
Mining Process Models with Non-Free-Choice
Constructs

Lijie Wen1, Wil M.P. van der Aalst2, Jianmin Wang1, and Jiaguang Sun1

1 School of Software, Tsinghua University, 100084, Beijing, China
wenlj00@mails.tsinghua.edu.cn,{jimwang,sunjg}@tsinghua.edu.cn

2 Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

w.m.p.v.d.aalst@tm.tue.nl

Abstract. Process mining aims at extracting information from event
logs to capture the business process as it is being executed. Process min-
ing is particularly useful in situations where events are recorded but
there is no system enforcing people to work in a particular way. Con-
sider for example a hospital where the diagnosis and treatment activi-
ties are recorded in the hospital information system, but where health-
care professionals determine the “careflow”. Many process mining ap-
proaches have been proposed in recent years. However, in spite of many
researchers’ persistent efforts, there are still several challenging problems
to be solved. In this paper, we focus on mining non-free-choice constructs,
i.e., situations where there is a mixture of choice and synchronization.
Although most real-life processes exhibit non-free-choice behavior, exist-
ing algorithms are unable to adequately deal with such constructs. Using
a Petri-net-based representation, we will show that there are two kinds
of causal dependencies between tasks, i.e., explicit and implicit ones.
We propose an algorithm that is able to deal with both kinds of depen-
dencies. The algorithm has been implemented in the ProM framework
and experimental results shows that the algorithm indeed significantly
improves existing process mining techniques.

1 Introduction

Today’s information systems are logging events that are stored in so-called “event
logs”. For example, any user action is logged in ERP systems like SAP R/3,
workflow management systems like Staffware, and case handling systems like
FLOWer. Classical information systems have some centralized database for log-
ging such events (called transaction log or audit trail). Modern service-oriented
architectures record the interactions between web services (e.g., in the form of
SOAP messages). Moreover, today’s organizations are forced to log events by na-
tional or international regulations (cf. the Sarbanes-Oxley (SOX) Act [47] that is
forcing organizations to audit their processes). As a result of these developments,
there is an abundance of process-related data available. Unfortunately, today’s
organizations make little use of all of the information recorded. Buzzwords such

2 Lijie Wen et al.

as BAM (Business Activity Monitoring), BOM (Business Operations Manage-
ment), BPI (Business Process Intelligence) illustrate the interest in techniques
that extract knowledge from event logs. However, most organizations are still
unaware of the possibilities that exist and most of software solutions only offer
basic tools to measure some key performance indicators.

Process mining aims at a more fine grained analysis of processes based on
event logs [10, 12, 25, 54]. The goal of process mining is to extract information
about processes from these logs [10]. We typically assume that it is possible to
record events such that (i) each event refers to a task (i.e., a well-defined step
in the process also referred to as activity), (ii) each event refers to a case (i.e.,
a process instance), (iii) each event can have a performer also referred to as
originator (the person executing or initiating the task), (iv) events have a times-
tamp, (v) events can have associated data, and (vi) events are totally ordered.
Moreover, logs may contain transactional information (e.g., events refereing to
the start, completion, or cancellation of tasks).

In process mining, we distinguish three different perspectives: (1) the process
perspective, (2) the organizational perspective and (3) the case perspective. The
process perspective focuses on the control-flow, i.e., the ordering of tasks. The goal
of mining this perspective is to find a good characterization of all possible paths,
e.g., expressed in terms of a Petri net, an Event-driven Process Chain (EPC,
[36]), or a UML activity diagram. The organizational perspective focuses on the
originator field, i.e., which performers are involved and how are they related.
The goal is to either structure the organization by classifying people in terms of
roles and organizational units or to show relations between individual performers
(i.e., build a social network). The case perspective focuses on properties of cases.
Cases can be characterized by their path in the process or by the originators
working on a case. However, cases can also be characterized by the values of the
corresponding data elements. For example, if a case represents a replenishment
order, it is interesting to know the supplier or the number of products ordered.

For each of the three perspectives there are both discovery approaches and
conformance checking approaches. Discovery aims at deriving a model without a-
priori knowledge, e.g., the construction of a Petri net, social network, or decision
tree based on some event log. Conformance checking assumes some a-priori model
and compares this model with the event log. Conformance checking is not used
to discover a model but aims at discovering discrepancies between the model
and a log.

Figure 1 shows a small part of a log in the MXML format (center of figure)
[26]. This is the format used by the ProM (Process Mining) framework [25]. Using
the ProMimport tool one can convert event logs from the following systems:
Eastman Workflow, FLOWer, PeopleSoft, Staffware, Websphere, Apache HTTP
Server, CPN Tools, CVS, and Subversion to MXML [26]. The ProM framework
is a plugable environment where it is easy to add new process mining approaches
or other types of analysis. Figure 1 shows only 5 of the more than 70 plugins
available in ProM 3.0. As shown, the plug-ins focus on all different perspectives
and on both discovery and conformance. Each of the screenshots shows a plug-in

Mining Process Models with Non-Free-Choice Constructs 3

 …
<ProcessInstance id="62" description="">

<AuditTrailEntry>
<WorkflowModelElement>invite reviewers</WorkflowModelElement>
<EventType>start</EventType>
<Timestamp>2006-10-11T00:00:00.000+01:00</Timestamp>
<Originator>Mike</Originator>

</AuditTrailEntry>
<AuditTrailEntry>

<WorkflowModelElement>invite reviewers</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2006-10-11T00:00:00.000+01:00</Timestamp>
<Originator>Mike</Originator>

</AuditTrailEntry>
<AuditTrailEntry>

<Data>
<Attribute name="result">accept </Attribute>

</Data>
<WorkflowModelElement>get review 1</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2006-10-11T00:00:00.000+01:00</Timestamp>
<Originator>Carol</Originator>

</AuditTrailEntry>
<AuditTrailEntry>

<Data>
<Attribute name="result">reject </Attribute>

</Data>
<WorkflowModelElement>get review 2</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2006-10-16T00:00:00.000+01:00</Timestamp>
<Originator>Sam</Originator>

</AuditTrailEntry>
<AuditTrailEntry>

<WorkflowModelElement>time-out 3</WorkflowModelElement>
<EventType>complete</EventType>
<Timestamp>2006-10-18T00:00:00.000+01:00</Timestamp>
<Originator/>

</AuditTrailEntry>

...

social network miner: by
monitoring e.g. the transfer of
work dependencies between
people (originators) are

established

conformance checker: by

comparing a process model and
the log deviations are identified

fragment of log in terms of

MXML: the event log is used as a
starting point for process mining

alpha miner: by establishing
causal dependencies a process
model is constructed

YAWL conversion: discovered
process models can be converted

to YAWL and executed using the
YAWL workflow engine

multi-phase miner: using a two
step approach process models

can be discovered and exported
to ARIS and ARIS PPM

Fig. 1. Overview of process mining illustrated by the different plug-ins in ProM working
on the MXML log shown in the center

4 Lijie Wen et al.

working on the log in the center of the diagram. Only a fragment of the log is
shown (the whole log contains information from 100 cases each having dozens
of events). The alpha miner was one of the first process mining algorithms able
to deal with concurrency, it focuses on discovery in the process perspective.
The multi-phase miner uses a two-step approach to discover process models (in
EPC or Petri net format) that exploits the so-called “OR connector” construct
to be more robust than the alpha miner. The social network miner focuses on
discovery in the organizational perspective. The conformance checker in ProM
detects discrepancies between some model and a log. Using ProM it is possible
to import from and export to a variety of tools. For example, it is possible to
import/export models from/to CPN Tools, ARIS, and YAWL, i.e., it is possible
to use CPN Tools to do simulations [39] and the workflow management system
YAWL [6] is able to enact any process model discovered with one of the mining
algorithms in ProM (including the algorithm presented in this paper).

ProM has been used in various domains, e.g., governmental agencies, munic-
ipalities, hospitals, ERP systems, etc. In this paper, we will not discuss concrete
applications. Nevertheless, it is important to see the wide application possibilities
of process mining. Consider for example the diagnosis and treatment processes in
a hospital. Today’s hospital information systems record a variety of events (e.g.,
blood tests, operations, appointments, X-rays, etc.). However, hospital managers
are only provided with data at the level of an individual patient or at an ag-
gregated level (e.g., the number of knee operations). Somehow, current hospital
information systems completely miss the notion of a process, i.e., each patient
is seen as a unique case. To improve service and to use the hospital resources
more efficiently, it is important to analyze the careflows, i.e., typical diagnosis
and treatment trajectories, in more detail. Process mining can be used for this
purpose. Another example, is the monitoring of webservices in an E-business
setting. Languages such as BPEL and CDL have been proposed to describe the
way services can interact from a behavioral perspective, e.g., abstract BPEL [15]
can be used to describe business protocols. As shown in [4] tools such as ProM
can be used to do conformance testing in this setting, i.e., verifying whether one
or more parties stick to the agreed-upon behavior by observing the actual behav-
ior, e.g., the exchange of messages between all parties. Note that it is possible to
translate BPEL business protocols to Petri nets and to relate SOAP messages
to transitions in the Petri net. As a result, the ProM conformance checker can
be used to quantify fitness (whether the observed behavior is possible in the
business protocol). Of course the SOAP messages exchanged between the web-
services can also be used to directly discover the actual behavior of each party.
These two examples illustrate the wide applicability of process mining.

This paper focuses on process discovery and is related to plugins such as the
alpha miner and the multi-phase miner in Figure 1 [10, 12, 25, 54]. We will ab-
stract from the organizational perspective and the case perspective and focus on
the discovery of process models. As a representation we will use Petri nets [23,

Mining Process Models with Non-Free-Choice Constructs 5

24].3 As indicated in [40], one of the main problems of existing process mining
approaches is their inability of discovering non-free-choice processes. Non-free-
choice processes contain a mixture of synchronization and choice, i.e., synchro-
nization and choice are not separated which may create implicit dependencies.
Existing algorithms have no problems discovering explicit dependencies but typ-
ically fail to discover implicit dependencies. Note that the term “free-choice”
originates from the Petri net domain, i.e., free-choice Petri nets are a subclass
of Petri nets where transitions consuming tokens from the same place should
have identical input sets [23]. Many real-life processes do not have this property.
Therefore, it is important to provide techniques able to successfully discover
non-free-choice processes. This paper proposes a new algorithm (named α++) to
discover non-free choice Petri nets.

