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Abstract. When a workflow contains a large number of tasks and involves com-
plex control flow dependencies, verification can take too much time or it may
even be impossible. Reduction rules can be used to abstract from certain transi-
tions and places in a large net and thus could cut down the size of the net used
for verification. Petri nets have been proposed to model and analyse workflows
and Petri nets reduction rules have been used for efficient verification of various
properties of workflows, such as liveness and boundedness. Reset nets are Petri
nets with reset arcs, which can remove tokens from places when a transition fires.
The nature of reset arcs closely relates to the cancellation behaviour in work-
flows. As a result, reset nets have been proposed to formally represent workflows
with cancellation behaviour, which is not easily modelled in ordinary Petri nets.
Even though reduction rules exist for Petri nets, the nature of reset arcs could
invalidate the transformation rules applicable to Petri nets. This motivated us to
consider possible reduction rules for reset nets. In this paper, we propose a num-
ber of reduction rules for Reset Workflow Nets (RWF-nets) that are soundness
preserving. These reduction rules are based on reduction rules available for Petri
nets [19] and we present the necessary conditions under which these rules hold
in the context of reset nets.
Keywords: Petri nets with reset arcs, reset nets, reduction rules, workflow verifi-
cation, soundness property.

1 Introduction

Some have advocated the use of Petri nets for the specification of workflows among
others due to the formal foundation, their graphical nature and the presence of analysis
techniques [4]. Reduction rules have also be suggested to be used together with Petri
nets for verification of workflows [25]. There exists a body of work concerning the
verification of workflow specifications expressed as Petri nets or expressed in languages
for which mappings to Petri nets have been defined [2, 3, 25]. In either case, verification
boils down to examining certain properties of Petri nets.

Unfortunately, these results are not transferable to situations where languages are
involved that use concepts not easily expressed through Petri nets. One such concept
that is difficult to express in terms of Petri nets is cancellation regions [6].Cancellation



is used to capture the interference of one task in the execution of others. If a task is
within the cancellation region of another task, it may be prevented from being started
or its execution may be terminated. For example, you might want to simply cancel
other order processing tasks if a customer’s credit card payment did not go though.
Reset nets are Petri nets with reset arcs, which can remove tokens from places when a
transition fires. The nature of reset arcs closely relates to the cancellation behaviour in
workflows. As a result, reset nets have been proposed to formally represent workflows
with cancellation behaviour [28].This approach allows us to leverage existing literature
and techniques in the area of Petri nets and reset nets in particular [8, 11, 14–18].

We are interested in determining whether a workflow possesses the following desir-
able properties. Firstly, it is important to know that a workflow, when started, can com-
plete. Secondly, it should never have tasks still running when completion is signalled.
Thirdly, the workflow should not contain tasks that can never be executed. These re-
quirements encompass thesoundness propertyof a workflow specification as expressed
in [4]. In [30], we have proposed a new verification approach for the soundness property
in workflows with cancellation and OR-joins using Reset Workflow Nets (RWF-nets).
An RWF-net is a reset net with three structural restrictions: there is exactly one source
node, one sink node and every node in the graph is on a directed path from the source
node to the sink node. This is to ensure that every workflow represented by an RWF-net
will have a unique start place, a unique end place and it is possible to go from the start
place to the end place by following a series of transitions. Using state-based analysis,
we have shown that it is possible to decide the soundness property of workflows with
cancellation behaviour using reset nets. The drawback of using reset nets, however, is
that there are no reduction rules defined for reset nets. As a result, the analysis is time
consuming for large models. Even though reduction rules exist for Petri nets, the nature
of reset arcs in an RWF-net could invalidate the transformation rules applicable to Petri
nets. For example, it is possible that an incorrect net that does not satisfy proper comple-
tion criterion (i.e., tokens can be left in the net when it reaches the end) becomes sound
when there is a reset arc to remove the leftover token before completion. Therefore,
we propose extension to the requirements for Petri net reduction rules with additional
restrictions with respect to reset arcs.

In this paper, we propose a number of reduction rules for Reset Workflow Nets
(RWF-nets) that are soundness preserving1. These reduction rules for RWF-nets are
inspired by the reduction rules for Petri nets [19] and free-choice Petri nets [12]. We
present the necessary conditions under which these rules hold in the context of re-
set workflow nets. The organisation of the paper is as follows. Section 2 provides the
formal foundation by introducing reset nets and Reset Workflow Nets(RWF-nets). Sec-
tion 3 describes a set of reduction rules for RWF-nets together with associated proofs.
Section 4 discusses the related work and section 5 concludes the paper.

1 The bulk of this work was done while visiting Eindhoven University of Technology in close
collaboration with Dr. Eric Verbeek and Professor Wil van der Aalst.
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2 Preliminaries

2.1 Petri nets and Reset nets

Petri nets were originally introduced by Carl Adam Petri [21] and since then, they are
widely used as mathematical models of concurrent systems for various domains [20,
12]. Numerous analysis techniques exist to determine various properties of Petri nets
and its subclasses [20, 12, 19, 22, 23].

Definition 1 (Petri net [21, 20]). A Petri net is a tuple (P, T, F ) whereP is a (non-
empty finite) set of places,T is a set of transitions,P ∩ T = ∅ andF ⊆ (P × T ) ∪
(T × P ) is the set of arcs.

A reset net is a Petri net with specialreset arcs, that can clear the tokens in selected
places. Graphically, reset arcs are modelled as doubled-headed arrows. Figure 1 shows
a transitiont with all possible combinations of input, output and reset arcs. The nature
of reset arcs matches closely with the concept of cancellation in workflow modelling
and reset nets are proposed as a formalism for modelling workflows with cancellation.

Definition 2 (Reset net [14]).A reset net is a tuple(P, T, F, R) where(P, T, F ) is a
Petri net andR : T → P(P ) provides the reset places for the transitions2.

Fig. 1. An example reset net

In the remainder of the paper, when we use the functionF (x, y), it evaluates to 1 if
(x, y) ∈ F and 0 if (x, y) 6∈ F . We write F+ for the transitive closure of the flow
relationF andF ∗ for the reflexive transitive closure ofF . R−1 is the (straightforward)
inverse function ofR whereR−1 ∈ P → P(T ). The notationR(t) for a transitiont

2 WhereP is a power set of P, i.e.,X ∈ P if and only if X ⊆ P .
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returns the (possibly empty) set of places that it resets. We also writeR↼p for a place
p, which returns the set of transitions that can resetp.

Let N be a reset net andx ∈ (P ∪ T ), we use•x andx• to denote the set of inputs
and outputs. If the net involved cannot be understood from the context, we explicitly
include it in the notation and we writeN• x andx

N• . A marking is denoted byM and, just
as with ordinary Petri nets, it can be interpreted as a vector, function, and multiset over
the set of placesP . M(p) returns the number of tokens in a placep if p ∈ dom(M)
and zero otherwise. We can use notations such asM ≤ M ′, M + M ′, andM ¦ M ′.
M ≤ M ′ iff ∀p∈P M(p) ≤ M ′(p). M +M ′ andM ¦ M ′ are multisets such that∀p∈P :
(M +M ′)(p) = M(p)+M ′(p) and(M ¦ M ′)(p) = M(p) ¦ M ′(p) 3. We represent a
multiset by simply enumerating the elements, e.g.,2a+3b+c is the multiset containing
two a’s, threeb’s and onec. If X is a set overY , it could also be interpreted as a bag
which assigns to each element a weight of 1.

The notationIM(N) is used to represent possible markings of a reset netN .

Definition 3 (IM(N)). Let N = (P, T, F, R) be a reset net, then IM(N) = P → IN is
the set of possible markings.

A transition isenabledwhen there are enough tokens in its input places. Note that
reset arcs do not change the requirements of enabling a transition.

Definition 4 (Enabling rule). LetN be a reset net,t ∈ T , andM ∈ IM(N). Transition
t is enabled atM , denoted asM [t〉, if and only if∀p ∈ •t : M(p) ≥ 1.

The concept of firing a transitiont in a netN is formally defined in Definition 5 and
denoted asM

N,t→ M ′. If there can be no confusion regarding the net, the expression is
abbreviated asM

t→ M ′ and if the transition is not relevant, it is written asM → M ′.

Definition 5 (Forward firing). Let N = (P, T, F,R) be a reset net,t ∈ T and
M,M ′ ∈ IM(N).

M
N,t→ M ′ ⇔M [t〉∧

M ′(p) =
{

M(p)− F (p, t) + F (t, p) if p ∈ P \R(t)
F (t, p) if p ∈ R(t).

