operations on selected places of
a marking in a reset net. The notationM [P ′] restrictsM to a set of placesP ′, i.e., a projection.
For places not inP ′, the number of tokens is zero. LetM1 = p1 + p2 + p3 andP ′ = {p1, p2}.
M1[P

′] = p1+p2+0p3 and dom(M1[P
′]) = {p1, p2, p3}. LetM2 = p1+2p2, M2[P

′] > M1[P
′]

is true as the comparison betweenM andM ′ is restricted to the set of places inP ′ andM2 has more
tokens inp2.

Definition 13 (Projection). LetN = (P, T, F,R) be a reset net,M ∈ IM(N) andP ′ ⊆ P . M [P ′]
returns a projection such that dom(M [P ′]) = dom(M) and

M [P ′](p) =

{

M(p) if p ∈ P ′

0 if p 6∈ P ′.

The notationM↾P ′ is used to alter a marking based on a set of placesP ′. LetM = p1+p2+p3
andP ′ = {p1, p2}. M ↾P ′ = p1 + p2 and dom(M ↾P ′) = {p1, p2}. If P ′ = {p1, p2, p3, p4},
M↾P ′ = p1 + p2 + p3 + 0p4 and dom(M↾P ′) = {p1, p2, p3, p4}.

Definition 14 (Filtering ↾). Let N = (P, T, F,R) be a reset net,M ∈ IM(N) andP ⊆ P ′. M↾P ′

returns a function such that dom(M↾P ′) = P ′ and

M↾P ′(p) =

{

M(p) if p ∈ P ′ ∩ dom(M)
0 if p ∈ P ′ \ dom(M).

We conclude this section with the notion ofBackward firingthat is used to generate coverable
markings for a reset net by firing transitions backwards.

Definition 15 (Backward firing). Let(P, T, F,R) be a reset net andM,M ′ ∈ IM(N). M ′ 99Kt M

iff it is possible to fire a transitiont backwards starting fromM and resulting inM ′.

M ′ 99Kt M ⇔ M [R(t)] ≤ t • [R(t)]∧

M ′(p) =

{

(M(p) ¦ F (t, p)) + F (p, t) if p ∈ P \ R(t)
F (p, t) if p ∈ R(t).

For places that are not reset places, the number of tokens inM ′ is determined by the number of
tokens inM for p. If a place is an output place oft and not a reset place, one token is removed from
M(p) if M(p) > 0. If a place is an input place oft and not a reset place, one token is added toM(p).
For any reset placep, M(p) ≤ F (t, p) because it is emptied when firing and thenF (t, p) tokens
are added. We do not requireM(p) = F (t, p) because the aim is coverability and not reachability.
M ′, i.e., the marking before (forward) firingt, shouldat leastcontain theminimalnumber of tokens
required for enablingt and resulting in a marking of at leastM . Therefore, onlyF (p, t) tokens are
assumed to be present in a reset placep.

3.2 Reset WorkFlow Nets (RWF-nets)

In this subsection, we propose a subclass of reset nets called RWF-nets and define soundness and
weak soundness properties for these nets. An RWF-net satisfies the following restrictions. There is
a unique begin place and a unique end place and also every nodein the graph is on a directed path
from the begin place to the end place.

10

Definition 16 (RWF-net). Let N = (P, T, F,R) be a reset net. The netN is an RWF-net iff the
following three conditions hold:

1. there exists exactly onei ∈ P such that•i = ∅, and
2. there exists exactly oneo ∈ P such thato• = ∅, and
3. for all n ∈ P ∪ T ; (i, n) ∈ F ∗ and(n, o) ∈ F ∗.

In an RWF-net, there is an input placei and an output placeo and we now define an initial
markingMi and an end markingMo as follows:

Definition 17 (Initial marking and End marking). LetN = (P, T, F,R) be an RWF-net andi, o
be the input and output places of the net. The initial markingof N is denoted asMi and it represents
a marking where there is a token in the input placei (i.e., Mi = i). Similarly, the end marking of
N is denoted asMo and it represents a marking where that is a toke in the output place o (i.e.,
Mo = o).

We now define two structural properties for an RWF-net:soundnessandweak soundness. The
soundnessdefinition for an RWF-net is based on the soundness definition from [6] for WF-nets. An
RWF-net is sound if and only if it satisfies three criteria:option to complete, proper completionand
no dead transitions.