The remainder of this paper is organized as follows. Section 2 reviews related
work and argues that this work extends existing approaches in a significant way.
Section 3 gives some preliminaries about process mining. Section 4 lists the
sample process models that current mining algorithms can not handle. Section 5
defines explicit and implicit dependencies between tasks and gives all cases in
which implicit dependencies must be detected correctly. Section 6 gives three
methods for detecting implicit dependencies. In Section 7, we propose the algo-
rithm α++ for constructing process models. Experimental results are given in
Section 8. Section 9 concludes the paper.

2 Related work

The work proposed in this project proposal is related to existing work on process-
aware information systems [27], e.g., WFM systems [5, 35, 37] but also ERP,
CRM, PDM, and case handling systems [13].

Clearly, this paper builds on earlier work on process mining. The idea of
applying process mining in the context of workflow management was first intro-
duced in [14]. A similar idea was used in [22]. Cook and Wolf have investigated
similar issues in the context of software engineering processes using different ap-
proaches [20]. In [18, 19], they extend the previous work. A technique to find the
points in the system that demonstrate mutually exclusive and synchronized be-
havior is presented in [18]. The emphasis is on how to discover thread interaction
points in a concurrent system. In [19], the techniques based on a probabilistic
analysis of the event traces are presented to discover patterns of concurrent be-
havior from these traces of workflow events. Besides immediate event-to-event
dependencies, these techniques are also able to infer some high order dependen-
cies as well as one-task and two-task loops. However, only direct dependencies
between events are considered and indirect ones which we call implicit dependen-
cies are not involved at all. Herbst and Karagiannis address the issue of process
mining in the context of workflow management using an inductive approach [33].
3 Note that we use this as an internal representation. In the context of ProM it is easy

to convert this to other format such as EPCs [36] that can be loaded into the ARIS
toolset [49] or YAWL models that can be enacted by the YAWL workflow engine [6].

6 Lijie Wen et al.

They use stochastic task graphs as an intermediate representation and gener-
ate a workflow model described in the ADONIS modeling language. The mined
workflow model allows tasks having duplicate names and captures concurrency.
The α algorithm [12] theoretically constructs the final process model in WF-
nets, which is a subset of Petri nets. This algorithm is proven to be correct for a
large class of processes, but like most other techniques it has problems in dealing
with noise and incompleteness. Therefore, more heuristic approaches have been
developed [53, 54] and, recently, also genetic approaches have been explored and
implemented [7]. The topic of process mining is also related to the synthesis of
models and systems from sequence diagrams (e.g., UML sequence diagrams or
classical Message Sequence Diagrams) [32, 38]. Note that the tool used in this
paper (ProM) also allows for the synthesis of sequence diagrams. It is also inter-
esting to note the relationship between process mining and classical approaches
based on finite state automata [17, 16, 44, 45]. The main difference between these
approaches and process mining such as it is considered in this paper is the no-
tion of concurrency and explicit dependencies. Clearly it is possible to translate
a finite state automata into a Petri net. However, either the Petri net is very
large and has no concurrent transitions or the theory of regions [28] is needed to
fold the Petri net. The latter approach is often not realistic because it requires
the observation of all possible execution sequences.

Process mining is not limited to the control-flow perspective. For example,
in [9] it is shown that event logs can be used to construct social networks [50,
52].

The notion of conformance has also been discussed in the context of security
[8], business alignment [2], and genetic mining [7]. In [46] it is demonstrated
how conformance can be defined and describes the corresponding ProM plugin.
In [29] the process mining problem is faced with the aim of deriving a model
which is as compliant as possible with the log data, accounting for fitness (called
completeness) and also behavioral appropriateness (called soundness).

Process mining can be seen in the broader context of Business (Process)
Intelligence (BPI) and Business Activity Monitoring (BAM). In [30, 31, 48] a BPI
toolset on top of HP’s Process Manager is described. The BPI toolset includes
a so-called “BPI Process Mining Engine”. In [42] Zur Muehlen describes the
PISA tool which can be used to extract performance metrics from workflow
logs. Similar diagnostics are provided by the ARIS Process Performance Manager
(PPM) [34]. The latter tool is commercially available and a customized version
of PPM is the Staffware Process Monitor (SPM) [51] which is tailored towards
mining Staffware logs.

For more information on process mining we refer to a special issue of Com-
puters in Industry on process mining [11] and a survey paper [10].

Starting point for the approach described in this paper is α algorithm [12].
Improvements of the basic α algorithm have been proposed in [40, 41] and [55,
56]. In [40], the limitations of the α algorithm are explored and an approach
to deal with short-loops is proposed. The resulting algorithm, named α+, is
described in [41]. In this paper, we take the α+ algorithm as a starting point

Mining Process Models with Non-Free-Choice Constructs 7

and extend it to deal with non-free-choice constructs as well as detect implicit
dependencies between tasks. In [55], an approach is proposed to explicitly exploit
event types. But this requires a start and complete event for each activity. The
work done in this paper is an extension of the work presented in [56]. In that
paper, the authors only give theorems to detect implicit dependencies between
tasks and do not involve eliminating redundant implicit dependencies as well as
giving the algorithm for constructing the final process model.

3 Preliminaries

In this section, we give some definitions used throughout this paper. First, we
introduce a process modeling language (WF-nets) and its relevant concepts.
Then we discuss the notion of an event log in detail and give an example. Finally,
we give a very brief introduction to the classical α algorithm [12].

3.1 WF-net

In this paper, WF-nets are used as the process modeling language [1]. WF-nets
form a subset of Petri nets [23, 24]. Note that Petri net provides a graphical
but formal language designed for modeling concurrency. Moreover, Petri nets
provide all kinds of routings supported by a variety of process-aware information
systems (e.g., WFM, BPM, ERP, PDM, and CRM systems) in a natural way.
WF-nets are Petri nets with a single source place (start of process) and a single
sink place (end of process) describing the life-cycle of a single case (process
instance). In this paper, we will only consider sound WF-nets, i.e., WF-nets
that once started for a case can always complete without leaving tokens behind.
As shown in [1], soundness is closely related to well-known concepts such as
liveness and boundedness [23, 24].

Figure 2 gives an example of a workflow process modeled in WF-net. This
model has a non-free-choice construct. The transitions (drawn as rectangles)
T1, T2, · · ·, T5 represent tasks and the places (drawn as circles) P1, P2, · · ·, P6

represent causal dependencies. A place can be used as pre-condition and/or post-
condition for tasks. The arcs (drawn as directed edges) between transitions and
places represent flow relations. In this process model, there is a non-free-choice
construct, i.e., the sub-construct composed of P3, P4, P5, T4 and T5. For T4 and
T5 , their common input set is not empty but their input sets are not the same.

P1
T1
T2

P2 T3 P5
T4
T5
P6

P3
P4

Fig. 2. An example of a workflow process in WF-net

We adopt the formal definitions and properties (such as soundness and safe-
ness) of WF-net and SWF-net from [1, 12]. Some related definitions (such as

8 Lijie Wen et al.

implicit place), properties and firing rules about Petri nets are also described
there.

In this paper, we demand that each task (i.e., transition) has an unique
name in one process model. However, each task can appear multiple times in
one process instance for the presence of iterative routings.

3.2 Event log

As described in Section 1 the goal of process mining is to extract information
about processes from transactional event logs. In the remainder of this paper,
we assume that it is possible to record events such that (i) each event refers to a
task (i.e., a well-defined step in the process), (ii) each event refers to a case (i.e.,
a process instance), and (iii) events are totally ordered. Note that the MXML
format [26] mentioned in Section 1 and used by ProM [25] can store much more
information (cf. timestamps, originators, transactional information, data, etc.).
However, the algorithm presented in this paper does not need this additional
information. Clearly, most information systems (e.g., WFM, ERP, CRM, PDM
systems) will offer this minimal information in some form [12].

By sorting all the events in an event log by their process identifier and com-
pletion time, we can assume that an event has just two attributes, i.e., task name
and case identifier. Table 1 gives an example of an event log.

Table 1. An event log for the process shown in Figure 2

Case id Task name Case id Task name

1 T1 2 T2

1 T3 2 T3

1 T4 2 T5

This log contains information about two cases. The log shows that for case
1, T1, T3 and T4 are executed. For case 2, T2, T3 and T5 are executed. In fact,
no matter how many cases there are in the event log, there are always only two
distinct event traces, i.e., T1T3T4 and T2T3T5. Thus for the process model shown
in Figure 2, this event log is a minimal and complete one. Here we adopt the
definitions of (event) trace and event log from [12].

3.3 The classical α algorithm

As indicated in the introduction, many process mining approaches have been
developed in recent years. Most of the classical approaches use simple process
models such as finite state automata. The α algorithm was one of the first ap-
proaches to take concurrency into account (i.e., explicit causal dependencies and
parallel tasks). Moreover, unlike many other theoretical approaches, a weaker
form of completeness was assumed.

The α algorithm starts by analyzing the event log and then construct various
dependency relations. To describe these relations we introduce the following
notations. Let W be an event log over T , i.e., W ⊆ T ∗. Let a, b ∈ T :

Mining Process Models with Non-Free-Choice Constructs 9

– a >W b iff there is a trace σ = t1t2t3 . . . tn and i ∈ {1, . . . , n− 1} such that
σ ∈ W and ti = a and ti+1 = b,

– a →W b iff a >W b and b 6>W a,
– a#W b iff a 6>W b and b 6>W a, and
– a‖W b iff a >W b and b >W a.