It is possible to fire a sequence of transitions from a given marking in a reset net
resulting in a new marking using the forward firing rule defined above. This sequence
of transitions is represented as an occurrence sequence.

Definition 6 (Occurrence sequence).LetN = (P, T, F, R) be a reset net andM,M1, ..., Mn ∈
IM(N). If M

t1→ M1
t2→ ...

tn→ Mn are firing occurrences thenσ = t1t2...tn is an oc-
currence sequence leading fromM to Mn and it is written asM

σ→ Mn.

We now define the concepts of reachability and coverability of markings from a
given marking in a reset net. A markingM ′ is reachable from another markingM in a
reset net, if there is an occurrence sequence leading fromM to M ′.

3 For any natural numbersa, b: a ¦ b is defined as max(a− b, 0).
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Definition 7 (Reachability).LetN = (P, T, F,R) be a reset net andM, M ′ ∈ IM(N).
M ′ is reachable in N fromM , denotedM

N→ M ′, if there exists an occurrence sequence
σ such thatM

σ→ M ′.

Thereachability setis the minimal set of markings that can be reached from a given
markingM in a reset net after firing all possible occurrence sequences.

Definition 8 (Reachability set).LetN = (P, T, F, R) be a reset net andM ∈ IM(N).
The reachability set of the marked net(N, M), denotedN [M〉, is the minimal set that
satisfies the following conditions:

1. M ∈ N [M〉 and
2. if transition t ∈ T and markingsM1,M2 ∈ IM(N) exist such thatM1 ∈ N [M〉

andM1
N1,t→ M2, thenM2 ∈ N [M〉.

Definition 9 (Directed labelled graph).A directed labelled graphG = (V, E) over
label setL consists of a set of nodesV and a set of labelled edgesE ⊆ V × L× V .

Thereachability graphis a directed labelled graph where the elements of the reach-
ability set form the nodes and the tuple consisting of a source marking that enables a
transition, the transition and the target marking that is reached by firing the transition
form the edges. The graph can be used to determine the possible states of a reset net
from an initial marking.

Definition 10 (Reachability graph). Let N = (P, T, F, R) be a reset net andM ∈
IM(N). The directed labelled graphG = (V, E) with label setL = T is the reachability
graph of the marked net(N, M) iff

1. V = N [M〉 and
2. for any transitiont ∈ T and markingsM1,M2 ∈ IM(N) : M1

t→ M2 ⇔
(M1, t, M2) ∈ E.

Liveness, boundedness and safeness are defined as in previous work [20, 19]. Live-
ness, boundedness and safeness can be determined from the reachability graph.

Definition 11 (Liveness, boundedness, safeness [20, 19]).A transition is live if it can
be enabled from every reachable marking. A place is safe if it never contains more than
one token at the same time. A place is k-bounded if it will never contain more thank
tokens. A place is bounded if it isk-bounded for somek.

If all places in a reset net are bounded, the reset net is also bounded and hence, it is
possible to generate a finite reachability set. If a place is unbounded, the reachability set
contains an infinite number of states (an infinite state space). In such cases, reachability
of a marking cannot be determined but coverability can be determined. Coverability
is a relaxed notion that can handle unbounded behaviour. A markingM2 is said to be
coverablefrom another markingM1 in a reset net if there is a reachable markingM ′

from M1 such thatM ′ is bigger than or equal toM2.

Definition 12 (Coverability). Let N = (P, T, F, R) be a reset net andM1, M2 ∈
IM(N). M2 is coverable fromM1 in N, if there exists a markingM ′ such thatM ′ ∈
N [M1〉 andM ′ ≥ M2.
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We conclude this section with the notion ofBackward firingthat is used to generate
coverable markings for a reset net by firing transitions backwards.

Definition 13 (Backward firing [29]). Let (P, T, F, R) be a reset net andM,M ′ ∈
IM(N). M ′ 99Kt M iff it is possible to fire a transitiont backwards starting fromM
and resulting inM ′.

M ′ 99Kt M ⇔M [R(t)] ≤ t • [R(t)]∧
M ′(p) =

{
(M(p) ¦ F (t, p)) + F (p, t) if p ∈ P \R(t)
F (p, t) if p ∈ R(t).

For places that are not reset places, the number of tokens inM ′ is determined by the
number of tokens inM for p and the production and consumption of tokens. If a place is
an output place oft and not a reset place, one token is removed fromM(p) if M(p) > 0.
If a place is an input place oft and not a reset place, one token is added toM(p). For
any reset placep, M(p) ≤ F (t, p) because it is emptied when firing and thenF (t, p)
tokens are added. We do not requireM(p) = F (t, p) for a reset placep because the
aim is coverability and not reachability.M ′, i.e., the marking before (forward) firing
t, shouldat leastcontain theminimal number of tokens required for enablingt and
resulting in a marking ofat leastM . Therefore, onlyF (p, t) tokens are assumed to be
present in a reset placep.

2.2 Reset WorkFlow nets (RWF-nets)

This section discusses the formalisation of workflow models using Petri nets. A WF-
net is defined as a Petri net with the following structural restrictions. There is exactly
one begin place and exactly one end place. Moreover, every node in the graph is on a
directed path from the begin place to the end place.

Definition 14 (WF-net [3, 25]). Let N = (P, T, F ) be a Petri net. The netN is a
WF-net iff the following three conditions hold:

1. there exists exactly onei ∈ P such that•i = ∅, and
2. there exists exactly oneo ∈ P such thato• = ∅, and
3. for all n ∈ P ∪ T : (i, n) ∈ F ∗ and(n, o) ∈ F ∗.

The notion of a Reset WorkFlow net (RWF-net) is introduced to represent work-
flows with cancellation features. We define Reset WorkFlow nets (RWF-nets) which
are reset nets with the same structural restrictions as WF-nets.

Definition 15 (RWF-net [27]). Let N = (P, T, F, R) be a reset net. The netN is an
RWF-net iff(P, T, F ) is a WF-net.

In an RWF-net, there is an input placei and an output placeo and an initial marking
Mi and an end markingMo is defined as follows:

Definition 16 (Initial marking and End marking). LetN = (P, T, F, R) be an RWF-
net andi, o be the input and output places of the net. The initial marking ofN is denoted
as Mi and it represents a marking where there is a token in the input placei (i.e.,
Mi = i). Similarly, the end marking ofN is denoted asMo and it represents a marking
where that is a token in the output placeo (i.e.,Mo = o).
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A WF-net is an RWF-net iffR is empty (for allt ∈ T : R(t) = ∅). Thus(P, T, F )
suffices (we may omitR).

The soundnessdefinition for an RWF-net is based on the soundness definition
from [7] for WF-nets. An RWF-net is sound if and only if it satisfies the three crite-
ria: option to complete, proper completion and no dead transitions.

Definition 17 (Soundness [27]).LetN = (P, T, F, R) be an RWF-net andMi,Mo be
the initial and end markings.N is sound iff:

1. option to complete: for every markingM reachable fromMi, there exists an occur-
rence sequence leading fromM to Mo, i.e., for all M ∈ N [Mi〉 : Mo ∈ N [M〉,
and

2. proper completion: the markingMo is the only marking reachable fromMi with at
least one token in placeo, i.e, for all M ∈ N [Mi〉 : M ≥ Mo ⇒ M = Mo, and

3. no dead transitions: for every transitiont ∈ T , there is a markingM reachable
from Mi such thatM [t〉, i.e, for all t ∈ T there exists anM ∈ N [Mi〉 such that
M [t〉.

3 Reduction Rules for RWF-nets

Reduction rules can be used to abstract from certain transitions and places in a large
net and thus could cut down the size of the net used for verification. As a result, the
verification process can be performed more efficiently. Furthermore, reduction rules
can highlight potential problems within a net. After applying reduction rules, a correct
net can potentially be reduced to a trivial net (just a task with one input and output
place) thus making the consequent verification process unnecessary. Those parts of the
net that cannot be reduced could indicate problems during execution and close attention
should be paid to them. When a net has reset arcs, it cannot be reduced to a trivial net
even though it is correct. This is because elements with reset arcs can be combined
but cannot be entirely abstracted. In any case, reduction rules enable verification to be
performed on a smaller net.

The style of this section is taken from [12]. For sake of clarity, we have taken a two-
step approach: first the reduction rule for WF-nets, then the extension for RWF-nets.

