
From Business Process Models to Process-oriented
Software Systems: The BPMN to BPEL Way?

Chun Ouyang1, Marlon Dumas1, Wil M.P. van der Aalst2,1, and
Arthur H.M. ter Hofstede1

1 Faculty of Information Technology, Queensland University of Technology,
GPO Box 2434, Brisbane QLD 4001, Australia

{c.ouyang,m.dumas,a.terhofstede}@qut.edu.au
2 Department of Computer Science, Eindhoven University of Technology,

GPO Box 513, NL-5600 MB, The Netherlands
{w.m.p.v.d.aalst}@tue.nl

Abstract. Emerging methods for enterprise systems analysis rely on
the representation of work practices in the form of business process
models. A standard for representing such models is the Business Pro-
cess Modeling Notation (BPMN). BPMN models are mainly intended
for communication and decision-making between domain analysts, but
often they are also given as input to software development projects.
Meanwhile, development methods for process-oriented systems rely on
detailed process definitions that are executed by process engines. These
process definitions refine BPMN models by adding data manipulation,
application binding and other implementation details. A major standard
for process implementation is the Business Process Execution Language
for Web Services (BPEL4WS, or BPEL for short). Accordingly, a nat-
ural method for end-to-end development of process-oriented systems is
to translate BPMN models to BPEL definitions for subsequent refine-
ment. However, instrumenting this method is challenging because BPEL
imposes far more syntactic restrictions than BPMN so as to ensure cor-
rectness. Existing techniques for translating BPMN to BPEL only work
for limited classes of BPMN models. This paper proposes techniques that
overcome these limitations. Beyond its direct relevance in the context of
BPMN and BPEL, the techniques presented in this paper address is-
sues that arise generally when translating from graphical/unstructured
to textual/structured (i.e. more programming-like) languages.

1 Introduction

Business Process Management is an established discipline for building, main-
taining and evolving large enterprise systems on the basis of business process
models [9]. A business process model is a flow-oriented representation of a set of
work practices aimed at achieving a goal, such as processing a customer request
or complaint, satisfying a regulatory requirement, etc.
? This work is supported by the Australian Research Council under the Discovery

Grant “Expressiveness Comparison and Interchange Facilitation between Business
Process Execution Languages” (DP0451092).

The Business Process Modeling Notation (BPMN) [19] has attained a certain
level of adoption among domain analysts as a language for defining business pro-
cess models [23]. Despite being a recent proposal, BPMN is already supported by
more than 30 tools (see www.bpmn.org). The main purpose of business process
models generally, and BPMN models in particular, is to facilitate communi-
cation between domain analysts as well as strategic decision-making based on
techniques such as cost analysis, scenario analysis and simulation [23,25]. How-
ever, oftentimes, BPMN models are also used as a basis for specifying software
system requirements, and in such cases, they are handed over to software devel-
opment teams. In this setting, the motivating question of this paper is: What
can developers do with the process models they are handed over?

Meanwhile, the Business Process Execution Language for Web Services (BPEL)
[8] is emerging as a de facto standard for implementing business processes on
top of Web services technology. Numerous platforms (such as Oracle BPEL Pro-
cess Manager, IBM WebSphere Application Server Enterprise, IBM WebSphere
Studio Application Developer Integration Edition, and Microsoft BizTalk Server
2004) support the execution of BPEL processes. Some of these platforms also
provide graphical editing tools for defining BPEL processes. However, these tools
directly follow the syntax of BPEL, as opposed to a syntax closer to BPMN. The
fundamental reason for this phenomenon is that BPEL imposes far more syntac-
tic restrictions than BPMN. A BPMN model consists of nodes that can be con-
nected through flow relations in arbitrary ways. The lack of restrictions makes it
possible to obtain models with undesirable execution semantics, such as livelocks
and deadlocks. Generally, this is not seen as a problem in the context of BPMN:
Since domain analysts are not concerned with the direct executability of their
models, one can argue that these users should not be imposed constraints driven
by such concerns. On the other hand, BPEL imposes strict syntactic restrictions
in order to avoid process definitions with undesirable execution semantics, as
executability is the main concern of BPEL. In particular, the majority of con-
structs in BPEL are block-structured, e.g. block-structured loops. There is also
a graph-oriented flow construct, but it must be applied with syntactical limita-
tions such that the arbitrary control flow relations are allowed only when they
do not cause cycles and they remain contained within block-structured loops.

