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Abstract. Workflow languages offer constructs for coordinating tasks. Among
these constructs are various types of splits and joins. One type of join, which
shows up in various incarnations, is the OR-join. Different approaches assign
a different (often only intuitive) semantics to this type of join, though they do
share the common theme that synchronisation is only to be performed for active
threads. Depending on context assumptions this behaviour may be relatively easy
to deal with, though in general its semantics is complicated, both from a defini-
tion point of view (in terms of formally capturing a desired intuitive semantics)
and from a computational point of view (how does one determine whether an OR-
join is enabled?). In this paper the concept of the OR-join is examined in detail
in the context of the workflow language YAWL, a powerful workflow language
designed to support a collection of workflow patterns and inspired by Petri nets.
The OR-join’s definition is adapted from an earlier proposal and an algorithmic
approach towards determining OR-join enablement is examined. This approach
exploits a link that is proposed between YAWL and reset nets, a variant of Petri
nets with a special type of arc that can remove all tokens from a place. Struc-
tural restriction and active projection techniques are also proposed for algorithm
optimisation.
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1 Introduction

Workflow specifications should capture various aspects of business models such as the
flow of control, the flow of data, the structure of the organisation, and the use of re-
sources (see e.g. [15]). The control flow perspective captures the execution interdepen-
dencies between the tasks of a business process. An in-depth analysis and comparison
of a number of commercially available workflow management systems has been per-
formed [4] and the findings demonstrate that the interpretation of even the basic control

* This is the extended version of the paper appeared in the proceedings of ATPN 2005 [23].



flow constructs is not uniform and it is often unclear how the more complex require-
ments could be supported. The authors propose 20 workflow patterns to address control
flow requirements in a language independent style. YAWL (Yet Another Workflow Lan-
guage) is a result of this analysis, it provides direct support for most patterns [3]. YAWL
has a formal semantics specified as a transition system. Although YAWL exploits con-
cepts from Petri nets, it also provides direct support for those patterns hard to realise in
Petri nets. One of these patterns corresponds to the synchronising merge better known
as the OR-join, the focus of this paper. In practice, there is a need for a construct like the
OR-join as is evident from e.g. the fact that many commercial workflow systems and
business process modelling tools support OR-join-like constructs. Many systems and
languages struggle with the semantics and implementation of the OR-join because the
OR-join may require a synchronisation depending on an analysis of future execution
paths, i.e., the semantic is non-local and requires some non-trivial reasoning. Workflow
management systems like InConcert, eProcess, and WebSphere MQ Workflow have
solved problems related to the OR-join using syntactical restrictions. IBM WebSphere
MQ Workflow [20] (formerly known as MQSeries Workflow and FlowMark and also
used as a basis for the new BPEL standard) offers full support for the OR-join but in or-
der to do this it requires the workflow to be acyclic, i.e., the only way to introduce loops

is by executing the entire (sub)process [2]. Other systems like Eastman and Domino
Workflow use a non-local semantics similar to the one used in YAWL. Such a non-
local semantics may lead to unexpected results. Moreover, a non-local semantics may
result in poor performance as is stated in the manual of Eastman: “Parallel instances
can accumulate at a Join workstep if the instances are routed to the workstep by prepro-
cessing rules. These instances will eventually be joined by a RouteEngine subprocess
(thread) that examines Join worksteps for such instances. This Join scavenger thread re-
duces system efficiency, so routing to Join worksteps using preprocessing rules should
be avoided” [11]. These findings illustrate the practical relevance of the OR-join and
serve as a motivation for the work reported in this paper. Experience with these systems
shows that it is difficult to select a suitable semantics and implement it efficiently. For

a more complete discussion on workflow systems’ support for OR-join semantics, we
refer to [2, 4, 16-18].

The OR-join is a control flow construct that sometimes behaves like an AND join
and sometimes like an XOR join based on the current context. Consider the car servic-
ing scenario shown in Figure 1. When a customer requests car servicing, the mechanic
needs to perform a number of tasks. After scheduling the car for service, the mechanic
performs two tasks: to make a checklist of servicing requirements and to check for other
faults that need to be repaired. These two tasks can be done in any order. If the mechanic
finds the need to repair, he/she will wait until other service requirements are identified
before performing necessary repairs. If the service requirements have been identified
first, the mechanic will wait for the outcome of the other task: check for faults. There
are two possible outcomes from check for faults: the fault is either detected or there
is no fault. When the outcome is known, servicing can be started. As a result, perform
servicing task has been modelled as an OR-join. Before generating the bill, we should
make sure that all the necessary checks and maintence tasks have been performed. If
there is no fault, generate bill task will wait for synchronisation until perform servicing



task is completed. Otherwise, it can be started when the servicing has been completed
for both regular maintence and necessary repairs. Hence, generate bill task is also mod-
elled as an OR-join.

Check for
faults _'®
Schedule Perform car Generate

service servicing bill

Identify yearly
servicing
requirements

Fig. 1. Car servicing scenario

Variants and interpretations of the OR-join have been proposed in the literature.
In [22], several possible interpretations of OR-join semantics in the context of Event-
driven Process Chains (EPCs) are discussed. If the OR-join is preceded by a matching
OR-split, the OR-join semantics is taken to be “wait for the completion of all paths
activated by the matching split”. If there is no matching split, there could be at least three
interpretations of an OR join: “wait-for-all”, “first-come” and “every-time” [22]. In [2],
the authors highlight the technical, conceptual and practical problems with the formal
semantics of the OR-join in EPCs. The authors suggest that there is no sound formal
semantics for EPCs that seems to satisfy the intuitive semantics and that any formal
semantics for EPCs will impose some restrictions or will deviate from the informal
semantics to some extent. The authors demonstrate the problems using vicious circles,
which are formed when two or more OR-joins are in a feedback loop and each OR-join
waits for the other OR-join to complete first. On the other hand, in [17] a semantic
framework for formally defining the non-local semantics of EPCs including the OR-
join is proposed. The author states that “a single transition relation cannot precisely
capture the informal semantics of EPCs". It is proposed that the non-local semantics be
defined as a pair of transition relations and a semantic definition using techniques from
fixed point theory is presented [17, 18]. The OR-join approach in YAWL [3] is intended
to be a generalised approach and the formal semantics of the OR-join is defined by
ignoring all other OR-joins. This approach is described as “ad hoc in some way” [17].
In this paper, we propose new OR-join semantics that takes into account preceding
OR-joins. Note that the contribution of this paper is not limited to YAWL. This paper
provides suitable semantics for OR-joins and gives a concrete algorithm to support the
implementation.

The contributions of this paper are threefold. Firstly, we re-examine the OR-join
semantics as proposed in [3], because its behaviour does not match the informal se-
mantics in the context of OR-joins depending on other OR-joins and composite tasks
with OR-joins (they cannot be treated like black boxes). Secondly, for purposes of the



OR-join definition and analysis, we propose an abstract view on YAWL, one which is
formalised in terms ofeset netg5, 6, 9, 10, 12—-14]. Reset nets are considered the most
suitable formalism as reset arcs provide direct support for the cancellation feature in
YAWL (another concept introduced to YAWL as a result of the workflow patterns and
the difficulty of realising this feature in Petri nets). Thirdly, the mapping of YAWL nets
to reset nets is exploited to find an algorithmic solution to the non-trivial problem of
OR-join enablement.

The rest of the paper is organised as follows. In Section 2, we discuss the prob-
lems with the OR-join semantics in YAWL [3] and propose alternative treatments for
OR-joins by taking into account other OR-joins in a YAWL net and also propose ab-
stractions to enable reset net mappings. A YAWL net is defined formally as an EWF-net.
In Section 3, the definitions of EWF-nets (Extended Workflow Nets) and reset nets are
presented. In Section 4, we propose a new semantics for the OR-join in YAWL. In
Section 5, we propose an algorithm for OR-join analysis based on backwards search
techniques drawn from the area of Well-Structured Transition systems [9, 14]. In Sec-
tion 6, we present two restriction techniques to improve the efficiency of OR-join anal-
ysis. In Section 7, we describe how the algorithm and the restriction techniques are
implemented in the YAWL engine together with execution times. Section 8 concludes
the paper and briefly discusses other possible optimisation techniques from the field of
Petri nets.

This paper is an extended version of the ATPN2005 conference paper [23]. More
examples have been added to illustrate the OR-join semantics in Section 2. We also
introduce more worked examples to demonstrate the inner workings of the proposed
algorithm in Section 4. One major extension is a proof for backwards firing rule used to
generate predecessor markings which can be found in Section 5. In Sections 6 and 7 we
also provide additional new results. In Section 6, we discuss restriction techniques to
further improve the OR-join calculations. In Section 7, we describe the implementation
in the context of the open source system YAWL and provide a detailed analysis of its
performance.

2 OR-join semantics in YAWL

In this section, we first demonstrate the informal semantics of an OR-join using a num-
ber of examples. We then discuss two problems associated with multiple OR-joins in
a YAWL net using the OR-join semantics as defined in [3]. We then propose some
alternative treatments for OR-joins on the path to other OR-joins.

2.1 The OR-join in YAWL

A YAWL model is made up of tasks, conditions (in a Petri net, these would be referred
to as places) and a flow relation between tasks and conditions. Each YAWL model has
one start condition and one end condition. There are three kinds of split and three cor-
responding kinds of join in YAWL; they are AND, XOR and OR. The splits, joins,
conditions and cancellation symbols for YAWL are shown in Figure 2. YAWL uses the
terms tasks and conditions to avoid confusion with Petri net terminology (transitions



and places). A task is enabled when there are enough tokens in its input conditions
according to the join behaviour. Informally, an AND-join task is enabled if there are
tokens in all the input conditions of the AND-join. An XOR-join task is enabled if there

is at least one token in one of the input conditions. The decision for enabling tasks with
AND-joins or with XOR-joins can be made locally as it only depends on the existence
of tokens in the input conditions. OR-join semantics, on the other hand, is non-local.
An OR-join task is enabled at a marking iff at least one of its input conditions is marked
and it is not possible to reach a marking that still marks all currently marked input con-
ditions (possibly with fewer tokens) and at least one that is currently unmarked. If it is
possible to place tokens in the unmarked input conditions of an OR-join in the markings
reachable from the current marking, then the OR-join task should not be enabled and
wait until either more input conditions are marked or until it is no longer possible to
mark more input conditions. This is the desired behaviour of an OR-join and we will
refer to this aghe informal semanticef an OR-join. When a task is executed, it takes
tokens out of the input conditions and puts tokens in its output conditions according to
the join and split behaviour respectively. A task can have a cancellation set associated
with it. If there is a cancellation set associated with a task, the execution of the task
removes all the tokens from the conditions and tasks in the cancellation set. Cancelling
atask is achieved by removing tokens from internal conditions of the task.