Consider some event log W = {ABCD, ACBD, AED}. Relation >W describes
which tasks appeared in sequence (one directly following the other). Clearly,
A >W B, A >W C, A >W E, B >W C, B >W D, C >W B, C >W D,
and E >W D. Relation →W can be computed from >W and is referred to as
the (direct) causal relation derived from event log W . A →W B, A →W C,
A →W E, B →W D, C →W D, and E →W D. Note that B 6→W C because
C >W B. Relation ‖W suggests concurrent behavior, i.e., potential parallelism.
For log W tasks B and C seem to be in parallel, i.e., B‖W C and C‖W B. If two
tasks can follow each other directly in any order, then all possible interleavings
are present and therefore they are likely to be in parallel. Relation #W gives
pairs of transitions that never follow each other directly. This means that there
are no direct causal relations and parallelism is unlikely.

Based on these relations, the α algorithm starts constructing the correspond-
ing Petri net. The algorithm assumes that two tasks a and b (i.e, transitions)
are connected through some place if and only if a →W b. If tasks a and b are
concurrent, then they can occur in any order, i.e., a may be directly followed by
b or vice versa. Therefore, the α algorithm assumes that tasks a and b are con-
current if and only if a‖W b. If x →W a and x →W b, then there have to be places
connecting x and a on the one hand and x and b on the other hand. This can
be one place or multiple places. If a‖W b, then there should be multiple places to
enable concurrency, i.e., both a and b are triggered by x through separate places.
If on the other hand a#W b, then there should be a single place to ensure that
only one branch is chosen. This way it is possible to decide on the nature of a
split. Similarly, one can decide on the nature of a join and this way construct
the entire Petri net. It should be noted that the α algorithm can deal with much
more complicated structures than a simple AND/XOR-split/join. For example,
it is possible to start things in parallel and make a choice at the same time.

Although the α algorithm is able to deal with various forms of concurrency,
it typically has problems correctly discovering implicit dependencies. These de-
pendencies stem from a particular use of the non-free choice construct in Petri
nets. For example, the α algorithm is unable to discover Figure 2 based on Ta-
ble 1. The reason is that T1 is never directly followed by T4 and that T2 is never
directly followed by T5. Hence, T1 6→W T4 and T2 6→W T5 (because T1 6>W T4

and T2 6>W T5) and the model discovered by the α algorithm is the WF-net
without places P3 and P4. The resulting Petri net is sound but allows for too
much behavior. This is only one example where the α algorithm fails to capture
an implicit dependency. As we will show in the next section, there are many
types of implicit dependencies that are even more difficult to handle. Yet this is
crucial because these behaviors occur in many real-life processes.

10 Lijie Wen et al.

4 Problems

To illustrate the difficulties of mining process models with non-free-choice con-
structs, we give some situations in which current process mining algorithms
usually fail. See Figure 3 below. There are three WF-nets in the figure, i.e., N1,
N2 and N3. All nets in the left part are the original nets, while others in the
right part are their corresponding mined nets using α-algorithm. Here the α-
algorithm is chosen because it is the basis for the approaches described in this
paper. The mining results of other process mining algorithms are structurally
similar. For convenience, the mining results of N1, N2 and N3 are called N

′
1, N

′
2

and N
′
3 respectively.

I
A
B

C
D
E
O I

A
B

C
D
E
ON1

I
A

C
B
D

E
G
O

F
N2

I
A

C
B
D

E
G
O

F

A CB
D E

I O
N3

A CB
D E

I O
Fig. 3. Three pairs of process models: the models on the left contain non-free-choice
constructs and cannot be discovered by traditional algorithms while the models on the
right are the (incorrect) models generated by the α/α+ algorithm

Before we discuss the WF-nets N1, N2, N3, N
′
1, N

′
2 and N

′
3 shown in Fig-

ure 3, it is important to consider different notions of “correctness” in the context
of process mining. In real-life situations, the real process is often not known a-
priori (i.e., it exists but is not made explicit). Therefore, it is difficult to judge the
correctness of the mining result. In [46] notions such as fitness and appropriate-
ness are defined in the context of conformance checking. However, to determine
the quality of a process mining technique in a more scientific setting, fitness
and appropriateness are not very convenient because they compare an event log
and the “discovered model” rather than the “real model” and the “discovered
model”. Moreover, given a log it is fairly easy to find over-generalized or over-
specific models that can regenerate the observed behavior (see [46] for examples).
Therefore, we want to compare some a-priori model with the a-posteriori (i.e.,

Mining Process Models with Non-Free-Choice Constructs 11

discovered) model. (Even though the a-priori model is not known in most real-
life applications.) Moreover, given some a-priori model we will not assume that
we are able to observe all possible execution sequences, instead we use Occam’s
razor, i.e., “one should not increase, beyond what is necessary, the number of
entities required to explain anything” (William of Ockham, 14th century). Note
that it would be unrealistic to assume that all possible firing sequences are
present in the log. First of all, the number of possible sequences may be infi-
nite (in case of loops). Second, parallel processes typically have an exponential
number of states and, therefore, the number of possible firing sequences may be
enormous. Finally, even if there is no parallelism and no loops but just N binary
choices, the number of possible sequences may be 2N . Therefore, we will use a
weaker notion of completeness. We will define such a notion in Section 6 but in
the meanwhile we assume some informal notion of correctness.

After discussing different notions of “correctness” in the context of process
mining, we return to the WF-nets shown in Figure 3. N1, N2, N3 are the WF-
nets on the left-hand side, each representing some a-priori model. N

′
1, N

′
2 and

N
′
3 are the corresponding models on the right-hand side, each representing the

discovered model by applying classical algorithms such as the α or α+algorithm

Let us consider the first WF-net shown in Figure 3. There is a non-free-choice
between D and E in N1, i.e., the choice is not made by D or E themselves, but
is decided by the choice made between A and B. First, there is a free choice
between A and B. After one of them is chosen to execute, C is executed. Finally,
whether D or E is chosen to execute depends on which one of A and B has
been executed. The minimal and complete event log of N1 can be represented
as {ACD,BCE}. Although the mining result N

′
1 is a sound WF-net, it is not

behaviorally equivalent with N1. The join places connecting A and D as well as
B and E are missing in N

′
1. Thus the minimal and complete event log of N

′
1 is

{ACD,ACE, BCD, BCE}. Compared to N1, N
′
1 can generate two additional

event traces, i.e., ACE and BCD. Obviously, this is a “mining failure” that
should be avoided. In order to mine WF-nets with such feature, the mining
algorithm must remember all the choices made in the net and investigate the
relations between each pair of them later. The difficulty focuses on how to find all
the choices between tasks from event log efficiently and how to use the relations
between each pair of these choices correctly.

Let us now consider the second WF-net shown in Figure 3. There is a non-
free-choice between B and D as well as C and D in N2. After A is executed,
there are two tasks (i.e., E and C) enabled concurrently. On the one hand, if E
is chosen to execute first, B, C and D will be enabled concurrently. In the next
step, either D will be executed or C and B will be executed concurrently. On
the other hand, if C is chosen to execute first, there will be no choice to be made
later. One of the minimal and complete event logs of N2 can be represented
as {AEDFG, AECBFG, ACEFBG,AEBCFG,ACFEBG}. Although N2 is a
sound WF-net, its mining result N

′
2 is not a sound one. Two join arcs (i.e., the

arc from the place connecting A and C to D and the arc from D to the place
connecting B and G) are missing in N

′
2. If D is executed at some time, there

12 Lijie Wen et al.

will be a deadlock at G finally. Here another “mining failure” occurs. The causal
relation between A and D as well as D and G is not detected from the event
log by the α-algorithm. The difficulty is how to detect similar causal relations
between tasks from event logs to make the mining result sound and behaviorally
equivalent with the original net.

Finally, we consider the third WF-net shown in Figure 3. There is a non-
free-choice between C and D in N3. After A is executed, B and D can be
executed concurrently. Before C is executed, the sequence DE can be executed
any number of times. C is only enabled when B has been executed and D is just
enabled. One of the minimal and complete event logs of N3 can be represented
as {ABC, ABDEC, ADBEC,ADEDEBC}. Here N3 is a sound WF-net, its
mining result N

′
3 is not sound either. One causal relation (i.e., from A to C) is

missing in N
′
3. After A and B are executed successively, the net blocks. Here

again a “mining failure” surfaces. Such undetected causal relations should be
mined correctly by the newcome mining algorithms.

In summary, the essence of such mining failure is that some causal relations
between tasks are not detected from event logs by current process mining algo-
rithms. Almost all the process mining algorithms today determine the possible
causal relations between two tasks, e.g., a and b, if and only if the subsequence
ab occurs in some event trace at least once. Causal relations detected from event
logs using similar idea can be considered to have a dependency distance of one.
In WF-nets, such as N1, N2 and N3 shown in Figure 3, there are causal rela-
tions between tasks with longer (i.e., more than one) dependency distance. In
this paper, we try to tackle such issues listed above in some extent.

5 Dependency classification

To distill a process model with non-free-choice constructs from event logs cor-
rectly, there must be a way to mine all the dependencies (i.e., causal relations)
between tasks without mistakes. As research results show, not all dependencies
can be mined from event logs directly by current process mining algorithms [40].

In fact, there are two kinds of dependencies between tasks in WF-nets, i.e., ex-
plicit and implicit ones. An explicit dependency, which is also called direct depen-
dency, reflects direct causal relationships between tasks. An implicit dependency,
which is also called indirect dependency, reflects indirect causal relationships be-
tween tasks. To clarify the differences between both classes of relationships, the
corresponding formal definitions are given below.4

Definition 1 (Explicit Dependency). Let N = (P, T, F) be a sound WF-net
with input place i and output place o. For any a, b ∈ T , there is an explicit
dependency between a and b iff:

1. connective: a • ∩ • b 6= ∅, and
4 We assume the reader to be familiar with the formal definition of Petri nets in terms

of a three tuple (P, T, F) and related notations. For the reader not familiar with
these notation we refer to [1, 3].

Mining Process Models with Non-Free-Choice Constructs 13

2. successive: there is some reachable marking s ∈ [N, [i]〉 such that (N, s)[a〉
and (N, s− •a + a•)[b〉.