We will prove that reduction rules for WF-nets and RWF-nets are soundness pre-
serving. The soundness of WF-nets has been shown to correspond to boundedness and
liveness properties of the short-circuited WF-net [2]. Therefore, if a reduction rule for
a WF-net preserves boundedness and liveness, then it also preserves soundness. We
will show that a reduction rule for a WF-net is boundedness and liveness preserving
and hence, it is also soundness preserving. However, soundness of RWF-nets does not
correspond to boundedness and liveness. It is possible that an unbounded RWF-net is
sound due to the presence of reset arcs. In Figure 2, placeq is an unbounded place and
therefore, the net is unbounded. Transitionc resets both preceding places when it fires.
As a result, it is not possible for tokens to be left in eitherp or q when the net completes.
Hence, the net is sound and we cannot prove that a reduction rule for RWF-nets pre-
serves soundness by showing that it preserves boundedness and liveness. Therefore, we
will show that reduction rules for RWF-nets preserve soundness by proving that they
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preserve occurrence sequences and hence, preserve the three criteria for soundness: the
option to complete, proper completion, and no dead transitions.

q

a

c

p

i

b

o

Fig. 2. An example of an unbounded RWF-net which is sound.

3.1 Fusion of series places

In this subsection, we first present theFusion of Series Places Rule for WF-nets(φFSP)
and then extend the rule for RWF-nets (φR

FSP) by proposing additional requirements for
reset arcs. TheφFSP rule is based on the Fusion of Series Places rule for Petri nets by
Murata [19]. The rule allows for the merging of two sequential placesp andq with one
transitiont in between them into a single placer. The rule requires that there is only
one output arc fromp to t, exactly one inputp and one outputq for t, and that there are
no direct connections between inputs ofp and inputs ofq. The last requirement ensures
that there will only be one arc connecting inputs ofp in the original net to the new
placer in the reduced net (no weighted arcs). Furthermore, the rule is not applicable to
places that are either an input placei or an output placeo of the net. See the example in
Figure 3 for an application of theφFSP rule. The white parts in the figure are the parts
being considered in the reduction step. Placesp andq have been merged into a new
placer in the right net.

Definition 18 (Fusion of Series Places Rule for WF-nets:φFSP). Let N1 andN2 be
two WF-nets, whereN1 = (P1, T1, F1) and N2 = (P2, T2, F2). (N1, N2) ∈ φFSP

if there exists an input placei ∈ P1 ∩ P2, an output placeo ∈ P1 ∩ P2, two places
p, q ∈ P1 \ {i, o}, a transitiont ∈ T1, and a placer ∈ P2 \ P1 such that:

Conditions onN1:

1. •t = {p} (p is the only input oft)
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FSP

Fig. 3. Reduction of a WF-net using theφFSP rule

2. t• = {q} (q is the only output oft)
3. p• = {t} (t is the only output ofp)
4. •p∩•q = ∅ (any input ofp is not an input ofq and vice versa)

Construction ofN2:

5. P2 = (P1 \ {p, q}) ∪ {r}
6. T2 = T1 \ {t}
7. F2 = (F1 ∩ ((P2×T2)∪ (T2×P2)))∪ (((N1• p∪ N1• q) \ {t})×{r})∪ ({r}× q

N1• )

Theorem 1 (The φFSP rule is soundness preserving).LetN1 andN2 be two WF-nets
such that(N1, N2) ∈ φFSP. ThenN1 is soundiff N2 is sound.

Proof TheφFSP rule is boundedness and liveness preserving [19]. Soundness of a WF-
net corresponds to boundedness and liveness of the short-circuited WF-net [2].

The Fusion of Series Places Rule for RWF-nets(φR
FSP) extends theφFSP rule by

introducing reset arcs and strengthening the conditions. The rule also allows for the
merging of two sequential placesp andq with one transitiont in between them into
a single placer. Figure 4 visualises theφR

FSP rule. The first additional requirement is
that the transitiont should not have any reset arcs. See Figure 5 for a counter example
wheret has reset arcs. Transitiont can reset placeu in the left net but this behaviour
is ignored in the right net. Transition sequencext leads to a deadlock ast will remove
a token fromu when it fires, andu does not exist in the right net. As a result, the left
net is not sound whereas the right net is. The second additional requirement is that the
two places must be reset by the same set of transitions (if any). Ifp andq are not reset
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places, then it is clear that the rule holds. If a transition resets placep, it must also resets
placeq as we are interested in merging these two places. See Figure 6 for a counter
example: transition sequencextyz leads to an unsound net on the left (a leftover token
in q), whereas the right net is sound. If all requirements for theφR

FST rule are satisfied,
placesp andq are merged into a new placer which takes on the same reset arcs asp
andq.

p

t

q

r

Fig. 4. Fusion of Series Places Rule for RWF-nets:φR
FSP

p

tu

i

z

o

x

q

r

u

i

z

o

x

Fig. 5. Transitiont resets placeu. (Note that the model on the left is not sound while the one on
the right is.)

Definition 19 (Fusion of Series Places Rule for RWF-nets:φR
FSP). LetN1 andN2 be

two RWF-nets, whereN1 = (P1, T1, F1, R1) andN2 = (P2, T2, F2, R2). (N1, N2) ∈
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p

tu

v

i

y

z

o

x

q

u

v

i

y

z

o

x

r

Fig. 6. Placep is a reset place and placeq is not a reset place. (Note that the model on the left is
not sound while the one on the right is.)

φR
FSP if there exists an input placei ∈ P1 ∩ P2, an output placeo ∈ P1∩P2, two places

p, q ∈ P1 \ {i, o}, a transitiont ∈ T1, and a placer ∈ P2 \ P1 such that:

Extension of theφFSP rule:

1. ((P1, T1, F1), (P2, T2, F2)) ∈ φFSP (Note that, by definition, thei, o, p, q, t, andr
mentioned in this definition have to coincide with thei, o, p, q, t, andr as mentioned
in the definition ofφFSP.)

Conditions onR1:

2. R1(t) = ∅ (t does not reset)
3. R↼

1 (p) = R↼
1 (q) (p andq are being reset by the same transitions)

Construction ofR2:

4. R2 = {(z,R1(z) ∩ P2)|z ∈ T2 ∩ T1} ⊕ {(z, (R1(z) ∩ P2) ∪ {r})|z ∈ R↼
1 (p)}4.

Next, we show that theφR
FSP rule is soundness preserving. We first present two

lemmas that show that occurrence sequences inN1 andN2 correspond to one another.
These lemmas are then used to prove that theφR

FSP rule preserves the three criteria of
soundness: the option to complete, proper completion, and dead transitions.

Lemma 1 (Under the φR
FSP rule, sequences inN1 correspond to sequences inN2).

Let N1 andN2 be two RWF-nets such that(N1, N2) ∈ φR
FSP, let σ1 ∈ T ∗1 andM1 ∈

IM(N1) be such thati
N1,σ1→ M1, andσ2 = α(σ1), whereα ∈ T ∗1 → T ∗2 is defined as

follows:

4 ⊕ represents function override wheref : A → B, f ′ = f ⊕ {(a, b)} returnsf ′ = f ∪
{(a, b)}if a 6∈ domf andf ′ = f \ {(a, f(a))} ∪ {(a, b)} if a ∈ domf .

11



– α(ε) = ε,
– α(tσ) = α(σ), and
– α(xσ) = xα(σ), wherex ∈ T1 \ {t}.

Thus,α removes every occurrence oft from the sequence. Theni
N2,σ2→ M2, where

M2(r) = M1(p) + M1(q) andM2(x) = M1(x) for everyx ∈ P2 \ {r}.
Proof By induction on the length ofσ1.

Base Assumeσ1 = ε. Clearly,i
N1,ε→ i and alsoi

N2,ε→ i.

Step Assume the theorem holds for someσ1, let M1 be such thati
N1,σ1→ M1, and let

M2 be such thati
N2,α(σ1)→ M2. We prove that it also holds if we extendσ1 by one

transition.
– First, assume that we extendσ by t. It is easy to see that this extension does

not have any effect onα(σ1). Therefore, we need to prove that firingt does not
violate the where-clause (i.e,M2(r) = M1(p) + M1(q) andM2(x) = M1(x)
for everyx ∈ P2 \ {r}). As t moves only one token fromp to q and does not
reset any place, this is straightforward.