The premise of this paper is that BPEL process definitions are refinements of
executable BPMN models. Indeed, BPEL process definitions add data manipula-
tion, Web service bindings and other implementation details not specified in the
BPMN models. Thus, a natural method to approach a process-oriented systems
development project taking BPMN models as input, is to translate these models
into BPEL process definitions for subsequent refinement. However, the instru-
mentation of this method is hindered by the fundamental mismatch between
BPMN and BPEL [24]. Previous attempts to define mappings between BPMN
and BPEL [16, 19] impose restrictions on the structure of the source models.
For example, they are restricted to BPMN models such that every loop has one
single entry point and one single exit point and such that each point where the
flow of control branches has a corresponding point where the resulting branches
merge back, etc.

2

The ensuing problem is to some extent similar to that of translating unstruc-
tured flowcharts into structured ones (or GOTO programs into WHILE pro-
grams [20]). However, the main difference is that process modelling languages
include constructs for capturing parallel execution, as well as constructs for cap-
turing choices driven by the environment (also called event-driven choices), as
opposed to choices driven by data such as those found in flowcharts. It turns
out that due to parallelism, the class of structured process models is strictly
contained in the class of unstructured process models (assuming the setting de-
scribed in [12]). This raises the following question:

Can every BPMN model be translated into a BPEL model?

This paper shows that, for a core subset of BPMN which includes parallelism
and event-driven choice, the answer is yes. However, the resulting translation
heavily uses a construct in BPEL known as “event handler” which serves to
encode event-action rules. Ultimately, the process model is decomposed into a
large number of event-action rules that trigger one another to capture the process
flow. Arguably, the resulting BPEL code is not readable and thus unsuitable for
refinement by developers. It would be preferable that the generated BPEL code
used the constructs of BPEL specifically designed for capturing control flow
dependencies as opposed to a construct intended for event handling. But since
BPEL’s control flow constructs are syntactically restricted, this turns out to be
not always possible. Therefore, the paper also addresses the following question:

Are there classes of BPMN models that can be translated to BPEL mod-
els using the syntactically constrained control flow constructs of BPEL?

This paper identifies two such classes of BPMN models. The first one corre-
sponds to the class of structured process models as defined in [12]. Such models
can be translated into the five structured control flow constructs of BPEL. The
second class corresponds to the class of synchronising process models as defined
in [11], which can be translated into BPEL using a construct called “control
link”. A BPMN model, or a fragment thereof, falls under this class if it satisfies
certain semantic conditions: no deadlock and no possibility of having multiple
parallel instances of the same action. To test these conditions, a formal semantics
of BPMN is needed. Accordingly, the paper also defines an abstract syntax and a
Petri net-based semantics [17] for a core subset of BPMN. The paper focuses on
a subset of BPMN because BPMN contains a large number of constructs, mak-
ing an exhaustive translation daunting, and because some constructs in BPMN
have an incompletely specified meaning.

The paper also shows how the proposed translation techniques can be com-
bined, such that a technique yielding less readable code is only applied when
the other techniques can not, and only for model fragments of minimal size. The
combined translation technique has been implemented as an open-source tool,
namely BPMN2BPEL.3

3 http://www.bpm.fit.qut.edu.au/projects/babel/tools

3

Beyond its direct relevance in the context of BPMN and BPEL, this paper
address difficult problems that arise generally when translating between flow-
based languages with parallelism. In particular, the main results are still largely
applicable if we replace BPMN and BPEL by one of their predecessors, such
as UML Activity Diagrams [18] or XLANG [26] respectively, or if we needed to
translate graph-oriented models specified using YAWL [4] into readable BPEL.

The rest of the paper is structured as follows: Section 2 gives an overview of
BPMN and BPEL. Section 3 defines an abstract syntax and formal semantics
for BPMN. Section 4 presents an algorithm for translating BPMN into BPEL.
The translation algorithm is then illustrated through case studies in Section 5.
Finally, Section 6 compares the proposal with related work while Section 7 con-
cludes and outlines future work.

2 Background: BPMN and BPEL

2.1 Business Process Execution Language for Web Services (BPEL)

BPEL [8] is essentially an extension of imperative programming languages with
constructs specific to Web service implementations. A BPEL process definition
relates a number of activities. An activity is either a basic or a structured ac-
tivity. Basic activities correspond to atomic actions such as: invoke, invoking
an operation on a Web service; receive, waiting for a message from a partner;
exit , terminating the entire service instance; empty , doing nothing; and etc. To
enable the presentation of complex structures the following structured activities
are defined: sequence, for defining an execution order; flow , for parallel routing;
switch, for conditional routing; pick , for race conditions based on timing or ex-
ternal triggers; while, for structured looping; and scope, for grouping activities
into blocks to which event, fault and compensation handlers may be attached.

