
Understanding the Challenges in Getting
Together:

The Semantics of Decoupling in Middleware

Lachlan Aldred1, Wil van der Aalst1,2, Marlon Dumas1, and Arthur ter
Hofstede1

1 Faculty of IT, Queensland University of Technology, Australia
{l.aldred,m.dumas,a.terhofstede}@qut.edu.au

2 Department of Technology Management, Eindhoven University of Technology, The
Netherlands

w.m.p.v.d.aalst@tm.tue.nl

Abstract. It is well accepted that different types of distributed archi-
tectures require different levels of coupling. For example, in client-server
and three-tier architectures, application components are generally tightly
coupled, both to one-another and with the underlying middleware. Mean-
while, in off-line transaction processing, grid computing and mobile appli-
cation architectures, the degree of coupling between application compo-
nents and with the underlying middleware needs to be minimised. Terms
such as “synchronous”, “asynchronous”, “blocking”, “non-blocking”, “di-
rected”, and “non-directed” are often used to refer to the level of coupling
required by an architecture or provided by a middleware. However, these
terms are used with various connotations. And while various informal
definitions have been provided, there is a lack of an overarching formal
framework upon which software architects can rely to unambiguously
communicate architectural requirements with respect to (de-)coupling.
This article addresses this gap by: (i) formally defining three dimensions
of decoupling; (ii) relating these dimensions to existing middleware; (iii)
proposing notational elements to represent various coupling integration
patterns; and (iv) proposing an API that supports all the identified cou-
pling patterns.

Keywords: Distributed architectures, Asynchronous/synchronous op-
eration, Distributed objects, Integration, Message Oriented Middleware,
Decoupled Systems

1 Introduction

The field of distributed application integration suffers from longstanding prob-
lems. Different types of middleware have emerged over time to address these
problems using various paradigms. And while existing middleware does help de-
velopers to integrate distributed applications, the diversity of paradigms adopted
by different middleware has created problems on its own which can be sum-
marised as follows: How to conceptualise and manage differences across different
middleware? Indeed, a general framework for middleware remains elusive.

The heterogeneity of contemporary middleware reflects the absence of a con-
sensus on the right set of communication abstractions to integrate distributed
applications [5]. This lack of consensus can be observed even for the most elemen-
tary communication primitives, namely send and receive. As noted by Cypher
& Leu: “the interactions between the different properties of the send and re-
ceive primitives can be extremely complex, and ... the precise semantics of these
primitives are not well understood” [9]. One of the main issues in deriving an
overarching framework for even these basic primitives is the need to support
different levels of coupling.

The supported level of coupling varies from one family of middleware to
another. For instance CORBA [12] is largely based on an RPC paradigm,
often qualified as “tightly coupled”, whereas Message-Oriented Middleware
(MOM) [14] aims at supporting “highly decoupled” interactions. A correlation
can be observed between the level of coupling supported by a middleware and
some conceptual and technical limitations. For example, the developer of an ap-
plication built on top of the Java Message Service (JMS) [13], a member of the
MOM family, may find it relatively difficult to obtain synchronous responses to
messages sent, even when this would simplify the coding of certain distributed
transactions.

A full analysis of middleware would be a daunting task. The set of features
is large, particularly when one considers, for example privacy, non-repudiation,
transactions, time-outs, and reliability. This article focuses on the notion of (de-
)coupling, as it is the source of many distinctions central to the design of dis-
tributed applications. Specifically, the article formulates a framework for char-
acterising levels of coupling. The main contributions of the article are:

– A detailed analysis of the notion of decoupling in middleware and a formal
semantics of various manifestations of this notion in terms of Coloured Petri
Nets (CPNs) [15].

– A collection of notational elements for integration modelling. These nota-
tional elements are given a visual syntax extending that of Message Sequence
Charts (MSCs) [21].

– A classification of middleware in terms of their support for various forms of
(de-)coupling. This classification can be used as an instrument for middle-
ware selection.

– A communication API supporting many coupling/decoupling integration
patterns and a prototype implementation of this API.

The article is structured as follows. Section 2 establishes a nomenclature.
Section 3 formalises a set of coupling dimensions while Section 4 shows how these
dimensions can be composed, leading to a set of coupling integration patterns
that provide a basis for integration modelling. Section 5 discusses how multicast
and automated responses can be incorporated into the proposed dimensions. In
Section 6 these patterns are used to provide a framework for tool comparison.
Section 7 introduces JDecouple: a core middleware API inspired by the proposed
framework. Section 8 discusses related work while Section 9 concludes the work.

2

2 Background

This section defines key terms related to coupling used in the rest of the paper.
An endpoint is a communicating entity – it is able to participate in interac-

tions. It may have the sole capability of sending/receiving messages and defer
processing any information to something else, or it may be able to perform both.

An interaction is an action through which two endpoints exchange informa-
tion [20]. The most basic interaction is a uni-directional message exchange (an
elementary interaction).

A channel is an abstraction of a message destination. Middleware solutions
such as JMS, WebsphereMQ [18], and Microsoft Message Queue (MSMQ) [19]
use the term “queues” to mean basically the same thing, but the crucial point
here is that a channel is a logical address and not a physical one belonging to only
one endpoint. Typically, more than one endpoint can receive messages off one
channel. Thus the sender is able to direct a message to a symbolic destination,
and the receiver may consume messages, in its own way, from the symbolic des-
tination. Channels can be extended with many functions, including the preser-
vation of message sequence [10, 9], authentication, and non-repudiation [14].

A topic is another form of symbolic destination. Like channels many receivers
may consume messages off one topic - the primary difference being that all
receivers get a copy of the message.

A message is a discrete, logical unit of information (containing a command,
state, request, or an event for example) that is transported between endpoints.
Depending on the technology it may contain header elements such as a mes-
sage ID, timestamp, or datatype definition; or it may just contain data. It may
be transactional, reliable, real-time, or delayed. It may be transported over a
“channel”, or even something as simple as a TCP socket.

Using the above nomenclature and following Eugster’s survey of MOMs [10],
three dimensions of decoupling can be identified:

– Synchronisation Decoupling – wherein the thread inside an endpoint does
not have to wait (block) for another endpoint to be in the ‘ready’ state
before message exchange begins.

– Time Decoupling – wherein the sender and receiver of a message do not need
to be involved in the interaction at the same time.

– Space Decoupling – wherein the messages are directed to a particular sym-
bolic address (channel) and not directly to the address of an endpoint.

3 Decoupling Dimensions of an Interaction

In this section we provide CPNs of fundamental types of decoupling for in-
teracting endpoints – based on Eugster’s dimensions identified above. These
dimensions of decoupling have relevance to a large spectrum of middleware, in-
cluding MOM, space-based [11], and RPC-based middleware. CPNs were chosen
for their ability to explicitly model state, parallelism, and data, their strict for-
mal semantics and their graphical syntax. All CPNs have been fully implemented
and tested using CPN Tools [7].

3

3.1 Synchronisation
The critical concept behind synchronisation decoupling is that of “non-blocking
communication”, for either, or both, the sender and receiver. Non-blocking com-
munication allows the endpoints to interleave processing with communication
from the viewpoint of the application’s thread. In the following paragraphs we
introduce some notational elements for various forms of synchronisation decou-
pling as well as a formalisation of these notational elements in terms of CPNs.
While the scope of these CPNs does not include the concept of a “time-out”,
adding it would not overly complicate their design, although it would add some
“clutter”.

Blocking Send. A message send action can either be blocking or non-blocking.
A blocking send implies that the sending application must yield its thread of
control while the message is being transferred out of the local application. It
does not matter if it is passing the message over a wide area network connection
or to another local application. If the send blocks until the message has left the
local application and its embedded middleware, it is blocking. Figure 1(b) is a
CPN of a blocking send. The outer dashed line represents the endpoint while the
inner dashed line represents middleware code that is embedded in the endpoint.
These do not form part of the CPN language and are used only to indicate
architectural concerns.

(a) Notation,
blocking send.

initiate

send

begin

x-port

finish

x-port

msg

ready

init'd

in

progrs

app

contrl
Msg

Msg

Thread

Msg

msg1

t1

thr

thr

msg

msg

Endpoint Application

Embedded

Middleware

process

thr

msg

msg

msg

(b) CPN - blocking send.

Fig. 1. Blocking send. After initialising a send action, the transition “process” cannot
fire until a thread is returned at the end of message transmission.

For readers unfamiliar with CPNs, the next two paragraphs introduce the
notation using Figure 1(b) as an example. The circular nodes are called ‘places’
(e.g. “msg ready”, “app contrl”, and “in progrs”), and they represent potential
states. The rectangular nodes are called ‘transitions’ (e.g. “initiate send”, “begin
x-port”, and “process”), and have the potential to change any CPN from one
state to another. Tokens, e.g. the black dots in the places “msg ready” and “app
contrl”, represent a particular state of the model. Figure 1(b) is in a state where

4

a message is ready to be sent, and the application has control of its own thread.
This is the initial state of the CPN, and is referred to as its ‘initial marking’.
According to the firing rules of CPNs two transitions are concurrently ‘enabled’
(“initiate send” and “process”). When either of these transitions fire it will
consume one token from each of its ‘input places’ and produce one token into
each of its output places. Transitions are only enabled if all of their input places
contain one token. Therefore, if the transition “initiate send” fires the transition
“process” cannot fire until a token returns to its input place (“app contrl”).

In Figure 1(b) the places are type-constrained. For instance the place “msg
ready” can only hold tokens of type Msg – shown as an annotation to its bottom-
right side. The annotations shown at the top-right side of the places “msg ready”
and “app contrl” are references to constant values. The values are used to de-
termine the initial marking of Figure 1(b). For instance the annotation “msg1”
is a constant value of type Msg. Its presence puts a token into the place “msg
ready”. Each arc entering/leaving a place in this CPN is annotated by a variable
– typed according to the place the arc connects to. Arcs leaving transitions can
optionally invoke ML [17] functions. This feature will be used in Section 3.3.