Definition 2 (Implicit Dependency). Let N = (P, T, F) be a sound WF-net
with input place i and output place o. For any a, b ∈ T , there is an implicit
dependency between a and b iff:

1. connective: a • ∩ • b 6= ∅,
2. disjunctive: there is no reachable marking s ∈ [N, [i]〉 such that (N, s)[a〉 and

(N, s− •a + a•)[b〉, and
3. reachable: there is some reachable marking s ∈ [N, [i]〉 such that (N, s)[a〉 and

there is some reachable marking s′ ∈ [N, s− •a + a•〉 such that (N, s′)[b〉.
As Figure 2 shows, P2 together with its surrounding arcs reflects explicit

dependencies between T1 and T3 as well as T2 and T3. While P3 together with its
surrounding arcs reflects an implicit dependency between T1 and T4. If there are
only explicit dependencies between tasks in a process model with non-free-choice
constructs, most process mining algorithms, such as the α algorithm etc., can
mine it correctly. Otherwise, existing process mining algorithms have problems
“discovering” implicit dependencies.

Now we investigate what characteristics a process model with implicit depen-
dencies may have. Assume that there is an implicit dependency between A and
B. Once A is executed, there must be some other tasks before B to be executed.
After that, B is to be executed. There is never any chance that B can directly
follow A in some trace, because the “dependence distance” is at least two. So
the implicit dependency between A and B has no chance to be detected directly,
using classical approaches such as the > relation in the α algorithm. A typical
fragment of a process model with an implicit dependency is shown in Figure 4.

A P2 P3 BNc
P1

Fig. 4. Characteristics of a process model with an implicit dependency

Let us assume that in Figure 4 subnet Nc contains at least one task. It
takes tokens from P2 and puts tokens into P3. In a general case, there may be
more complicated relationships between Nc and the rest of the process model.
However, only the simplest case is considered while other cases can be converted
to this case easily (simply extending Nc). Therefore, we need not consider the
cases where some tasks outside of Nc take P2 as their input place or P3 as
their output place. Furthermore, if there are no other tasks connected to P1,
P2 and P3, P1 becomes an implicit place. Implicit places do not influence the
behavior of a process model, i.e., they can be removed without changing the set
of reachable states. Clearly no mining algorithm is able to detect these places.
Although their addition is harmless, we prefer mining algorithms that avoid
constructing implicit places. Note that not all implicit dependencies correspond

14 Lijie Wen et al.

to implicit places. Therefore, we consider extensions of the basic case shown in
Figure 4. These extensions add arcs to P1, P2, and P3. In total we will consider
seven extensions. These are shown in Figure 5. For example, Figure 5(a) extends
Figure 4 by adding input arcs to P2 and output arcs to P3. Note that each of
the “patterns” depicted in Figure 5 may appear in a sound WF-net.

A P2 P3 BNc
P1

A P2 P3 BNc
P1

A P2 P3 BNc
P1

A P2 P3 BNc
P1
(a) (b)

(c) (d)

A P2 P3 BNc
P1

A P2 P3 BNc
P1

A P2 P3 BNc
P1
(e) (f)

(g)
Fig. 5. Sound sub-WF-nets with implicit dependencies: (1) patterns (b) and (g) will
be mined incorrectly because the α algorithm will create two places for P1, (2) patterns
(c), (d), (e) and (f) will be mined incorrectly because the α algorithm will miss some
arcs, and (3) pattern (a) will be mined incorrectly because the α algorithm will not
find place P1.

In the remainder, we will show that it is possible to successfully mine pro-
cesses embedding one or more of the patterns shown in Figure 5. Using existing
algorithms such as the α algorithm [12, 41], the WF-net (a) shown in Figure 5
cannot be discovered, i.e., place P1 and its surrounding arcs will not be mined
correctly. For (b) and (g), place P1 may be replaced by two or more places. For
(c) and (e), the arc (P1,B) will be omitted. For (d) and (f), the arc (A,P1) will
be omitted.

In this paper, we will consider three cases:

1. The situation described by patterns (b) and (g) in Figure 5, where the α
algorithm incorrectly replaces place P1 by two or more places.

Mining Process Models with Non-Free-Choice Constructs 15

2. The situation described by patterns (c), (d), (e) and (f), where the α algo-
rithm misses the arc between A and P1 (A,P1) or P1 and B (P1, B).

3. The situation described by pattern (a) where place P1 is not discovered at
all.

In the next section, we will show how these three cases can be detected.

6 Detecting implicit dependencies

From the previous sections, it is obvious that the detection of implicit dependen-
cies is the most important factor for mining process models with non-free-choice
constructs correctly. In this section, we will introduce three methods to tackle
the three problems illustrated by Figure 5 in detail. There exists a one-to-one
relationship between the three methods and the above three cases of implicit
dependencies.

To detect explicit dependencies between tasks, we adopt the α algorithm
[12, 41]. Some definitions, such as >W , →W , #W , ‖W , etc., are also borrowed
from there with some modifications. Based on these basic ordering relations,
we provide some additional new definitions for advanced ordering relations. The
definition of one-loop-free workflow net directly adopts the definition with the
same name presented in [41].

Definition 3 (Ordering relations). Let N=(P,T,F) be a one-loop-free work-
flow net and W be an event log over T. Let a,b∈T:

– a4W b iff there is a trace σ = t1t2t3 . . . tn and i ∈ {1, . . . , n− 2} such that
σ ∈ W and ti = ti+2 = a and ti+1 = b,

– a >W b iff there is a trace σ = t1t2t3 . . . tn and i ∈ {1, . . . , n− 1} such that
σ ∈ W and ti = a and ti+1 = b,

– a →W b iff a >W b and (b ≯W a or a4W b or b4W a),
– a#W b iff a ≯W b and b ≯W a,
– a ‖W b iff a >W b and b >W a and ¬(a4W b or b4W a),
– a CW b iff a#W b and there is a task c such that c ∈ T and c →W a and

c →W b,
– a BW b iff a#W b and there is a task c such that c ∈ T and a →W c and

b →W c,
– a ÀW b iff a ≯W b and there is a trace σ = t1t2t3 . . . tn and i, j ∈ {1, . . . , n}

such that σ ∈ W and i < j and ti = a and tj = b and for all k ∈ {i +
1, . . . , j − 1} satisfying tk 6= a and tk 6= b and ¬(tk CW a or tk BW a), and

– a ÂW b iff a →W b or a ÀW b.

The definitions of 4W , >W and #W are the same as those defined in [41].
Definitions of →W and ‖W are a little different. Given a complete event log of
a sound SWF-net [12, 41] and two tasks a and b, a4W b and b4W a must both
come into existence. But for a one-loop-free event log of a sound WF-net, it is
not always true. Now we will turn to the last five new definitions. Relation CW

16 Lijie Wen et al.

corresponds to XOR-Split while relation BW corresponds to XOR-Join. Relation
ÀW represents that one task can only be indirectly followed by another task.
Relation ÂW represents that one task can be followed by another task directly
or indirectly. Consider the event log shown in Table 1, it can be represented as
string sets, i.e., {T1T3T4, T2T3T5}. From this log, the following advanced ordering
relations between tasks can be detected: T1 BW T2, T4 CW T5, T1 ÀW T4 and
T2 ÀW T5.

To improve the correctness of a mining result, the quality of its correspond-
ing event log is especially significant. Although other ordering relations can be
derived from >W , ÀW is a little special. >W reflects relations with the length
of one, while ÀW is a relation whose length is two or more. They are both used
in the following definition.

Definition 4 (Complete event log). Let N = (P, T, F) be a sound WF-net
and W be an event log of N . W is complete iff:

– for any event log W ′ of N : >W ′⊆>W , 4W ′ ⊆ 4W and ÀW ′⊆ÀW , and
– for any t ∈ T : there is a σ ∈ W such that t ∈ σ.

In this paper we assume perfect information: (i) the log must be complete (as
defined above) and (ii) the log is noise free (i.e., each event registered in the log
is correct and representative for the model that needs to be discovered). Some
techniques to deal with incompleteness and noise will be discussed later.

Based on the above ordering relations defined in Definition 3. Some implicit
ordering relations reflecting implicit dependencies can be derived.

Definition 5 (Implicit ordering relations). Let W be a complete event log
and N = (P, T, F) = α+(W) be a mined WF-net from W using the α+ algorithm.
Let a, b ∈ T :

– a 7→W 1 b iff a 6>W b and there is a task c ∈ T such that there are two
different places p1, p2 ∈ P such that p1, p2 ∈ •c and a ∈ •p1 and a 6∈ •p2 and
b ∈ p2• and there is no task t ∈ •p2 such that t ÂW a or t ‖W a,

– a 7→W 21 b iff a ÀW b and |a • | > 1 and there is a task b′ ∈ T such that
bCW b′ and there is a place p ∈ a• such that there is no task t ∈ p• such that
t ÂW b or t ‖W b and there is a task t′ ∈ p• such that t′ ÂW b′ or t′ ‖W b′,

– a 7→W 22 b iff a ÀW b and | • b| > 1 and there is a task a′ ∈ T such that
aBW a′ and there is a place p ∈ •b such that there is no task t ∈ •p such that
a ÂW t or a ‖W t and there is a task t′ ∈ •p such that a′ ÂW t′ or a′ ‖W t′,

– a 7→W 2 iff a 7→W 21 b or a 7→W 22 b, and
– a 7→W 3 b iff there are two tasks a′, b′ ∈ T such that a • ∩a′• 6= φ and
•b ∩ •b′ 6= φ and a ÀW b and a 6ÀW b′ and a′ 6ÀW b and a′ ÀW b′ and
•b ⊆ •b′ ∪ {•t|a 6ÀW t ∧ a′ ÀW t ∧ (b′ ‖W t ∨ b′ ÂW t) ∧ •b ∩ •t 6= φ}.