An event handler is an event-action rule associated with a scope. It is enabled
when the scope is under execution and may execute concurrently with the scope’s
main activity. When an occurrence of the event (a message receipt or a timeout)
associated with an enabled event handler is registered, the body of the handler
is executed. The completion of the scope as a whole is delayed until all active
event handlers have completed. Fault and compensation handlers are designed
for exception handling and are not used further in this report.

In addition, BPEL provides a non-structured construct known as control
links which, together with the associated notions of join condition and transition
condition, allow the definition of directed graphs. The graphs can be nested but
must be acyclic. A control link between activities A and B indicates that B
cannot start before A has either completed or has been skipped. Moreover, B
can only be executed if its associated join condition evaluates to true, otherwise
B is skipped. This join condition is expressed in terms of the tokens carried
by control links leading to B. These tokens may take either a positive (true)
or a negative (false) value. An activity X propagates a token with a positive
value along an outgoing link L if and only if X was executed (as opposed to
being skipped) and the transition condition associated to L evaluates to true.

4

Transition conditions are boolean expressions over the process variables (just like
the conditions in a switch activity). The process by which positive and negative
tokens are propagated along control links, causing activities to be executed or
skipped, is called dead path elimination.

There are over 20 execution engines supporting BPEL (see http://en.
wikipedia.org/wiki/BPEL for a list). Many of them come with an associated
graphical editing tool. However, the notation supported by these tools directly
reflects the underlying code, thus forcing users to reason in terms of BPEL
constructs (e.g., block-structured activities and syntactically restricted links).
Current practice suggests that the level of abstraction of BPEL is unsuitable for
business process analysts and designers. Instead, such users rely on languages
perceived as “higher-level” such as BPMN and various flavours of UML diagrams,
thus justifying the need for mapping languages such as BPMN into BPEL.

2.2 Business Process Modelling Notation (BPMN)

BPMN [19] essentially provides a graphical notation for business process mod-
elling, with an emphasis on control-flow. It defines a Business Process Diagram
(BPD), which is a kind of flowchart incorporating constructs tailored to busi-
ness process modelling, such as AND-split, AND-join, XOR-split, XOR-join, and
deferred (event-based) choice.

A BPD is made up of BPMN elements. We consider a core subset of BPMN
elements that can be used to build BPDs covering the fundamental control flows
in BPMN. These elements are shown in Figure 1. There are objects and sequence
flows. A sequence flow links two objects in a BPD and shows the control flow
relation (i.e. execution order). An object can be an event , a task or a gateway .
An event may signal the start of a process (start event), the end of a process
(end event), a message that arrives, or a specific time-date being reached during
a process (intermediate message/timer event). A task is an atomic activity and
stands for work to be performed within a process. There are seven task types:
service, receive, send , user , script , manual , and reference. For example, a receive
task is used when the process waits for a message to arrive from an external
partner. Also, a task may be none of the above types, which we refer to as

Figure 1. A core subset of BPMN elements.

5

a blank task. A gateway is a routing construct used to control the divergence
and convergence of sequence flow. There are: parallel fork gateways for creating
concurrent sequence flows, parallel join gateways for synchronizing concurrent
sequence flows, data/event-based XOR decision gateways for selecting one out of
a set of mutually exclusive alternative sequence flows where the choice is based on
either the process data (data-based) or external event (event-based), and XOR
merge gateways for joining a set of mutually exclusive alternative sequence flows
into one sequence flow. In particular, an event-based XOR decision gateway
must be followed by either receive tasks or intermediate events to capture race
conditions based on timing or external triggers (e.g. the receipt of a message
from an external partner).

It is worth noting that for some other BPMN objects such as error intermedi-
ate events and OR gateways, we decide not to include them into the above core
subset of BPMN elements, because they do not have clearly specified semantics.
For example, an error intermediate event is used either to “throw” an exception
during the normal flow or to “catch” an exception thus creating the exception
flow. However, it is not clear whether such “throw-catch” behaviour is defined to
capture a strictly hierarchical faulting mechanism (e.g., try-catch blocks in most
programming languages as well as fault handling in BPEL), or a parallel-thread
interruption signaling mechanism (e.g., using an “interrupt” event to commu-
nicate exception on one thread to interrupt an activity on another thread). As
another example, an OR merge gateway (also known as OR-join) is defined as
to synchronise “all sequence flows that were actually produced by an upstream”
(Section 9.5.3 on page 80 of [19]). Such definition is however incomplete, e.g., an
OR-join in the context of loops has no clear semantics and leads to a paradox
(cf. the “vicious circle” described in [3]).