In Figure 1(b), when a message is ready (represented by a token inside the
place “msg-ready”) and the application is ready (represented by a token inside
the place “app-contrl”) the endpoint gives the message to the embedded middle-
ware.1 The endpoint yields its thread of control to the embedded middleware,
getting control back once the message has completely left the embedded mid-
dleware. Inside the embedded middleware the transitions “begin-x-port”, “fin-x-
port”, and the place “in-progress” are placed over the edge of the endpoint. This
denotes that the remote system (receiver endpoint or middleware service) will
bind to the sender by sharing these transitions and the place. The assumption
is that inside the middleware, at a deeper layer of abstraction, systems com-
municate in a time-coupled, synchronisation-coupled manner, regardless of the
behaviour exposed to the endpoint applications. Therefore this CPN may be
“transition bounded” with remote systems.2

In a blocking send there is a synchronisation coupling of the sender applica-
tion (endpoint) with something else – but not necessarily the receiver as we will
show in Section 3.2.

Non-blocking Send. Synchronisation decoupling is observable at the sender in
the form of a non-blocking send [10]. A non-blocking send means that message
transmission and local computation can be interleaved [23]. Figure 2(a) presents
a notation for non-blocking send, based on the MSC notation [21]. Figure 2(b)
defines the concept in CPN form. This Figure, like that of blocking send (Fig-
ure 1) is transition bounded with remote components through the transitions in

1 In this series of CPNs we represent tokens as a black dot. This is not strictly necessary
as the initial markings are shown textually. It is however, a convention we adopt that
is intended to assist their readability.

2 “Transition bounded”, in this context, means that two distributed components share
a transition (action), and must perform it at exactly the same moment.

5

the embedded middleware of the application. Snir and Otto provide a detailed
description of non-blocking send [23].

A

(a) Notation, non-
blocking send.

Embedded

Middleware

initiate

send

begin

x-port

finish

x-port

msg

ready

init'd

in

progrs
app

contrl
Msg

Msg

Thread

Msg

msg1

t1

msg
thr

msg

msgmsg

msg

Endpoint Application

process

thr

(b) CPN of non-blocking send.

Fig. 2. Non-blocking send. The transition “process” can be interleaved with communi-
cation because a thread is not yielded to the embedded middleware.

A non-blocking send is a necessary condition, but not a sufficient condition
to achieve total synchronisation decoupling, which is to say that the receive
action must also be non-blocking. If both send and receive are blocking (non-
blocking) then a total synchronisation coupling (decoupling) occurs. A partial
synchronisation decoupling occurs when the send is blocking and the receive
non-blocking, or vice-versa.

The non-blocking send is a fairly uncommon feature of middleware solutions.
For instance all RPC-based implementations use blocking send. MOM imple-
mentations such as “Websphere MQ” [18] and MSMQ expose only a blocking
send operation for passing messages onto the middleware service. This middle-
ware service can optionally be deployed onto the local host, meaning that the
send operation only blocks while the message is passed between applications on
the same machine. Hence the sender does not block while the message trav-
els through the network. However, this is not always possible, or practical due
to licensing limitations, or the limited computational power of a small device.
We propose that such middleware could be improved by exposing an explicit
non-blocking send in the API.

Blocking Receive. Like message send, message receipt can either be blocking
or non-blocking [9]. The definition of blocking receive is that the application must
put a thread into a waiting state in order to receive the message (ownership of
the thread is usually returned to the endpoint when the message is received).
This means that the receiving application is synchronisation coupled to either
the message sender or the middleware service (depending on whether the block-
ing action waits for an event on the middleware, or the sender). Section 3.2

6

formalises this notion. Figure 3 presents a notation and model for blocking re-
ceive. The transition “initiate receive” of Figure 3(b) is fired the instant the
receiver ‘intends’ to begin waiting for the message, this may even occur before
the message is sent.

B

(a) Notation,
blocking receive.

Embedded

Middleware

rcv

ready

initiate

receive

begin

x-port

finish

x-port
msg

in

in

progrs

thread

Msg

Thread

Msg

msg

msg

thr

thr

msg

thr

t1

thr

Endpoint Application

process

thr

Thread

(b) CPN of blocking receive.

Fig. 3. Blocking receive. A thread must be yielded to the embedded middleware until
the message has arrived.

Non-blocking Receive. The non-blocking receive occurs when the applica-
tion can receive a message, without forcing the current thread to wait. This is
illustrated in Figure 4.

B

(a) Notation, non-
blocking receive.

Embedded

Middleware

rcv

ready

initiate

receive

begin

x-port

finish

x-port
msg

in

in

progrs

thread

Msg

Thread

Msg

msg

msg

thr

msg

thr

t1

thr

Endpoint Application

process

thr

Thread

(b) CPN of non-blocking re-
ceive.

Fig. 4. Non-blocking receive. A thread need not be yielded to the middleware in order
to receive.

A well-known embodiment of non-blocking-receive is the event-based handler
described in JMS [13]. Once a handler is registered with the middleware it is
called-back when a message arrives. The Message Passing Interface (MPI) pro-

7

vides another embodiment of non-blocking receive that is not event-based [23],
wherein the receiver polls for the presence of a new message.

Non-blocking receive, as an integration abstraction, seems less popular than
blocking receive. This is probably because blocking receive interactions are sim-
pler to program and debug [14]. One frequently observes statements about the
merits of an asynchronous architecture. While such statements may be valid,
they usually refer to the value of time-decoupled systems, not synchronisation-
decoupled systems. Therefore the synchronisation dimension presented in this
section is orthogonal to the general usage of the word “asynchronous” in the
integration community.

3.2 Time

The dimension of time decoupling is crucial to understanding the difference be-
tween many peer-to-peer middleware paradigms and server-oriented paradigms
(e.g. MPI versus MOM). In any elementary interaction time is either coupled or
decoupled.

Time-Coupled. Time-coupled interactions are observable when communica-
tion can not take place unless both endpoints are concurrently connected. In
time-coupled systems the message begins by being wholly contained at the sender
endpoint. The transition boundedness of endpoints can guarantee that the mo-
ment the sender begins sending the message, the receiver begins receiving. The
concept is presented in Figure 5 wherein the endpoint applications are joined
directly at the bounding transitions (“begin x-port” and “fin x-port”). Time-
coupled interactions accord with the general usage of the word “synchronous”.
Figure 5 does not show the end-points. The “sends” and “receives” may be
blocking or non-blocking. Hence, Figure 5 should be seen in conjunction with
the earlier figures.

A B

T
im

e

(a) Notation, time coupled.

begin

x-port

finish

x-port

in

progrs

msg

msg

Embedded

Middleware

Embedded

Middleware

msg

msg
Msg

Endpoint ApplicationEndpoint Application

(b) CPN of time coupled messaging.

Fig. 5. Time coupling is characterised by transition-bounded systems.

8

Time-Decoupled. Time-decoupled interactions allow messages to be ex-
changed irrespective of whether or not each endpoint is concurrently operational.
To achieve time decoupling a third endpoint is needed, that both the sender and
receiver can access. Time-decoupling is presented in Figure 6. The two end-
points, and the middleware service are again transition bounded. However now,
the middleware service is able to buffer the message, as captured by the place
“buffr’d”.

A B

T
im

e

(a) Notation, time decou-
pled.

begin
x-port

finish

x-port

in

progrs

msg

msg

Embedded

Middleware
Embedded

Middleware

msg

msg

Msg

Middleware Service Endpoint ApplicationEndpoint Application

begin
x-port

finish

x-port

in

progrs

msg

msg

Msg

buffr'd

msg

msg

Msg

(b) CPN of time decoupled messaging.

Fig. 6. Time decoupling is characterised by the presence of an intermediate endpoint.

MOM solutions such as Websphere MQ and MSMQ can be deployed in a
“hub and spoke” arrangement, which is truly time-decoupled. An alternative
arrangement is the “peer to peer” topology. In such a topology the sender end-
point and middleware service are deployed on the same host. This latter topology
may seem time-decoupled, but it is not because interactions can only take place
if both hosts are concurrently connected to the network. This may be a problem
for endpoints on hosts with unreliable network connections, e.g. mobile devices.

3.3 Space

Space is the final dimension of decoupling considered in this taxonomy.

Space Coupled. For an interaction to be space coupled the sender uses a direct
address to send the message to. The sender has information that identifies the

9

receiver endpoint uniquely within its environment. This can be, for example,
location data, or other data that can be resolved into location data. Figure 7
presents the concept of space coupling. Our CPNs of the space dimension are
incorporated together, and presented at the end of this section. Space-coupled
interactions always involve one sender interacting with one of one receiver.

A B

Fig. 7. Notation, space coupled. The sender directly addresses the receiver.

Space Decoupled. Space decoupled interactions on the other hand allow a
sender to send a message without requiring explicit knowledge of the receiver’s
address. Decoupling in space generally makes architectures more flexible, and
extensible.

A B

(a) Channel - the first re-
ceiver gets the message.

A B

(b) Topic - all receivers get
the message.

Fig. 8. Extensions to MSCs representing two forms of space decoupling.

There are two distinct forms of space-decoupling. Space-decoupled architec-
tures permit one sender to interact with one of many receivers (over a channel) or
many of many receivers (over a topic), without uniquely identifying the receiver.
Figure 8 introduces extensions to MSCs that present notations for “channel” and
“topic” based interactions.

In Figure 9, the transition “begin x-port” decomposes to the sub-net in Fig-
ure 10.3 This captures the three options of the space dimension into the CPNs.
The places “new subscr”, “subscriptions” and transition “subscribe” model the
ability for receiver endpoints to subscribe to destinations. Each receiver has its
own unique application ID (type Apid). Hence a new subscription token (i.e.
“apID, dest”) is an endpoint/application ID combined with the relevant des-
tination. Transition “subscribe” takes this token and appends it to the list of
subscriptions represented by the token in place “subscriptions”.

3 Sub-nets can be used to hide details. Specifically, a transition can be decomposed
into a sub-net and by replacing this “substitution transition” by its decomposition
one obtains its semantics.