First of all, we try to detect implicit dependencies from an event log of a
process model with a sub-WF-net similar to Figure 5(b) and (g). 7→W 1 insures
that once there is a place connecting two successive tasks in the mined model

Mining Process Models with Non-Free-Choice Constructs 17

and the latter task has more than one input place, the latter task can always
have chance to be executed directly following the former task.

Secondly, we try to detect implicit dependencies from an event log of a process
model with a sub-WF-net similar to Figure 5(c) to (f). 7→W 2 insures that once
a task takes tokens from one of multiple parallel branches, it together with its
parallel tasks must consume tokens from other branches too.

Finally, we try to detect implicit dependencies from an event log of a pro-
cess model with a sub-WF-net similar to Figure 5(a). 7→W 3 insures that if two
exclusive tasks (i.e., involved in an XOR-Join) lead to different sets of parallel
branches and these two sets together with their tasks satisfy certain conditions,
the mined WF-net is still sound.

7 Mining algorithm

In this section, we first analyze the interrelationships among the three implicit
ordering relations proposed in the previous section. Then, we introduce two re-
duction rules for eliminating those implicit ordering relations leading to redun-
dant implicit dependencies. Then, we give the mining algorithm named α++ for
constructing process models with non-free-choice constructs involving implicit
dependencies. Finally, we briefly discuss the complexity of the α++ algorithm.

7.1 Interrelationships among the three implicit ordering relations

The three implicit ordering relations proposed in the previous section are not
independent of each other. There are a total of 3! = 6 kinds of interrelationships
among them. With the help of these interrelationships, the correct sequence of
detecting these relations can be identified naturally.

First, we will clarify the influence of 7→W 2 and 7→W 3 on 7→W 1 . See Figure 6,
we assume that 7→W 2 will be treated as →W before detecting 7→W 1 . Here a
has two input places, i.e., p2 and p3. After detecting 7→W 1 , t 7→W 1 b will be
detected and there will be an arc connecting t and p3. Clearly, the sub-WF-net
is not sound in this case. Here we get a conclusion that detecting 7→W 2 should
not be executed before detecting 7→W 1 . Similarly, detecting 7→W 3 should not be
executed before detecting 7→W 1 either.

t
p2 y2'

y2
p1 y1 Nc bp3

a
Fig. 6. Example for the influence of 7→W2 on 7→W1

Secondly, we will clarify the influence of 7→W 1 and 7→W 2 on 7→W 3 . From the
essence of 7→W 1 , we can see that it does not produce any new BW or CW order-
ing relation. While 7→W 3 fully involves all these two kinds of ordering relations

18 Lijie Wen et al.

between tasks. Here we get a conclusion that 7→W 1 has no influence on 7→W 3 .
On the contrary, 7→W 2 always produces new BW or CW ordering relations. So
detecting 7→W 3 should not be executed before detecting 7→W 2 .

Finally, we will clarify the influence of 7→W 1 and 7→W 3 on 7→W 2 . The detection
of 7→W 2 depends on the parallel branches of some task and four kinds of advanced
ordering relations (i.e., CW , BW , ‖W and ÂW). From the essence of 7→W 1 and
7→W 3 , we can see that they do not affect any task’s parallel branches and do
not produce any new CW , BW , ‖W or ÂW ordering relation. Here we get a
conclusion that the detection of 7→W 1 or 7→W 3 does not influence that of 7→W 2 .

By now, we can identify the correct sequence of detecting the three kind
of implicit ordering relations, i.e., 7→W 1> 7→W 2>7→W 3 . When detecting these
relations successively, the only important thing to remember is that all 7→W 2

relations must be treated as →W before detecting 7→W 3 .

7.2 Eliminating redundant implicit dependencies

Not all the implicit dependencies derived from the implicit ordering relations are
meaningful to the mined process model. There may exist some implicit dependen-
cies leading to implicit places, which are called redundant implicit dependencies.
We will give two reduction rules to eliminate these implicit dependencies (i.e.,
eliminating the corresponding implicit ordering relations) in this subsection.

Figure 7 shows the first kind of mined WF-net involving redundant implicit
dependencies. Here p2 is an implicit place caused by A 7→W 2 E that needs to be
eliminated.

A
D

Cp1
B

F H
G

E

p2

Fig. 7. The first kind of mined WF-net involving redundant implicit dependencies

Therefore, we need a reduction rule to eliminate this kind of redundant im-
plicit dependencies after detecting 7→W 2 . We do this by eliminating the corre-
sponding implicit ordering relations. This reduction rule named Rule 1 is for-
malized as follows.

∀a,b,c∈TW a 7→W 2 b ∧ a 7→W 2 c ∧ b ÂW c ⇒ a 67→W 2 c

∀a,b,c∈TW
a 7→W 2 c ∧ b 7→W 2 c ∧ a ÂW b ⇒ a 67→W 2 c

(1)

Figure 8 shows the second kind of mined WF-net involving redundant implicit
dependencies. Here either p2 or p3 is an implicit place caused by A 7→W 3 H or
D 7→W 3 H respectively.

Therefore, we need a reduction rule to eliminate this kind of redundant im-
plicit dependencies after detecting 7→W 3 . As Figure 8 shows, either p2 or p3 can

Mining Process Models with Non-Free-Choice Constructs 19

A
B

C
D
EF

p1
G

H
IJ

p3
p2

Fig. 8. The second kind of mined WF-net involving redundant implicit dependencies

be eliminated but they should not be both eliminated. Here we prefer to elimi-
nate the implicit dependencies with longer distances according to the transitive
closure of all the basic implicit dependencies. This reduction rule named Rule 2
is formalized as follows.

∀a,b∈TW
(a 7→W 3 b ∧ ∃t1,···,tn∈TW

(n ≥ 1 ∧ a 7→W 3 t1 ∧ · · · ∧ tn 7→W 3 b))
⇒ a 67→W 3 b

(2)

Consider again the WF-net shown in Figure 8, p2 will be eliminated after
applying Rule 2. Here A 7→W 3 H is not a basic implicit dependency. It can be
decomposed into A 7→W 3 D and D 7→W 3 H. In this example, A 7→W 3 D and
D 7→W 3 H are both basic implicit dependencies. The goal of this reduction rule
is just to eliminate all non-basic implicit dependencies while keep the basic ones.

7.3 Constructing process models

By now, all the explicit and implicit dependencies can be detected correctly. It
is necessary to give an algorithm that constructs the final mined process model.
The solution to tackle length-one loops in sound WF-nets and some mining steps
are borrowed from [41] with some modification. All the related ordering relations
come from Definition 3.

The algorithm - called α++ - to mine sound WF-nets with non-free-choice
constructs is formalized as follows. Note that the function eliminateTask(σ, t)
maps any event trace σ to a new one σ′ without the occurrence of a certain
transition t [41]. Also note that eliminateRDByRule1 and eliminateRDByRule2
eliminate redundant implicit dependencies in any dependency set by applying
Rule 1 and 2 respectively.

Definition 6 (Mining algorithm α++). Let W be a loop-complete event log
over T . The α++(W) is defined as follows.

1. Tlog = {t ∈ T |∃σ∈W t ∈ σ}
2. L1L = {t ∈ Tlog|∃σ=t1t2···tn∈W ;i∈{1,2,···,n}t = ti−1 ∧ t = ti}
3. T ′ = Tlog − L1L
4. XW = {(A, B,C)|A ⊆ T ′∧B ⊆ T ′∧C ⊆ L1L∧∀a∈A∀c∈C(a >W c∧¬(c4W

a))∧∀b∈B∀c∈C(c >W b∧¬(c4W b))∧∀a∈A∀b∈Ba ∦W b∧∀a1,a2∈Aa1#W a2∧
∀b1,b2∈Bb1#W b2}

5. LW = {(A,B, C) ∈ XW |∀(A′,B′,C′)∈XW
A ⊆ A′ ∧ B ⊆ B′ ∧ C ⊆ C ′ ⇒

(A,B,C) = (A′, B′, C ′)}

20 Lijie Wen et al.

6. W−L1L = ∅
7. For each σ ∈ W do:

(a) σ′ = σ
(b) For each t ∈ L1L do:

i. σ′ := eliminateTask(σ′, t)
(c) W−L1L := W−L1L ∪ σ′

8. IDW 1 = {(a, b)|a ∈ T ′ ∧ b ∈ T ′ ∧ a 7→W 1 b}
9. (PW−L1L , TW−L1L , FW−L1L) = α(W−L1L)

10. Treat each a 7→W 1 b ∈ IDW 1 as a →W b and IDW 2 = {(a, b)|a ∈ T ′ ∧ b ∈
T ′ ∧ a 7→W 2 b}

11. IDW 2 := eliminateRDByRule1(IDW 2)
12. XW = {(A∪A2, B∪B2)|p(A,B) ∈ PW−L1L∧A2∪B2 6= ∅∧A∩A2 = ∅∧B∩B2 =

∅ ∧ ∀a∈A∀b∈B2(a 7→W 1 b ∨ a 7→W 2 b) ∧ ∀a∈A2∀b∈B∪B2(a 7→W 1 b ∨ a 7→W 2

b)∧∀a1∈A∀a2∈A2(a2#W a1∧a2 6ÀW a1)∧∀b1∈B∀b2∈B2(b1#W b2∧b1 6ÀW b2)}
13. YW = {(A,B)|((A,B) ∈ XW∨p(A,B) ∈ PW−L1L)∧∀(A′,B′)∈XW∨p(A′,B′)∈PW−L1L

(A ⊆ A′ ∧B ⊆ B′ ⇒ (A,B) = (A′, B′))}
14. Treat each a 7→W 2 b ∈ IDW 2 as a →W b and IDW 3 = {(a, b)|a ∈ T ′ ∧ b ∈

T ′ ∧ a 7→W 3 b}
15. IDW 3 := eliminateRDByRule2(IDW 3)
16. XW = {(A,B)|A ⊆ T ′ ∧ B ⊆ T ′ ∧ ∀a∈A∀b∈Ba 7→W 3 b ∧ ∀a1,a2∈Aa1#W a2 ∧