Definition 18 (Soundness).Let N = (P, T, F,R) be an RWF-net andMi,Mo be the initial and
end markings.N is sound iff:

1. option to complete: for every markingM reachable fromMi, there exists an occurrence se-
quence leading fromM to Mo, i.e., for allM ∈ N [Mi〉 : Mo ∈ N [M〉, and

2. proper completion: the markingMo is the only marking reachable fromMi with at least one
token in placeo, i.e, for all M ∈ N [Mi〉 : M ≥ Mo ⇒ M = Mo, and

3. no dead transitions: for every transitiont ∈ T , there is a markingM reachable fromMi such
thatM [t〉, i.e, for all t ∈ T there exists anM ∈ N [Mi〉 such thatM [t〉.

Note that reachability is not decidable for arbitrary resetnets [11] and hence, its applicabil-
ity is limited to reset nets with finite state space. As the soundness property definition relies on
reachability results, the soundness property is only decidable for an RWF-net with a finite state
space. Fortunately, coverability is decidable for a reset net using the backward firing rule of Defini-
tion 15 [10–13]. We thus propose a weaker property calledweak soundnesswhich can be decided
using coverability results. The weak soundness definition for an RWF-net relaxes the first criterion
and reformulates the second and third criteria using coverability results. For the weak option to com-
plete criterion, it only checks whether it is possible to cover the final markingMo from Mi (i.e.
is there at least a path that leads fromMi to Mo). It does not check whether all paths lead to the
final marking and hence, it will not detect partial deadlocks. Therefore, if an RWF-net satisfies the
soundness property, it also satisfies the weak soundness property but not vice versa.

Definition 19 (Weak soundness).Let N = (P, T, F,R) be an RWF-net andMi,Mo be the initial
and end markings.N satisfies the weak soundness property iff:

1. weak option to complete:Mo is coverable fromMi, and
2. proper completion: there is no markingM coverable fromMi such thatM > Mo, and
3. no dead transitions: for every transitiont ∈ T , there is a markingM coverable fromMi such

thatM [t〉.

11

4 Verifying YAWL nets without OR-joins

In this section, we focus our attention on verification techniques for YAWL nets without OR-joins.
We propose to transform an eYAWL-net (without OR-joins) intoan RWF-net to exploit the analysis
techniques available for reset nets [19]. This is achieved by first abstracting from multiple instances
and hierarchy in YAWL and then applying functiontransE2WFto transform an eYAWL-net into an
RWF-net. Formal definition oftransE2WFis given in [19]. The transformation returns an RWF-net
where input and output conditionsi,o ∈ C map to unique begin and end placesi,o ∈ P in the
corresponding RWF-net and where every node in the graph(P ∪ T ′, F ′) is on a directed path from
i to o.

Lemma 1. LetN = (C, i,o, T, F, split , join, rem,nofi) be an eYAWL-net without OR-joins.N ′ =
transE2WF(N) = (P, T ′, F ′, R) is an RWF-net.

Definition 20 (transE2WF). LetN = (C, i,o, T, F, split , join, rem,nofi) be an eYAWL-net with-
out OR-joins. The function transE2WF(N) returnsN ′ = (P, T ′, F ′, R) such that

P = C ∪ {pt|t ∈ T} is a set of places,
T ′ = Tstart ∪ Tend such that
Tstart = {tS |t ∈ T ∧ join(t) = AND}

∪{tpS |t ∈ T ∧ join(t) = XOR ∧ p ∈ •t},
Tend ={tE |t ∈ T ∧ split(t) = AND}

∪{tpE |t ∈ T ∧ split(t) = XOR ∧ p ∈ t•}
∪{txE |t ∈ T ∧ split(t) = OR ∧ x ⊆ t • ∧ x 6= ∅},

F ′ ={(p, tS)|t ∈ T ∧ join(t) = AND ∧ p ∈ •t}
∪{(tS , pt)|t ∈ T ∧ join(t) = AND}
∪{(pt, tE)|t ∈ T ∧ split(t) = AND}
∪{(tE , p)|t ∈ T ∧ split(t) = AND ∧ p ∈ t•}
∪{(p, t