10

begin

x-port

finish

x-port

in

progrs

Embedded

Middleware

Middleware

ApidMsg

Endpoint ApplicationEndpoint Application

(apID,msg)

(apID,msg)

init'd

sub-

scribe
subscr-

iptions

new

subscr

DestMsg

SubscrSet

[]

ApidDest

[(9,top7),

(10,top7),

(1,adr1)]

(apID,dest)

[isTopic(dest) orelse

(isAddr(dest) andalso

not(eltS(dest, subs)))]

subs

(apID,dest)::subs

rcv

ready
ApidDest

msg

in
ApidMsg

Allocate

Fig. 9. CPN presenting a semantics for the space dimension. The transition “begin
x-port” has been annotated with a box labelled “Allocate”, which means that this
transition decomposes to a sub-net (see Figure 10).

In the CPN of Figure 9 any topic, channel, or address can be bound to a
message and put into the place “init’d” (which is typed DestMsg). In order for
any message receipt to occur, a token must enter the receiver’s place “rcv ready”.
This place is typed ApidDest and it identifies the receiver’s application ID and
the destination to consume the message from.

� � � � � � � � � 	

� � � � � � � � � 	

�
 � � � � � � � � � � � � � � � � �
 � 	 �
� � � � � � � � � 	

� � � � � � �
� � � � � � � � � 	 � � � � � � � � � � � � � � � 	 �

� � � � � � � � � 	

� � � � � � � � � 	

� � � � � � � 	

� � � � � � � � � 	� � � � � � � � � � 	

� � � � � � � � � 	� � � � � � � � � 	

� � � � � � � � � 	

� �
 � � �
 �

� � � � � � � �
� � � � � 	

 � � � �
� �

� � � � � � � � � � � � � �
� � � � � � � � �
 � 	 �

 � � � �
� � � �

� � � � � � � � � � �
� � � � � � � � 	 �

 � � � �
� � � � �

� � � � � � � � � � � � � � 	 �

� � � �
� � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � 	 �

� � � � �

� � � � �
� � � � � � �

� �

� �
� � � � � �

� � � � � �� � �

� � � � � � �
 ! � � � �

� � �
� � � "

� � � � � � �� �

� �
 � � � #
� � � � � � � $ �
 � � � $ � �

� % �

Fig. 10. This CPN is the sub-net of transition “begin x-port” in Figure 9.

Figure 10 presents the sub-net decomposition of the transition “begin x-port”
(from Figure 9). This CPN distributes each message to the right receiver/s,
in accordance with the expected semantics of the destination type (i.e. topic,
address, or channel). The input places (“init’d” and “rcv ready”), the output
place (“in progrs”), and the input/output place (“subscriptions”) correspond
to the similarly labelled places of the parent net (Figure 9). Channel bound
messages will only fire the transition “begin chan” when there is a token in each

11

input place that identify the same channel. The transition “begin addr” fires
when the input tokens refer to the same address, and the application id (“aID”)
exists in the subscription set (“subs”)4. Firing the transition “begin topic” only
requires an input token identifying a topic-message, then the application IDs
in the subscription set “subs” (a set of <application-ID, destination> pairs)
that are subscribed to that that topic effectively are allocated a copy of the
input message. Each subscriber can then obtain, or peel off, its copy of the
message using the same technique as for addresses and channels, i.e. by putting
a token into the input place “rcv ready”. Hence while the interface for each of
the three options of space coupling are consistent, the way messages get bound
to application-IDs is different.

Thus, direct addressing supports interactions between a sender and only one
receiver. Channels send the message to one of many receivers, and topics to all
of many receivers.

Having used a formal modelling technique to demonstrate these different
behaviours with the same interface, of course has several uses: Firstly, it improves
the conceptual rigour of implementations based on these models (see Section 7),
secondly it can provide the opportunity to mathematically prove some properties
about integration.

3.4 Summary

The dimensions of decoupling included “synchronisation decoupling” (with its
four options), “time decoupling”, and “space decoupling” (with its three op-
tions). Each dimension has its own precise behaviour and semantics, and were
introduced in a graphical notation based on MSCs, and more precisely as CPNs.
The CPNs shared similar structure and place names, which provides a hint of
how to combine these dimensions together, while preserving their individual se-
mantics.

4 Combining Synchronisation, Time, and Space

We contend that the dimensions of decoupling presented in the previous section
are orthogonal to each other. Hence models integrating all aspects may be com-
posed from options along each of the three dimensions, and so can the CPNs of
Section 3 that capture the semantics of the individual dimensions. These com-
bined models then define a precise overall behaviour.

The set of achievable combinations, of these dimensions, can be used as a
palette of ways to couple/decouple systems and can thus be applied to an inte-
gration problem or to the selection of an appropriate middleware product.

4 We assume that the process of an application claiming an address is related to a
receiver subscribing to a topic; the difference being that only one application can
ever claim an address for any state of the CPN. Hence we consider an address not
to be a hardware address necessarily but a datum identifying the receiver.

12

Any option (of the four) for synchronisation can be combined with any option
(of the two) for time, which in turn can be combined with any option (of the
three) for space. Hence, for one-directional messaging, there are twenty four
(22 ∗ 2 ∗ 3 = 24) possible ways to combine these three dimensions, each with its
own precise behaviour.
Composing Petri nets. Our attempts at combining these dimensions, using
CPN Tools, have indicated the dimensions are indeed orthogonal. Therefore any
CPN from each of the dimensions can be combined with any CPN from any
other dimension. For all possible (de-) coupling combinations, the semantics and
behaviour are identical to those of each dimension’s CPN in isolation. Further-
more the behaviour of the combined CPN still exhibits the behaviour implied
by its constituent source CPNs. This means one can create integration models
that are precise, and unambiguous thereby allowing a degree of strong separation
between a model of integration, and the technologies used to achieve it.

Merging these CPN requires minor modifications. Due to space constraints we
will present the modifications we made to create two of the twenty four possible
merged CPNs. The other twenty two possible CPNs can be created similarly.

Figure 11 models a synchronisation-coupled, time-coupled, space-coupled
combination. Our first step was to start with the blocking send (Figure 1(b)) and
blocking receive (Figure 3(b)), and join these two CPNs together along their sim-
ilarly labelled nodes “begin x-port”, “in progrs” and “finish x-port”. This merged
CPN is time-coupled, and therefore we do not add any intermediate detail be-
tween the blocking send and the blocking receive.

initiate

send

msg

ready

init'd

DestMsg

DestMsg

id1

(addr,msg)

(addr, msg)

Endpoint Application

Embedded

Middleware

Embedded

Middleware

rcv

ready

initiate

receive

msg

in

thread

ApidMsg

AppID

ApidMsg

(apID, msg)

(apID,
addr)

t1

Endpoint Application

begin

x-port

in

progrs

finish

x-port

(apID,msg)

app

contrl
Thread

t1

thr

thr

process

thr

process

apIDApidDest
Allocate

msg

req

apID

ApidDest

(apID,addr)

(1,a1)

apID

Fig. 11. Petri net of a synchronisation-coupled, time-coupled, space-coupled interac-
tion between endpoints.

To produce Figure 11 we changed the types of selected places, and arcs to
account for the space dimension. We extended the type (from Msg to DestMsg) for
the places “msg ready” and “init’d”, and likewise extended the arc variables. We
also extended the type (from Thread to ApidDest) for the place “rcv ready” and

13

a new place “msg req”. This represents a type identifying the receiver (Apid) and
the Channel/Topic/Address (Dest). The place labelled “thread” was extended
from Thread to Appid, and the places “msg in” and “in progrs” were extended
from Msg to ApidMsg. The final step we performed to create Figure 11 was to
add the sub-net “Allocate” (Figure 10) to the transition labelled “begin x-port”.

A second example of merged CPNs is presented in Figure 12. It models a
synchronisation-decoupled, time-decoupled, space-decoupled (channel) interac-
tion pattern. Being time-decoupled we added a “middleware service” between
the sender and receiver, and stitched the boundary nodes (transitions and places)
of the sender and receiver to this service.

Embedded

Middleware

initiate

send

msg

ready

init'd

DestMsg

DestMsg

[ch1,msg1]

(ch,

msg)

(ch,msg)

Endpoint Application

begin

x-port

finish

x-port

in

progrs

Middleware Service

buffr'd

DestMsg

Embedded

Middleware

begin

x-port

finish

x-port

in

progrs

ApidMsg

(apID,

ch)

Endpoint Application

(ch,msg)

(ch,msg)

(apID,msg)

(apID,msg)

app

contrl
Thread

t1

thr

process

thr

initiate

receive

msg

in

thread

AppID

ApidMsg

(apID,ch)

t1

process

apID
ApidDest

DestMsg

Allocate

rcv

ready

msg

req

ApidDest

(1,ch1)

apID
(ch,

msg)

(ch,msg)

Fig. 12. CPN of a synchronisation-decoupled, time-decoupled, and space-decoupled
interaction.

In Figure 12 we extended the type of selected places of the sender and re-
ceiver using the same approach presented for creating Figure 11. The type for
the places “buffr’d” and the sender side “in progrs” was also extended (from
Msg to DestMsg). Finally we added the sub-net “Allocate” to the transition la-
belled “begin x-port”. However, being time decoupled, the modification is only
performed to the transition on the receiver side.

In summary we have presented a method for binding a sender CPN to a
receiver CPN, and an optional, intermediate buffer CPN (used if the systems
are time-decoupled).

Graphical Notation of Compositions. To create a graphical notation for
the twenty four combinations we merge the graphical notations from each op-
tion of a dimension (from Section 3) with each option from each of the other
two dimensions. Figures 13, 14, and 15 present these. These graphical illustra-
tions are further extensions to MSCs [21], and are obtained by “overlaying” the

14

C1) Blocking-send, Blocking-
receive, Time-coupled, Space-

coupled

C4) Non-blocking-send, Non-
blocking-receive, Time-coupled,

Space-coupled

C5) Blocking-send, Blocking-
receive, Time-decoupled, Space-

coupled

C6) Non-blocking-send, Blocking-
receive, Time-decoupled, Space-coupled

A B

A B

A B

C2) Non-blocking-send, Blocking-
receive, Time-coupled, Space-

coupled

C3) Blocking-send, Non-blocking-
receive, Time-coupled, Space-

coupled

C7) Blocking-send, Non-blocking-
receive, Time-decoupled, Space-coupled

C8) Non-blocking-send, Non-blocking-
receive, Time-decoupled, Space-

coupled

A B

A B

A B

A B A B

Fig. 13. Notations for the coupling integration patterns – space-coupled communica-
tion.

notations for decoupling introduced in Section 3. They are numbered from one
to twenty four, and represent different patterns of coupling integration.