∀b1,b2∈Bb1#W b2}
17. ZW = {(A,B) ∈ XW |∀(A′,B′)∈XW

A ⊆ A′ ∧B ⊆ B′ ⇒ (A,B) = (A′, B′)}
18. PW = {p(A,B)|(A,B) ∈ YW ∪ ZW } − {p(A,B)|∃(A′,B′,C′)∈LW

A′ = A ∧ B′ =
B} ∪ {p(A∪C,B∪C)|(A, B,C) ∈ LW }

19. TW = TW−L1L ∪ L1L
20. FW = {(a, p(A,B))|(A,B) ∈ PW ∧a ∈ A}∪{(p(A,B), b)|(A,B) ∈ PW ∧ b ∈ B}
21. α++(W) = (PW , TW , FW)

The α++ works as follows. Steps 1 to 3 are directly borrowed from [41]. In
steps 4 and 5, the places connecting length-one-loop transitions are identified
and included in LW . Then all length-one-loop transitions are removed from the
input log W and the new input log W−L1L to be processed by the α algorithm
is derived (steps 6 and 7). In Step 8, all the implicit ordering relations 7→W 1 in
W−LlL are detected. In Step 9, the α algorithm discovers a WF-net based on
W−L1L and the ordering relations as defined in Definition 3. In steps 10 to 13,
all the places involving 7→W 1 and 7→W 2 relations are derived and included in
YW . First, all the implicit dependencies 7→W 2 in W−LlL are detected once all
the 7→W 1 in IDW 1 have been treated as →W (Step 10). Then Rule 1 is applied
to reduce the redundant implicit dependencies in IDW 2 (Step 11). At last, all
the places involving the first two kinds of implicit dependencies are derived from
PW−L1L while the other places in PW−L1L are retained (steps 12 and 13). In
steps 14 to 17, all the places involving 7→W 3 relations are derived and included
in ZW . First, all the 7→W 2 in IDW 2 are treated as →W and all the implicit
dependencies 7→W 3 in W−LlL are detected (Step 14). Then Rule 2 is applied to
reduce the redundant implicit dependencies in IDW 3 (Step 15). At last, all the
places involving the third kind of implicit dependency are derived based on these

Mining Process Models with Non-Free-Choice Constructs 21

7→W 3 relations (steps 16 and 17). In steps 18 to 20, all the places in the mined
WF-net are gathered and the length-one-loop transitions are added to the net
and all the arcs of the net are derived too. The WF-net with non-free-choice
constructs as well as length-one-loops and implicit dependencies is returned in
Step 21.

7.4 Complexity of the α++ algorithm

To conclude this section, we consider the complexity of the α++ algorithm. For
a complex process model, its complete event log may be huge containing millions
of events. Fortunately, the α++ algorithm is driven by relations >W , 4W and
ÀW . The time it takes to build relations >W , 4W and ÀW is linear in the
size of the log. Moreover, we only require the log to be complete with respect
to these relations, i.e., we do not need logs that capture all possible traces. The
complexity of the remaining steps in the α++ algorithm is exponential in the
number of tasks. However, note that the number of tasks is typically less than
100 and does not depend on the size of the log. Therefore, the complexity is not
a bottleneck for large-scale application [12].

Practical experiences show that process models of up to 25 tasks based on
logs of about half a million events can be analyzed within one minute on a
standard computer. In the next section we will give an example of this size.
Based on real-life logs we also experienced that the α++ algorithm is typically
not the limiting factor. The real limiting factor is the visualization of the model
and the interpretation of the model by the analyst. Although the α++ algorithm
is able to construct much larger models, people have problems comprehending
such models (especially when the layout is machine generated). Therefore, ProM
offers an extensive set of filtering mechanisms to collapse part of the process into
a single node or to abstract from less frequent paths and tasks.

8 Experimental evaluation

The α++ algorithm has been implemented as a ProM plug-in and can be down-
loaded from www.processmining.org. As shown in Section 1, ProM is a general
process mining framework [25]. It takes an event log in the standard XML format
(MXML) as input and uses a process mining plug-in to mine a process model
from that log. A screenshot of ProM is shown in Figure 9. The screenshot shows
the Petri net constructed by the α++ algorithm. The screenshot also shows that
the result can be automatically translated to an Event-driven Process Chain
(EPC, [36, 49]) and that the result can be analyzed for soundness. In fact the
result can be exported to tools such as CPN Tools, ARIS, YAWL, ARIS PPM,
Yasper, EPC Tools, Woflan, etc.

A lot of experiments have been done to evaluate the proposed methods to-
gether with the implemented algorithm in the previous sections. The α++ plug-in
of ProM has been applied to several real-life logs and smaller artificial logs.

22 Lijie Wen et al.

Fig. 9. A screenshot of ProM showing the result of applying the α++ algorithm

This section shows the application of the α++ algorithm to smaller artificial
logs and discusses the application of large more realistic logs. Moreover, we also
discuss the limitation of the α++ algorithm.

8.1 Evaluation based on smaller artificial logs

Instead of showing large real-life models, we first focus on smaller artificial ex-
amples that demonstrate the fact that α++ significantly improves existing ap-
proaches such as the classic α algorithm.

To illustrate the capabilities of the α++ plug-in, we first show some experi-
mental results for models with implicit dependencies.

Figure 10(a) shows an original WF-net. One of its complete workflow log
is {ABC,ABDEC,ADBEC, ADEBC, ABDEDEC}. After applying α+ algo-
rithm on this log, the mined model is similar to Figure 10(b) except for the two
dotted arcs. Based on this net and the corresponding log, A 7→W 1 C is detected.
Thus p1 and p2 should be merged together. The resulting mined model will be
the same as the original one, i.e., the α++ algorithm is able to correctly discover
processes such as the one shown in Figure 10(a).

Figure 11 shows the effect of detecting 7→W 2 . The WF-nets excluding the
dotted arcs are mined by α+ algorithm. The dotted arcs correspond to the de-
tected implicit dependency relation 7→W 2 . Thus the WF-nets in Figure 11 can all
be discovered correctly by the α++ algorithm. For Figure 11(a), the correspond-
ing complete workflow log is {ABCE, ACBE, ADE}. From this log, no implicit
dependency is detected. For Figure 11(b), the corresponding complete workflow
log is {ACFBGE, AFCBGE, AFBCGE, AFBGCE,AFDGE}. From this log,

Mining Process Models with Non-Free-Choice Constructs 23

A CB
D E

A CB
D E
p1 p2

(a) (b)
Fig. 10. Detecting implicit dependency relation 7→W1

implicit dependencies A 7→W 2 D and D 7→W 2 E are detected. For Figure 11(c),
the corresponding complete workflow log is {ACD, BCE, AFCE,ACFE}. From
this log, implicit dependencies A 7→W 2 D and B 7→W 2 E are detected. For Fig-
ure 11(d), the corresponding complete workflow log is {ABC,ABDE, ADBE}.
From this log, implicit dependency A 7→W 2 C is detected.

A CB
D E

A E
C
B
D A

C
B
D

F
E

G

A
B

C
D
E

F
(a) (b)

(c) (d)
Fig. 11. Detecting implicit dependency relation 7→W2

Figure 12 shows the effect of detecting 7→W 3 . All the implicit dependencies
in the WF-nets are detected successfully from the corresponding logs. For Fig-
ure 12(a), the corresponding complete workflow log is {ACD,ACE,BCD,BCE}.
From this log, no implicit dependency is detected. If the log changes to {ACD,
BCE}, implicit dependencies A 7→W 3 D and B 7→W 3 E can be detected. For Fig-
ure 12(b), the corresponding complete workflow log is {ACFD, AFCD, BCGE,
BGCE}. From this log, no implicit dependency is detected either. For Fig-
ure 12(c), the corresponding complete workflow log is {ACD, BCFE, BFCE}.
From this log, implicit dependency A 7→W 3 D is detected. For Figure 12(d), the
corresponding complete workflow log is {ACEBCD}. From this log, implicit
dependencies A 7→W 3 E and B 7→W 3 D are detected.

Figure 13(a) shows the effect of detecting 7→W 2 and 7→W 3 successively. Fig-
ure 13(b) shows the effect of detecting 7→W 1 and 7→W 3 successively. The mined
WF-nets with implicit dependencies are the same as the original ones, i.e., the
α++ algorithm is able to correctly discover processes such as the ones shown
in Figure 13. For Figure 13(a), the corresponding complete workflow log is
{ACDEGH, ACDGEH, ACGDEH, BCDFH}. From this log, implicit depen-
dencies C 7→W 2 F ,A 7→W 3 E,A 7→W 3 G and B 7→W 3 F are detected. For Fig-

24 Lijie Wen et al.

A
B

C
D
EF

A
B

C
D
E

A
B

C
D
EG

F

(a) (b)

(c) (d)

A
B

C
D
E

Fig. 12. Detecting implicit dependency relation 7→W3

ure 13(b), the corresponding complete workflow log is {FBG, ABC, FDBEG,
FBDEG,FDEBG, ADEDEBG,ABDEC}. From this log, implicit dependen-
cies A 7→W 1 C,F 7→W 1 G,A 7→W 3 C and F 7→W 3 G are detected.

A
B

C H
G
E
F

D

(a) (b)

A CB
D E

F G
Fig. 13. Detecting implicit dependency relations 7→W2 and 7→W3 as well as 7→W1 and
7→W3

8.2 Evaluation based on real-life logs

The above experimental results show that our algorithm is powerful enough to
detect implicit dependencies between tasks. Now we use a more realistic example
given in Figure 14 to show the applicability of the α++ algorithm. This process
model was discovered based on a log containing 29502 event traces (i.e., cases)
and 416586 events. In the resulting model there are 26 different tasks. It takes
about one minute for the α++ algorithm to discover the model shown in Fig-
ure 14. The dotted arcs reflect the implicit dependencies between tasks detected
by the α++ algorithm, i.e., Contact outsource organization 7→W 2Send bill, Repair
car on the spot RSM 7→W 2Send bill and Repair car on the spot ASM 7→W 2Send
bill.