p
S)|t ∈ T ∧ join(t) = XOR ∧ p ∈ •t}

∪{(tpS , pt)|t ∈ T ∧ join(t) = XOR ∧ p ∈ •t}
∪{(pt, t

p
E)|t ∈ T ∧ split(t) = XOR ∧ p ∈ t•}

∪{(tpE , p)|t ∈ T ∧ split(t) = XOR ∧ p ∈ t•}
∪{(pt, t

x
E)|t ∈ T ∧ split(t) = OR ∧ x ⊆ t • ∧ x 6= ∅}

∪{(txE , p)|t ∈ T ∧ split(t) = OR ∧ p ∈ x ∧ x ⊆ t • ∧ x 6= ∅},
R ={(tE , {pt′ |t

′ ∈ rem(t) ∩ T} ∪ (rem(t) ∩ C))|t ∈ T ∧ split(t) = AND}
∪{(tpE , {pt′ |t

′ ∈ rem(t) ∩ T} ∪ (rem(t) ∩ C))|t ∈ T ∧ split(t) = XOR

∧ p ∈ t•}
∪{(txE , {pt′ |t

′ ∈ rem(t) ∩ T} ∪ (rem(t) ∩ C))|t ∈ T ∧ split(t) = OR

∧ x ⊆ t • ∧ x 6= ∅}
∪{(tE , ∅)|t ∈ T \ dom rem ∧ split(t) = AND}
∪{(tpE , ∅)|t ∈ T \ dom rem ∧ split(t) = XOR ∧ p ∈ t•}
∪{(txE , ∅)|t ∈ T \ dom rem ∧ split(t) = OR ∧ x ⊆ t • ∧ x 6= ∅}
∪{(t, ∅)|t ∈ Tstart}.

A transformation function transE2WF converts a net without OR-joins into the corresponding RWF-
net. FunctionR stores all transitions and its associated reset places. As atask in an eYAWL-net is
now split into a number oftS andtE transitions depending on the split and join behaviour, a placept

12

is introduced for each taskt to represent an internal place betweentS andtE . The flow relationF ′

is also modified so that the newly introduced places inP ′ and transitionsT ′ are properly connected.
Figure 9 shows the RWF-net corresponding to the YAWL net in Figure 2. Placesi ando represent

p1

t

pN

p1

t

pN

t

p1

pN

t

p1

pN

t

p1

pN

tp

p1

pN

tS pt

p1

pN

pt

tS

p1

tS

pN

p1

pN

tEpt

p1

pN

pt

tE

p1

tE

pN

p1

pN

pt

tE

p1

tE

p1N

tE

pN

p tS pt tE

YAWL RWF YAWL RWF

t tS pt tE

Fig. 8.Reset net transformations for YAWL split and join behaviours

Fend

c1

c2

pE

pF
E

start

B
end

I
start

pI

I
end

c3

B
start

c5

Eend
R

Eend
H

R
start

pR

Rend

Fstart
R

cRF

R end
F

C Fstart
C

cCF

Fstart
H

cHF

cFC pC

C
start

C
end

pB

pH

H
endH

start

c4

i o

Fig. 9.Holiday scenario - RWF-net (note: double-headed reset arcs fromc2, c3 andpB to transitionsRF

end and
RC

end)

unique input and output places. We use the following abbreviations for the tasks:Initiate plans- I,
Take exam- E, Book flight- B, Resit exam- R, Cancel flight- C, Finalise plans- F. Each task in
the eYAWL-net has been transformed into the corresponding start and end transitions. For instance,
taskInitiate plansis now represented asIstart andIend with the internal placepI . The cancellation
region associated with theResit examtask is represented by double-headed reset arcs from the places
c2, c3 andpB (the internal place forBook flight) to the end transitions ofResit examtask,RF

end and
RC

end.
Coverability results from reset nets are used to decide three desirable properties for a YAWL

specification:weak soundness, soundness, and irreducible cancellation regions. In this section, as
we are considering only nets without OR-joins, the fourth property, immutable OR-joinshas been
omitted from discussion.

We have formulated the three criteria of the weak soundness property for an RWF-net using the
notion of coverability. As coverability is decidable for a reset net using backwards firing rule as
discussed in [19], the three criteria of the weak soundness property are decidable. TheCoverable
procedure described in [19] is used to determine whether a marking is coverable from the initial
marking in a reset net. We exploit these results to propose analgorithmic approach for deciding the
weak soundness property of an eYAWL-net without OR-joins.

13

The weak option to complete criterion is concerned with whether an eYAWL-net can complete
(i.e., reach the end condition from the initial marking). Therefore, we need to detect whether a
marking that marks the end place (or bigger) can be reached inthe corresponding RWF-net.

Observation 1 Given an eYAWL-net without OR-joins, the weak option to complete can be decided
by testing whetherMo is coverable fromMi in the corresponding RWF-net.