We contend that this set of coupling integration patterns can be used in
defining requirements during system analysis and design. Each pattern has its
own specific, unambiguous behaviour. Furthermore they are sufficiently different
that some will be more suitable to a given integration problem than others. For
instance a multiplayer real-time strategy game would not have much use for
time-decoupled interactions.

15

C9) Blocking-send, Blocking-receive,
Time-coupled, Space-decoupled-

channel

C10) Non-blocking-send, Blocking-
receive, Time-coupled, Space-

decoupled-channel

C14) Non-blocking-send, Blocking-
receive, Time-decoupled, Space-

decoupled-channel

A B A B

C11) Blocking-send, Non-blocking-
receive, Time-coupled, Space-

decoupled-channel

A B

C12) Non-blocking-send, Non-blocking-
receive, Time-coupled, Space-

decoupled-channel

A B

C13) Blocking-send, Blocking-
receive, Time-decoupled, Space-

decoupled-channel

C15) Blocking-send, Non-blocking-
receive, Time-decoupled, Space-

decoupled-channel

C16) Non-blocking-send, Non-blocking-
receive, Time-decoupled, Space-

decoupled-channel

A B A B

A B A B

Fig. 14. Notations for the coupling integration patterns – space-decoupled channel.

Example. Consider a hospital that needs to integrate a Business Process Man-
agement (BPM) system and a proximity sensor system to send requests to med-
ical staff based on their skills and location. Each medical staff is given a mobile
device that relays location information to a central system. The BPM system
uses this information to allocate work items to perform patient care services in
an efficient, timely manner.

The challenge is to design a conceptually clean, integration model accounting
for the varying levels/types of connectivity between distributed systems, and
mobile resources. Clearly the mobile devices will not always be connected to the
central system (due to varying levels of signal availability), and therefore the use

16

C17) Blocking-send, Blocking-
receive, Time-coupled, Space-

decoupled-topic

C18) Non-blocking-send, Blocking-
receive, Time-coupled, Space-

decoupled-topic

C22) Non-blocking-send, Blocking-
receive, Time-decoupled, Space-

decoupled-topic

A B A B

C19) Blocking-send, Non-blocking-
receive, Time-coupled, Space-

decoupled-topic

A B

C20) Non-blocking-send, Non-blocking-
receive, Time-coupled, Space-

decoupled-topic

A B

C21) Blocking-send, Blocking-
receive, Time-decoupled, Space-

decoupled-topic

C23) Blocking-send, Non-blocking-
receive, Time-decoupled, Space-

decoupled-topic

C24) Non-blocking-send, Non-blocking-
receive, Time-decoupled, Space-

decoupled-topic

A B A B

A B A B

Fig. 15. Notations for the coupling integration patterns – space-decoupled topic.

of non-blocking send is advisable. Hence messages to and from mobile devices
could be stored until the signal is restored. New mobile devices might need to be
added to the system and device swapping may occur – which should not break
the integration. Therefore space decoupling is required, but we do not want to
notify many instances of the same resource with the same work request, thus
ruling out publish-subscribe. Finally, it is likely that the mobile devices have
intermittent connectivity and therefore time decoupling between mobile devices
and the central system is necessary.

Based on these requirements it is clear that one should use coupling integra-
tion pattern ‘14’ (Non-blocking-send, Blocking-receive, Time-decoupled, Space-

17

decoupled-channel) or pattern ‘16’ (Non-blocking-send, Non-blocking-receive,
Time-decoupled, Space-decoupled-channel) for the hospital integration project.

5 Beyond the Dimensions

Some aspects of integration, such as multicast, and different forms of response
constitute equally fundamental requirements for integration problems. Hence
their relationship with the dimensions of coupling are described in this section.

5.1 Multicast and Message Joining

Multicast involves sending a message to many receivers. This is orthogonal to
the space dimension, and in particular, publish subscribe. Indeed multicast cor-
responds to a set of interactions to several destinations. It can be achieved by
performing several interactions in parallel or any order. Each of these interac-
tions may have as a destination, an address, an channel, or a topic.

The converse to multicast is the multiple message join. Essentially messages
from many senders get served to the receiving application/endpoint as an aggre-
gated batch. Once again, this is orthogonal to the dimensions of (de-) coupling.
Support for multicast and message join are useful features of a messaging solu-
tion. Thus they are strongly related but do not cut into the coupling dimensions.

5.2 Supporting response and fault notification
The analysis of (de-) coupling has thus far only accounted for uni-directional
messaging. Since many middleware solutions support both uni-directional and
bi-directional messaging we consider the investigation of coupling, in the context
of bi-directional messaging, to be essential.

Bi-directional messaging, and specifically request-response interactions, en-
compass three additional concepts on top of those presented before: delivery
receipt, response, and application-level fault. A delivery receipt (i.e. system ac-
knowledgement) is a message emitted by the middleware to indicate to the send-
ing endpoint, that its message has been successfully received. A delivery receipt
does not imply that the targeted endpoint has processed the message – just that
it has received it. A response is a message from endpoint E2 to an endpoint E1,
following the receipt and processing of a previous message from E1 to E2. Finally
an application-level fault is a special type of response indicating that an error
occurred during the processing of the first message by E1. The CPNs presented
here do not deal with networking faults, only with application level faults.

RPC-based middleware supports a “solicit-response” message pattern for
the client, and a “request-response” message pattern for the server. However,
highly decoupled systems support request-response interactions and fault noti-
fication to varying degrees. It can be observed that middleware solutions and
standards generally amalgamate request-response patterns with time-coupled,
synchronisation-coupled patterns of interaction. For example Axis [3] (be-
ing time-coupled, and using synchronised sender) supports responses, as is

18

CORBA [12]. On the other hand time-decoupled solutions such as Linda [11],
and MSMQ provide no direct support for request-response interactions.

There are some minor exceptions to this general observation, such as the
JMS API, which through its QueueRequestor and TopicRequestor, provide some
support for request-response interactions over a queue (channel) and a topic re-
spectively. However the responder must explicitly extract the return queue/topic
from the request, and use it to direct the response. These classes do not support
propagating receiver exceptions and the TopicRequestor returns only the first
response and ignores the responses of all other subscribers.

initiate

send

begin

x-port

finish

x-port

msg

ready

init'd

in

progrs
app

contrl
IdMsg

Msg

Thread

Msg

msg1

t1

thr

msg

msg

Endpoint Application

process

thr

msg

(id,msg)

(id,msg)

begin

respnse

finish

respnse

in

progrs
IdResp

(id,res)

await

MsgID

id MsgID

id
id+1

id

id

(id,res)

1
result

(id,res)

IdResp

0
Middleware

(a) CPN of blocking send with re-
sponse, or delivery receipt.

initiate
send

begin
x-port

finish

x-port

msg

ready

init'd

in

progrs
app

contrl

Msg

Thread

Msg

msg1

t1

thr

msg

msg

Endpoint Application

process

thr

id MsgID

id
id+1

IdMsg

(id,msg)

(id,msg)

begin

respnse

finish

respnse

in

progrs
IdResp

(id,res)

(id,res)

msg

await

IdThread

result

IdResp

(id,res)

0

id

id

Middleware

(b) CPN of non-blocking send
with response, or delivery receipt.

Fig. 16. Extended CPNs dealing with synchronisation and sending. The changes made
to the related CPNs from Section 3 are black, while the unchanged elements are grey.

Therefore users of time-decoupled solutions are typically forced to use work-
arounds to implement request-response interactions. The designers of time-
decoupled solutions appear to overlook these types of interactions despite the
fact that they are an essential requirement for many forms of distributed com-
puting. The CPN models from Section 3 covering synchronisation and time were
extended to optionally support request-response interactions, fault notification,
and/or delivery receipt. These extended CPNs (see Figures 16 and 17) indeed
preserve the original orthogonality of time, space, and synchronisation. In Fig-
ure 16 the structure of the boundary nodes (“begin x-port”, “in progrs”, “fin-
ish x-port”, “begin respnse”, and “finish respnse” in either CPN is identical.
The major difference being that Figure 16(a) waits for the result, whereas Fig-

19

ure 16(b) continues processing immediately. The application in Figure 16(b) can
rendezvous with the result when it is ready.

rcv
ready

initiate
receive

begin
x-port

finish

x-port

msg

in

in

progrs

app

contrl

IdMsg

Thread

IdMsg

(id,msg)

(id,msg)

thr

thr

t1

thr

Endpoint Application

process

thr

Thread

begin

respnse

finish

respnse

in

progrs
IdResp

(id,res)

(id,res)

recv'd

(id,msg)

(id,"OK")

(id,res) IdResp

1

Embedded

Middleware

(a) CPN of blocking receive with
delivery receipt.

rcv

ready

initiate
receive

begin
x-port

finish

x-port

msg

in

in

progrs

app

contrl

IdMsg

Thread

IdMsg

(id,msg)

(id,msg)

thr

(id,msg)

thr

t1

thr

Endpoint Application

process

thr

Thread

begin

respnse

finish
respnse

in

progrs
IdResp

(id,res)

(id,res)

process

msg

resp

ready

(id,msg)

(id,

getResult

(thr,msg))
IdResp

(id,

res)

thr

Embedded

Middleware

(b) CPN of non-blocking-receive
with response.

Fig. 17. Extended CPNs that deal with synchronisation and receiving in a request-
response interaction. The changes made to the related CPNs from Section 3 are black,
while the unchanged elements are grey.

One can observe that the alternative CPNs of Figure 17 do preserve their
blocking and non-blocking behaviour respectively. The CPN for blocking receive
(Figure 17(a)) includes the return of a delivery receipt, whereas non-blocking-
receive (Figure 17(b)), includes the return of a response/fault. A delivery receipt
is not intrinsic to blocking receive, just as responses and fault notification are
not intrinsic to non-blocking-receive. They are presented in these CPNs as al-
ternatives, a choice more inspired by expediency.