Figure 3 is a YAWL net where A is an OR-split task and E is an OR-join task.
An OR-split task is called multiple choice as one or more paths can be selected after
executing the task. Consider a markih) = c1 + ¢5 (i.e. a marking with two tokens
one incl and one inc5). This marking results from the scenario where two outgoing
paths leading to B and to C, were selected after completing task A, and where task C has
been executed. A/, there is a token in the input conditieh of OR-join task E. To
determine whether task E should be enabletl/atve need to find out whether tokens

condition start end XOR-split OR-split AND-split
condition  condition task task task
P — . 7]
O
| e -J' I\l
__________ remove  XOR-join OR-join AND-join
tokens task task task

Fig. 2. Splits, joins, conditions and cancellation in YAWL
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B
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Fig. 3. A structured YAWL net with an OR-split task A and an OR-join task E



could be put inta4 or ¢6 in the reachable markings 8f . It is possible to reach a new
marking M’ = ¢4 + ¢5 from M by firing task B and therefore, E should not be enabled

at M. Now consider whether task E would be enabled at marRifig= c4 + ¢5. At

M’, ¢4 andc5 have one token each and there are no other tokens in the net. Hence,
there is no possibility of another token arrivingdé in the reachable markings af’.

Task E should be enabled &f’. As this is a “structured” YAWL net, task E would

not be enabled until the tokens from all the active threads from task A reach the input
conditions of E.

O O

ci

c3 D c6

Fig. 4. A YAWL net modified from figure 3

From the above example, it could be thought that an OR-join evaluation only de-
pends on the number of active paths out of an OR-split. If that is true, it is possible
to know in advance the number of active paths to wait for synchronisation. We have
slightly modified the example in Figure 3 to demonstrate that this is false. In Figure 4,
c4 is an input condition of task F an@ andc6 are input conditions of task E. Consider
a markingM=cl + ¢5. In this case, there is no reachable marking frdfmthat can
put more tokens inte6 and therefore, E should be enabledat So, even though two
active paths are chosen after OR-split task A, the OR-join evaluation should not wait
for tokens from both paths, as it is possible that not all the tokens might be on the path
to an OR-join task.

c1

- 7 @

c_i A c2 B E co

s = 7

Fig. 5. A YAWL net with two OR-join tasks C and D
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Fig. 6. Reachability graph of the YAWL net in Figure 5
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Next, we will demonstrate the behaviour of OR-joins using an example with one
OR-split and two OR-joins. The example in Figure 5 demonstrates a YAWL net with
AND-split task A, AND-join task E, OR-split task B and OR-join tasks C and D. The
reachability graph of Figure 6 shows the reachable markings from the initial matking
to the end marking,. A node in the reachability graph represents a reachable marking
and an edge represents a task that is executed to reach that particular maFkisy.
consider a marking/ = cl1 + ¢2 + ¢3 where there is a token in input conditiet
of OR-join task C and in input conditioe8 of OR-join task D in addition to the token
in input condition of task B. To determine whether tasks C or D should be enabled
at M, we need to find out whether tokens could be put int@r ¢5 in the reachable
markings fromM. We can see that by executing task B, it is possible to reach markings
cl+ 3+ ¢horel + 3+ ¢4+ ¢b that marke5, an input condition of task D not marked
in M. Alternatively, markings:1 + ¢3 + ¢4, ¢l + ¢3 + ¢4 + ¢b could be reached by
executing task B and they matk, an input condition of task C not markedid. As it
is possible to reach a new marking framh which can put a token in an unmarked input
condition of the OR-join tasks C and D, neither task C or D should be enabled Ht
a markingM’ = ¢l + ¢3 + ¢4 is considered, where all the input conditions of C (i.e.,
c1 andc4) are marked, then C would be enabled\at. Task D will also be enabled at
M’ as itis not possible for another token to arrive at input conditiorNote that in the
scenario where we move froi to M’, task D was not enabled it and, although no
tokens were added to the input conditions of this task, it became enahléd in this
example, the two OR-joins do not interfere with one another as they do not share input
conditions.

c3

Fig. 7. Cancellation task C with an infinite loop and cancellation

! Note the overloading of notation, i.e., hatgis a multiset denoting the marking with one
token in conditiorc,.



Now, let us consider OR-joins in the context of cancellation. In Figure 7, we de-
scribe a YAWL net with (i) task C removing tokens from the conditiohsc2 and from
internal conditions of task B when firing, (ii) an OR-join task E and (iii) two infinite
loops betweemrl, ¢2, ¢3, C and D. At a markingl/ = ¢2, one of the input conditions
of E is marked and an analysis needs to be performed to decide whethee lawttic3
could be marked in reachable markingsidf We can observe the following sequence
of reachable markings from/: ¢2 5 ¢3 2 ¢l 4+ 2 2 2¢2 5 ¢3. Similarly, there is
another sequence2 5 ¢3 2 ¢l + ¢2 5 ¢3, note that this is due to the cancellation
feature of C removing tokens fron2 when firing. Regardless of which path is taken
from the marking:2, it can only reach a marking @B (i.e. at the expense @2). The
conclusion is that it is not possible to reach a markidg- ¢3 or bigger fromM and
therefore, E should be enabledidt

Suppose now that task C no longer has a cancellation set associated with it in Fig-
ure 7. From the marking/ = ¢2, we can observe the following sequence of reachable
markings:c2 5 ¢3 2 ¢l +¢2 5 2¢2 5 ¢2 + ¢3. As it is possible to react + ¢3
which marks more input conditions of E, E should not be enablet aThis exam-
ple demonstrates the possible effect that the cancellation feature of a task has on the
OR-join analysis.

From the above examples, it is clear that the OR-join semantics requires careful
analysis and the decision to enable an OR-join cannot be made locally. Any OR-join
algorithm must evaluate possible reachable markings from a current marking to deter-
mine whether there is a possibility of a token arriving at a currently unmarked input
condition of an OR-join (while all input conditions which were already marked remain
marked though possibly with fewer tokens). This algorithm potentially needs to be ap-
plied every time a marking changes and the OR-join analysis could place a significant
load on any workflow engine required to execute it, cf. the quote from the manual of
Eastman [11] in the introduction.

2.2 Problems with OR-join semantics as defined in [3]

Two problems may be identified with the OR-join semantics of YAWL as it has been
defined in [3]. The first problem is related to the treatment of other OR-joins preceding
an OR-join under consideration. The OR-join semantics as defined in [3] ignores other
OR-joins when analysing whether a particular OR-join should be enabled at a given
marking. In Figure 8, there are two OR-join tasks, E and F in the YAWL net. Consider
a markingM = cl + ¢3 where the OR-join analysis for F is performed. After executing
task C, it is possible to reach eithe$ + c4, ¢3 + ¢b or ¢3 + ¢4 + ¢5. One possible
occurrence sequenceds + ¢3 = ¢3 + ¢4 + ¢5 = 3+ ¢4 + ¢6 = ¢3 + ¢7. Hence,

M' = ¢3 + ¢7 is a reachable marking from/. However, the OR-join semantics as
defined in [3] ignores other OR-joins on the path to F, so task E and the associated con-
ditions will not be taken into account, aid’ is therefore not considered as a reachable
marking during the OR-join analysis of F. As a result, the analysis will conclude incor-
rectly that there is no possibility of another token arriving7n F would be enabled at

M and no synchronisation takes place. This behaviour is probably not what one would
expect from this model. It would also result in multiple executions of F and then more



than one token would be produced fgr A YAWL model which can produce a token

for the output conditiorz, while still having tokens in the other conditions is consid-
ered as not having proper completion and is therefore not sound [1]. We have seen that
as the analysis of a given OR-join does not consider the possibility of a token arriving
from a path which has an OR-join, this could result in premature enabling and multiple
execution of OR-join tasks.

Fig. 8. A YAWL net with two OR-join tasks E and F

The second problem relates to unfolding of composite tasks during an OR-join anal-
ysis. This implies that a YAWL net at a lower level cannot be considered as a black box.
If a YAWL net at a lower level contains OR-joins, it will impact on the OR-join analysis
at a higher level net. Consider a specification where task B in Figure 8 is a composite
task that is unfolded into a YAWL net with an OR-split and an OR-join task as shown
in Figure 3. The composite task B will be unfolded to the net in Figure 3 (including the
OR-join taskE at lower level). In practise, it can be started with a toker2iand after
completion, will put a token ir3. However, during OR-join analysis for F at a marking
M = ¢2+ 7, the net will be unfolded and OR-join tagkat the lower level is ignored.

The OR-join semantics in [3] will then conclude incorrectly ti#ashould be enabled

at M because it is not possible to have a token3nThis demonstrates that composite
tasks cannot be seen as black boxes and the analysis takes into account the lower level
net that make up a YAWL specification.

2.3 Optimistic and pessimistic approaches

The informal semantics of an OR-join can be guaranteed when there is only one OR-
join in a given YAWL net. However, when dealing with multiple OR-joins where one
precedes the other, the semantics are not well-defined. Instead of ignoring other OR-join
tasks during the analysis, we propose two alternative treatments for those OR-joins:
either as XOR-joinsdptimistig or as AND-joins pessimistiy. Both optimistic and
pessimistic approaches support the informal semantics by delaying enablement when
there is a possibility of more tokens arriving to unmarked input conditions of an OR-
join. We believe that these two alternatives result in formal semantics which is more
closely related to the informal semantics of OR-joins and still allow for sound semantics
(i.e., avoids the fixpoint problems discussed in [2]).

The treatment of an OR-join on the path to another OR-join as an XOR-join is an
optimisticapproach. It is consideregptimisticas the analysis will wait for synchronisa-



tion if there is at least one token to enable the resulting XOR-join. Consider a marking
M = cl + ¢3 in Figure 8 where an OR-join analysis for task F would be performed.
Instead of ignoring the OR-join task E during the analysis, it will be treated as an XOR-
join task. It means that the occurrence sequefieec3 = ¢3+c4 = ¢3+¢7 would be
considered. As a result, F is not enabled At This interpretation of OR-join task E as

an XOR-join, prevents F from being enabled prematurely and it matches more closely
with the informal semantics of an OR-join.