An eYAWL-net is considered to have finished its processing when the unique end condition (o) of
the net is marked. Hence, if it is possible to marko together with any other condition in the net, the
net does not satisfy the proper completion criterion. Usingthe coverable procedure, we test whether
it is possible to marko with any another place in the corresponding RWF-net.

Observation 2 Given an eYAWL-net without OR-joins, proper completion canbe decided by testing
whethero + p is not coverable fromMi in the corresponding RWF-net for allp ∈ P .

A task in an eYAWL-net is a dead task, if it is not fireable at any reachable markings from the initial
marking. We can test the presence of a dead taskt in an eYAWL-net by determining whether its
internal placept is coverable from the initial marking in the corresponding RWF-net.

Observation 3 Given an eYAWL-net without OR-joins, no dead tasks criterion can be decided by
testing whetherpt is coverable fromMi in the corresponding RWF-net for allt ∈ T .

As it is possible to decide these three criteria for weak soundness using coverability results for an
eYAWL-net without OR-joins, the weak soundness property is decidable.

Theorem 1. Given an eYAWL-net without OR-joins, weak soundness is decidable.
Proof: Follows from observations 1, 2 and 3.

Similarly, we use the notion of coverability as defined on reset nets to determine whether an
eYAWL-net without OR-joins satisfies the irreducible cancellation regions property. A condition
should not be in a cancellation region of a task, if that condition never contains tokens when the task
attempts to cancel it. To determine this, we test whether a marking that marks the internal place of
the task as well as the condition is coverable from the initial marking in the corresponding RWF-net.

Observation 4 Given an eYAWL-net without OR-joins, whether a conditionc is reducible in a can-
cellation region oft can be decided by testing whetherc + pt is coverable fromMi in the corre-
sponding RWF-net.

Similarly, a tasktx should not be in a cancellation region of another taskt, if task tx is never active
when taskt attempts to cancel it. To determine this, we test whether a marking that marks the internal
places of both tasks is coverable from the initial marking inthe corresponding RWF-net.

Observation 5 Given an eYAWL-net without OR-joins, whether a tasktx is reducible in a cancella-
tion region oft can be decided by testing whetherptx+pt is coverable fromMi in the corresponding
RWF-net.

Theorem 2. Given an eYAWL-net without OR-joins, whether there is a reducible element (a condi-
tion or a task) in a cancellation region of a task is decidable.
Proof: Follows from observations 4 and 5.

14

For an eYAWL-net without OR-joins and a finite state space, it is possible to decide the soundness
property by generating a reachability graph for the corresponding RWF-net. Figure 10 shows the
reachability graph for the reset net in Figure 9. It is easy tosee whether an RWF-net satisfies the
soundness property by testing the three criteria. If the corresponding RWF-net is sound, then the net
without OR-joins is also sound.

i pI c1+c2

c2+pE

c2+c5

c2+c4 pB+c4 c3+c4 pH cHF

pF o

pR+c2

cRF

c1+c3 pE+c3 c3+c5 c3+pR cFC pC cCF

c1+pB

pB+pE

pB+c5 pB+pR

Fig. 10.Reachability graph for the RWF-net in Figure 9

Observation 6 Given an eYAWL-net without OR-joins and a finite reachability graph, soundness is
decidable.

5 YAWL nets with OR-joins

Section 4 shows how a YAWL net without OR-joins can be transformed and analysed using the
corresponding RWF-net. In this section, we focus our attention on YAWL nets with OR-joins. Due
to the non-local semantics of an OR-join, a net with OR-joinscannot be mapped directly into a
reset net. Even though nets with OR-joins are difficult to define formally, it is important to be able
to decide the correctness of those models. Therefore, it is important to explore which properties
can be detected for YAWL nets with OR-joins. To do this, all OR-joins in a net are first translated
into XOR-joins. This idea is based on the optimistic approach for treatment of OR-joins as defined
in [19]. After replacing all OR-joins with XOR-joins, it is now possible to transform the net into an
RWF-net using the transformation rule.

Even though an XOR-join translation cannot capture the exact semantics of an OR-join, it pro-
vides some insights into the three criteria for the weak soundness property. We show here that there
is a direct relationship between the sets of reachable markings generated by an eYAWL-net with
OR-joins and a corresponding eYAWL-net with XOR-joins and that a reachable marking after fir-
ing an XOR-join task is larger than or equal to the reachable marking after firing the corresponding
OR-join task.