We have seen that it is necessary to extend the CPNs for synchronisation in
order to cover responses. It is also necessary to extend the CPNs for the dimen-
sion of time. Figure 18 (request, optional response, time-decoupled) shows that
the response is generated by the intermediate point of the interaction. This means
that for time-decoupled interactions the semantics that two systems can interact
without being active concurrently is preserved. The place “resp ready” stores and
returns a signal to the sender indicating the message has been buffered, and is
ready for the receiver to retrieve. If the case arises that the sender still wishes to
retrieve a response from the actual receiver in a time-decoupled manner, the CPN
of Figure 18 allows for this by providing an optional response polling service.
This is started at the place “polling” and continues through transition “bgn td

20

Endpoint ApplicationEndpoint Application

begin

x-port

finish

x-port

in

progrs

msg

(id,msg)

IdMsg

Middleware Service

begin

x-port

finish

x-port

in

progrs
buffr'd

begin

respnse

finish

respnse

in

progrs
IdResp

begin

respnse

finish

respnse

in

progrs
IdResp

resp

ready

bgn td

respnse

fin td

respnse

in

progrs

(id,res)

id

idid+1

0

IdMsg IdMsg
(id,msg)

(id,msg)

(id, msg)

(id,msg)

(id,msg)

(id,msg)

polling

MsgId

ready

IdRespid

(id,res)

(id,res)

(id,res)

(id,res) (id,res)

(id,res)(id,res)

recv'd

IdResp

IdResp

(id,'Bufrd')

Middleware Embedded

Middleware

Fig. 18. Time decoupling, extended to cover request-response interactions.

respnse”. We do not include the extended CPN for “time-coupled” interactions,
because it is a trivial extension of Figure 5(b).

We consider that the use of the response mechanism presented here should be
optional. Implementations that provide this range of integration services should
not force users to use, or even retrieve responses. However it would seem sensible
if implementations, like the CPNs consistently performed responses, and simply
left it optional for the clients to retrieve them.

We have concluded that in fact delivery receipts (system acknowledgements),
responses, and faults can be added to the semantics of blocking/non-blocking,
time-coupled/time-decoupled topologies without interfering with their original
semantics, as defined in Section 3. Therefore it would be useful, when comparing
middleware solutions in terms of their coupling, to also take into account their
relative support for alternative patterns of response. Based on our models and
our survey of middleware solutions/standards, these include:

21

– Preprocess acknowledgement – a signal, provided by the middleware, is re-
turned to the sender indicating the successful receipt of the message.

– Postprocess acknowledgement – a signal, provided by the middleware,
gets returned to the sender indicating that the message was successfully
processed.

– Postprocess response – a response, containing information provided by the
receiver, gets returned to the sender.

– Postprocess fault – an exception/fault occurs in the receiver while processing
the message, and information about this gets propagated back to the sender.

– Blocking-receive acknowledgement – the sender blocks for the response.
– Non-blocking receive acknowledgement – the sender thread can use a non

blocking technique to receive the acknowledgement/response message.

The options for responding to a message do not interfere with the semantics
of coupling and decoupling. For example, time-decoupling enables, but does not
force “fire and forget” interactions. Likewise, a blocking-send does not imply a
response, and a non-blocking send does not imply the lack of one. The primitives
of coupling and their formal semantics help clarify this orthogonality despite the
support (or lack thereof) by solutions and standards.

6 Comparison of Middleware Solutions and Standards
The twenty-four coupling integration patterns identified in Section 4 can be used
as an instrument for evaluating middleware solutions and standards – in terms of
their support for different forms of (de-) coupling. To illustrate this proposition,
we have evaluated the following: Java-spaces5, Axis [3], CORBA [12], JMS6,
Websphere MQ7, MSMQ [19], MPI8, and the JDecouple API (introduced later
in this article).

In most cases the documentation (as opposed to products) for these stan-
dards and solutions was used as a guide to determine their degree of support for
these patterns. The results of this evaluation are presented in Table 1. Solutions
that directly support a pattern are given a plus (‘+’). Those able to support
a pattern using minor work-arounds are given a plus minus (‘+/–’), and those
requiring greater effort are assigned a minus (‘–’). A detailed rationale behind
these assessments is provided in Appendix A.

The coupling integration patterns (C1 - C24) correspond to the patterns in
Figures 13, 14, and 15. In addition there are two patterns related to multicast
(see Section 5.1) and six patterns related to the generation and handling of
responses (see Section 5.2).

The hospital scenario from Section 4 requires either patterns C14 or C16. The
table shows that only JMS, Websphere MQ, and MSMQ provide any support
for patterns C14 and C16, and their support is only partial.
5 Java Spaces http://java.sun.com/developer/products/jini/index.jsp, ac-

cessed June 2006.
6 J2EE-SDK V. 1.4, http://java.sun.com/products/jms/, accessed June 2006.
7 Websphere MQ V 5.1, [18].
8 MPI Core: V. 2, [23].

22

J
a
v
a

S
p
a
c
e
s

A
x
is

C
O

R
B

A

J
M

S

W
e
b
sp

h
e
re

M
Q

M
S
M

Q

M
P
I

J
D

e
c
o
u
p
le

Coupling Integration Patterns Ptrn ID
BlkSndBlkRec TmeCpl SpcCpl C1 – – – – – – + +
NBlkSndBlkRec TmeCpl SpcCpl C2 – – – – – – + +
BlkSndNBlkRec TmeCpl SpcCpl C3 – + + – – – + +
NBlkSndNBlkRec TmeCpl SpcCpl C4 – – – – – – + +
BlkSndBlkRec TmeDcpl SpcCpl C5 – – – – + – – +
NBlkSndBlkRec TmeDcpl SpcCpl C6 – – – – +/– – – +
BlkSndNBlkRec TmeDcpl SpcCpl C7 – +/– + – + – – +
NBlkSndNBlkRec TmeDcpl SpcCpl C8 – – – – +/– – – +
BlkSndBlkRec TmeCpl SpcDcpl(Ch) C9 – – – – – – – +
NBlkSndBlkRec TmeCpl SpcDcpl(Ch) C10 – – – – – – – +
BlkSndNBlkRec TmeCpl SpcDcpl(Ch) C11 – – + – – – – +
NBlkSndNBlkRec TmeCpl SpcDcpl(Ch) C12 – – – – – – – +
BlkSndBlkRec TmeDcpl SpcDcpl(Ch) C13 + – – + + + – +
NBlkSndBlkRec TmeDcpl SpcDcpl(Ch) C14 – – – +/– +/– +/– – +
BlkSndNBlkRec TmeDcpl SpcDcpl(Ch) C15 + – + + + + – +
NBlkSndNBlkRec TmeDcpl SpcDcpl(Ch) C16 – – – +/– +/– +/– – +
BlkSndBlkRec TmeCpl SpcDcpl(Tpc) C17 – – – – – – +/– +
NBlkSndBlkRec TmeCpl SpcDcpl(Tpc) C18 – – – – – – +/– +
BlkSndNBlkRec TmeCpl SpcDcpl(Tpc) C19 – – +/– – – – +/– +
NBlkSndNBlkRec TmeCpl SpcDcpl(Tpc) C20 – – – – – – +/– +
BlkSndBlkRec TmeDcpl SpcDcpl(Tpc) C21 +/– – – + + +/– – +
NBlkSndBlkRec TmeDcpl SpcDcpl(Tpc) C22 – – – +/– +/– – – +
BlkSndNBlkRec TmeDcpl SpcDcpl(Tpc) C23 +/– – +/– + + +/– – +
NBlkSndNBlkRec TmeDcpl SpcDcpl(Tpc) C24 – – – +/– +/– – – +

Multicast Patterns
Multicast/Scatter M1 – – – – + + + +
JoinMsgs/Gather M2 – – – – – – + +

Response Patterns
PreprocessAck R1 – – – + + – + +
PostProcessAck R2 – + + +/– +/– – – +/–
PostProcessResp R3 – + + +/– +/– – – +/–
PostProcessFault R4 – + + – – – – +/–
Blocking Receive Ack R5 – + + + + – – +
Non Blocking Receive Ack R6 – – + – – – – +

Table 1. Evaluation of selected middleware in terms of their support for the cou-
pling integration patterns, multicast patterns (Section 5.1) and response patterns (Sec-
tion 5.2).

7 JDecouple: An API for highly (de-)coupled systems

We have implemented JDecouple, a middleware API based on the concepts pre-
sented in this article. JDecouple exposes simple abstractions that enable appli-
cations to be integrated according to any of the 24 integration coupling patterns
presented in Figures 13, 14, and 15. The amount of coding effort required to
achieve any one of them is minimal. This degree of suitability and flexibility,
we believe, is unique to JDecouple. Having said that, it is possible to imple-
ment all of these 24 patterns of integration using most middleware. However, for
those patterns not directly supported by a particular solution, the effort required
becomes non trivial (confer Table 1). Advantages of JDecouple include:

– The ability to provide direct support for a wider range of (de-)coupled types
of interactions.

23

– The ability to provide this wide range of interaction styles through one,
simple API.

JDecouple exposes these patterns, optionally, at the granularity of elemen-
tary interactions, (i.e. one message exchange between two endpoints). Thus it
is possible, but not necessary, for a JDecouple endpoint to send messages using
different coupling patterns. This is because the configuration of the interaction
is determined by the method chosen and the arguments used. JDecouple is writ-
ten in Java 5, and makes extensive use of its new language features, including
‘generics’, and the new ‘concurrent’ tool-set. This first prototype of JDecouple
provides messaging between threads running in the same application. Therefore
the implementation has not yet been tested against problems such as latency,
unreliability, and lack of bandwidth.