– Second, assume that we extendσ by anx ∈ P1 \ {t}. First, we need to prove
thatM2[x〉 in N2. As r contains at least as many tokens asq, andM2(x) =
M1(x) for everyx ∈ P2 \ {r}, we conclude that this is indeed the case. Next,
we need to prove that firingx in both nets does not violate the where-clause.
This is straightforward as well, as any transition that adds a token top also
adds a token tor and any transition that removes a token fromq also removes
a token fromr, and the remaining transitions are identical.

Lemma 2 (Under the φR
FSP rule, sequences inN2 correspond to sequences inN1).

Let N1 andN2 be two RWF-nets such that(N1, N2) ∈ φR
FSP, let σ2 ∈ T ∗2 andM2 ∈

IM(N2) be such thati
N2,σ2→ M2, andσ1 = β(σ2), whereβ ∈ T ∗2 → T ∗1 is defined as

follows:

– β(ε) = ε,
– β(xσ) = xtβ(σ), if p ∈ x

N1• , and
– β(xσ) = xβ(σ), if p 6∈ x

N1• .

Thus,β introduces an extrat whenever placep is marked. As a result, placep is un-

marked as soon as possible. Theni
N1,σ1→ M1, whereM1(p) = 0, M1(q) = M2(r) and

M1(x) = M2(x) for everyx ∈ P1 \ {p, q}.
Proof By induction on the length ofσ2.

Base Assumeσ2 = ε. Clearly,i
N2,ε→ i and alsoi

N1,ε→ i.

Step Assume the theorem holds for someσ2, let M2 be such thati
N2,σ2→ M2, and let

M1 be such thati
N1,β(σ2)→ M1. We prove that it also holds if we extendσ2 by one

transition.
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– First, assume that we extendσ by anx such thatp ∈ x
N1• . It is obvious that

M1[x〉 in N1, and that afterwardst is also enabled. Furthermore, bothx andt
do not violate the where-clause (i.e., whereM1(p) = 0, M1(q) = M2(r) and
M1(x) = M2(x) for everyx ∈ P1 \ {p, q}.

– Second, assume that we extendσ by anx such thatp 6∈ x
N1• . Again it is obvious

thatM1[x〉 in N1, and thatx does not violate the where clause.

Theorem 2 (The φR
FSP rule preserves the option to complete).LetN1 andN2 be two

RWF-nets such that(N1, N2) ∈ φR
FSP. ThenN1 has the option to completeiff N2 has

the option to complete.

Proof Let α andβ be as defined in lemmas 1 and 2.

⇒ Assume thatN2 does not have the option to complete, that is, there exists some

M2 ∈ N2[i〉 such thato 6∈ N2[M2〉. Thus, there exists aσ2 ∈ T ∗2 such thati
N2,σ2→

M2 but noσ′2 ∈ T ∗2 exists such thatM2
N2,σ′2→ o. As a result,i

N1,β(σ2)→ M1, for
a well-definedM1. Now assume thatN1 does have the option to complete. As a

result, there exists aσ1 such thati
N1,β(σ2)σ1→ o. But theni

N2,α(β(σ2)σ1)→ o, which

contradicts the assumption that noσ′2 ∈ T ∗2 exists such thatM2
N2,σ′2→ o. Thus,N1

does not have the option to complete.
⇐ Similar to⇒.

Theorem 3 (The φR
FSP rule preserves proper completion).Let N1 and N2 be two

RWF-nets such that(N1, N2) ∈ φR
FSP. ThenN1 has proper completioniff N2 has

proper completion.

Proof Let α andβ be as defined in lemmas 1 and 2.

⇒ Assume thatN2 does not have proper completion, that is there exists someM2 ∈
N2[i〉 such thatM2 > o. Thus, there exists aσ2 ∈ T ∗2 such thati

N2,σ2→ M2. Then

i
N1,β(σ2)→ M1 such thatM1 > o, andN1 does not have proper completion.

⇐ Similar to⇒.

Theorem 4 (TheφR
FSP rule preserves dead transitions).LetN1 andN2 be two RWF-

nets such that(N1, N2) ∈ φR
FSP. ThenN1 contains dead transitionsiff N2 contains

dead transitions.

Proof Let α andβ be as defined in lemmas 1 and 2.

13



⇒ Assume thatN2 contains no dead transitions, that is, for everyt2 ∈ T2 there exists
someM2 ∈ N2[i〉 such thatM2 ≥N2• t. Let t2 be an arbitrary transition fromT2,
and letM2 ∈ N2[i〉 be such thatM2 ≥N2• t2. Then there exists aσ2 ∈ T ∗2 such

that i
N2,σ2→ M2. As a result,i

N1,β(σ2)→ M1 andM1 ≥N1• t2. As T2 = T1 ∪ {t},
only transitiont can still be dead. However,t can only be dead if all transitions that
markp are dead, and these transitions exist (asp 6= i).

⇐ Assume thatN1 contains no dead transitions, that is, for everyt1 ∈ T1 there exists
someM1 ∈ N1[i〉 such thatM1 ≥N1• t. Let t1 be an arbitrary transition fromT1

excludingt, and letM1 ∈ N1[i〉 be such thatM1 ≥N1• t1. Then there exists a

σ1 ∈ T ∗1 such thati
N1,σ1→ M1. As a result,i

N2,α(σ1)→ M2 andM2 ≥N2• t1. Thus,
N2 contains no dead transitions.

Theorem 5 (The φR
FSP rule is soundness preserving).Let N1 andN2 be two RWF-

nets such that(N1, N2) ∈ φR
FSP. N1 is sound iffN2 is sound.

Proof Follows from theorems 2, 3, and 4.

3.2 Fusion of series transitions

In this subsection, we first presentFusion of Series Transitions Rule for WF-nets(φFST)
and then extend the rule for RWF-nets (φR

FST) by proposing additional requirements for
reset arcs. TheφFST rule is based on the Fusion of Series Transitions rule for Petri nets
by Murata [19]. The rule allows for the merging of two sequential transitionst andu
with one placep in between these two transitions into only one transitionv. The rule
requires that there is only one inputt and outputu for the placep, p is the only input of
u, and there are no direct connections between outputs oft and outputs ofu. The last
requirement ensures that there will only be one arc connecting the new transitionv to
outputs oft in the reduced net. See the example in Figure 7 for an application of the
φFST rule. Transitionst andu have been merged into a new transitionv in the right net.
Note that transitionsu andx cannot be merged asx has two input places (q andr).

Definition 20 (Fusion of Series Transitions Rule for WF-nets:φFST).
Let N1 and N2 be two WF-nets, whereN1 = (P1, T1, F1) and N2 = (P2, T2, F2).
(N1, N2) ∈ φFST if there exists an input placei ∈ P1 ∩ P2, an output placeo ∈
P1 ∩ P2, a placep ∈ P1, two transitionst, u ∈ T1, and a transitionv ∈ T2 \ T1 such
that:

Conditions onN1:

1. •p = {t} (t is the only input ofp)
2. p• = {u} (u is the only output ofp)
3. •u = {p} (p is the only input ofu)
4. t•∩u• = ∅ (any output oft is not an output ofu and vice versa)

14



FST

Fig. 7. Reduction of a WF-net using theφFST rule

Construction ofN2:

5. P2 = P1 \ {p}
6. T2 = (T1 \ {t, u}) ∪ {v}
7. F2 = (F1 ∩ ((P2×T2)∪ (T2×P2)))∪ (N1• t×{v})∪ ({v}× ((tN1• ∪u

N1• ) \ {p}))
Theorem 6 (The φFST rule is soundness preserving).LetN1 andN2 be two WF-nets
such that(N1, N2) ∈ φFST. ThenN1 is soundiff N2 is sound.

Proof TheφFST rule is boundedness and liveness preserving [19]. Soundness of a WF-
net corresponds to boundedness and liveness of the short-circuited WF-net [2].

TheFusion of Series Transitions Rule for RWF-nets(φR
FST) extends theφFST rule

by introducing reset arcs. The rule also allows for the merging of two sequential tran-
sitions t andu with one placep in between them into a single transitionv. Figure 8
visualises theφR

FST rule. Additional requirements (required to allow for reset arcs) are
that placep and output places ofu should not be source of any reset arcs and transition
u should not reset any place. The rule allows reset arcs from transitiont and these arcs
will be assigned to the new transitionv in the reduced net. Figure 9 shows a counter
example wherep is a reset place: transition sequencetx leads to a deadlock, which
does not exist in the other net. Figure 10 shows a counter example where transitionu
has reset arcs: transition sequencetu leads to a deadlock, which does not exist in the
other net. Figure 11 shows a counter example where the postset ofu contains a reset
place: transition sequencetxu results in two tokens in placer, which is not possible in
the right net. As a result, the left net is not sound whereas the right net is.
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Fig. 9. Placep is a reset place. (Note that the model on the left is not sound while the one on the
right is.)