The treatment of an OR-join on the path to another OR-join as an AND-join is a
pessimisticapproach, as this approach now requires tokens in all input conditions of
the AND-join and if it is not possible, the OR-join will be enabled. Consider again
M = cl + ¢3 in Figure 8 where an OR-join analysis for task F would be performed.
This time, instead of ignoring task E, it will be treated as an AND-join task. Due to
the OR-split behaviour of task C, tokens can be preseat ior ¢5 or both after firing
C. The occurrence sequenee+ c3 = ¢34+ cd +¢b = 3+ cd + 6 > 3 + 7
is possible. As a token can be putdn while ¢3 remains marked, F is not enabled at
M. This preserves the same informal semantics as an optimistic approach, and both
approaches result in delaying the enablement of the OR-join task F.

We have also found that when OR-joins are in conflict, there might not be any
satisfactory treatment for OR-joins. n Figure 9, we have an unusual situation described
as a vicious circle in [17] where the OR-joins are in conflict and it is unclear what
the informal semantics of the model should be. In Figure 9, there are two OR-join
tasks B and C which are in conflict with each other and this Figure is inspired by [17].
Conditione3 is an output condition of C and an input condition of B ads an output
condition of B and an input condition of C. Consider a markihig- c2 where an OR-
join analysis is to be carried out for tasks B and C. Usingdpemisticapproach, we
treat task C as an XOR-join task during the analysis for B. As a result, we can find a
reachable markingl + ¢3 4 ¢6, which marks both input conditions of B. Therefore,

B should not be enabled at + ¢2. Similarly, we will treat B as an XOR-join task for

the analysis of task C and there is a reachable maming c4 + ¢5. Therefore, task

C should not be enabled at + ¢2. As a result of thioptimisticapproach, the YAWL

net will deadlock Using thepessimisti@approach, we treat task C as an AND-join task
during the analysis for B. At the marking + ¢2, it is not possible to enable C due to
the AND-join semantics, and therefore, task B will be enabled and can be fired, which
yields the marking; + ¢4 + ¢5 . This will enable task C and after firing C, the marking

c3 + b+ c6 results. Therefore, tasks B and C could potentially keep firing alternatingly
thus resulting in a potentially infinite number of firings of task D. The same is true for
the analysis of task C. We can see thatghesimisti@pproach would result in multiple
tokens in the end condition. The original semantics that ignores other OR-joins would
also result in a similar behaviour to tipessimisti@pproach. In this case, it is hard to
see what formal semantics to choose and it is not possible to define the formal semantics
accurately.

From the above discussions, it can be seen that there is no ideal treatment for non-
local OR-join semantics in YAWL. Any formal semantics will impose some restrictions
or deviate from the informal semantics to some extent. In some cases, we observe that
treating other OR-joins on the path as XOR-joins using an optimistic approach is more
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Fig. 9. OR-join tasks B and C in conflict

appropriate for the analysis. Consider a scenario where task C in Figure 8 is an XOR-
split task rather than the OR-split task. Let us consider a markifge3 and treat task

E as an AND-join task. As it is not possible for task E to fire due to the XOR-split and
AND-join combination, the OR-join analysis will conclude that F should be enabled.
As a result, task F could be executed more than once and the YAWL net does not have
proper completion. The analysis will reach the same conclusion as the current semantics
in YAWL where the semantics ignores the OR-join dependencies. Hence, we chose to
use the optimistic approach (XOR-join treatment) for formal semantics during OR-join
analysis.

2.4 Abstractions

We propose to abstract from the constructs in YAWL that do not affect an OR-join
analysis. They include multiple instances, internal conditions of a task and composite
tasks. We can assume that if a multiple instances task is enabled and executed, it will
complete and put tokens into the appropriate output conditions of the task. Similarly,
with the state transitions and internal conditions within a task, we can abstract from
these transitions and only consider the input and output conditions of a task. We propose
to treat a YAWL net as #lat net, and ignore the hierarchical structure for the purpose

of an OR-join analysis. Composite tasks will be treated as black boxes during OR-join
analysis. The assumption is that if a composite task can be enabled and executed, it will
terminate at some time, and tokens will be placed in the appropriate output condition(s)
of the composite task. As a result, even if there is an OR-join task in the composite
task, it will not influence the decision to enable an OR-join task at a higher level. We
recognise that due to the semantics of only considering tasks at the same level, the OR-
join task could wait and result in a deadlock if a composite task is not sound and could
deadlock. Because of the proposed abstractions from a YAWL net, we can now able to
map to a Petri net like formalism.

3 Establishing a formal foundation

The formal semantics of YAWL is expressed in terms of a transition system [3] and
while inspired by Petri nets, YAWL should not be seen as an extension of these. New
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concepts were introduced in YAWL to suitably deal with some of the workflow pat-
terns [4]. YAWL constructs such as the OR-join, cancellation and multiple instances
are not directly supported by Petri nets. To perform an OR-join analysis, cancellation
plays an important role (as shown in Figure 7). During an OR-join analysis, we are only
required to consider the split and join behaviours of tasks and the cancellation set that is
associated with a task. The cancellation feature of YAWL is theoretically closely related
to reset nets, which are Petri nets with reset arcs. For an OR-join analysis, we propose
to map a YAWL model represented as an EWF-net (Extended Workflow Net) to a reset
net. In this section, we first present the definition of EWF-nets and we then present the
definition and firing rules for reset nets.

3.1 EWF-nets

A YAWL specification is formally defined as a nested collection of EWF-nets [3]. A
YAWL specification supports hierarchy and a composite task is mapped onto an EWF-
net. As we will abstract from composition, it suffices to consider only one EWF-net in
isolation when evaluating an OR-join. We refer the reader to [3] for a formal definition
of a YAWL specification.

Definition 1 (EWF-net [3]). An extended workflow net (EWF-net) N is a tulei, o,
T, F, split, join, rem, nofi) such that

— C'is a set of conditions and is a set of tasks,

— i € C'is the unique input condition anal € C'is the unique output condition,

— FC(C\{o} xT)U (T x C\{i}) U (T x T) is the flow relation,

— every node in the grapi{U T', F') is on a directed path from i to o,

— split T — {AN D, XOR, OR} specifies the split behaviour of each task and
join: T — {AND, XOR, OR} specifies the join behaviour of each task,

—rem:T - P(T'UC\ {i,0}) specifies the cancellation region for a task;

— nofi: T - N x NiNf  NINf. rdynamic, statig specifies the multiplicity of each
task (minimum, maximum, threshold for continuation, and dynamic/static creation
of instances).

In an EWF-net, it is possible for two tasks to have a direct connection. We will
add an implicit conditiorz(;, ,) between two tasks, ¢, if there is a direct connection
between them. We denote %' the set of conditions extended to include implicit
conditions, and denote the extended flow relatior"é¥. We now define an explicit
extended workflow net (E2WF-net) usiig®t and <%t as follows:

Definition 2 (E2WF-net). Let N = (C, 1,0, T, F, split, join, rem, nofi) be an EWF-
net, the corresponding explicit EWF-net (E2WF-net) is defined as
(Ce*t i 0, T, Fe*t split, join, rem, nofi) where
Ct = CU{cty 1) | (t1,t2) € FN(T x T)} and
Fest =(F\ (T x T)
U{(tl?c(tl,tQ)) | (tl,tg) c Fn (T X T)}
U{(Cty t2): 12) | (t1,t2) € F O (T x T}

2 Note that we are using basic mathematical notations sueh &sr a partial function P for
powersetN for natural numbers, and™™/ for N U {inf}.
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Let N be an E2WF-net and € C*** U T', we usesx andze to denote the set of
inputs and outputs of a node ie: = {y|(y,z) € F**'} andze = {y|(z,y) € F**'}.
If the net involved cannot be understood from the context, we explicitly include it in
the notation and we write = andz o to describe input and outputs of a node in N.
A marking is denoted by/ and, just as with ordinary Petri nets, it can be interpreted
as a vector, function, and multisét/ is anm-vector, wheren is the total number of
conditions. LetC be all possible conditions ant¥ : C' — N, whereC C C. M(c)
returns the number of tokens in a conditioif ¢ € dom(M) and zero otherwise. We
can use notations such &6 < M', M + M',andM — M'. M < M’ iff VeecM(c) <
M'(c). M + M' andM — M’ are multisets such that.cc: (M + M')(c) = M(c) +
M'(c)and(M — M'")(c) = M(c) — M'(c).

3.2 Reset nets

A reset net is a Petri net with special reset arcs, that can clear the tokens in selected
places. Reset arcs do not change the requirements of enabling a transition but when a
transition fires, they will remove tokens from the specified places. The reset arcs are
used to underpin theemfunction that models the cancellation feature of EWF-nets, cf.
Definition 1. This approach allows us to leverage existing literature and techniques in
the area of Petri nets and reset nets in particular [5, 6, 9, 10, 12—-14].

Definition 3 (Reset net).A Petri net is a tuple P, T, ') where P is a set of places,
T is a set of transitionsP NT = @ and F' C (P x T) U (T x P). Aresetnetis a
tuple (P, T, F, R) where(P, T, F') is a Petri net and? € T' - P(P) provides the reset
places for certain transitions.

Figure 10 shows a transitigrwith a number of places. Single-headed arrows repre-
sent input and output arcs and double-headed arrows represent reset arcs. For example,
plisaninput place to, p4 is an output place af andp2 is a reset place dgfand tokens
will be removed fromp2 whent fires. It is possible for a place to have different kinds
of arcs associated with it. For instangé,is an input place, an output place and a reset
place oft.

Fig. 10.An example transition with input, output and reset arcs

In the remainder of the paper, when we use the expredsiaeny), it denotes 1 if
(z,y) € Fand 0 if(z,y) ¢ F. We write F* for the transitive closure of the flow
relation " and F'* for the reflexive transitive closure df.
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The notatiorM (V) is used to represent possible markings of a resebnet
Definition 4 (M(N)). LetN = (P, T, F, R) be a reset net, then W) = P — N.

When a transitiort of a reset net is enabled at a markihg, it can fire and a new
marking M is reached.