+createCommunicator() : Communicator

JDecoupleFactory

+prepareTransitMsg(in : Msg) : Msg
+pollMsg(in destination, in timeout) : Msg
+pushMsg() : ResponseContainer
+acknowledgeMsg(in msgID, in content)
+pollResponse(in msgID, in timeout) : ResponseContainer
+...()

-communicatorID

Communicator

+blockingReceive(in dest, in timeout) : Msg
+blockingReceive(in dest, in threshold, in timeout) : MsgsContainer
+nonblockingReceive(in dest, in msgProcessor) : Future<T>
+nonblockingReceive(in dest, in msgProcessor, in threshold) : List<Future<U>>
+nonBlockingReceiveAsService(in dest, in msgProcessor)
+...()

-subscriptions

Receiver

+...()

-type : DestType
-uri : String

Destination

+blockingSend(in msg, in dest, in timeDec : bool) : ResponseContainer
+blockingSend(in msg, in destSet, in timeDec : bool) : List<Future<ResponseContainer>>
+nonBlockingSend(in msg, in dest, in timeDec : bool) : Future<ResponseContainer>
+nonBlockingSend(in msg, in destSet, in timeDec : bool) : List<Future<ResponseContainer>>
+pollTimeDecoupledResponse(in msgID, in timeout) : ResponseContainer
+...()

Sender

+...()

-id : MessageID
-content
-...

Msg

+getMsgID() : MessageID
+getResponses()

-messageID

ResponseContainer

+getContent()
+getCommunicatorID()

Response

1 1..*

0..1 1

0..1

1

-destination
-communicatorID

Subscription

1

0..*

Fig. 19. UML diagram showing key classes of the JDecouple API.

Figure 19 shows that the abstract class Communicator is central to the JDe-
couple API. Subclasses of Communicator provide the necessary functionality,
required by the Sender and Receiver classes, in order to perform all forms of

24

interactions between remote applications. For instance, an MSMQ implementa-
tion would enable interactions coded over the JDecouple API, to be executed
over the MSMQ transport layer. The JDecoupleFactory interface provides a
dynamic means of creating these alternative communicators without having to
rewrite code. For instance an implementation of this interface could create ei-
ther a JMS, TCP, or SOAP/HTTP communicator based on the contents of a
text-based configuration file. More information about JDecouple can be obtained
from http://sky.fit.qut.edu.au/∼aldredl.

Integration coupling pattern C13. The following listings demonstrate the
implementation of coupling pattern C13 (blocking-send, blocking-receive, time-
decoupled, space-decoupled-channel) as presented in Figure 14. This is a classic
messaging pattern supported by most Message Oriented Middleware.

Listing. 1. Performs a time-decoupled, space-decoupled, blocking-send.

1 ...

2 JDecoupleFactory JDecoupleFactory = new LocalJDecoupleFactory();

3 try{
4 Communicator communicator = JDecoupleFactory.createCommunicator();

5 Sender sender = new Sender(communicator);

6 Channel channel = (Channel) communicator.lookup(CHANNEL_URI);

7

8 Message message = new Message();

9 message.setContent("Hello World");

10

11 sender.blockingSend(message, channel, TimeCoupling.decoupled);

12 } catch (JDecoupleException e) { ... }
In Listing 1, line 2 creates a factory capable of instantiating communicator

objects for intra-application (in-memory) communication. Lines 5 - 6 create the
sender and obtain a reference to the channel. Line 11 sends the message over
this channel in a time-decoupled manner. Line 12 is needed because lines 4 and
11 can throw either a TransportException, NotFoundException, or a Permis-
sionException (all sub-types of JDecoupleException).

Listing. 2. Performs a space-decoupled, blocking receive.

1 ...

2 try{
3 Communicator communicator = JDecoupleFactory.createCommunicator();

4 Receiver receiver = new Receiver(communicator);

5 Channel channel = (Channel) communicator.lookup(CHANNEL_URI);

6

7 Message message = receiver.blockingReceive(channel, Receiver.NEVER_TIMEOUT);

8

9 System.out.println("Received msg ID: " + message.getID());

10 System.out.println("Contains: " + message.getContent());

11 }
12 catch (JDecoupleException e) { ... }
13 catch (TimeoutException e) { ... }

25

In Listing 2 lines 3 - 5 create the receiver, and obtain a reference
to the same channel. Line 7 performs the receive - returning a Message
object. The output from executing Listings 1 and 2 is: Received msg ID:

M-9223372036854775808&C1365919705802591056 Contains: Hello World

Inter-library loan query service. Listings 3 and 4 present a scenario where a
library, upon receiving a request to borrow a book that it does not have, checks
with its nearby partner libraries if they have a copy of the book.

One library broadcasts the customer request to all libraries. Each library
performs an internal search for books meeting the requested criteria, and returns
a message containing the results of its search. The original library, upon receiving
the responses from each partner, filters out all but the most favourable responses
and presents them to the library customer.

This broadcast of many copies of a message, their receipt/response, followed
by the filtering of all responses strongly resembles one of the more advanced
patterns of enterprise integration – the scatter gather pattern [14]. The authors
of this pattern propose a solution using a callback over a return address. This
approach decouples the endpoints to a great degree, however such an approach
typically requires significant effort to build receivers able to parse the incoming
message for a return address, and then use that return address to obtain a
channel/address object over which to start a new interaction – carrying the
response.

A simpler solution to the scatter gather pattern would remove the need for
each subscriber to explicitly call back the publisher, alleviating the need for a
dedicated responses channel, and the use of a return address in the published
message.

Using JDecouple, a non-blocking-send can be published onto a topic (space-
decoupled-topic), and when the results are ready, the publisher may rendezvous
with the responses. A non-blocking-receive will enable receiver endpoints to con-
tain business logic that is automatically invoked by JDecouple, alleviating the
need to explicitly handle requests and manage threads. A time-coupled interac-
tion style will allow the library customers to know the results of their search in
“real-time”, all at once. Therefore, the most suitable coupling integration pat-
tern seems to be C20 (non-blocking-send, non-blocking-receive, time-coupled,
space-decoupled-topic, see Figure 15). By exploiting JDecouple’s support for
“postprocess acknowledgement” (pattern R3) a suitable solution to this integra-
tion problem is possible.

Listing. 3. Publishes a search request to all libraries, and filters for the best responses.

1 ...

2 try {
3 JDecoupleFactory JDecoupleFactory = new LocalJDecoupleFactory();

4 Communicator communicator = JDecoupleFactory.createCommunicator();

5 Sender sender = new Sender(communicator);

6 Topic topic = (Topic) communicator.lookup(TOPIC_URI);

26

7

8 Message message = new Message();

9 message.setContent(BOOK_REQUEST);

10

11 Future<ResponseContainer> futureResponses =

12 sender.nonBlockingSend(message, topic, TimeCoupling.coupled);

13

14 updateCustomerUI();

15

16 ResponseContainer responseContainer = futureResponses.get();

17 List<Response> subscriberResponses = responseContainer.getResponses();

18 List<Response> goodResponses = filterResponses(subscriberResponses);

19 ...

20 } catch (JDecoupleException e) { ... }
21 catch (ExecutionException e) { ... }
22 catch (InterruptedException e) { ... }

In Listing 3 lines 3 - 6 deal with instantiating the message sender and look-
ing up the topic to which to send the message. Line 11 deals with publica-
tion of the book request to all affiliated libraries. Line 14 updates a user in-
terface, informing the customer that the search is underway (not JDecouple
code). Now that customer UI is updated we rendezvous with the responses
of the prior send at line 16 – retrieving an object containing responses from
each subscriber. Line 18 (not JDecouple code) filters the libraries’ responses for
favourable ones. Line 20 catches any JDecoupleExceptions. Calling get() on a
java.util.concurrent.Future object (line 16) may throw an ExecutionEx-
ception (possibly due to a message processing fault at the remote endpoint) or
an InterruptedException - hence lines 21 and 22.

Intrinsic to our inter-library loan example, and to the scatter gather pat-
tern, is that the content of each of the many response messages is derived from
some application logic. JDecouple provides an interface containing two generic
methods:

public interface MessageProcessor<V>{

public V processMessage(Message message) throws Exception;

public <U extends Serializable>U getResponse();

}

Implementations of MessageProcessor should provide the application logic
needed to process the message, and (optionally) to format a response. The object
returned from processMessage is made available to the receiver, whereas the
object returned from getResponse gets put onto the JDecouple message bus,
and optionally returned to the sender.
Listing. 4. Creates a search receive/response server for any partner library.

1 ...

2 try {
3 JDecoupleFactory JDecoupleFactory = new LocalJDecoupleFactory();

4 BookRequestProcessor bookRequestProcessor = new BookRequestProcessor();

5

27

6 Communicator receiveCommunicator = JDecoupleFactory.createCommunicator();

7 Receiver receiver = new Receiver(receiveCommunicator);

8 Topic topic = (Topic) receiveCommunicator.lookup(TOPIC_URI);

9 receiver.subscribe(topic, TOPIC_PASSWORD);

10

11 receiver.nonBlockingReceiveAsService(topic, bookRequestProcessor);

12 } catch (JDecoupleException e) { ... }
In Listing 4, line 4 instantiates a custom implementation of the

MessageProcessor interface. Lines 6 - 9 create the receiver, obtain the topic
reference, and subscribe the receiver to the topic. Line 11, registers the receiver,
and in turn the MessageProcessor with JDecouple. JDecouple may now invoke
processMessage of the BookRequestProcessor object using an event-based ap-
proach (similar to onMessage in the JMS).

In JDecouple each type of destination (i.e. address, channel, or topic) are
capable of queueing their incoming messages. Consequently we can guarantee
that the order in which messages arrive on the bus is the order in which they are
consumed. Therefore, if the sender and receiver on one destination are blocking,
JDecouple can guarantee preservation of message sequence. Another feature of
JDecouple is its ability to perform multicast, and multiple message joining.

8 Related Work

Cypher and Leu [9] provided a formal semantics of blocking/non-blocking
send/receive which is strongly related to our work. Their primitives were de-
fined in a formal manner and related to the MPI [23]. This work does not con-
sider space decoupling. Our research adopts concepts from this work and applies
them to state of the art middleware systems. Our research differs by combining
synchronisation concepts with the principles of time and space decoupling (orig-
inating from Linda [11]). Our work is also unique in its unifying effect over these
dimensions, and the way coupling integration primitives may be used as a basis
for middleware comparison.

Charron-Bost, Mattern, and Tel [6] provide a highly theoretical and insight-
ful formalisation of synchronous, asynchronous, and causally ordered commu-
nication. This study introduces a notion of generalisation among these forms
of communication according to sequences of messages at the global perspective
and cyclic dependencies between them. They propose an increasing gradation
of strictness starting with asynchronous computation (akin to all forms of time-
decoupled communication), through FIFO computations (akin to message se-
quence preservation), through causally ordered computations, and finally to the
most strict form - synchronous computations (akin to synchronisation-coupled,
time-coupled communication).