Definition 21 (Fusion of Series Transitions Rule for RWF-nets:φR
FST). LetN1 and

N2 be two RWF-nets, whereN1 = (P1, T1, F1, R1) and N2 = (P2, T2, F2, R2).
(N1, N2) ∈ φR

FST if there exists an input placei ∈ P1 ∩ P2, an output placeo ∈
P1 ∩ P2, a placep ∈ P1, two transitionst, u ∈ T1, and a transitionv ∈ T2 \ T1 such
that:

Extension of theφFST rule:

1. ((P1, T1, F1), (P2, T2, F2)) ∈ φFST (Note that, by definition, thet, u, v, and p
mentioned in this definition have to coincide with thet, u, v, andp as mentioned in
the definition ofφFST.)

Conditions onR1:

2. R↼
1 (p) = ∅ (p is not a reset place)

3. R1(u) = ∅ (u does not reset)
4. for all q ∈ u•: R↼

1 (q) = ∅ (any output place ofu is not a reset place)
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Fig. 10.Transitionu resets a place that is effected by transitiont. (Note that the model on the left
is not sound while the one on the right is.)
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Fig. 11.The postset of transitionu contains a reset place. (Note that the model on the left is not
sound while the one on the right is.)
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Construction ofR2:

5. R2 = {(z,R1(z))|z ∈ T2 ∩ T1} ∪ {(v,R1(t))}
We now present two lemmas that show that occurrence sequences inN1 andN2

correspond to one another. These lemmas are then used to prove that theφR
FST rule

preserves the three criteria of soundness: the option to complete, proper completion,
and dead transitions.

Lemma 3 (Under the φR
FST rule, sequences inN1 correspond to sequences inN2).

Let N1 andN2 be two RWF-nets such that(N1, N2) ∈ φR
FST, let σ1 ∈ T ∗1 andM1 ∈

IM(N1) be such thati
N1,σ1→ M1, andσ2 = α(σ1), whereα ∈ T ∗1 → T ∗2 is defined as

follows:

– α(ε) = ε,
– α(tσ) = vα(σ),
– α(uσ) = α(σ), and
– α(xσ) = xα(σ), wherex ∈ T1 \ {t, u}.

Thus,α removes every occurrence ofu from the sequence, and replaces every occur-

rence oft with v. Theni
N2,σ2→ M2, whereM2(x) = M1(x)+M1(p) for everyx ∈ v

N2•
andM2(x) = M1(x) for everyx 6∈ v

N2• .

Proof By induction on the length ofσ1.

Base Assumeσ1 = ε. Clearly,i
N1,ε→ i and alsoi

N2,ε→ i.

Step Assume the theorem holds for someσ1, let M1 be such thati
N1,σ1→ M1, and let

M2 be such thati
N2,α(σ1)→ M2. We prove that it also holds if we extendσ1 by one

transition.
– First, assume that we extendσ by t. t andv have the same preset, thus we

can extendα(σ) by v. t adds a token to placep, whereasv adds tokens to its
postset, which does not violate the where-clause.

– Second, assume that we extendσ by u. It is obvious thatv does not violate the
where-clause.

– Third, assume that we extendσ byx, wherex ∈ P1\{t, u}. As all places inN2

contains at least as many tokens as their counterparts inN1 (the where-clause),
we know thatx is enabled inN2 as well. Furthermore,x does not violate the
where-clause.

Lemma 4 (Under the φR
FST rule, sequences inN2 correspond to sequences inN1).

Let N1 andN2 be two RWF-nets such that(N1, N2) ∈ φR
FST, let σ2 ∈ T ∗2 andM2 ∈

IM(N2) be such thati
N2,σ2→ M2, andσ1 = β(σ2), whereβ ∈ T ∗2 → T ∗1 is defined as

follows:

– β(ε) = ε,
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– β(vσ) = tuβ(σ), and
– β(xσ) = xβ(σ), if x ∈ T2 \ {v}.

Thus,β replaces every occurrence ofv with tu. Theni
N1,σ1→ M1, whereM1(p) = 0

andM1(x) = M2(x) for everyx ∈ P1 \ {p}.

Proof By induction on the length ofσ2.

Base Assumeσ2 = ε. Clearly,i
N2,ε→ i and alsoi

N1,ε→ i.

Step Assume the theorem holds for someσ2, let M2 be such thati
N2,σ2→ M2, and let

M1 be such thati
N1,β(σ2)→ M1. We prove that it also holds if we extendσ2 by one

transition.
– First, assume that we extendσ by v. It is obvious thatM1[t〉 in N1, and that

afterwardsu is also enabled. Furthermore, the combinationtu andv does not
violate the where-clause.

– Second, assume that we extendσ by x such thatx ∈ T2 \ {v}. Again it is
obvious thatM1[x〉 in N1, and thatx does not violate the where clause.

Theorem 7 (The φR
FST rule preserves the option to complete).Let N1 and N2 be

two RWF-nets such that(N1, N2) ∈ φR
FST. ThenN1 has the option to completeiff N2

has the option to complete.

Proof Let α andβ be as defined in lemmas 3 and 4. The proof is similar to the proof
of Theorem 2, but with differentα andβ.

Theorem 8 (The φR
FST rule preserves proper completion).Let N1 and N2 be two

RWF-nets such that(N1, N2) ∈ φR
FST. ThenN1 has proper completioniff N2 has

proper completion.

Proof Let α andβ be as defined in lemmas 3 and 4. The proof is similar to the proof
of Theorem 3, but with differentα andβ.

Theorem 9 (TheφR
FST rule preserves dead transitions).LetN1 andN2 be two RWF-

nets such that(N1, N2) ∈ φR
FST. ThenN1 has proper completioniff N2 has proper

completion.

Proof Let α andβ be as defined in lemmas 3 and 4. The proof is similar to the proof
of Theorem 4, but with differentα andβ.

Theorem 10 (The φR
FST rule is soundness preserving).LetN1 andN2 be two RWF-

nets such that(N1, N2) ∈ φR
FST. N1 is sound iffN2 is sound.

Proof Follows from theorems 7, 8, and 9.
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3.3 Fusion of parallel places

In this subsection, we first presentFusion of Parallel Places Rule for WF-nets(φFPP)
and then extend the rule for RWF-nets (φR

FPP) by proposing additional requirements
for reset arcs. TheφFPP rule is a generalization of the Fusion of Parallel Places rule
for Petri nets by Murata [19]. The rule allows for the merging of multiple places (at
least two) with the same inputs and outputs into a single placeq. See the example in
Figure 12 for an application of theφFPP rule. Placesp1 andp2 have the same input set
{t1, t2, t3} and the same output set{x1, x2}. The reduced net contains a new placeq
that has the same input and output sets as placesp1 andp2.

p1

t1 t2

i

o

p2

x1 x2

z

t3

FPP

y1

w

s1 s2 s3

y2

q

t1 t2

i

o

x1 x2

z

t3

y1

w

s1 s2 s3

y2

Fig. 12.Reduction of a WF-net using theφFPP rule

Definition 22 (Fusion of Parallel Places Rule for WF-nets:φFPP).
Let N1 and N2 be two WF-nets, whereN1 = (P1, T1, F1) and N2 = (P2, T2, F2).
(N1, N2) ∈ φFPP if there exists an input placei ∈ P1 ∩ P2, an output placeo ∈
P1 ∩ P2, placesQ ⊆ P1 where|Q| ≥ 2 and a placeq ∈ P2 \ P1 such that:

Conditions onN1:

1. for all px, py ∈ Q : •px = •py (input transitions for all places inQ are identical)
2. for all px, py ∈ Q : px• = py• (output transitions for all places inQ are identical)
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Construction ofN2:

3. P2 = (P1 \Q) ∪ {q}
4. T2 = T1

5. F2 = (F1 ∩ ((P2 × T2) ∪ (T2 × P2))) ∪ (N1• p× {q}) ∪ ({q} × p
N1• ) wherep ∈ Q

Theorem 11 (The φFPP rule is soundness preserving).Let N1 andN2 be two WF-
nets such that(N1, N2) ∈ φFPP. ThenN1 is soundiff N2 is sound.

Proof TheφFPP rule is boundedness and liveness preserving [19]. Soundness of a WF-
net corresponds to boundedness and liveness of the short-circuited WF-net [2].