Finally, a BPD, which is made up of the core subset of BPMN elements
shown in Figure 1, is hereafter referred to as a core BPD . In the next section,
we shall define the syntax and semantics of core BPDs.

3 Abstract Syntax and Semantics of BPMN

In BPMN, business process models are captured as BPDs. In this section, we
first define the syntax of core BPDs. We then discuss the transformation of a
BPD from a graph structure to a block structure. We use the term “components”
to refer to subsets of a BPD, which can be mapped onto suitable “BPEL blocks”
(these will be used in Section 4). Finally, this section specifies the semantics of
components in terms of Petri nets, and analyses some of their properties.

3.1 Abstract Syntax of BPDs

Definition 1 (Core BPD). A core BPD is a tuple BPD = (O, T , E, G, T R,
ES , EI , EE , EI

M , EI
T , GF , GJ , GD , GM , GV , F , Cond) where:

– O is a set of objects which can be partitioned into disjoint sets of tasks T ,
events E, and gateways G,

6

– T R ⊆ T is a set of receive tasks,
– E can be partitioned into disjoint sets of start events ES , intermediate events
EI , and end events EE ,

– EI can be partitioned into disjoint sets of intermediate message events EI
M

and timer events EI
T ,

– G can be partitioned into disjoint sets of parallel fork gateways GF , parallel
join gateways GJ , data-based XOR decision gateways GD , event-based XOR
decision gateways GV , and XOR merge gateways GM ,

– F ⊆ O ×O is the control flow relation,
– Cond: F 9 B is a function mapping sequence flows emanating from data-

based XOR decision gateways to conditions,4 i.e. dom(Cond) = F∩(GD×O).

The relation F defines a directed graph with nodes (objects) O and arcs (se-
quence flows) F . For any node x ∈ O, input nodes of x are given by in(x) = {y ∈
O | yFx} and output nodes of x are given by out(x) = {y ∈ O | xFy}.

Definition 1 allows for graphs which are unconnected, not having start or
end events, containing objects without any input and output, etc. Therefore we
need to restrict the definition to well-formed core BPDs.

Definition 2 (Well-formed core BPD). A core BPD given in Definition 1
is well formed if relation F satisfies the following requirements:

– ∀ s ∈ ES , in(s) = ∅ ∧ | out(s) | = 1, i.e. start events have an indegree of
zero and an outdegree of one,

– ∀ e ∈ EE , out(e) = ∅ ∧ | in(e) | = 1, i.e., end events have an outdegree of
zero and an indegree of one,

– ∀ x ∈ T ∪ EI , | in(x) | = 1 and | out(x) | = 1, i.e. tasks and intermediate
events have an indegree of one and an outdegree of one,

– ∀ g ∈ GF ∪ GD ∪ GV : | in(g) | = 1 ∧ | out(g) | > 1, i.e. fork or decision
gateways have an indegree of one and an outdegree of more than one,

– ∀ g ∈ GJ ∪ GM , | out(g) | = 1 ∧ | in(g) | > 1, i.e. join or merge gateways
have an outdegree of one and an indegree of more than one,

– ∀ g ∈ GV , out(g) ⊆ EI ∪ T R, i.e. event-based XOR decision gateways must
be followed by intermediate events or receive tasks,

– ∀ g ∈ GD , ∃ x ∈ out(g), (g , x) is a default flow among all the outgoing flows
from g, i.e. if none of the conditions on the outgoing flows from g evaluate
to true, then the default flow (g , x) will be chosen,

– ∀ x ∈ O, ∃ (s, e) ∈ ES × EE , sF∗x ∧ xF∗e,5 i.e. every object is on a path
from a start event to an end event.

4 B is the set of all possible conditions. A condition is a boolean function operating
over a set of propositional variables. Note that we abstract from these variables in
the control flow definition. We simply assume that a condition evaluates to true or
false, which determines whether or not the associated sequence flow is taken during
the process execution.