Cross and Schmidt [8] discussed a pattern for standardising quality of service
control for long-lived, distributed real-time and embedded applications. This
was a proposal for “configuration tools that assist system builders in selecting
compatible sets of infrastructure components that implement required services”.
In the context of that paper no proposals or solutions were made for this, however

28

the proposals of our article perhaps provide a fundamental basis for the selection
of compatible sets of infrastructure.

Thompson [25] described a technique for selecting middleware based on its
communication characteristics. Primary criteria include blocking versus non-
blocking transfer. In this work several categories of middleware are distinguished,
including conversational, request-reply, messaging, and publish-subscribe. The
work, while insightful and relevant, does not attempt to provide a precise def-
inition of the identified categories and fails to recognise subtle differences with
respect to non-blocking communication.

Schantz and Schmidt [22] described four classes of middleware: Host
infrastructure middleware (e.g. sockets), Distribution middleware (e.g.
CORBA [12], and RMI [16]), Common Middleware Services (e.g. CORBA and
EJB), and Domain Specific Middleware Services (e.g. EDI and SWIFT). This
classification provides a compelling high-level view on the space of available mid-
dleware, but it does not give a precise indication of the subtle differences between
alternatives in the light of architectural requirements.

Tanenbaum and Van Steen [24] described the key principles of distributed
systems. Detailed issues were discussed such as (un-)marshalling, platform het-
erogeneity, and security. The work was grounded in selected middleware imple-
mentations including RPC, CORBA, and the World Wide Web. Our work is far
more focussed on coupling at the architectural level, and therefore complements
the more detailed issues provided by Tanenbaum and Van Steen.

Barros et. al. [4] produced a set of interaction patterns. The paper is oriented
towards Web services and their relationship with well known technologies such
as Business Execution Language for Web Services (BPEL4WS). Our article is
distinguished from this work in that the patterns we present are less ad hoc, and
the formality of our approach has led to new insights into a suitable abstraction
set for integration. Also, our approach focuses on basic interactions (i.e. one-way
and request-response) as opposed to compositions of interactions.

The workflow patterns [1] is an effort to capture a set of patterns over the
control flow perspective of workflow. The topic of this article is different and
the method is more technical, however both works aim to find insights into their
respective domains through seeking suitable abstractions.

This article is an extended version of [2]. In addition to many refinements,
this article adds publish-subscribe, responses, fault propagation, multicast, and
message joining to the previous work on the coupling dimensions. This article
also introduces a newly developed prototype (JDecouple) that performs integra-
tion according to the semantics presented in the CPNs.

9 Conclusion
This article has presented a set of formally defined notational elements to capture
architectural requirements with respect to coupling. The proposed notational el-
ements are derived from an analysis of middleware in terms of three orthogonal
dimensions: space time and synchronisation. This analysis goes beyond previous
middleware classifications by identifying certain subtleties with respect to time
coupling. In previous middleware analyses, when two endpoints are coupled in

29

time, they are generally considered to be synchronous, and in the reverse case
they are considered to be asynchronous (e.g. [14]). However, such an imprecise
definition does not provide any differentiation between sockets and RPC, which
are both time-coupled. Clearly there is more to coupling than the general con-
sensus that time-coupled interactions are always synchronous. We consider the
terms ‘synchronous’ and ‘asynchronous’ too imprecise to constitute a foundation
for defining models of integration. The twenty-four coupling integration patterns
identified in this article do provide a precise, and conceptually suitable palette
for defining the coupling aspect of integration models. They also offer usefulness
as a requirement set used in selecting middleware solutions suitable for a par-
ticular integration scenario. This set of patterns is unique in that it unifies and
organises existing knowledge in the domain of integration coupling.

To demonstrate the feasibility of supporting all the coupling patterns identi-
fied in this article, we have defined and implemented an API, namely JDecouple,
in which any of the patterns can be achieved using a small, unified set of primi-
tives. Using JDecouple, it is also possible to easily implement interactions rang-
ing from asynchronous (synchronisation-decoupled, time-decoupled) messaging
through to the Scatter-Gather pattern of [14]. The current JDecouple prototype
is only a proof-of-concept, and operates in-memory, as opposed to using distrib-
uted communication. We expect future versions of JDecouple to rely on JMS,
TCP, and/or XML/HTTP as a transportation layer.

Disclaimer The assessments we made of middleware products and standards
with respect to the coupling integration patterns are based on the tool or stan-
dard documentation. They are true and correct to the best of our knowledge.

Acknowledgement This work is partly funded by an Australian Research
Council Discovery Grant “Expressiveness Comparison and Interchange Facil-
itation between Business Process Execution Languages”. The third author is
funded by a Queensland Smart State Fellowship.

References

1. W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

2. L. Aldred, W. van der Aalst, M. Dumas, and A. ter Hofstede. On the Notion of
Coupling in Communication Middleware. In In Proceedings of the 7th International
Symposium on Distributed Objects and Applications (DOA). Agia Napa, Cyprus,
November 2005, pages 1015 – 1033. Springer Verlag, 2005.

3. Apache axis homepage. http://ws.apache.org/axis/ accessed May 2006.
4. A. Barros, M. Dumas, and A. ter Hofstede. Service Interaction Patterns. In In

Proceedings of the 3rd International Conference on Business Process Management
(BPM), Nancy, France, September 2005, pages 302–318. Springer Verlag, 2005.

5. A. Beugnard, L. Fiege, R. Filman, E. Jul, and S. Sadou. Communication Abstrac-
tions for Distributed Systems. In ECOOP 2003 Workshop Reader, volume LNCS
3013, pages 17 – 29. Springer-Verlag Berlin Heidelberg, 2004.

30

6. B. Charron-Bost, F. Mattern, and G. Tel. Synchronous, asynchronous, and causally
ordered communication. Distributed Computing, 9(4):173–191, 1996.

7. CPN Tools homepage. http://wiki.daimi.au.dk/cpntools/ accessed June 2006.
8. Joseph K. Cross and Douglas C. Schmidt. Applying the quality connector pat-

tern to optimise distributed real-time and embedded applications. Patterns and
skeletons for parallel and distributed computing, pages 209–235, 2003.

9. R. Cypher and E. Leu. The semantics of blocking and nonblocking send and receive
primitives. In H. Siegel, editor, Proceedings of 8th International parallel processing
symposium (IPPS), pages 729–735, April 1994.

10. P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec. The Many Faces of Pub-
lish/Subscribe. ACM Computing Surveys, 35(2):114–131, June 2003.

11. David Gelernter. Generative communication in Linda. ACM Trans. Program.
Lang. Syst., 7(1):80–112, 1985.

12. Object Management Group. Common Object Request Broker Architecture: Core
Specification, 3.0.3 edition, March 2004. http://www.omg.org/cgi-bin/apps/doc?
formal/04-03-01.pdf accessed May 2006.

13. M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Haase. Java Messaging
Service API Tutorial and Reference. Addison-Wesley, 2002.

14. G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley, Boston, MA, USA, 2003.

15. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 1. EATCS monographs on Theoretical Computer Science. Springer-
Verlag, Berlin, 1997.

16. Sun Microsystems. Java remote method invocation specification. http://java.

sun.com/j2se/1.5.0/docs/guide/rmi/spec/rmiTOC.html accessed June 2006.
17. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard

ML - Revised. MIT Press, Cambridge, USA, 1997.
18. Websphere MQ family. http://www-306.ibm.com/software/integration/wmq/

accessed June 2006.
19. Microsoft Message Queuing. http://www.microsoft.com/windowsserver2003/

technologies/msmq/default.mspx accessed June 2006.
20. D. Quartel, L. Ferreira Pires, M. van Sinderen, H. Franken, and C. Vissers. On

the role of basic design concepts in behaviour structuring. Computer Networks and
ISDN Systems, 29(4):413 – 436, 1997.

21. E. Rudolph, J. Grabowski, and P. Graubmann. Tutorial on Message Sequence
Charts. Computer Networks and ISDN Systems, 28(12):1629–1641, 1996.

22. R. Schantz and D. Schmidt. Encyclopedia of Software Engineering, chapter Middle-
ware for Distributed Systems: Evolving the Common Structure for Network-centric
Applications. Wiley & Sons, New York, USA, 2002.

23. M. Snir, S. Otto, D. Walker S. Huss-Lederman, and J. Dongarra. MPI-The Com-
plete Reference: The MPI Core. MIT Press, second edition, 1998.

24. A. Tanenbaum and M. van Steen. Distributed Systems: Principles and Paradigms.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

25. J. Thompson. Toolbox: Avoiding a middleware muddle. IEEE Software, 14(6):92–
98, 1997.

31

A Rationale behind the evaluation of Standards and
Tools against the Patterns

Table 1 presented an evaluation of middleware standards and tools, in terms of
their ability to directly support or partially support the proposed patterns of
this article. First of all it is important to establish that with any of these stan-
dards and solutions, incorporating enough ‘work-arounds’ will support all of the
patterns, so these judgements were made based upon the level of implementation
effort required to achieve the pattern.

The patterns one through to twenty four are composed of more fundamental
concepts. These twenty four patterns (the coupling integration patterns) can
be grouped into several sets based on the more fundamental concepts they are
composed from. This makes the evaluation simpler because if a tool or standard
does not support one of these fundamental concept we can expect that it will not
support any of the patterns composed form this concept. However, supporting a
concept (e.g. non-blocking receive) does not imply support for all of the patterns
composed from this concept.

Table 2 shows the relative levels of support by selected middleware solutions
and standards for the dimensions of decoupling. Solutions that directly support
a pattern were given a plus (‘+’). Those able to support a pattern using more
than a little effort were given a plus minus (‘+/–’), and those requiring greater
effort were assigned a minus (‘–’). A ‘–’ symbol, assigned to a standard/solution,
does not mean that the achievement of this pattern is impossible; rather, the
‘work-arounds’ necessary to achieve the pattern, using this standard/solution,
appear too complex.