Figure 11 illustrates the comparative markings for these two nets. LetNOR be an eYAWL-net
with an OR-join task,tOR, andNXOR the corresponding eYAWL-net with the XOR-join task,tXOR.
Let MOR

j = MXOR
j be the reachable markings wheretOR andtXOR are enabled. WhentOR fires at

MOR
j , a token is removed from all marked conditions in its preset and a markingMOR

j+1 is reached.
WhentXOR fires atMXOR

j , a token is removed from one of the marked conditions in its preset and
a markingMXOR

j+1 is reached. Hence, the marking reached after firing the XOR-join tasktXOR is

15

larger than or equal to the marking reached after firing the OR-join tasktOR (i.e.,MXOR
j+1 ≥ MOR

j+1).
As a marking with more tokens can enable at least the same transitions as a marking with less tokens,
if MOR

o is a reachable marking inNOR, MXOR
o is also reachable inNXOR whereMXOR

o ≥ MOR
o .

Therefore, we conclude that ifNOR has the weak option to complete thenNXOR will have the
weak option to complete. Similarly, IfNOR has no dead transitions thenNXOR will have no dead
transitions. IfNOR does not have proper completion thenNXOR will not have proper completion.

i j

OR OR

o

i

OR OR

j j+1

j+1

XOR XOR

OR OR

XOR XOR XOR

o

XOR

o

OR

o

XOR

j+1 j+1

ORXOR

j

OR

j

XOR

Fig. 11. Comparative markings between an eYAWL-net with an OR-join and the corresponding eYAWL-net
with an XOR-join

Observation 7 Given an eYAWL-net with OR-joins, if it satisfies weak optionto complete then the
corresponding eYAWL-net without OR-joins (where OR-joinsare transformed into XOR-joins) sat-
isfies the weak option to complete.

Note that this observation does not hold in the opposite direction. A counter example is given in
Figure 12. The model has an AND-split task A, an OR-join task Dand an AND-join task E. The
following occurrence sequence is possible:i

A
→ c1 + c2

B
→ c2 + c3

C
→ c3 + c4

D
→ c5. OR-join

task D will wait for both tasks B and C to complete, before firing and the only reachable marking
from D is c5. To enable E, there should be a reachable markingc4 + c5. As it is not possible to
reachc4 + c5, the model always deadlocks at E. Hence, the model does not satisfy the weak option
to complete criterion. Now, consider the translated version where task D is treated as an XOR-join
task instead. In this case, the following occurrence sequence is possible:i

A
→ c1 + c2

B
→ c2 + c3

C
→

c3 + c4
D
→ c4 + c5

E
→ o. Therefore, the translated net has the weak option to complete property

when the original net with OR-joins does not.

A EC

B

c4

c3

c2

c1 D c5

Fig. 12.This YAWL net with an OR-join taskD always deadlocks atE.

16

Observation 8 Given an eYAWL-net with OR-joins, if it has no dead transitions then the corre-
sponding eYAWL-net without OR-joins (where OR-joins are transformed into XOR-joins) has no
dead transitions.

Observation 9 Given an eYAWL-net with OR-joins, if it does not have proper completion then the
corresponding eYAWL-net without OR-joins (where OR-joinsare transformed into XOR-joins) does
not have proper completion.

We now summarise the decidable criteria for a net with OR-joins using XOR-join translations.

Observation 10 Given an eYAWL-netN with OR-joins, letN ′ be the corresponding eYAWL-net
where all OR-joins ofN have been replaced with XOR-joins andRN be the equivalent RWF-net for
N ′. The following holds:

1. if RN does not satisfy the weak option to complete criterion thenN does not satisfy the weak
option to complete criterion,

2. if RN has dead transitions thenN has dead transitions, and
3. if RN satisfies the proper completion criterion, thenN satisfies the proper completion criterion.

Note that only limited results are available and soundness property is not decidable using this ap-
proach. Therefore, we propose an alternative approach for anet with OR-joins that has a finite state
space. We propose to create a reachability graph by taking into account OR-join semantics. Such a
reachability graph can be constructed using enabling and firing rules as defined in [6] together with
the OR-join semantics defined in this thesis. First, we need away to represent a marking where a task
is in the executing state. By following a similar concept used in the function for the reset net map-
ping, we propose to transform an eYAWL-net before generatingthe reachability graph. The function
unfoldYNet introduces an internal condition to represent the executing state of a task. All tasks in
a YAWL net are split into two tasks (e.g., a taskt is split into a start task,tS , and an end task,tE ,
with an internal conditionpt). If a task is within the cancellation region of another task, its internal
condition is put into the cancellation set instead. The cancellation region of a task is associated with
the end task as the cancellation is carried out just before completing the task. As multiple instance
tasks do not affect the analysis, and hence we abstract from them.