The process model shown in Figure 14 is taken from a set of 25 realistic
process models. These models were constructed by students in group projects
where they had to model real life business processes. Each of the models has a size
and complexity comparable to Figure 14. The processes were modeled using the

Mining Process Models with Non-Free-Choice Constructs 25

Registrate call Loop up customer info Contact nearest service location Decide outsourcing
Contact outsource organization

Make bill

Send bill

Customer pays within 3 weeks
Archive

No payment within 3 weeks
Send bill again

Select service mechanicGo to customer RSM
Go to customer ASM

Check car for defects RSM
Check car for defects ASM

Tow away car ASM
Tow away car RSM

Give replacement car Repair car

Repair car on the spot ASM
Repair car on the spot RSM

Make appointmentPick up car
Return car to customer Return replacement car

Fig. 14. A realistic example of repairing car including implicit dependencies

26 Lijie Wen et al.

tool Protos [43]. Protos is the most widely used business process modeling tool in
the Netherlands. Currently it is used by about 1500 organizations in more than
20 countries, e.g., more than half of all municipalities within the Netherlands use
Protos for the specification of their in-house business processes. In each of the
group projects a different real-life case was selected and the students modeled
the corresponding processes. It is important to note that none of the authors was
involved in the modeling of these processes. These models were automatically
transferred to the simulation tool CPN Tools [21]. By using the ProMimport tool
(promimport.sourceforge.net), the simulation logs of CPN Tools were converted
into MXML logs. All of the steps were carried out automatically without passing
any explicit process information into the logs. We used the logs of these 25
realistic process models to evaluate the α++ algorithm. Each of these logs was
complete and for each of the 25 logs the α++ algorithm was able to discover
the corresponding process model correctly. All the implicit dependencies between
tasks hidden in the logs are detected successfully by the α++ algorithm.

We also applied the α++ algorithm to several other real-life logs. We have
MXML logs from various organizations (ranging from hospitals and governmen-
tal organizations to a manufacturer of wafer steppers). These experiences show
that as long as the log is complete, the α++ algorithm is able to discover a
suitable model.

8.3 Limitations

Despite the successful application of the α++ algorithm to many artificial and
real-life event logs, not all sound WF-nets can be successfully derived from their
corresponding event logs. In the remainder of this section, we discuss some ex-
ceptional situations in which the α++ algorithm fails.

Consider the two sound WF-nets N4 and N5 shown in Figure 15. Their de-
rived nets N ′

4 and N ′
5 shown in the shadow are not the same as the original.

For N4, one of its complete event logs is {ABCE, ACBE, ABDDCE}. After
applying α++ algorithm on that log, N ′

4 is derived. There is an implicit depen-
dency between A and D as well as between D and E in N4. The task D is
involved in both a length-one-loop and two implicit dependencies. In Definition
6, it is assumed that none task in length-one-loop is involved in any implicit
dependency. Thus the places connected to D can not be detected correctly in
steps 4 and 5 of the definition. The mined net N ′

4 is not a WF-net because D
is not connected. The behavior of N ′

4 is not the same as that of N4 either. For
N5, similar thing happens. There are two implicit dependencies between A and
D as well as between H and E in N5. Although N ′

5 is a sound WF-net, it is not
behavioral equivalent with N5. Although mining such WF-nets is difficult, it is
possible to correctly mine them using the α++ algorithm after a minor modi-
fication. According to Definition 5, A 7→W 2 D and D 7→W 2 E can be detected
from the log of N4 as well as A 7→W 2 D and H 7→W 2 E from that of N5. With
this minor modification, the α++ algorithm is still powerful enough to mine such
WF-nets correctly based on definitions 3 and 5.

Mining Process Models with Non-Free-Choice Constructs 27

I A
C
B
D E O I A

C
B
D E ON4

A
C
B

D
F

E
G

H
I

O
N5 A

C
B

D
F

E
G

H
I

O

Fig. 15. WF-nets with length-one-loops involving implicit dependencies

There are also a few WF-nets which could not be derived from their com-
plete event logs correctly even after the α++ algorithm is modified as discussed
before. Maybe some more advanced ordering relations introduced in the future
can handle these cases. See N6 and N7 in Figure 16. Their derived nets using
the α++ algorithm are not sound any more. For N6, one of its complete event
logs is {ABDEHFI, ADBEHFI, ACDFGEI, ADCFGEI}. Although there
are many choices to make in N6, only the choice between B and C is free-choice.
In one event trace, once B or C is chosen to execute, the remaining execution
sequence is determined. The ordering relations between H and E, G and F , E
and G, and F and H are too difficult for any of today’s mining algorithm. For
N7, one of its complete event logs is {ABCE, ACDF, ADBG}. All generated
event traces are based upon the choice between B, C and D. The ordering rela-
tions between B and B, C and C, D and D, A and E, A and F , and A and G
are even more difficult to mine.

I
A

B

C
D E

F
G

H
I
O

I
A

B
C
D

E
F
G

O
N6 N7

Fig. 16. Sample WF-nets leading to mining failure

The above examples refer to rather complex structures that are difficult to
mine but at the same time are rather rare. More important problems from a
practical point of view are issues related to noise and completeness. The α++

heavily relies on a particular notion of completeness, i.e., if two tasks can follow
one another they should follow one another at least once in the entire log. Note
that this is a much weaker notion of completeness than used by the classical
approaches (which typically require completeness in terms of sequences). Never-

28 Lijie Wen et al.

theless, even our weaker form of completeness is not realistic in case there is a
lot of possible concurrency. This is not so much a problem of the α++ algorithm,
i.e., it reveals a fundamental problem related to process mining. This problem is
that it is impossible to discover behavior that did not yet happen because the ob-
servation period was too short. The other problem is the problem of noise. Noise
may refer to exceptions of incorrectly logged events. The only way to address
this is to filter away less frequent behavior. ProM offer a wide variety of filters
and plug-ins able to deal with noise. Nevertheless, the problem is similar to the
problem of completeness. How to distinguish regular from irregular behavior?
Therefore, both issues suggest a more interactive form of process mining where
an analyst is guiding the process mining algorithms to deal with incompleteness
and noise.

9 Conclusion and future work

Process mining offers a new and exciting way to extract valuable information
from event logs. In this paper, we have focused on process discovery, i.e., deriving
a process model able to explain the observed behavior. This is interesting in
many domains, e.g., discovering careflows in hospitals, monitoring web services,
following maintenance processes, analyzing software development processes, etc.
Although several process discovery techniques have been developed, implemented
and applied successfully, they are unable to correctly mine certain processes.
All of the existing techniques have problems dealing with implicit dependencies
that may result from processes exhibiting non-free-choice behavior. Since real-life
processes have such implicit dependencies, it is a highly relevant problem.

This paper describes an approach that is able to successfully mine a certain
class of implicit dependencies, i.e., some non-free-choice Petri nets can be discov-
ered correctly. Hence, it is a considerable improvement over existing approaches.
The resulting α++ algorithm has been implemented and tested on a wide variety
of logs, i.e., real-life logs and artificial logs. These experimental evaluations show
that the approach is indeed able to detect implicit dependencies between tasks.

Our future work will focus on the application of the α++ algorithm to
more real-life processes. Some techniques to deal with incompleteness should
be explored. Moreover, we also want to address other open problems in the
process-mining domain, e.g., invisible tasks (e.g., the skipping of tasks that is
not recorded), duplicate tasks (i.e., different tasks in the model cannot be dis-
tinguished in the log), noise (e.g., dealing with exceptional behavior or incorrect
logs), etc. In fact, we invite other researchers and tool developers to join us in
this endeavor. The ProM framework provides a plugable open-source environ-
ment which makes it easy to develop alternative process mining algorithms.

Acknowledgements

The authors would like to thank Ton Weijters, Boudewijn van Dongen, Ana
Karla Alves de Medeiros, Anne Rozinat, Christian Günter, Eric Verbeek, Min-

Mining Process Models with Non-Free-Choice Constructs 29

seok Song, Ronny Mans, Laura Maruster, Monique Jansen-Vullers, Hajo Reijers,
Michael Rosemann, Huub de Beer, Peter van den Brand, Andriy Nikolov, Wouter
Kunst, Martijn van Giessel et al. for their on-going work on process mining tech-
niques. We also thank EIT, STW, and NWO for supporting the development of
the ProM framework, cf. www.processmining.org.

This work is supported by the 973 Project of China (No. 2002CB312006) and
the Project of National Natural Science Foundation of China (No. 60373011).

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

2. W.M.P. van der Aalst. Business Alignment: Using Process Mining as a Tool for
Delta Analysis. In J. Grundspenkis and M. Kirikova, editors, Proceedings of the 5th
Workshop on Business Process Modeling, Development and Support (BPMDS’04),
volume 2 of Caise’04 Workshops, pages 138–145. Riga Technical University, Latvia,
2004.

3. W.M.P. van der Aalst. Business Process Management Demystified: A Tutorial on
Models, Systems and Standards for Workflow Management. In J. Desel, W. Reisig,
and G. Rozenberg, editors, Lectures on Concurrency and Petri Nets, volume 3098
of Lecture Notes in Computer Science, pages 1–65. Springer-Verlag, Berlin, 2004.

4. W.M.P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and H.M.W. Verbeek.
Choreography Conformance Checking: An Approach based on BPEL and Petri
Nets (extended version). BPM Center Report BPM-05-25, BPMcenter.org, 2005.

5. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

6. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.

7. W.M.P. van der Aalst, A.K. Alves de Medeiros, and A.J.M.M. Weijters. Genetic
Process Mining. In G. Ciardo and P. Darondeau, editors, Applications and Theory
of Petri Nets 2005, volume 3536 of Lecture Notes in Computer Science, pages
48–69. Springer-Verlag, Berlin, 2005.