Dimension Option # J
av

a
S
p
a
ce

s

A
x
is

C
O

R
B

A

J
M

S

W
eb

sp
h
er

e
M

Q

M
S
M

Q

M
P

I

J
D

ec
o
u
p
le

Sync.

Blocking Send 1 + + + + + + + +
Non Blocking Send 2 – – – +/– +/– +/– + +
Blocking Receive 3 + – – + + + + +
Non Blocking Receive 4 + + + + + + + +

Time
Time Coupled 5 – + + – – – + +
Time Decoupled 6 + +/– + + + + – +

Space
Space Coupled 7 – + + – + – + +
Space Decoupled – Channel 8 + – + + + + – +
Space Decoupled – Topic 9 +/– – +/– + + +/– +/– +

Table 2. Support of selected middleware solutions and standards for the dimensions
of (de-)coupling

32

A.1 Java Spaces

Java Spaces supports a blocking-send through its write operation. However
it does not support a non-blocking send, hence it was given a ‘–’ in Table 2.
Consequently, in Table 1, all the patterns composed from non-blocking send
were assigned a ‘–’ (namely patterns C2, C4, C6, C8, C9, C10, C12, C14, C16,
C18, C20, C22, and C24).

Java Spaces supports blocking-receive through its read or take operations,
and supports non-blocking receive through its notify operation, hence options
‘3’ and ‘4’ were assigned a ‘+’ in Table 2.

Java Spaces supports space-decoupling over a channel, but does not directly
support space-coupling, as shown in Table 2. Consequently, patterns C1 – C8 of
Table 1 were assigned a ‘–’.

Space-decoupling over a topic (e.g. publish-subscribe) is partially achieved if
each ‘subscriber’ uses a read operation. Each receiver gets a copy of the message
because the call to read does not remove the message from the space. Hopefully
the message will be removed from the space before any receiver reads the same
message twice. A simple, but not fail-safe ‘work-around’ to prevent this problem
is to write the message to the space with a very short lease.

Java Spaces, is time-decoupled, and is not time-coupled. Consequently pat-
terns C1 – C4, C9 – C12, and C17 – C20 were assigned a ‘–’ in Table 1.

Java Spaces does not provide primitives for sending messages over an arbi-
trary set of templates, and we therefore rule out multicast. We rule out support
for message joining because it does not support its take, or read operations over
arbitrary sets of templates.

Java Spaces does not directly support responses, therefore patterns R1 – R6
of Table 1 were assigned a ‘–’.

A.2 Axis

Axis is a SOAP engine that primarily uses HTTP as transport. Like HTTP, it
only offers a blocking-send, and a non-blocking-receive. Despite the fact that
Axis can be configured to use JMS as a message transport service, it does not
expose a non-blocking send or a blocking-receive in its API. Non-blocking send
and blocking receive were assigned a ‘–’ in Table 2. Consequently all the patterns
composed from these were assigned ‘–’ in Table 1.

Axis, supports time-coupling but only when layered over a JMS implemen-
tation could it possibly support time-decoupling.

Axis directly supports space-coupling, but does not support space-
decoupling. Despite the fact that JMS supports space-decoupling over channels
and topics Axis does not expose constructs that allow users to exploit either of
these features. Consequently, in Table 1, patterns C9 – C24 were assigned ‘–’.

Axis provides no direct support for multicast, or for message joining.
Axis supports R2 – R5 of the response patterns directly. Preprocess acknowl-

edgement (R1) is not supported. A ‘work-around’ solution would require forking

33

off a thread in the server to process the message while sending a receipt ac-
knowledgement in the response from the main thread. Non-blocking receive of
responses is not possible without using callbacks, hence it is assigned ‘–’ in Ta-
ble 1.

A.3 CORBA

CORBA supports a blocking-send because the CORBA client blocks on remote
object calls ,at least until the request has reached the ORB. It supports non-
blocking-receive because the remote object servicing requests never makes an
explicit request to wait for an incoming request, this gets managed by the ORB.
Nevertheless, CORBA provides no direct support for a non-blocking-send or a
blocking-receive operation.

CORBA traditionally offers a time-coupled means of interacting, and using
what it refers to as an ‘asynchronous’ style it provides direct support for time-
decoupled interactions.

CORBA’s naming service is the primary way to address remote objects. The
naming service maps a name to one remote object, as opposed to one of many,
hence CORBA directly supports space-coupling. CORBA allows clients to obtain
remote object references using Interoperable Object Group Reference (IOGR).
This sort of remote object reference refers to one of many object implementa-
tions, and therefore CORBA supports space-decoupling over a channel. CORBA
also has support for publish-subscribe, but achieving this style of interaction is
not as straightforward as it should be, and therefore we consider that it only
partially supports this (see Table 2).

CORBA does not directly support multicast or message joining hence we
gave it ‘–’ for M1 and M2 of Table 1.

CORBA would require the use of ‘work-arounds’ to provide the client with an
acknowledgement before the request gets processed, therefore we gave response
pattern R1 a ‘–’ in Table 1. Otherwise CORBA fully supports all of the other
response patterns better than any other solution/standard.

A.4 Java Message Service

The JMS standard directly supports blocking-send, blocking-receive, and non-
blocking receive. However, it does not directly support non-blocking send. Never-
theless, most implementations of JMS can be configured with a sender endpoint,
and middleware service on the same machine. Blocking-send swaps the message
from the endpoint to the middleware service and the sending endpoint does not
have to block while the message is being transferred over the wire. Hence we
assign JMS a ‘+/–’ for Option ‘2’ in Table 2. Consequently all of the coupling
integration patterns composed from non-blocking send in Table 1 (e.g. C14, C16,
C22, and C24) are assigned, at best, a ‘+/–’.

JMS, being a MOM driven standard, natively supports time-decoupling but
not time-coupling. Consequently all patterns composed from time-coupling in
Table 1 (C1 – C4, C9 – C12, and C17 – C20) were assigned a ‘–’.

34

JMS supports both forms of space-decoupling (channel and topic), but not
space-coupling. Consequently all patterns in Table 1 composed from space-
coupling (C1 – C8) were assigned a ‘–’.

JMS, however does not support either of the multicast patterns.
JMS is not a request-response driven standard, but despite this it sup-

ports preprocess acknowledgements (R1) directly via session acknowledge-
ments. It supports blocking-receive acknowledgements (R5) directly through its
QueueRequestor and TopicRequestor classes. Post-process acknowledgements
(R2) and post-process responses (R3) are supported through the same classes.
However, we deem this support only partial (‘+/–’) due to the need to parse for
a return address and begin a new interaction at the responder (as discussed in
Section 5.2).

A.5 Websphere MQ

Websphere MQ is the MOM component of the Websphere suite, by IBM. Web-
sphere MQ provides an implementation of the JMS standard and, of course,
supports every pattern that JMS covers.

Additionally, Websphere MQ allows the configuration of one particular end-
point to exclusively receive messages off a channel. Therefore Websphere MQ
fully supports space-coupling. Consequently the time-decoupled, space-coupled
patterns (C5 – C8) of Table 1 were assigned either ‘+’, or ‘+/–’ according to
Websphere MQ’s support for synchronisation decoupling.

A.6 MSMQ

MSMQ is the MOM implementation by Microsoft. It provides MOM support to
the BizTalk process application server and to the new Windows Communication
Foundation.

MSMQ directly supports blocking-send, blocking-receive, and non-blocking
receive. However, like the JMS, it does not directly support non-blocking send.
Nevertheless the same work-around to achieve non-blocking send for JMS can
be performed using MSMQ. Hence we assign MSMQ a ‘+/–’ for Option ‘2’ in
Table 2. Consequently all of the coupling integration patterns composed from
non-blocking send in Table 1 were assigned at best a ‘+/–’; and possibly lower,
depending on the support for other dimensions.

MSMQ, like most MOM solutions does not support time-coupling. Hence
we assigned a ‘–’ to all patterns in Table 1 (C1 – C4, C9 – C12, C17 – C20)
composed from time-coupling.

MSMQ has full support for space-decoupling over a channel but would re-
quire non trivial ‘work-arounds’ to achieve space-coupling. Therefore we assigned
MSMQ a ‘–’ for all the coupling integration patterns composed from space-
coupling (C1 – C8).

With respect to space-decoupling over a topic MSMQ offers a peek operation
in its API – allowing receiver endpoints to peek at messages in the queue. Using

35

peek to support space-decoupling over a topic is a work-around, in much the
same class as the work-around required to support space-decoupling over a topic
for Java spaces. Therefore, the rating we gave to those patterns composed from
space-decoupling over a topic was at best a ‘+/–’.

MSMQ, to our knowledge, does not support multicast, or response patterns.

A.7 MPI

The Message Passing Interface, developed by a consortium of leading IT vendors
and select members of the research community, was designed to enable parallel
and distributed systems to exchange messages effectively. Using MPI, parallel
applications are able to exploit processing on multiple CPUs for example, be-
cause the API is extremely efficient in its use of memory and the CPU.

MPI fully supports all forms of synchronisation (de-)coupling, providing ex-
plicit operations for blocking-send, non-blocking send, blocking-receive, and non-
blocking receive – as is shown in Table 2.

MPI does not support time-decoupling – as shown in Table 2. Therefore all
patterns in Table 1 (C5 – C8, C13 – C16, C21 – C24) composed from time-
decoupling were assigned a ‘–’.

MPI does not support space-decoupling over a channel. Hence we rated pat-
terns C9 – C16 in Table 1 with a ‘–’.

MPI is able to notify all members of a group with copies of the same message.
This behaviour is strongly related to space-decoupling over a topic, however these
groups are determined during build-time, or design-time. There seems to be
limited support for joining a group at runtime, and no support for joining more
than one group. We therefore rated MPI with at best a ‘+/–’ for all patterns
composed from space-decoupled over a topic.

MPI fully supports multicast, message joining and preprocess acknowledge-
ment.

A.8 JDecouple

JDecouple is the experimental prototype of a new middleware API proposed as
part of this article. It offers a full set of communication abstractions as part of
its API that make it simple to integrate using any form of (de-)coupling, to Java
developers. Additionally JDecouple fully supports both forms of multicast, and
provides support for all six response patterns.

36