Definition 21 (unfoldYNet). Let N1 = (C1, i,o, T1, F1, split1, join1, rem1,nofi1) be an eYAWL-
net, the function unfoldYNet(N1) returns
N2 = (C2, i,o, T2, F2, split2, join2, rem2,nofi2) such that

C2 = C1 ∪ {pt | t ∈ T1},
T2 = Tstart ∪ Tend such thatTstart = {tS | t ∈ T1} andTend = {tE | t ∈ T1},
F2 ={(c, tS) | (c, t) ∈ F1} ∪ {(tS , pt) | t ∈ T1}

∪{(pt, tE) | t ∈ T1} ∪ {(tE , c) | (t, c) ∈ F1},
split2 = {(tS , AND) | t ∈ T1} ∪ {(tE , split1(t)) | t ∈ T1},
join2 = {(tS , join1(t)) | t ∈ T1} ∪ {(tE ,XOR) | t ∈ T1},
rem2 = {(tE , (rem1(t) ∩ C1) ∪ {pct | ct ∈ (rem1(t) ∩ T1)}) | t ∈ T1},
nofi2 = ∅.

For nets with a finite state space, we can generate a reachability graph. From such a graph, it is
possible to decide whether a net with OR-joins has the soundness property or not.

17

Observation 11 (Soundness)Given an eYAWL-netN with OR-joins and a finite reachability graph,
the soundness property ofN is decidable by testing whether the soundness property holds for the
corresponding net unfoldYNet(N).

Using a finite reachability graph, it is also possible to detect the immutable OR-join property. The
enabling markings for an OR-join task can be observed from the reachability graph of a YAWL-net.

Observation 12 (Immutable OR-joins) Given an eYAWL-netN with OR-joins and a finite reach-
ability graph, the immutable OR-joins property ofN is decidable by testing whether the immutable
OR-joins property holds for the corresponding net unfoldYNet(N).

Similarly, the following observations can be made regarding the existence of reducible cancellation
regions in a net with OR-joins and a finite reachability graph. To determine coverability, we use the
reachability set that has been generated using YAWL semantics.

Observation 13 Given an eYAWL-netN with OR-joins and a finite reachability graph, whether a
conditionc is reducible in a cancellation region oft in the netN can be decided by testing whether
c + pt is coverable fromMi in the corresponding net unfoldYNet(N).

Observation 14 Given an eYAWL-netN with OR-joins and a finite reachability graph, whether a
task tx is reducible in a cancellation region oft in the netN can be decided by testing whether
ptx + pt is coverable fromMi in the corresponding net unfoldYNet(N).

Observation 15 (Irreducible cancellation regions)Given an eYAWL-net with OR-joins and a fi-
nite reachability graph, whether there is a reducible element (a condition or a task) in a cancellation
region of a task is decidable.

6 Verification in YAWL

Although the results of this paper have been presented in thecontext of YAWL, it is important to
realise that the basic ideas can also be applied to other languages supporting cancellation and OR-
joins. The reason that we selected YAWL is that it is a compact language with formal semantics
that is highly expressive. Moreover, the YAWL language is supported by a YAWL editor to create
diagrams and the YAWL engine to enact processes. Both the editor and the engine can be obtained
via www.yawl-system.com.

We have extended the editor to support the verification approach presented in this chapter. The
verification function can perform checks for all four structural properties:weak soundness, sound-
ness, irreducible cancellation regionsand immutable OR-joins. If a YAWL specification contains
multiple nets, diagnosis is given for each net individually. A typical usage scenario is as follows: a
process designer uses the editor to describe a YAWL specification, he/she then performs verification
of certain properties, he/she observes the verification messages, and then makes appropriate changes.
There are two types of verification messages:warningsandobservations. Warnings are given when
the net violates a certain structural property (e.g., the net XYZ does not satisfy the weak soundness
property). An additional warning message is provided for each criterion that is violated and it can
be used to pinpoint the problem areas in the net. Observations are given for each correct criterion.
Figure 13 shows verification messages for the net of Figure 3.