8. W.M.P. van der Aalst and A.K.A. de Medeiros. Process Mining and Security:
Detecting Anomalous Process Executions and Checking Process Conformance. In
N. Busi, R. Gorrieri, and F. Martinelli, editors, Second International Workshop
on Security Issues with Petri Nets and other Computational Models (WISP 2004),
pages 69–84. STAR, Servizio Tipografico Area della Ricerca, CNR Pisa, Italy, 2004.

9. W.M.P. van der Aalst and M. Song. Mining Social Networks: Uncovering Interac-
tion Patterns in Business Processes. In J. Desel, B. Pernici, and M. Weske, editors,
International Conference on Business Process Management (BPM 2004), volume
3080 of Lecture Notes in Computer Science, pages 244–260. Springer-Verlag, Berlin,
2004.

10. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

11. W.M.P. van der Aalst and A.J.M.M. Weijters, editors. Process Mining, Special
Issue of Computers in Industry, Volume 53, Number 3. Elsevier Science Publishers,
Amsterdam, 2004.

30 Lijie Wen et al.

12. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

13. W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case Handling: A New
Paradigm for Business Process Support. Data and Knowledge Engineering,
53(2):129–162, 2005.

14. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Work-
flow Logs. In Sixth International Conference on Extending Database Technology,
pages 469–483, 1998.

15. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process
Execution Language for Web Services, Version 1.1. Standards proposal by BEA
Systems, International Business Machines Corporation, and Microsoft Corpora-
tion, 2003.

16. A.W. Biermann and J.A. Feldman. A Survey of Results in Grammatical Inference.
In S. Watanabe, editor, Frontiers of Pattern Recognition, pages 31–54. Academic
Press, 1972.

17. A.W. Biermann and J.A. Feldman. On the Synthesis of Finite-State Machines from
Samples of their Behavior. IEEE Transaction on Computers, 21:592–597, 1972.

18. J.E. Cook and Z. Du. Discovering thread interactions in a concurrent system.
Journal of Systems and Software, 77(3):285–297, 2005.

19. J.E. Cook, Z. Du, C. Liu, and A.L. Wolf. Discovering models of behavior for
concurrent workflows. Computers in Industry, 53(3):297–319, 2004.

20. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215–249, 1998.

21. CPN Group, University of Aarhus, Denmark. CPN Tools Home Page.
http://wiki.daimi.au.dk/cpntools/.

22. A. Datta. Automating the Discovery of As-Is Business Process Models: Proba-
bilistic and Algorithmic Approaches. Information Systems Research, 9(3):275–301,
1998.

23. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge, UK,
1995.

24. J. Desel, W. Reisig, and G. Rozenberg, editors. Lectures on Concurrency and Petri
Nets, volume 3098 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
2004.

25. B. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The ProM framework: A New Era in Process Mining Tool
Support. In G. Ciardo and P. Darondeau, editors, Application and Theory of Petri
Nets 2005, volume 3536 of Lecture Notes in Computer Science, pages 444–454.
Springer-Verlag, Berlin, 2005.

26. B.F. van Dongen and W.M.P. van der Aalst. A Meta Model for Process Mining
Data. In J. Casto and E. Teniente, editors, Proceedings of the CAiSE’05 Workshops
(EMOI-INTEROP Workshop), volume 2, pages 309–320. FEUP, Porto, Portugal,
2005.

27. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Infor-
mation Systems: Bridging People and Software through Process Technology. Wiley
& Sons, 2005.

28. A. Ehrenfeucht and G. Rozenberg. Partial (Set) 2-Structures - Part 1 and Part 2.
Acta Informatica, 27(4):315–368, 1989.

Mining Process Models with Non-Free-Choice Constructs 31

29. G. Greco, A. Guzzo, L. Pontieri, and D. Saccá. Mining Expressive Process Models
by Clustering Workflow Traces. In Proc of Advances in Kowledge Discovery and
Data Mining, 8th Pacific-Asia Conference (PAKDD 2004), pages 52–62, 2004.

30. D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and M.C. Shan. Business
process intelligence. Computers in Industry, 53(3):321–343, 2004.

31. D. Grigori, F. Casati, U. Dayal, and M.C. Shan. Improving Business Process Qual-
ity through Exception Understanding, Prediction, and Prevention. In P. Apers,
P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and R. Snodgrass, ed-
itors, Proceedings of 27th International Conference on Very Large Data Bases
(VLDB’01), pages 159–168. Morgan Kaufmann, 2001.

32. D. Harel, H. Kugler, and A. Pnueli. Synthesis Revisited: Generating Statechart
Models from Scenario-Based Requirements. In Formal Methods in Software and
Systems Modeling, volume 3393 of Lecture Notes in Computer Science, pages 309–
324. Springer-Verlag, Berlin, 2005.

33. J. Herbst. A Machine Learning Approach to Workflow Management. In Proceedings
11th European Conference on Machine Learning, volume 1810 of Lecture Notes in
Computer Science, pages 183–194. Springer-Verlag, Berlin, 2000.

34. IDS Scheer. ARIS Process Performance Manager (ARIS PPM): Measure, Ana-
lyze and Optimize Your Business Process Performance (whitepaper). IDS Scheer,
Saarbruecken, Gemany, http://www.ids-scheer.com, 2002.

35. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architec-
ture, and Implementation. International Thomson Computer Press, London, UK,
1996.

36. G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Processmodellierung auf
der Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des
Instituts für Wirtschaftsinformatik, Heft 89 (in German), University of Saarland,
Saarbrücken, 1992.

37. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

38. H. Liang, J. Dingel, and Z. Diskin. A Comparative Survey of Scenario-Based to
State-Based Model Synthesis Approaches. In Proceedings of the 2006 Interna-
tional Workshop on Scenarios and State Machines: Models, Algorithms, and Tools
(SCESM06), pages 5–12, New York, NY, USA, 2006. ACM Press.

39. A.K. Alves de Medeiros and C.W. Guenther. Process Mining: Using CPN Tools
to Create Test Logs for Mining Algorithms. In K. Jensen, editor, Proceedings of
the Sixth Workshop on the Practical Use of Coloured Petri Nets and CPN Tools
(CPN 2005), volume 576 of DAIMI, pages 177–190, Aarhus, Denmark, October
2005. University of Aarhus.

40. A.K.A. de Medeiros, W.M.P. van der Aalst, and A.J.M.M. Weijters. Workflow
Mining: Current Status and Future Directions. In R. Meersman, Z. Tari, and D.C.
Schmidt, editors, On The Move to Meaningful Internet Systems 2003: CoopIS,
DOA, and ODBASE, volume 2888 of Lecture Notes in Computer Science, pages
389–406. Springer-Verlag, Berlin, 2003.

41. A.K.A. de Medeiros, B.F. van Dongen, W.M.P. van der Aalst, and A.J.M.M. Wei-
jters. Process Mining for Ubiquitous Mobile Systems: An Overview and a Concrete
Algorithm. In L. Baresi, S. Dustdar, H. Gall, and M. Matera, editors, Ubiquitous
Mobile Information and Collaboration Systems (UMICS 2004), volume 3272 of
Lecture Notes in Computer Science, pages 154–168. Springer-Verlag, Berlin, 2004.

42. M. zur Mühlen and M. Rosemann. Workflow-based Process Monitoring and Con-
trolling - Technical and Organizational Issues. In R. Sprague, editor, Proceedings

32 Lijie Wen et al.

of the 33rd Hawaii International Conference on System Science (HICSS-33), pages
1–10. IEEE Computer Society Press, Los Alamitos, California, 2000.

43. Pallas Athena. Protos User Manual. Pallas Athena BV, Plasmolen, The Nether-
lands, 2004.

44. R. Parekh and V. Honavar. An Incremental Interactive Algorithm for Regu-
lar Grammar Inference. In International Colloquium on Grammatical Inference:
Learning Syntax from Sentences (ICGI 1996), volume 1147 of Lecture Notes in
Computer Science, pages 238–249. Springer-Verlag, Berlin, 1996.

45. R. Parekh and V.G. Honavar. Learning DFA from Simple Examples. Machine
Learning, 44(1-2):9–35, 2001.

46. A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring the Fit
and Appropriateness of Event Logs and Process Models. In C. Bussler et al., editor,
BPM 2005 Workshops, volume 3812 of Lecture Notes in Computer Science, pages
163–176. Springer-Verlag, Berlin, 2006.

47. P. Sarbanes, G. Oxley, and et al. Sarbanes-Oxley Act of 2002, 2002.
48. M. Sayal, F. Casati, U. Dayal, and M.C. Shan. Business Process Cockpit. In Pro-

ceedings of 28th International Conference on Very Large Data Bases (VLDB’02),
pages 880–883. Morgan Kaufmann, 2002.

49. A.W. Scheer. ARIS: Business Process Modelling. Springer-Verlag, Berlin, 2000.
50. J. Scott. Social Network Analysis. Sage, Newbury Park CA, 1992.
51. TIBCO. TIBCO Staffware Process Monitor (SPM). http://www.tibco.com, 2005.
52. S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications.

Cambridge University Press, Cambridge, 1994.
53. A.J.M.M. Weijters and W.M.P. van der Aalst. Workflow Mining: Discovering

Workflow Models from Event-Based Data. In C. Dousson, F. Höppner, and
R. Quiniou, editors, Proceedings of the ECAI Workshop on Knowledge Discovery
and Spatial Data, pages 78–84, 2002.

54. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models
from Event-Based Data using Little Thumb. Integrated Computer-Aided Engi-
neering, 10(2):151–162, 2003.

55. L. Wen, J. Wang, W.M.P. van der Aalst, Z. Wang, and J. Sun. A Novel Approach
for Process Mining Based on Event Types. BETA Working Paper Series, WP 118,
Eindhoven University of Technology, Eindhoven, 2004.

56. L. Wen, J. Wang, and J. Sun. Detecting implicit dependencies between tasks from
event logs. In X. Zhou, X. Lin, and H. Lu et al., editors, The 8th Asia-Pacific Web
Conference (APWeb 2006), volume 3841 of Lecture Notes in Computer Science,
pages 591–603. Springer-Verlag, Berlin, 2006.