Definition 5 (Forward firing). Let N = (P, T, F, R) be areset netand!’ € M(N).
A transitiont € T is enabled iffet < M’ 3.

t

M = M < ot < M'A
M'(p) — F(p,t) + F(t,p) if pe P\R()
M(p){F(t,l;) g Yt e RO,

Definition 6 (Occurrence sequence).etN = (P, T, F, R) be aresetnet. L&t ..., M,, €
M(N). Leto = tg,t4, ..., t,—1 be transitions ifl". Sequence = MytoMj...t,—1 M,
is an occurrence sequence ands a firing sequence iff/; Tl M q forall 0 <i <
n—1.

A markingM" is reachable from a marking/, written M ~= M, iff there is an
occurrence sequence with initial markidg and final/last markingV/”. If there can
be no confusion regarding the net, we will abbreviate if\és~ M"'.

The notationM [P’] restrictsM to a set of place#”, i.e., a projection. For places
not in P/, the number of tokens is zero. L&f; = pl + p2 + p3 and P’ = {p1, p2}.
M, [P'] = pl 4 p2 + 0p3 and dontM;[P’]) = {pl + p2 + p3}. Let My = pl + 2p2,
M, [P'] > M,[P'] is true as the comparison betwekhand M’ is restricted to a set of
places inP’ and M, has more tokens ip2.

Definition 7 (Projection). Let N = (P, T, F,R) be a reset netM < M(XN) and
P’ C P. M[P'] returns a projection such that dq@/[P’]) = dom(M) and

M(p) if peP
/ —

The notationM | P’ is used to alter a marking based on a set of pldtetet M =
pl 4+ p2 + p3 andP’ = {pl,p2}. M|P’ = pl + p2 and donfM |P’) = {pl + p2}. If
P’ ={pl,p2,p3,pd}, M|P' = pl+p2+p3+0p4 and dontM [P’) = {pl,p2, p3, p4}.
Definition 8 (Filtering [). LetN = (P, T, F,R) be aresetnetM € M(N) and P’ a
set of placesM | P’ returns a function such that dq@/ [ P’) = dom(P’") and

.« [M(p) if pe (P ndomM))
M[P(p)—{o ! if ge(P’\don'(M)).

The functionmarkedreturns the set of marked places in a reset net for a given
marking M.

Definition 9 (Marked). Let N = (P, T, F, R) be areset netand/ € M(N):
marked M) = {p € dom(M) | M(p) > 0}.

% 1f X is a set over Y, it could also be interpreted as a bag which assigns to each element a weight
of 1.
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The C relation indicates thad/ marks fewer or the same places &&. This is
a looser notion of smaller markings thafy because only the marking of places is
considered and the number of tokens in a place is ignored. The notatismised to
indicate that\/ marks strictly less places thad’.

Definition 10 (C). Let M, M’ be two markings of a reset net/ C M’ iff marked M)
CmarkedM’), M C M'iff M C M"and—(M' C M).

The functionsuperM returns whether it is possible to reach a marking fréf
which marks more places in a set of plad&s

Definition 11 (superM).Let N = (P, T, F, R) be a reset net and/ € M(N) and
P’ C P be a set of places for consideration, supén¥] M, P’) holds iff there is a
marking M’ such thatV = M’ and M [P'] C M'[P].

To conclude this section, we define the notion of backward firing. This notion will
be used to analyse coverability and is required for the OR-join analysis as is described
in the remainder of this paper.

Definition 12 (Backward firing). Let(P, T, F, R) be aresetnetand/, M’ € M(N).
M’ --»t M if and only if it is possible to fire a transitiohbackwards starting frond/
and resulting inM’. 4

M’ -->'* M & M[R(t)] < te[R(t)]A
oy L M) =F(tp) + Fp.t) i pe P\R()
W= { gy T R

For any reset place, M(p) < F(t,p) because it is emptied when firing and then
F(t,p) tokens are added. We do not requivE(p) = F'(t,p) because the aim is cov-
erability and not reachabilityd/’, i.e., the marking before (forward) firing should

at leastcontain theminimal number of tokens required for enabling and resulting in a
marking of at leasf\/. Therefore, onlyF'(p, t) tokens are assumed to be present in a
reset place.

4 Linking YAWL to Reset nets

In this section, we describe how an E2WF-net could be transformed into a reset net.
After the abstractions from multiple instances, composite tasks and internal places in a
YAWL net, we can consider a YAWL net as having tasks with various split and join be-
haviours, possible cancellation sets and explicit and implicit conditions. For an E2WF-
net without OR-join tasks, there is then a straight forward mapping into a reset net. For
an E2WF-net with one or more OR-join tasks, it is not possible to directly transform the
net into an equivalent reset net as non-local semantics of OR-join task must be taken
into account. For an E2WF-net with OR-join tasks, we propose to useptimistic
treatment whereby other OR-joins are replaced with XOR-joins, and perform the nec-
essary transformation to obtain one reset net per OR-join. So, if a YAWL net has two
OR-joins, there will be two corresponding reset nets, one for each OR-join.

4 For any natural numbets b: ¢~ b is defined as max — b, 0).
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4.1 Transformation of an E2WF-net without OR-joins into a reset net

For every task in an E2WF-nett is split into two,ts;4,+ andt.,q to support XOR,

OR and AND split constructs and XOR and AND join constructs. The numbeg 9§
transitions depends on the join behaviour of a task and the numbgfofransitions
depends on the split behaviour. Figure 11 illustrates the approach taken in the transfor-
mation. The function transE2WF transforms an E2WF-net without OR-joins into a reset
net. To support the cancellation feature in YAWL, we have a relaiavheret.,, 4 and

its associated reset places are stored. As a transition in an E2WF-net is now split into a
number oft .+ andt., 4 transitions depending on the split and join behaviour, we also
introduce a place; for each transitiort to represent an internal place between,.;
andt.,q. The flow relationF” is also modified so that the newly introduced places in

P’ and transitiong” are properly connected.

ONO

'start tend

{a) AND-join (c) AND-split

pl

end

(e) OR-split
start ¢ P2
end
(b) XOR-join (d) XOR-split
Transformations for a task t with Transformations for a task t with two
two input conditions p1 and p2 output conditions p1 and p2

Fig. 11.Reset net transformations for YAWL split and join behaviours

Definition 13 (transE2WF).LetN = (C,i,0, T, F, split, join, rem, nofi) be an E2WF-
net without OR-joins. The function transE2\W¥F) returns N’ = (P, T’, F’, R) such
that

P =CU{pt € T} is a set of places,
T = Terart U Terng Such that
Tstart = {tstart|t eT A ]O’Ln(t) = AND}
U{tL, 4|t €T A join(t) = XOR A p € ot},
Tend ={tenalt € T A split(t) = AND}
U{th, It € T A split(t) = XOR A p € te}
U{tZ 4lt € T A split(t) = OR N x Cte ANz # O},
F' ={(p,tsiare)[t €T N join(t) = AND A p € ot}
U{(tstart, pe)[t €T A join(t) = AND}
U{(pts tena)[t € T A split(t) = AND}
U{(tend,p)It € T A split(t) = AND A p € te}
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{( stcwt)‘t el A .707'”( ) = XOR A pe .t}
U{(t8, e, )|t €T A join(t) = XOR A p € ot}
{(ptv t? Dt e T A split(t) = XOR A p € to}
U{(t2 ;-p)It € T A split(t) = XOR A p € te}
U{(pe, t%, DIt € T A split(t) = OR Nz Cte Az # &}
U{(tZ. .p)lt €T A split(t) = OR ANpex AN x Cte Nz # T},
R €T,,4 - P(P) such that
t € T A split(t) = AND
= R(tend) = {pv|t’ € rem(t) NT} U (rem(t) N C),
t €T Asplit(t) = XOR A p € te
= R(t" ) = {pv|t' € rem(t)NT} U (rem(t) N C),
teT ANz Cte ANz #£ D A split(t) = OR
= R(t?, ) = {pv|t' € rem(t)NT}U (rem(t) N C).

4.2 Transformation of an E2WF-net with OR-joins into a reset net

Here, we propose to transform an E2WF-net with OR-join tasks into a reset net by first
singling out one OR-join and removing it from the net and then by treating other OR-
join tasks as XOR-joins. The same transformation rules defined in Definition 13 can
then be used for transformation as the net now does not contain any OR-join tasks. This
effectively converts a YAWL net with OR-joins into a reset net for a given OR-join.

Definition 14 (transE2WFQJ). Let N be an EWF-net with OR-joins and“** be the
E2WF-net of N and be an OR-join task under consideration. The function transE2WFROJ)
returnsN’ = (P, T, F", R) such thatP, T’, Tsiart, Tena, F', @and R are as defined in
Definition 13 andl” and F"’ are defined as follows:

T T/tart U Te’ﬂd’

Thort = Tstare U {t8 t(m|t €T A join(t)= ORAt#j A pc€et},and

FI/ - FIU {(p7 start)|p Ce t Nte T/\jOZ’I’L(t) =ORAt #J}
U{(t2y 0, De)|p Eot A t € T Ajoin(t) = ORAt # j}.

We now define how a given marking in an E2WF-net can be linked to a marking
Mpg in the corresponding reset net. For all the conditions that exist in an E2WF-net,
they will be marked exactly the same Mz and zero tokens for the newly introduced
places in the reset net.

Definition 15 (Mg). Let(N, M) be a marked E2WF-net ardy be the corresponding
marked reset net a¥, thenM corresponds in a natural way to a marking 8f;. This
marking marks all the places iNy which correspond to conditions iN with the same
number of tokens. We will refer to this as the corresponding marking and denote it as
Mpg.

4.3 OR-join semantics

For an OR-join taslo-j of an E2WF-net, the enabling rule forj is defined by first
translating the net into a reset net using optimistic approach in Definition 14 and then
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deciding whether it is possible to mark more input places-pfrom a given marking.
This can be done using tteiperMfunction. If superMholds then the OR-joing-j,
should not be enabled &f. Otherwisep-j is enabled afl/.

Definition 16 (OR-join semantics).Let N = (P, T, F, R) be an E2WF-net)M be a
marking of N, 0-j be the OR-join task under consideratidyiy = transE2WFOJP, T, F, R, 0-})
be the corresponding reset net aifl; € M(NNg). 0-j is enabled atV/ iff at least one

of its input places is marked and supgtN, Mp, e0-j) does not hold.

: L -C
A Ho T e 16

ci A c2 B %p D co

Fig. 12. An E2WF-net N with OR-join tasks C and D

<
cslarl
o —»@
end
( ) o C... @
ps Catan .