18

Fig. 13.Screenshot of Holiday scenario with errors

Figure 14 displays verification messages for a net with an unbounded place. As stated before,
the reachability algorithm can only be used for a specification with a finite state space. We do not
have a formal means of detecting whether a net has an infinite state space. A pragmatic approach
is taken and the generation of reachable markings is started. The program sets a threshold for a
maximum number of markings to consider during the generation of reachable markings. Note that
the maximum number of markings is currently set to 5000 for testing purposes. The program also
detects whether anout of memoryerror has occurred and this is taken as an indication that themodel
possibly has infinite state space. Figure 15 displays verification messages from the weak soundness
property check for the net with an OR-join task D as shown in Figure 12. The messages state that
the weak soundness property cannot be decided in this case using the coverability results. However,
it is still possible to decide whether the soundness property holds for the net, as we can construct a
reachability graph for the net using the YAWL semantics.

7 Related Work and Conclusion

This paper focuses on the verification of YAWL specifications with and without OR-joins. Petri nets
based techniques have been applied to workflow verification before [1, 2, 5, 17]. In [3], the author
describes how structural properties of a workflow net can be used to determine the soundness prop-
erty. In [18], the authors present an alternative approach for deciding the relaxed soundness property
using invariants. The approach taken results in an approximation of the OR-join semantics and trans-
formation of YAWL nets into Petri nets with inhibitor arcs. However, the use of inhibitor arcs instead
of reset arcs means that this approach cannot detect problems in certain YAWL specifications with
cancellation features. For example, this approach cannot detect problems in the erroneous holiday
scenario described in Figure 3. On the other hand, the approximation of OR-join semantics enables

19

Fig. 14.Screenshot of a YAWL net with an infinite loop

the verification of YAWL nets with OR-joins using invariants.It overcomes one of the limitations
in our approach that reachability analysis has to be performed for a net with OR-joins to decide the
soundness property.

The use of reset nets in workflow verification is original and it has been proposed here to deal
with cancellation and OR-join features of workflows. Our approach involves translation of YAWL
specifications in terms of a subclass of reset nets (RWF-nets)and the use of coverability and reach-
ability results from reset nets for verification [9–13]. We define four desirable properties for YAWL
specifications:weak soundness property, soundness property, irreducible cancellation regionsand
immutable OR-joins. We explore how these properties can be detected in YAWL specifications. For
YAWL nets without OR-joins, reachability and coverability results on the corresponding RWF-nets
are used to detect the soundness property and the weak soundness property. A different approach is
needed for YAWL nets with OR-joins. To detect the weak soundness property, the net is first trans-
formed into a corresponding YAWL net with XOR-joins. We then transform the net into an RWF-net
to determine the weak option to complete, proper completionand no dead transitions criteria. To de-
tect the soundness property of YAWL nets with OR-joins and finite state space, reachability analysis
is performed using YAWL semantics. The main findings in the paper are as follows:

– For YAWL nets without OR-joins, the weak soundness property and the irreducible cancellation
regions property are decidable using coverability resultsfor reset nets.

– For YAWL nets without OR-joins and a finite state space, the soundness property is decidable
using reachability results for reset nets.

– For YAWL nets with OR-joins, only limited results are available using coverability results for
reset nets by first replacing OR-joins with XOR-joins.

– For YAWL nets with OR-joins and a finite state space, the soundness property, the irreducible
cancellation regions property and the immutable OR-joins property are decidable using reacha-
bility results from the YAWL semantics.

20

Fig. 15.Screenshot of a YAWL net with an OR-join task D

Acknowledgements.We would like to thank Lindsay Bradford and Lachlan Aldred for their
assistance during the implementation of verification functionality in the YAWL Editor.

References

1. W.M.P van der Aalst. Verification of workflow nets. In P. Azéma and G.Balbo, editors,Proceedings of
Application and Theory of Petri Nets, volume 1248 ofLecture Notes in Computer Science, pages 407–426,
Toulouse,France, 1997. Springer-Verlag.

2. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal of Circuits,
Systems and Computers, 8(1):21–66, 1998.

3. W.M.P. van der Aalst. Workflow verification: Finding control-flow errors using peti net-based techniques.
In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors,Business Porcess Management:Models, Tech-
niques and Empirical Studies, volume 1806 ofLecture Notes in Computer Science, page 161. Springer-
Verlag, 2000.