The Fusion of Parallel Places Rule for RWF-nets(φR
FPP) extends theφFPP rule

by introducing reset arcs. The rule also allows for the merging of places in Q (i.e.,
p1 to pL) that have the same inputs and outputs into a single placeq. The additional
requirement is that these places are reset by the same set of transitions. If none of the
places are reset places, then it is obvious that the rule holds. If one is a reset place, then
other places should also be reset by the same set of transitions. Figure 13 visualises the
φR

FPP rule. As all places inQ = {p1, ..., pL} have the same input, output and reset arcs,
these identical places can be merged into a single place while preserving the soundness
property. Placeq in the reduced net has the same input, output and reset arcs as any
place inQ.

p1

t1

x1

pL

tN

xM

q

t1

x1

tN

xM

Fig. 13.Fusion of Parallel Places Rule for RWF-nets:φR
FPP

Definition 23 (Fusion of Parallel Places Rule for RWF-nets:φR
FPP). Let N1 and

N2 be two RWF-nets, whereN1 = (P1, T1, F1, R1) and N2 = (P2, T2, F2, R2).
(N1, N2) ∈ φR

FPP if there exists an input placei ∈ P1 ∩ P2, an output placeo ∈
P1 ∩ P2, placesQ ⊆ P1 where|Q| ≥ 2 and a placeq ∈ P2 \ P1 such that:

Extension of theφFPP rule:

1. ((P1, T1, F1), (P2, T2, F2)) ∈ φFPP (Note that, by definition, thei, o, Q, and q
mentioned in this definition have to coincide with thei, o, Q, andq as mentioned
in the definition ofφFPP.)
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Condition onR1:

2. for all px, py ∈ Q : R↼
1 (px) = R↼

1 (py) (all places inQ are being reset by the
same transitions)

Construction ofR2:

3. R2 = {(z,R1(z)∩P2)|z ∈ T2∩T1}⊕{(z, (R1(z)∩P2)∪{q})|z ∈ R↼
1 (p)∧p ∈

Q}
Theorem 12 (The φR

FPP rule is soundness preserving).LetN1 andN2 be two RWF-
nets such that(N1, N2) ∈ φR

FPP. N1 is sound iffN2 is sound.

Proof It is easy to see that the state spaces of both nets are identical, except that the
markings differ: A marking in the state space ofN1 contains placesQ, and every one of
them containsn tokens, whereas a marking in the state space ofN2 contains one place
q which containsn tokens.

3.4 Fusion of parallel transitions

In this subsection, we first presentFusion of Parallel Transitions Rule for WF-nets
(φFPT) and then extend the rule for RWF-nets (φR

FPT) by proposing additional require-
ments for reset arcs. TheφFPT rule is a generalization of the Fusion of Parallel Tran-
sitions rule for Petri nets by Murata [19]. The rule allows for the merging of multiple
transitions (at least two) that have the same inputs and outputs into a single transition.
See the example in Figure 14 for an application of theφFPT rule. Transitionst1 andt2
have the same input set{p1, p2, p3} and the same output set{x1, x2}. The reduced net
contains a new transitionv that has the same input and output sets ast1 andt2.
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Fig. 14.Reduction of a WF-net using theφFPT rule

22



Definition 24 (Fusion of Parallel Transitions Rule for WF-nets:φFPT). LetN1 and
N2 be two WF-nets, whereN1 = (P1, T1, F1) and N2 = (P2, T2, F2). (N1, N2) ∈
φFPT if there exists an input placei ∈ P1∩P2, an output placeo ∈ P1∩P2, transitions
V ⊆ T1 where|V | ≥ 2, and a transitionv ∈ T2 \ T1 such that:

Conditions onN1:

1. for all tx, ty ∈ V : •tx = •ty(input places for all transitions inV are identical)
2. for all tx, ty ∈ V : tx• = ty•(output places for all transitions inV are identical)

Construction ofN2:

3. P2 = P1

4. T2 = (T1 \ V ) ∪ {v}
5. F2 = (F1 ∩ ((P2 × T2) ∪ (T2 × P2))) ∪ ({v} × N1• t) ∪ (tN1• ×{v}) wheret ∈ V

Theorem 13 (The φFPT rule is soundness preserving).Let N1 andN2 be two WF-
nets such that(N1, N2) ∈ φFPT. ThenN1 is soundiff N2 is sound.

Proof The φFPT rule is boundedness and liveness preserving [19]. Soundness of a
WF-net corresponds to boundedness and liveness of the short-circuited WF-net [2].

The Fusion of Parallel Transitions Rule for RWF-nets(φR
FPT) extends theφFPT

rule by introducing reset arcs. The rule allows for the merging of transitionsV (i.e., t1
to tL) that have the same inputs and outputs into a single transitionv. The additional
requirement is that these transitions should reset the same set of places (if any). If no
transition has reset arcs, then it is obvious that the rule holds. If one transition resets
a place, then other transitions must also reset the same place. Figure 15 visualises the
φR

FPT rule. As all transitions inV = {t1, ..., tL} now have the same input, output
and reset arcs, these identical transitions could be merged into a single transition while
preserving the soundness property. Transitionv in the reduced net has the same input,
output and reset arcs as any transitiont ∈ V .
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xMx1

p1
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Fig. 15.Fusion of Parallel Transitions Rule for RWF-nets:φR
FPT
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Definition 25 (Fusion of Parallel Transitions Rule for RWF-nets: φR
FPT). Let N1

andN2 be two RWF-nets, whereN1 = (P1, T1, F1, R1) andN2 = (P2, T2, F2, R2).
(N1, N2) ∈ φR

FPT if there exists an input placei ∈ P1∩P2, an output placeo ∈ P1∩P2,
transitionsV ⊆ T1 where|V | ≥ 2, and a transitionv ∈ T2 \ T1 such that:

Extension of theφFPT rule:

1. ((P1, T1, F1), (P2, T2, F2)) ∈ φFPT (Note that, by definition, thei, o, V , and v
mentioned in this definition have to coincide with thei, o, V , andv as mentioned
in the definition ofφFPT.)

Condition onR1:

2. for all tx, ty ∈ V : R1(tx) = R1(ty) (all transitions inV reset the same places)

Construction ofR2:

3. R2 = {(z,R1(z))|z ∈ T2 ∩ T1} ∪ {(v,R1(z))|z ∈ V }

Theorem 14 (The φR
FPT rule is soundness preserving.).LetN1 andN2 be two RWF-

nets such that(N1, N2) ∈ φR
FPT. N1 is sound iffN2 is sound.

Proof It is obvious that the state spaces of both nets are identical, except that some
edges differ: where the state space ofN1 contains edges for transitionst1 up totL, the
state space ofN2 only contains one edge for transitionv.

3.5 Elimination of self-loop transitions

In this subsection, we first presentElimination of Self-Loop Transitions Rule for WF-
nets (φELT) and then extend the rule for RWF-nets (φR

ELT) by proposing additional
requirements for reset arcs. TheφELT rule is based on the Elimination of Self-Loop
Transitions rule for Petri nets by Murata [19]. The rule allows the removal of a self-
loop transition. A self-loop transition is one that has one input place which is also the
only output place of the transition. See the example in Figure 16 for an application of
theφELT rule. Transitiont has been abstracted from in the reduced net asp is the only
input place and the only output place oft.

Definition 26 (Elimination of Self-Loop Transitions for WF-nets: φELT). Let N1

andN2 be two WF-nets, whereN1 = (P1, T1, F1) andN2 = (P2, T2, F2). (N1, N2) ∈
φELT if there exists an input placei ∈ P1 ∩ P2, an output placeo ∈ P1 ∩ P2, a place
p ∈ P1 ∩ P2, and a transitiont ∈ T1 such that:

Conditions onN1:

1. •t = {p} (p is the only input place oft)
2. t• = {p} (p is the only output place oft)
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ELT

Fig. 16.Reduction of a WF-net using theφELT rule

Construction ofN2:

3. P2 = P1

4. T2 = T1 \ {t}
5. F2 = (F1 ∩ ((P2 × T2) ∪ (T2 × P2)))

Theorem 15 (The φELT rule is soundness preserving).Let N1 andN2 be two WF-
nets such that(N1, N2) ∈ φELT. ThenN1 is soundiff N2 is sound.

Proof The φELT rule is boundedness and liveness preserving [19]. Soundness of a
WF-net corresponds to boundedness and liveness of the short-circuited WF-net [2].