»
B T >
start 80
B

end

Fig. 13. A reset net for OR-join analysis of task D in Figure 12

We will now describe how the transformations will be performed for an EWF-net
with two OR-join tasks C and D as shown in Figure 12. Note that an explicit condition
cpp has been added for the implicit condition between tasks B and D. Figure 13 shows
an equivalent reset net for the E2WF-net in Figure 12 for OR-join analysis of task
D. The OR-join task C is on the path to task D and task C is treated as an XOR-
join task. Also note that OR-join task D has been removed from the net. Consider a
markingM = cl + c¢gp of N where OR-join analysis for task D would be performed.
There is a corresponding marking for the reset aék, = ¢l + cgp. The input places
of task D arec4 andcgp. We need to investigate whether it is possible to reach a

cl
start Cend

marking that marks both4 andcgp. The sequencel + cgp sty pc +cgp =3

¢4 + cpp exists and that it is possible to reasff’ = c4 + cgp from M. Therefore,
superM(transE2WFQP, T', F, R, 0-j), M, e0-j) predicate holds a8/ — M’ and
Mgrl{c4,cgp}] T M"[{c4,cgp}]. The OR-join analysis for task D will conclude that
D should not be enabled at markifg as it is possible to reach a marking fravh that
marks more input places of the OR-join th&hdoes.
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5 OR-join algorithm proposal

The main objective of the OR-join algorithm is to determine, for a given OR-join,
whether or not a marking/’ is reachable from a given marking that marks more

input places of that OR-join. We perform this analysis by first transforming an EWF-net
(with OR-joins) into a reset net for a given OR-join task using the function transE2WFOJ
and then calling our proposed OR-join algorithm. Our algorithm is based on backward
search techniques for Well-Structured Transition Systems (WSTSs) [5, 9, 12-14]. The
algorithm works backwards by computing the predecessor markings for a given mark-
ing, as opposed to the forward approach used in coverability tree algorithms. A reset
net can be represented as a WSTS and the backwards algorithm has been successfully
applied to solve the coverability problems for reset nets [9, 19].

5.1 Backward algorithm for OR-join analysis

WSTSs are “a general class of infinite state systems for which decidability results rely
on the existence of a well-quasi-ordering between states that is compatible with the
transitions.” [14]. The existence of a well-quasi-ordering over an infinite set of states

ensures the decidability of termination and coverability properties [9, 14].

Definition 17 (Well-Structured Transition System [9]). A well-structured transition
system (WSTS) is a structlse= (@, —, <) such that) is a set of states»>C Q x @

is a set of transitions<C @ x Q is a well-quasi-ordering (wqgo) on the set of states,
satisfying the simple monotonicity property, — m’ for markingsm,m’ € @ and
my > m implym; — m} for somem} > m/'.

Reset nets can be seen as a W3PS—, <) with @ the set of markingsl/ — M’ if
for somet, we havel/ > M’ and< the correspondingt order on markings (which is
awqo) [19].

Definition 18 (Upward-closed set [14])Given a quasi-ordering< on X, an upward-
closed set is any sét C X such thaty > x andz € [ entaily € I. Toanyz € X
we associatédz =9/ {y|y > z}. A basis of an upward-closellis a set/® such that

I = UZEEIb Tl‘

Given a WSTSQ, —, <) and a set of statesC Q, Pred(I), pb(I) and Pred™(I)
can be defined [19]. The immediate predecessofs Bfed(I) = {z|t -y Ay € I},
all predecessor states offred”(I) = {z|lzr =y A y € I} andpb(I) = U,c; pb(y)
wherepb(y) yields a finite basis of Pred(1{y}) (i.e.,pb(y) yields a finite set such that
1pb(y) =1Pred(1{y})) [19].

In the context of reset nets, we use the backward firing rule (cf. Definition 12) to
definepb.

Definition 19 (pb). Let (N, M) be a marked reset neph(M) = {M'|Fper M’ --»*
M}.

Lemma 1. Let (N, M) be a marked reset netpb (M) =1 Pred(1{M}).
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Proof. First, we will prove thatf pb(M) CTPred(1{M}).

Let My €1pb(M), we need to show that/y; €1Pred(T{M?}). There is am\lz < M;

such thatM, € pb(M). Therefore, there existstac T such thatM, --+! M. We

will show that this implies that there is a5 such thatMs > M andM, — M. The
markingsM, My, My and M3 with the associated firing rules are shown in Figure 14.

M is described as the relationship between input, output and reset arcs of transition
t. Firing transitiont backwards ai\/ results inM;. A token will be placed into each
input place oft. For instance, an input place bthat has: number of tokens will now

hasz + 1. The same is true of any output placetofith y number of tokens. Afl/s,

the number of tokens is reduced by 1 (if possible), i.e. (pax1,0). We use the max
function to ensure that the negative numbers are avoided. The same is true if the input
place is also an output place. If it hagokens before, now it will have méx, 1). A

reset place will have zero token. If a reset place is also an input plagét efill have

one token. If a reset place is also an output place, it will have zero token. If a reset
place is also an input place as well as the output place, that place will have one token.
By firing a transitiont at M, we can reach a new markirdgs. One token is removed

from each input place afin M5, one token is put into each output placet@nd the
tokens are removed from the reset places. Hence, we can conclude’shat {1/},

My € Pred(1{M?}), andM; €] Pred(1{M}).

M,
VI|
t
My, —» M3
~
A
tx
0 1 0 0
t )
t —
x+1 max(y-1,0) X max(y,1)
max(z, 1) 1 0 max(z, 1) 1 1

\
\
\\ =0 =0
t N Vi
\
X
X 2 y
z <1 <1

Fig. 14. Sketch of the first part of the proof
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Second, we will prove thatPred(1{M}) CTpb(M).

Let My €1 Pred(1{M}), we need to show that/y; €Tpb(M). This is shown in Fig-
ure 15. There is &/, < M; such thatMy € Pred(1{M}). Hence, there is ails > M
such thatM, - Ms. We will show that this implies that there is &, such that
M, > M, andM, --»* M. Such a marking\/, can be constructed as shown in Fig-
ure 15. We can see that < Mz asz’ <z — 1,2z’ < z andy’ < y + 1. Note that
indeedM, < M. Clearly:z’ + 1 < x (because’ < z — 1), maxz’,1) < z (because
2/ < zandz > 1) and maxy’ — 1,0) < y (because/ < y + 1 andy > 0). Since,
My € pb(M) andM; > My, we concludeVl; €Tpb(M).

M4
w| \
My —> M
w| VI
__t.
M, M
>0 >1 ‘> 1 0 0
z>1
y=0
—_—
t
X y x-1 A y+1

xXsx-1
Vi \"/] z2'’<z
y'sy+1

x'+1 max(y’-1,0) x’ y

max(z’,1) 1 0 z 1 <1

Fig. 15. Sketch of the second part of the proof

The coverability problem for a reset net is as follows: given two markingsd
y, can we reachy’ > y starting fromz [19]. The backwards reachability analysis can
be performed to decide the coverability [9, 12, 19] provided thas decidable and
pb(y) exists and can be effectively computed [14]. A finite basisPofd™ (T{y}) is

computed as the limit of the sequenfgeC I; C ... wherel, —def {y}andl, _de
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I, Upb(I,) [19]. The sequence eventually stabilises at sépehen?I,.1 =11, and
we have reached a stabilisation point that has the propésty= Pred” (1{y}) [19]. As
1{y} is upward-closedPred” (1{y}) is upward-closed [14]. The coverability question
now becomes: is there ar €11, such that’ < z. {y} is a basis of upward closed set
1{y} and we can determine thats coverable fronx if there exists &’ € Pred*(1{y})
such thate’ < x (because< is a wqo).

We now present the procedures that operationalise the coverability question for reset
nets. The procedur€overable returns a Boolean value to indicate whether a marking
y is coverable from a marking of a reset net [19].

PROCEDURE Coverable (Marking z, y): Boolean
Marking z’;
BEGIN

for 2’ € FiniteBasisPred”({y}) do

if 2/ < z then return TRUE; end if;

end for;

return FALSE;
END

The procedur&initeBasisPred™ returns a set of markings which represents a finite
basis of all predecessors and is based on the method described in [19].

PROCEDURE FiniteBasisPred™ (SET Markingl): SET Marking
SET MarkingK, K, cq¢;
BEGIN

K =1, Kyext = K Upb(K);

while not IsUpwardEqual(K, K.,:) do

K = Kpext; Kpext = KU Pb(K),

end while;

return K;
END

The procedure calsUpwardEqual(K, K ,..:) is used to detect whether the stabili-
sation point has been reached i.&,,.,; =1K, cf. [13].

PROCEDURE IsUpwardEqual (SET MarkingX, SET MarkingK,..:): Boolean

BEGIN
return K = K, eut;
END

The procedureb(I) returnspb(I) such thapb(I) = (J,; pb(x) [19].

PROCEDURE pb (SET Marking!/): SET Marking
SET MarkingZ = @; Marking M;
BEGIN
for M € Ido Z := Z U pb(M); end for;
return Z;
END
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pb(M) is effectively computed for reset nets by “executing the transitions backwards
and setting a place to the minimum number of tokens required to fire the transition if
it caused a reset on this place” [I9Note that, in our case, this minimum is one as
we do not have weighted arcs. We will make use of backward firing rule as defined in
Definition 12. For each transitione 7', we determine whether ald’ exists such that

M’ --»* M .Hencepb(M) = {M’'|3ser M’ --+* M}.

PROCEDURE pb (Marking M): SET Marking
SET MarkingZ = ;
BEGIN
for t € T'do
if M[R(t)] <te[R(t)] then
Z = ZU{((M~=te) + ot)[P\ R(t)] + (M + ot)[R(t)]};
end if;
end for;
return Z;
END

We can then apply the coverability findings of a reset net to the OR-join analysis. Let
(N, M) be amarked E2WF-neat;| be the OR-join task under consideratidhbe eo-j,
N’ be the corresponding reset net ande a set of markings such that each marking
in Y has only one token in each of the marked input placesjdh M and one token
in exactly one of the unmarked input places of thein M. To determine whethey-j
should be enabled af, we need to determine whether there exist¢’ac Pred™(M.,,)
such thatM’ < M for each of the markingd/,, € Y (coverability question). Each
markingM,, in Y satisfies the condition/ [X]| C M,,[X], i.e. M,, has tokens in more
input places of the OR-join-j and if M,, can be reached from/, the OR-join is not
enabled. The procedu@rJoinEnabled is called with parameters/ and X and it
returns a Boolean value to indicate whetbgrshould be enabled at/.