4. W.M.P van der Aalst, J. Desel, and E. Kindler. On the Semantics of EPCs: A Vicious Circle. In M. Rump
and F.J. N̈uttgens, editors,Proceedings of the EPK 2002: Business Process Management using EPCs, pages
71–80, Trier, Germany, 2002. Gesellschaft für Informatik, Bonn.

5. W.M.P. van der Aalst, A. Hirnschall, and E. Verbeek. An alternativeway to analyze workflow graphs.
In C. Woo A. Pidduck, J. Mylopoulos and M. TamerÖzsu, editors,Proceedings of the 14th International
Conference on Advanced Information Systems Engineering (27-31 May), volume 2348 ofLecture Notes in
Computer Science, pages 534–552, Toronto, Canada, 2002. Springer-Verlag.

6. W.M.P. van der Aalst and A.H.M ter Hofstede. YAWL: Yet Another Workflow Language.Information
Systems, 30(4):245–275, June 2005.

7. W.M.P van der Aalst, A.H.M ter Hofstede, B.Kiepuszewski, and A.P.Barros. Workflow Patterns.Dis-
tributed and Parallel Databases, 14:5–51, 2003.

8. P.A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. Generaldecidability theorems for infinite-state
systems. InProceedings of the 11th Annual IEEE Symposium on Logic in Computer Science (27 - 30 July),
pages 313–321, New Brunswick, NJ, July 1996. IEEE Computer Society.

21

9. P. Darondeau. Unbounded Petri net Synthesis. In J. Desel, W. Reisig, and G. Rozenberg, editors,Lectures
on Concurrency and Petri Nets, Advances in Petri Nets, volume 3098 ofLecture Notes in Computer Science,
pages 413–428, Eichstätt,Germany, 2003. Springer-Verlag.

10. C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset Nets BetweenDecidability and Undecidability. In
K. Larsen, S. Skyum, and G. Winskel, editors,Proceedings of the 25th International Colloquium on Au-
tomata, Languages and Programming, volume 1443 ofLecture Notes in Computer Science, pages 103–115,
Aalborg, Denmark, July 1998. Springer-Verlag.

11. C. Dufourd, P. Jaňcar, and Ph. Schnoebelen. Boundedness of Reset P/T Nets. In J. Wiedermann, P. van
Emde Boas, and M. Nielsen, editors,Lectures on Concurrency and Petri Nets, volume 1644 ofLecture
Notes in Computer Science, pages 301–310, Prague, Czech Republic, July 1999. Springer-Verlag.

12. A. Finkel, J.-F. Raskin, M. Samuelides, and L. van Begin. Monotonic Extensions of Petri Nets: Forward
and Backward Search Revisited.Electronic Notes in Theoretical Computer Science, 68(6):1–22, 2002.

13. A. Finkel and Ph. Schnoebelen. Well-structured Transition Systemseverywhere!Theoretical Computer
Science, 256(1–2):63–92, April 2001.

14. B. Kiepuszewski.Expressiveness and Suitability of Languages for Control Flow Modelling in Workflows.
PhD thesis, Queensland University of Technology, Brisbane, Australia, 2003.

15. E. Kindler. On the Semantics of EPCs: A Framework for Resolving theVicious Circle. In J. Desel,
B. Pernici, and M. Weske, editors,Proceedings of 2nd International Conference on Business Process Man-
agement, volume 3080 ofLecture Notes in Computer Science, pages 82–97, Potsdam, Germany, 2004.
Springer–Verlag.

16. T. Murata. Petri nets: Properties, Analysis and Applications.Proceedings of the IEEE, 77(4):541–580, Apr
1989.

17. H.M.W. Verbeek.Verification of WF-nets. PhD thesis, Eindhoven University of Technology, Eindhoven,
The Netherlands, June 2004.

18. H.M.W. Verbeek, W.M.P. van der Aalst, and A.H.M ter Hofstede.Verifying Workflows with Cancellation
Regions and OR-joins: An Approach Based on Invariants. Technical Report BETA Working Paper Series,
WP 156, Eindhoven University of Technology, Eindhoven, The Netherlands, 2006.

19. M.T. Wynn, D. Edmond, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Achieving a General, Formal
and Decidable Approach to the OR-join in Workflow using Reset nets. In G.Ciardo and P. Darondeau,
editors,Proceedings of the 26th International conference on Application and Theory of Petri nets and
Other Models of Concurrency (20 - 25 June), volume 3536 ofLecture Notes in Computer Science, pages
423–443, Miami, USA, June 2005. Springer-Verlag.

22