The Elimination of Self-Loop Transitions Rule for RWF-nets(φR
ELT) extends the

φELT rule by introducing reset arcs. The rule also allows removal of a transitiont which
has a single place as its input and its output. The additional requirement is that transition
t has no reset arcs. Figure 17 visualises theφR

ELT rule.

p t p

Fig. 17.Elimination of Self-Loop Transitions Rule for RWF-nets:φR
ELT
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Definition 27 (Elimination of Self-Loop Transitions Rule for RWF-nets: φR
ELT). Let

N1 andN2 be two RWF-nets, whereN1 = (P1, T1, F1, R1) andN2 = (P2, T2, F2, R2).
(N1, N2) ∈ φR

ELT if there exists an input placei ∈ P1∩P2, an output placeo ∈ P1∩P2,
a placep ∈ P1 ∩ P2, and a transitiont ∈ T1 such that:

Extension of theφELT rule:

1. ((P1, T1, F1), (P2, T2, F2)) ∈ φELT (Note that, by definition, thei, o, t, and p
mentioned in this definition have to coincide with thei, o, t, andp as mentioned in
the definition ofφELT.)

Condition onR1:

2. R1(t) = ∅ (t does not reset)

Construction ofR2:

3. R2 = {(z,R1(z))|z ∈ T2 ∩ T1}
Theorem 16 (The φR

ELT rule is soundness preserving).LetN1 andN2 be two RWF-
nets such that(N1, N2) ∈ φR

ELT. N1 is sound iffN2 is sound.

Proof It is obvious that the state spaces of both nets are identical, except that the
state space ofN1 contains additional self-edges. Furthermore, it is clear thatt can only
be dead if every transition that marksp is dead. Therefore, removingt preserves dead
transitions.

We have presented five reduction rules for RWF-nets based on the reduction rules
defined by Murata [19]. We have omitted the sixth rule, “Elimination of Self-Loop
Places” as this rule requires a place to be marked in an initial marking of a net. For WF-
nets and RWF-nets, this is not possible as the input placei is the only place that could
be marked in an initial marking. By definition,i cannot be a self-loop (i.e., it cannot
have any incoming arcs•i = ∅) and therefore, this rule is not applicable to WF-nets
and RWF-nets. In addition to the “Murata rules” we also present some additional rules.
These rules turn out to be particularly useful when reducing YAWL models.

3.6 Fusion of equivalent subnets

In this subsection, we first presentFusion of Equivalent Subnets Rule for WF-nets
(φFES) and then extend the rule for RWF-nets (φR

FES) by proposing additional require-
ments for reset arcs. TheφFES rule allows removal of multiple identical subnets by
replacing them with only one subnet. The rule requires that pairs of transitions have the
same input and output places. See the example in Figure 18 for an application of the
φFES rule. The set of transitionsV1 has been merged intoV3. The set of transitionsV2

has been merged intov4, and places inQ2 have been merged into one placer. Note that
the name of the rule may be a bit misleading. This rule only applies to subnets having
the structure shown in Figure 18. The reason that this rule has been added is that it is
very effective in reducing YAWL models (cf. [31]).
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Fig. 18.Reduction of a WF-net using theφFES rule
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Definition 28 (Fusion of Equivalent Subnets Rule for WF-nets:φFES). LetN1 and
N2 be two WF-nets, whereN1 = (P1, T1, F1) and N2 = (P2, T2, F2). (N1, N2) ∈
φFES if there exists an input placei ∈ P1 ∩ P2, an output placeo ∈ P1 ∩ P2, places
Q1, Q3 ⊆ P1 ∩ P2, Q2 ⊆ P1 where|Q2| ≥ 2, r ∈ P2 \ P1, transitionsV1, V2 ⊆ T1,
andV3, V4 ⊆ T2 \ T1 such that:

Conditions onN1:

1. V1 = {vq1,q2
1 |q1 ∈ Q1 ∧ q2 ∈ Q2} (every transition ofV1 is of the formvq1,q2

1 )
2. V2 = {vq2,q3

2 |q2 ∈ Q2 ∧ q3 ∈ Q3} (every transition ofV2 is of the formvq2,q3
2 )

3. for all p ∈ Q2 :N1• p ⊆ V1 ∧ p
N1• ⊆ V2 (preset and postset of all places inQ2 are

fromV1 andV2 respectively)
4. for all vq1,q2

1 ∈ V1 :N1• vq1,q2
1 = {q1} ∧ vq1,q2

1
N1• = {q2} (preset ofvq1,q2

1 is q1 and
postset isq2)

5. for all vq2,q3
2 ∈ V2 :N1• vq2,q3

2 = {q2} ∧ vq2,q3
2

N1• = {q3} (preset ofvq2,q3
2 is q2 and

postset isq3)

Construction ofN2:

6. P2 = (P1 \Q2) ∪ {r}
7. T2 = (T1 \ (V1 ∪ V2)) ∪ (V3 ∪ V4) whereV3 = {vq1,r

3 |q1 ∈ Q1} and V4 =
{vr,q3

4 |q3 ∈ Q3}
8. F2 = (F1∩ ((P2×T2)∪ (T2×P2)))∪ (V3×{r})∪ ({r}×V4)∪{(q1, v

q1,r
3 )|q1 ∈

Q1 ∧ vq1,r
3 ∈ V3} ∪ {(vr,q3

4 , q3)|q3 ∈ Q3 ∧ vr,q3
4 ∈ V4}

Theorem 17 (The φFES rule is soundness preserving).Let N1 andN2 be two WF-
nets such that(N1, N2) ∈ φFES. N1 is sound iffN2 is sound.

Proof The state spaces of both nets are comparable, such that where the state space of
N1 contains edges for transitions inV1, the state space ofN2 only contains edges for
transitions inV3. Similarly, the set of transitionsV2 in N1 is nowV4 in N2. The set of
placesQ2 has been replaced withr.

The Fusion of Equivalent Subnets Rule for RWF-nets(φFES) extends theφFES rule
by introducing reset arcs. The rule allows the removal of multiple identical subnets by
replacing them with only one subnet. Additional requirements are that all places inQ2

are reset by the same set of transitions and all transition pairs inV1 andV3 also reset
the same places. Figure 19 visualises theφR

FES rule.

Definition 29 (Fusion of Equivalent Subnets Rule for RWF-nets:φR
FES). Let N1

andN2 be two RWF-nets, whereN1 = (P1, T1, F1, R1) andN2 = (P2, T2, F2, R2).
(N1, N2) ∈ φR

FES if there exists an input placei ∈ P1∩P2, an output placeo ∈ P1∩P2,
placesQ1, Q3 ⊆ P1 ∩ P2, Q2 ⊆ P1 where |Q2| ≥ 2, r ∈ P2 \ P1, transitions
V1, V2 ⊆ T1, andV3, V4 ⊆ T2 \ T1 such that:

Extension of theφFES rule:

1. ((P1, T1, F1), (P2, T2, F2)) ∈ φFES (Note that, by definition, thei, o, Q1, Q2, Q3,
V1, V2, V3, andV4 mentioned in this definition have to coincide with thei, o, Q1,
Q2, Q3, V1, V2, V3, andV4 as mentioned in the definition ofφFES.)
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Fig. 19.Fusion of Equivalent Subnets Rule for RWF-nets:φR
FES

Condition onR1:

2. for all q1 ∈ Q1 and q2, q
′
2 ∈ Q2 : R(vq1,q2

1 ) = R(vq1,q′2
1 ) (transitions inV1 that

have the same input set should also have the same reset arcs)

3. for all q3 ∈ Q3 and q2, q
′
2 ∈ Q2 : R(vq2,q3

1 ) = R(vq′2,q3
1 ) (transitions inV2 that

have the same output set should also have the same reset arcs)
4. for all q2, q

′
2 ∈ Q2, R↼

1 (q2) = R↼
1 (q′2) (places inQ2 are reset by the same set of

transitions)

Construction ofR2:

5. R2 = {(z,R1(z) ∩ P2)|z ∈ T2 ∩ T1}
⊕{(z, (R1(z) ∩ P2 ∪ {r}))|z ∈ R↼

1 (q2) ∧ q2 ∈ Q2}
∪{(vq1,r

3 , R1(v
q1,q2
1 ) ∩ P2)|q1 ∈ Q1 ∧ q2 ∈ Q2}

∪{(vr,q3
4 , R1(v

q2,q3
2 ) ∩ P2)|q2 ∈ Q2 ∧ q3 ∈ Q3}

Theorem 18 (The φR
FES rule is soundness preserving).LetN1 andN2 be two RWF-

nets such that(N1, N2) ∈ φR
FES. N1 is sound iffN2 is sound.