PROCEDURE OrJoinEnabled (Marking M, SET PlaceX): Boolean
SET MarkingY’; Marking M,,;
BEGIN

Y = {Q+ ZpEX:]W(p)>Op ‘ geX A M(Q) = 0};

for M, € Y do

if Coverable(M, M,,) then return FALSE; end if;

end for;

return TRUE;
END

5.2 Worked examples

Throughout the paper we have shown several examples where it is a non-trivial task to
decide if an OR-join is enabled or not. Clearly, the algorithm can be applied successfully

5 Note that the algorithm described in [19] is incorrect. On Page 105 in fB}\/) is defined
in a rather naive way. Applyingb (M) to the empty marking yields a counter example, since
it is not a finite basis fof Pred* (1{M}).
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to these situations. To illustrate its inner working in some detail we use some more
examples.

c3 c5

Cc

Fig. 16.A YAWL net with OR-join tasks B and D

In Figure 16, we have a YAWL net with an AND-split task A, an XOR-join task C
and two OR-join tasks, B and D. At marking = c1 + ¢2 + ¢3, OR-join evaluation
for both tasks B and D will be performed. Task B will be enabled/aas all the input
conditions of B are marked. The evaluation for task D starts with a call to the procedure
OrJoinEnabled(cl+c2+¢3, {c2,c4,c5}). The set of marking®™ := {c2+4c4, 2+
¢5}. The finite basis of all predecessors for the markig+ ¢4 contains a marking
c2+c3 as task C can be fired backwards and put a token int®.i2+c3 < cl+c2+c3
and as a result, the procedure will return FALSE, concluding that the OR-join task D
should not be enabled af.

Now consider another markiny; where the XOR-join task removes a token from
¢2 and places a token i6 at M i.e.cl + ¢2 + ¢3 5 ¢l + ¢3 + ¢5. At My, the
OR-join evaluations for tasks B and D ill be performed. The evaluation for B will start
with a call to the procedur®rJoinEnabled(cl + ¢3 + ¢b, {cl,2}). As it is not
possible to put inte2 from reachable markings dff;, B will be enabled at\/;. The
evaluation for D will start with a call to the procedu€@rJoinEnabled(cl + ¢3 +
¢5,{c2, c4,cb}). During the evaluation, OR-join task B will be treated as an XOR-join
and a corresponding reset net will be generatéd—= {c4 + ¢5, 2 + ¢5}. The finite
basis of all predecessors for markiag+ ¢5 containscl + ¢5 (the resulting marking
from backward firing of task B). Agl +¢5 < c1+ ¢3+ 5, the algorithm will conclude
correctly that4 + ¢5 is a reachable marking fro®/; and D will not be enabled &, .

of /Q/ -®

c_i A D co

cl B

Fig. 17.A YAWL net with OR-join tasks B and D
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c5

c_o

c7

Fig. 18. A YAWL net with an OR-join task G and cancellation

In Figure 17, we have a YAWL net with an OR-join task D with input conditieband

c
BEE

start

Q),

) Q
Astar( A @

Fig. 19.A corresponding reset net for Figure 18 (note the double-headed arrow denoting the reset
arc fromCgp t0 Dena)

¢3. The interesting aspect of this net is that task C needs to be executed to put tokens
in ¢3 and this requires removal of tokens fraia Consider a marking/ = cl + ¢2

where an OR-join evaluation will be carried out. The evaluation will start with a call to
the procedur®©rJoinEnabled(cl + ¢2, {¢2,¢3}). Y := {2 + ¢3}. The finite basis

of predecessors will contaif2c2, 2¢1, c1 + ¢3, cl + ¢2}. As M is in the predecessors

of ¢2 + ¢3, D will not be enabled ad/.

Consider a marking/ = ¢l + ¢7 in Figure 18 where the OR-join analysis for
task G is carried out. It is possible to have an occurrence sequenée;7 — cpp +
3+l S cgp + ¢b + 7 N cgp + ¢34+ ¢h+ c7 Zocd+ch+eT S o6+
c7. As a resultc6 + ¢7 is a reachable marking froml + ¢7 and the OR-join should
not be enabled at markingy/. The evaluation will start with a call to the procedure
OrJoinEnabled(cl + ¢7,{c6,c7}). Y := {c6 + ¢7} and forM,, = ¢6 + c7, we
will obtain a finite basis of all the predecessorsc6f+ ¢7. Figure 20 illustrates the
backwards reachability analysis [13], with the basis of the predecessor markings for
c6 + c7. It can be seen thatl + ¢7 is a predecessor @b + ¢7 and hence the OR-join
procedure will return FALSE.
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__wc1+cT—CT+pg—= CpptCc3+CT —» Cap+CT+p: —w-Cap+C5+C7 —»C5+CT+Pa—»- Cop+C3+C5+CT

cl+pc / —a
Cgatc3+pe c3+cT7+p Cep+Cc5+cT+pp
f cget2c3+pc —»Lppt2c3+cT —» Cpp+C3+CT+pe

c4+c5+cT—-CT+pe

c_i—»Pa—»cl+c2
c6+c7

lc2+c3+pg —» c2+cget2c3

c2+ps c2+c3+pp c2+c3+cd :c3+<:4+pc—hc3+ +CT7—CA+CT+pe 6+pc

cz:.‘c“,.cg C2+Cpp+Pe —p C2+CgatcS Cee*C*pc C2+cd+pz—»-c2+c4¥c5 C2+p—»c2+Ch
2+c5+pg—»c2+Cpp+C3+Cc5—w cpp+c3+c5+pe

Fig. 20.lllustration of backwards reachability analysis

6 Restriction techniques

For an OR-join analysis, we can consider only a portion of the YAWL net that is rele-
vant to the analysis and refrain from exploring those paths that do not affect the OR-join
enabling behaviour. To improve the performance of OR-join evaluation algorithm, we
propose here two forms of restricticgtructural restrictionandactive projectionStruc-

tural restrictioninvolves removing tasks and conditions in a YAWL net that are not on
the path to the OR-join task under consideratidative projectioninvolves removing

tasks and associated conditions that could not be enabled from a given marking. Active
projection enables us to stop exploring those parts of the YAWL net that can never be
reached from a given marking. As a YAWL net with OR-join tasks is translated into a
reset net for OR-join analysis, the restriction operations will also be performed on the
reset net. We exploit the translations to reset net as proposed in Section 3 and define
how restriction operations are applied to a reset net.

6.1 Structural restriction

The application of structural restriction involves removing tasks and conditions from

a YAWL net that are not on the path to a given OR-join task. As we are interested in
whether more tokens could arrive in the input places of an OR-join task, the restriction
will be based on those input places of an OR-join task. Let’s call them a ggiabf
places The functionres describes how a reset net could be constructed so that only
the transitions and places that are on the path to a set of goal places are included in the
restricted net.

Definition 20 (res(N,G)). Let N = (P, T, F, R) be areset net and? C P a set of
goal placesN' = (P',T', F', R") is the restriction on GN’ = reg(N, G)) where

P'={pe P3pcalp,p) € F*},
T = {t (S T|E|p/eg(t,p/) (S F*},
F'=Fn (P xT)U(T" x P')), and
R ={(t, R(t)NP)|t edomR)NT"}.

Note thatN’ is again a reset nef’ is a siphon, ands C P’. Hence, we can use firing
rules and other functions defined for reset nets.
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Restricted

region t6

p_9 t7 p_10 p_5 ¢ 5 p_6

Fig. 21.Restriction diagram

Figure 21 describes howes function works with a set of goal placés= {p,, ps, pc }-
In the restricted region, all places and transitions which are on the pathteincluded
(e.g.p1, p2, t1,t2). On the other hand, places and transitions that are not on the path to
G such ags, pg, t5, tg are not included in the restricted net. Also note that if a transition
is in the restricted net, all its input places are also in the restricted nep(emg. t1).
It is possible for places in the restricted net to be input places of transitions that are not
in the restricted net (e.@., t4). A transition that is not in the restricted net cannot put
tokens back into the restricted net (epg.andt,). In terms of reset arcd?’ will keep
track of the reset places ® for transitions that are ift” (e.g.p11, t1). However, we do
not keep track of reset arcs for places that are in the restricted region but the transition
is notinT’ (e.g.p4, t7).

Let N, N’ be two reset nets such thislt = re§ N, G), the structurally restricted net
w.r.t. G. Lemma 2 will show that for any markindy> € M(N) such that\; T Mo,

there is a corresponding markifd, € M(N’) such thatM, [P "5° Mj and M, >
M, P’. That is,M, is larger than or equal td/5 w.r.t. P’.

Lemma?2. Let N = (P,T,F,R) be areset netG C P and N’ = regN,QG)
(P',T', F', R") is the restriction on G.

Van aneMony (M1 =5 My = Ins eMonny M P! 5 My A My > My|P')

Proof. Consider a firing sequence: M; *5 M,. Leto be the projection off”.

First, we will prove that" is enabled iV, M;) and in(N’, My [ P’). From Defi-
nition 20,t ¢ T’ implies thatt e NP’ = &. Transitions that are not in the restricted net
but in the firing sequence, i.e.t € o andt ¢ o, can only remove tokens fro’ and
cannot put tokens int@’. Therefore, these transitions have no effect on the enabling
behaviour of transitions in. AsV,_ et C P’ andv,,,teNP' = &, if o is enabled
in (N, M), o is also enabled iGV, M, ). Similarly, ast € (7'\ 7”) cannot put tokens
into places inP’ in the restricted nety’ is enabled i N’, M; | P’).
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M1 ----------- Mt_pre _., Mt_posl ----------- M2

' ) s )
My =M;[p | ! ! LML= M P

I 1 I
v v , v v
. , Nt ., )

M’y --emooeeeee M’y pre——M’t_post=--=""=~""" M,

tino’

M,tJ:re = MQJ)I’EFP,

M,(_post = MtJ:»nserJ

Fig. 22. Transition firings in both the original net and the restricted net

M1 ----------- Mt_pre _.N, ! Mt_posl ----------- M2
E 4
My =My[p? ‘ ’ LM = MP?
- 1
R " R "
1 M t_pre M t_post M 2
W M,Lpre = M"JOS'
tino\o’

M,l_pre = Mt_prerp’

s
M t_pre = MLpost[\P'

Fig. 23. Transition firings in the original net only

Next, we will prove that there existd/, € M(N) andM, € M(N’) such that

N o

My 5 M, - (My|P' ™= M,)A (M, [P’ = M,). As shown before;  is enabled in

(N’, M| P"). Figure 22 gives the states in both models for transitions that can be fired
in both nets(N, N'). Assume thatVl,_,,. [P’ > M,_,,, andt € T'. As %'t = e/t,
t%'=t3 NP andR'(t) = R(t) N P, we deduceM;_po5 | P’ = M,_,,,,. The effect

of firing ¢ is identical on the places i?’. Hence, the marking resulting from is at

least as large a&/; w.r.t. P’. Figure 23 gives the states in both models for transitions
that can only be fired in the né¥. Assume that\/;_,,.. [ P’ > M,_,,.andt ¢ T.
Since the effect of firing can only remove tokens from placesifand we do not have

a corresponding markiny/; ,,,s; in N', we deduce, .. > M, ., [P’

Lemma 3 will demonstrate that for any markind, € M(N’) reachable from
M, | P', there is a corresponding markidd, € M(NV) reachable from\/; such that
M, = M| P'. That s, the two markings are the same wi.t

Lemma 3. LetN = (P, T, F, R) be aresetnetand’ = resN,G) = (P',T', F', R)
is the restriction on G.
N * ’ N, * ’
leeM(N),MéeM(N')(Ml [P =" My = EleeM(N)Ml = MaAMs P = M,)
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Proof. Consider a firing sequenee: M| P’ piy Mé. We first show that is enabled
in (N, M;) and then that there is marking : M; 5 My A My | P = M, . Aso
is enabled i N, M; [ P") andV;c,  t C P’, this implies thatr is also enabled in
(N, My).

N, t
M1 """""" Mt_pre _.'Ml_pnst """""" M.
[} [} 4
My =M [pr | ! ; M= M P’
v v N’ t v v
M’y --omeneeen M’t_pm—I'I! v"(_post """""" M’
tino

M,tJ:re = Mtjrerp’

MT(_post = MtJ)nserJ

Fig. 24. Transition firings in both the original net and the restricted net

Figure 24 gives the states in both models for transitions that can be fired in both nets
(N,N'). Assume that,_,..[P' = M,_,,. andt € T'. As's t = oNt,t%'=t3 NP’
andR'(t) = R(t) N P', we deduceM;_pos [ P = M,_,,,,. The effect of firingt is
identical on the places i*’. Hence, the marking resulting fromis the same ad/,

w.r.t. P’. This can be repeated for alE o, hence:M} = Ms|P’.

Corollary 1. Let (N, M;) = ((P,T,F,R),M;) be a marked reset net ani’ =
resN,G) = (P',T', F', R) its restriction on G.

JrieMwy (M1 =5 Mz AM[G) T Ma(G]) if and only if3,, (i ey (M [P/ pity
My A M [G] € M,[G])

Proof. (=) First, we will prove thaB3,, .M v (M1 = Mz A Mi[G] © Ms[G))
implies thatHMéeM(N,)(Ml 1Py My A M[G] © My[G]). AssumeM, € M(N)
such thathV; *5 M, and M, [G] C Ms|G]. Using Lemma 2, we can show that there
is an M, such thathM; | P' 5 M, A M, > M, | P'. RestrictingM,, to G gives
M,[G] > M>|G] asG C P'. We now havel; [G] C M;[G] andM,[G] > M[G] and
therefore M, [G] T M,[G].

(«) Second, we will prove tha]M;eM(N/)(Ml 1P My A My[G] © M, [GY))

implies that3,, . mv,(M1 =5 My A My[G] C Mp[G)). AssumeM, € M(N')

N/«

such thatM; [ P’ 5" M, and M, [G] C M,|G]. Using Lemma 3, we can show that

there is anM, such thatV; ~5 My A M; = M, | P'. RestrictingM, to G shows
M, P'[G] = M,[G]. Hence M, |G = M, [G. Combined withAM; |G C M, |G, this
yields M; [G] C M3[G].
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An OR-join tasko-j is enabled at a marking/ of an E2WF-netV, if it is not possi-
ble to reach a marking/,, such that\ — M,, and M [e0-j] C M, [e0-j].To determine
whethero-j should be enabled &/, we proposed to perform the following analysis.
Let Np = transE2WFOQN, 0-j) be the rest net7 = e0-j and My be the correspond-
ing marking of M in the reset net. Instead of usify, to perform the analysis, we can
reduce the search space by applying the structural restriction sy ﬂﬁai re{N,G)).
Using Corollary 1, we can determine whether there is a markijge M(Ny) such

that Mz "% and Mz[G] C M_[G]. If it does, this implies that more tokens can be
placed into the input places ofj in the reachable markings froMz. Hence, the OR-
join analysis can take place in the restricted Net ando-j should not be enabled at
M.

6.2 Active projection

In addition to applying structural restriction to a YAWL net, it is also possible to further

restrict the net using the current marking. As a transition that cannot be enabled in the

reachable markings from the current marking cannot be fired and its output places can

never be reached, we can safely exclude this transition from the restricted net. Applying

active projection involves removing tasks and conditions from a YAWL net that cannot

be reached from a given marking. This enables us to only consider the selected paths of

a YAWL net that can be reached from the current marking. As a YAWL net is translated

into a reset net, the active projection restriction will also be performed on the reset net.
The functionap describes how a reset net could be constructed so that only the

transitions and places that can be reached from a given marking are included in the

restricted net. Figure 25 shows the effect of active projection funetoan a reset net

with a markingM where marke@\!) = {pa, p», p.}- The restricted region contains

all the places that could potentially be marked in the reachable markingt @.g.

p1, P2, P4, D5, D6, Pg)- A transitiont is in the restricted net if and only if all its input

places are in the restricted regitwt C P’). Seets with its only input placeps in the

restricted net. For transitioty, not all input places of, are in the restricted region

and thereforet, ¢ T'. RelationR’ will keep track of the reset places i/ for any

transitiont € T" with reset arcs. For example, both transitiopandt;o could reset?,

but, R’ will only contain (tg, p2) astiq is notinT".

Definition 21 (ap(N, M)). Let (N, M) = ((P,T,F, R), M) be a marked reset net.
N’ =ap(N,M) = (P, T',F', R') is the active projection of N, M) where

Pr={pe P‘ElpfemarkeajM)(p'ap) € Fr},
T ={teT|etC P},
F'=Fn((P'xT)U (T x P)),and
R ={(t,R(t)NP')|t € domR)NT"}.

Let N, N’ be two reset nets such that = ap(V, M, ), after applying active pro-
jection, for a given markingl/;. Lemma 4 will demonstrate that for any marking
M, € M(N) reachable from\/;, there is a corresponding markingd, € M(N’)
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Restricted
region

Fig. 25. Active projection diagram

reachable from\/; | P’ such that]\ié = M, [ P’. That is, both markings are the same
w.r.t P’

Lemma 4. Let(N, M) = (P, T, F, R), M) be amarked reset netadd = ap(N, M;) =
(P',T', F', R") its active projection.

VaneMvy (M1 5 My = My [P 5" My [P)

Proof. Consider a firing sequenee: M; 5 M,.
First, we will prove that is enabled il N’, M; [P’). From Definition 21t € T\ T’
implies thatt cannot be enabled in any reachable marking fidimand therefore, ¢ o.
Soo only contains transitions € 7”. The enabling of € T’ only depends on places
in P (iLe. ¥t =% ¢ C P'). Figure 26 gives the states in both models. Assume that

Mi_pre [P = Mt',pre and¢ € T". Firing ¢ only affect the output places and they are
allinP (iLe.ts=tVC P). AsV t = oNt, t's =3 NP andR'(t) = R(t) N P', we

deduceM;_p,q [P’ = Mt/,post. This can be repeated for alke o, henceM} = M,|
P’

Lemma 5 will demonstrate that for any markind, € M(N’) reachable from
M, | P', there is a corresponding markidd, € M(NV) reachable from\/; such that
M} = My P'.
Lemma5. Let(N, M) = (P, T, F, R), M) be amarked reset netadd = ap(N, M;) =
(P',T', F', R") its active projection.

v1»112’eM(]\7/)(J\/[1 [P’ = Mé = 3MQeM(N)]\/Il = My A Mé = M[P’)

Proof. Consider a firing sequenee: M, [P’ piy Mé. We will prove thato is enabled

in (N, M;). As o is enabled i N/, M; | P') andV,c, st ='s t C P/, this implies that
o is also enabled iV, M;). From Definition 21t € T'\ T” implies thatt cannot be

31



enabled in any reachable marking fraWy and thereforet ¢ . Soc only contains

transitions € T”. The enabling of € T’ only depends on places ¥ (i.e. 5t =% ¢ C

P’). Figure 26 gives the states in both models. Assumeihat,,. [P’ = Mt/_me and

t € T'. Firing t only affect the output places and they are all in P’ (f.&= th'C P.
As’Vt = oNt, t V=t % NP andR/(t) = R(t) N P, we deduceM; . | P’ =

M, This can be repeated for @l o, hence:M) = M| P'.

—post*

My --zeeemeeee Mt_pre _"Mtipost """""" M2
4 4 4
My =mp | ; 3 W=
v oNt y
Mg --oeeeeeees M’;_pre———- M’ _post======="==" w’,
tino

M,t_pre = Mt_prerP’

M,(_post = MtJ)nser’

Fig. 26. Transition firing in a restricted net (active projection)

Corollary 2. Let(N,M;) = ((P,T,F, R), M) be a marked reset nefy C P, and
N' = res(ap(N, M1)7G) = (P/7T/7F/3R/)'

InneM ) (M1 = My A M [G] © M,[G)) if and only i3 M (ry (M [P’ Ty
M, A My[G] © M,[G))

Proof. (=) First, we will prove thaB3,,, .My (M1 = Mz A Mi[G] © My[G))
implies thaEM;eM(Nf)(Ml P My A M, [G] & M,[G]). Using Lemma 4, we can
show thath; =5 M, implies M, | P’ N M, P'. Hence, there exists 6M2 = M| P’
such thatM, [G] C M,[G].