Proof The proof is similar to the one for theφFES rule. The state spaces of both nets
are comparable, such that where the state space ofN1 contains edges for transitions in
V1, the state space ofN2 only contains edges for transitions inV3. Similarly, the set of
transitionsV2 in N1 is nowV4 in N2. The set of placesQ2 has been replaced withr.
Additional requirements for reset arcs ensure that the transitions can be abstracted.

3.7 Abstraction

In this subsection, we first presentAbstraction Rule for WF-nets(φA) and then extend
the rule for RWF-nets (φR

A) by proposing additional requirements for reset arcs. The
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φA rule is based on the Abstraction rule for Petri nets from Desel and Esparza [12].
The rule allows the removal of a places and a transitiont, wheres is the only input
of t, t is the only output ofs and there is no direct connection between the inputs ofs
with the outputs oft. See the example in Figure 20 for an application of theφA rule.
The reduced net on the right abstracts from places and transitiont and provides direct
connections between the inputs ofs and the outputs oft.

u1 u2

i

o

t

z

A

s

q2q1 q3

u1 u2

i

o

z

q2q1 q3

Fig. 20.Reduction of a WF-net using theφA rule

Definition 30 (Abstraction Rule for WF-nets: φA). Let N1 andN2 be two WF-nets,
whereN1 = (P1, T1, F1) and N2 = (P2, T2, F2). (N1, N2) ∈ φA if there exists an
input placei ∈ P1 ∩ P2, an output placeo ∈ P1 ∩ P2, placesQ ⊆ P1 ∩ P2, a place
s ∈ P1 \Q, transitionsU ⊆ T1 ∩ T2, and a transitiont ∈ T1 \ U such that:

Conditions onN1:

1. •t = {s} (s is the only input oft)
2. s• = {t} (t is the only output ofs)
3. •s = U (transitions inU are input transitions fors)
4. t• = Q (transitions inQ are output transitions fort)
5. (•s× t•)∩F = ∅ (any input ofs is not connected to an output oft and vice versa)

Construction ofN2:

6. P2 = P1 \ {s}
7. T2 = T1 \ {t}
8. F2 = (F1 ∩ ((P2 × T2) ∪ (T2 × P2))) ∪ (N1• s× t

N2• )
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Theorem 19 (The φA rule is soundness preserving).LetN1 andN2 be two WF-nets
such that(N1, N2) ∈ φA. ThenN1 is soundiff N2 is sound.

Proof The φA rule is boundedness and liveness preserving as shown by Desel and
Esparza [12]. Soundness of a WF-net corresponds to boundedness and liveness of the
short-circuited WF-net [2].

TheAbstraction Rule for RWF-nets(φR
A) extends theφA rule by introducing reset

arcs. The rule allows for the removal of a places and a transitiont, wheres is the only
input of t, t is the only output ofs and there is no direct connection between the inputs
for s with the outputs fort. Additional requirements are that transitiont does not reset
any place, places is not reset by any transition, and outputs fort are not reset by any
transition. Input transitions for places can have reset arcs. Figure 21 visualises theφR

A

rule.

u1

s

uN

t

qMq1

u1 uN

qMq1

Fig. 21.Abstraction Rule for RWF-nets:φR
A

Definition 31 (Abstraction Rule for RWF-nets: φR
A). Let N1 and N2 be two RWF-

nets, whereN1 = (P1, T1, F1, R1) andN2 = (P2, T2, F2, R2). (N1, N2) ∈ φR
A if there

exists an input placei ∈ P1 ∩ P2, an output placeo ∈ P1 ∩ P2, placesQ ⊆ P1 ∩ P2, a
places ∈ P1 \Q, transitionsU ⊆ T1 ∩ T2, and a transitiont ∈ T1 \ U such that:

Extension of theφR
A rule:

1. ((P1, T1, F1), (P2, T2, F2)) ∈ φA (Note that, by definition, thei, o, s, t, Q, andU
mentioned in this definition have to coincide withi, o, s, t, Q, andU as mentioned
in the definition ofφA.)

Conditions onR1:

2. R↼
1 (s) = ∅ (s is not a reset place)

3. R1(t) = ∅ (t does not reset)
4. for all q ∈ t• : R↼

1 (q) = ∅ (all output places fort are not reset places)
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Construction ofR2:

5. R2 = {(z,R1(z) ∩ P2)|z ∈ T2 ∩ T1}

Theorem 20 (TheφR
A rule is soundness preserving).LetN1 andN2 be two RWF-nets

such that(N1, N2) ∈ φR
A. N1 is sound iffN2 is sound.

Proof This rule is quite close to theφR
FST rule (i.e., the fusion of two subsequent

transitions), except that it rule allows fors (p for theφR
FST rule) to have multiple inputs.

Using theφR
FST rule, the proof is quite simple. It is obvious that we can replaces andt

by s1, ..., sN andt1, ..., tN in such a way that•si = {ui}, si• = {ti}, •ti = {si}, and
ti• = Q while preserving soundness. Next, we can use theφR

FST rule to reduce every
si andti. Figure 22 visualises the proof of the soundness preserving property of theφR

A

rule.

u1

s

uN

t

qMq1 qMq1

u1 uN

s1

t1

sN

tN

u1 uN

qMq1

FST

R

Fig. 22.Proof sketch for theφR
A rule

The other two linear dependency rules described by Desel and Esparza [12] to remove
nonnegative linearly dependent places and nonnegative linearly dependent transitions
are only applicable to free-choice nets. The rules are said to be not strongly sound for
arbitrary nets (i.e.,N is well-formed if and only ifN ′ is well-formed) [12]. Hence, they
cannot be used for WF-nets and RWF-nets.

4 Related work

A number of authors have investigated reduction rules for Petri nets and for various
subclasses of Petri nets. In [9] and [10], Berthelot presents a set of reduction rules for
general Petri nets. He proposes transformations on places and transitions that preserve
language, deadlock-freeness, 1-liveness and liveness for place/transition systems. They
include transformation on places such as structurally redundant places, double places
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and equivalent places and fusion of transitions such as post-fusion, pre-fusion and lat-
eral fusion. In [19], six reduction rules are presented for Petri nets. In [12], a set of re-
duction rules are proposed for free-choice Petri nets while preserving well-formedness.
They include the abstraction rule, linear dependency rules for a non-negative linearly
dependent place and for a non-negative linearly dependent transition. In [24], authors
extends the reduction rules given by Berthelot for Time Petri nets. Six reduction rules
that preserve correctness for EPCs including reduction rules for trivial constructs, sim-
ple splits and joins, similar splits and joins, XOR loop and optional OR-loop are pro-
posed [13]. Some reduction rules presented for EPCs such as reduction rules for simple
splits and joins and reduction rules for similar splits and joins are related to reduction
rules that we have defined for WF-nets. However, these reduction rules do not take
cancellation into account.

Reduction rules have been suggested to be used together with Petri nets for the
verification of workflows (cf. Chapter 4 of the book by van der Aalst and van Hee [5]).
In [26], the authors present how to decide relaxed soundness property of workflows
with cancellation and OR-joins using invariants. We follow a similar approach with a
set of reduction rules for workflow nets with cancellation regions and OR-joins using
reset nets.

5 Conclusion

An important correctness notion for a workflow net is the soundness property. A work-
flow net is sound if it has the option to complete, proper completion, and no dead tran-
sitions. Verification can be used to detect whether a net satisfies the soundness property.
When a workflow language supports cancellation behaviour, verification becomes time
consuming, challenging and sometimes not even possible. In our previous work [30],
we proposed a new verification technique for workflows with cancellation and OR-joins
using reset nets and reachability analysis. We found that state based analysis for large
nets can be time consuming and this has motivated us to consider possible reduction
rules for such nets while preserving the soundness property.

A reduction rule can transform a large net into a smaller and simple net while pre-
serving certain interesting properties and it is usually applied before verification to re-
duce the complexity and to prevent state space explosion. There are no reduction rules
defined for reset nets in the literature. In this paper, we continue our work on verifica-
tion of workflows with cancellation by exploring possible reduction rules for RWF-nets.
We have presented a set of reduction rules for WF-nets and RWF-nets that are sound-
ness preserving. These rules are based on existing reduction rules for Petri nets and
free-choice nets [19, 12] and they have been extended and generalised as necessary. We
have also provided detailed proofs for these reduction rules. We have also realised these
reduction rules as part of the verification feature in the workflow language YAWL [1].
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