(«) Second, we will prove that ;s .\ M1 [P/ =" My A My[G] € M,[G]
implies thaEMzeM(N)Ml Y My A M, [G] C Ms[G]. Using Lemma 5 and assuming

My | P’ Ny M;, there exists @/, such thatM; ~3 M, andM, | P’ = M;. Since
G C P, Mh[G] T M3[G] impliesM;[G] T M;[G].

An OR-join tasko-j is enabled at a marking/ of an E2WF-netV, if it is not possi-
ble to reach a marking/,, such thatV — M,, and M [e0-j] = M,,[e0-j].To determine
whethero-j should be enabled &/, we proposed to perform the following analysis.
Let Np = transE2WFOQN, 0-j) be the rest netiy = e0-j and M be the correspond-
ing marking of M in the reset net. Instead of usify, to perform the analysis, we can
reduce the search space by first applying the structural restriction and active projection
techniques so thaV, = regap(Ng, Mg),G) = (P',T', F’, R"). Using Corollary 2,
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we can determine whether there is a markiig € M(Ny) such thatM 5" and
Mg[G] © Mg[G]. If it does, this implies that more tokens can be placed into the input
places ofo-j in the reachable markings from . Hence, the OR-join analysis can take
place in the restricted né{z ando-j should not be enabled af .

7 Implementation

The OR-join analysis algorithm as described in Section 5 together with the structural
restriction and active-projection techniques from Section 6 have been implemented in
the YAWL enginé. The algorithm uses the OR-join semantics described in Section 4
to detect when an OR-join should be enabled. The algorithm still uses an enumera-
tive approach for storage of markings but we have implemented a number of intuitive
optimisation techniques. A number of YAWL models have been tested and OR-join en-
abling results are as expected. The observations also indicate that restriction techniques
significantly reduce the execution times for OR-join analysis.

We present here execution times of OR-join enabling algorithm for a number of
YAWL models. Five different execution times for each OR-join evaluation call will be
presented for compariso®Restrict+AProject indicates that structural restriction is
applied first and then, active projection is applied before OR-Join&atbject+SRestrict
indicates that active projection is applied first and then, structural restriction is applied
before OR-Join callSRestrict indicates that only structural restriction has been ap-
plied. AProject indicates that only active projection has been appidaRestrict in-
dicates that no restriction technique has been applied. To minimise the effects of vari-
ations, each method is called 100 consecutively. Furthermore, this process has been
repeated ten times for sampling. We will provide average execution times with confi-
dence intervals (95%). All the figures are in milliseconds and are rounded to one deci-
mal point.

7.1 A structured YAWL net with an OR-split and an OR-join

The YAWL net in Figure 8 represents a small structured net with an OR-split task A and
an OR-join task E. At a marking/ = c1 + ¢2 + ¢6, OR-join evaluation for E returns
FALSE. A new markingV/; = c1+ 5+ ¢6 is reached after executing task Chdt The
execution times for the analysis are shown in Table 1. Even from a small example, we
can see that the combined restriction techniques can reduce the time it takes to perform
the OR-join evaluation.

7.2 A YAWL net with loop and cancellation

Figure 7 represents a YAWL net with a loop and cancellation on the path to OR-join
task E. At a marking\/ = ¢2, OR-join evaluation for task E returns TRUE as it is

not possible to reach a bigger marking frami. The execution times are shown in
Table 2. Again, we can see that the combined restriction techniques can reduce the

8 (http://sourceforge.net/projects/yawl/)
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Table 1. Execution times for the YAWL model in Figure 8

OR-join: E Marking: c1 + ¢2 + ¢6 returns FALSE
Duration (100 callg) OJ Confidence Interval
SRestrict+AProject335.9 10.0
AProject+SRestrict328.0 11.3
AProject 306.4 22.9
SRestrict 790.4 21.1
NoRestrict 790.5 24.8
OR-join: E Marking: c1 + ¢5 + ¢6 returns FALSE
Duration (100 calls) OJ Confidence Interval
SRestrict+AProject 130.2 2.3
AProject+SRestrict 126.6 3.1
AProject 107.6 4.6
SRestrict 3126.6 114.8
NoRestrict 3172.0 84.8

evaluation time. The difference between the execution times for structural restriction
and no restriction calls is minimal as most tasks and conditions in this YAWL net will
be in the restricted net as well.

Table 2. Execution times for the YAWL model in Figure 7

OR-join: E Marking: ¢2 returns TRUH
Duration (100 calld) OJConfidence Interval
SRestrict+AProject 685.9 16.9
AProject+SRestrict 676.8 6.9
AProject 654.7 16.9
SRestrict 2365.5 81.9
NoRestrict 2348.4 17.5

7.3 Alarger YAWL net with loop and cancellation

We have presented in Table 3 the execution times for an OR-join evaluation call for
OR-join task G with two markingsl + ¢7 andcpp + ¢3 + ¢7 in Figure 18. OR-

join evaluation for both markings returns FALSE. This YAWL net also contains a loop
and cancellation on the path to G. In this case, the restriction techniques reduce the
execution time by a significant amount. The difference between structural restriction
and no restriction calls is minimal in this example as most tasks and conditions in the
YAWL net are also in the structurally restricted net.

7.4 Alarge YAWL net with an OR-join task

To demonstrate the impact on structural restriction on OR-join analysis, we present a
YAWL net in Figure 27 that contains a number of tasks which have no impact on the
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Table 3. Execution times for the YAWL model in Figure 18

OR-join: G Marking: c1 + ¢7 returns FALSE
Duration (100 callg) 0J Confidence Interval
SRestrict+AProject 1032.8 12.4
AProject+SRestrict 1032.8 10.5
AProject 1003.1 5.8
SRestrict 11664.G 16.5
NoRestrict 11654.9 33.9
OR-join: G Marking: czp + 3 + c7 returns FALSE
Duration (100 calls) 0J Confidence Interval
SRestrict+AProject 587.4 7.2
AProject+SRestrict 585.9 9.9
AProject 568.7 9.8
SRestrict 11195.3 12.1
NoRestrict 11198 21.9

Fig. 27.A YAWL net with an OR-join tasks F and U

OR-join task F. For instance, all tasks and conditions on the path between tasks G to
S could not influence the OR-join analysis for task F. Average execution times for a
markingM = cag + c¢gp + co are given in Table 4. Average execution times for OR-
join analysis of F with a markind/ = cgp + co + c19 are also given. The figures
show a huge difference in execution times between different restriction techniques.
Average execution times for OR-join analysis of U with a markldg= c ¢ + ¢y are

given in Table 5. In this case, structural restriction alone does not reduce the execution
time as most tasks in the YAWL net are also part of the structurally restricted net.
However, the combination of structural restriction and active projection reduces the
execution time significantly (2148.5 milliseconds cf. 84863.9 milliseconds). From these
tests, itis evident that performing structural restriction and active projection on a YAWL
net before an OR-join analysis could reduce execution time of an OR-join evaluation
significantly.
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Table 4. Execution times for Task F from the YAWL model in Figure 27

OR-join: F Marking: cac + cgp + c2 returns FALSE
Duration (100 callg) 0OJ Confidence Interval
SRestrict+AProject 465.8 24.5
AProject+SRestrict 529.7 10.3
AProject 796.7 6.7
SRestrict 1479.8 14.7
NoRestrict 3681.3 9.5
OR-join: F Marking: cgp + c2 + ci1o returns FALSE
Duration (100 calls) 0OJ Confidence Interval
AProject+SRestrict 275.0 7.1
SRestrict+AProject 304.7 86.5
AProject 276.5 9.3
SRestrict 1198.4 9.4
NoRestrict 3492.2 23.8

Table 5. Execution times for Task U from the YAWL model in Figure 27

OR-join: U Marking: cag + cru returns FALS¢
Duration (100 calls)  OJ Confidence Interval
SRestrict+AProject 2148.5 60.6

AProject+SRestrict 2123.5 20.4

AProject 2014.0 20.3

SRestrict 85404.4 208.6

NoRestrict 84863.9 144.6

8 Epilogue

This paper focuses on the OR-join construct in YAWL and proposes a new semantics.
The decision to enable an OR-join task cannot be made locally: an OR-join task should
only be enabled when there is at least one token in one of the input conditions and there
is no possibility of a token arriving at one of the yet unmarked input conditions of the
OR-join. Otherwise, the OR-join task should wait for synchronisation. Instead of ignor-
ing other OR-joins on the path, we propose two alternative approaches (optimistic or
pessimistic) for OR-joins which are on the path of other OR-joins. Reset nets are used as
formal basis for OR-join analysis to support cancellation feature. This is made possible
by the fact that we can abstract from the concepts of YAWL such as multiple instances,
composite tasks and internal state transitions of a task. We present transformation rules
from a YAWL model with OR-joins to a reset net for a specific OR-join analysis. We
then propose an OR-join evaluation algorithm which is based on the backward search
techniques for Well-Structured Transition Systems. We also present structural restric-
tion and active projection techniques for optimisation together with the findings from
the implementation in the YAWL engine.

Other optimisation techniques can also be applied to improve the performance of
OR-join analysis. Our algorithm does not yet exploit these potential optimisation tech-
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niques. For instance, well-known Petri net reduction techniques as described in [21]
can be applied to the reset net. The use of more efficient data structures for storage of
markings could also be explored [7, 8,12]. In[7, 8], the authors propose a new symbolic
representation for upward-closed sets based on the sharing trees, called Covering Shar-
ing Trees (CSTs) to compactly represent upward-closed sets of markings. In [12], the
authors present the symbolic algorithms for forward and backward search techniques.
Incremental methods can also be used so that OR-join analysis does not need to be
performed for every marking change. By keeping track of the mapping used for the
reductions and a record of the relationship between the original reset net and the re-
duced reset net, together with a set of markings that do not enable the OR-join task,
incremental techniques can be used to perform a more efficient OR-join evaluation.

To conclude the paper, we would like to emphasise that the results reported in this
paper are not limited to YAWL. As is indicated in the introduction, many workflow man-
agement systems, but also other process-aware information systems (e.g., ERP, CRM,
and PDM systems), have problems dealing with the OR-join. In fact, the problem sur-
faces in many other domains [24].

AcknowledgementsWe would like to especially thank Philippe Schnoebelen and
Jerome Leroux for their valuable input on the issue of decidability of OR-join algorithm
and for many useful references provided in the area of reset nets.
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