5 F∗ is a reflexive transitive closure of F , i.e. xF∗y if there is a path from x to y and
by definition xF∗x .

7

In the remainder we only consider well-formed core BPDs, and will use a
simplified notation BPD = (O, F , Cond) for their representation. Moreover, we
assume that both ES and EE are singletons, i.e. ES = {s} and EE = {e}.6

3.2 Decomposing a BPD into Components

We would like to achieve two goals when mapping BPMN onto BPEL. One
is to define an algorithm which allows us to translate each well-formed core
BPD into a valid BPEL process, the other is to generate readable and compact
BPEL code. To map a BPD onto (readable) BPEL code, we need to transform
a graph structure into a block structure. For this purpose, we decompose a
BPD into components. A component is a subset of the BPD that has one entry
point and one exit point. We then try to map components onto suitable “BPEL
blocks”. For example, a component holding a purely sequential structure should
be mapped onto a BPEL sequence construct while a component holding a parallel
structure should be mapped onto a flow construct. Below, we formalise the
notion of components in a BPD. To facilitate the definitions, we specify an
auxiliary function elt over a domain of singletons, i.e., if X={x}, then elt(X)=x .

Definition 3 (Component). Let BPD = (O, F , Cond) be a well-formed core
BPD. C = (Oc, Fc, Condc) is a component of BPD if and only if:

– Oc ⊆ O\(ES ∪ EE), i.e., a component does not have any start or end event,
– | (

⋃
x∈Oc

in(x))\Oc | = 1, i.e., there is a single entry point outside the com-
ponent,7 which can be denoted as entry(C) = elt((

⋃
x∈Oc

in(x))\Oc),
– | (

⋃
x∈Oc

out(x))\Oc | = 1, i.e., there is a single exit point outside the com-
ponent, which can be denoted as exit(C) = elt((

⋃
x∈Oc

out(x))\Oc),
– there exists a unique source object ic ∈ Oc and a unique sink object oc ∈ Oc

and ic 6= oc, such that entry(C) ∈ in(ic) and exit(C) ∈ out(oc),
– Fc = F ∩ (Oc ×Oc),
– Condc=Cond[Fc], i.e. the Cond function where the domain is restricted to Fc.

Note that all event objects in a component are intermediate events. Also, a
component contains at least two objects: the source object and the sink object.
A BPD without any component, which is referred to as a trivial BPD , has only
a single task or intermediate event between the start event and the end event.
Translating a trivial BPD into BPEL is straightforward and will be covered by
the final translation algorithm (see Section 4.4).

The decomposition of a BPD helps to define an iterative approach which
allows us to incrementally transform a “componentized” BPD into a block-
structured BPEL process. Below, we define function Fold that replaces a com-
ponent by a single (blank) task object in a BPD. This function can be used to
6 A BPD with multiple start events can be transformed into a BPD with a unique

start event by using an event-based XOR decision gateway. A BPD with multiple
end events can be transformed into a BPD with a unique end event by using an
OR-join gateway which is however not covered in this paper.

7 Note that in(x) is not defined with respect to the component but refers to the whole
BPD. Similarly, this is also applied to out(x) in the definition.

8

perform iterative reduction of a componentized BPD until no component is left
in the BPD. The function will play a crucial role in the final translation algorithm
where we incrementally replace BPD components by BPEL constructs.

Definition 4 (Fold). Let BPD = (O,F ,Cond) be a well-formed core BPD and
C = (Oc ,Fc ,Condc) be a component of BPD. Function Fold replaces C in BPD
by a task object tc 6∈ O, i.e. Fold(BPD, C, tc) = (O′, F ′, Cond′) with:
– O′ = (O\Oc) ∪ {tc},
– Tc is the set of tasks in C, i.e. Tc = Oc ∩ T ,
– T ′ = (T \Tc) ∪ {tc} is the set of tasks in Fold(BPD, C, tc),
– T R′

= (T R\Tc) is the set of receive tasks in Fold(BPD, C, tc),
– F ′ = (F ∩ (O\Oc ×O\Oc)) ∪ {(entry(C), tc), (tc , exit(C))},

– Cond ′ =

{
Cond[F ′] if entry(C) 6∈ GD

Cond[F ′] ∪ {((entry(C), tc),Cond(entry(C), ic))} otherwise

3.3 Petri-net Semantics

We use Petri nets [17] to define formal semantics for the core subset of BPMN.
Note that the current BPMN specification [19] describes BPMN in natural lan-
guage and does not contain a formal semantics of BPMN. In the following, we
first introduce the basic Petri net terminology and notations. Readers familiar
with Petri nets can skip this introduction. Then, as the second part, we define
a mapping from a BPD component to Petri nets.

3.3.1 Petri Nets

The classical Petri net is a directed bipartite graph with two types of nodes
called places and transitions. The nodes are connected via directed arcs, and
connections between two nodes of the same type are not allowed. Places are
graphically represented by circles and transitions by rectangles.

Definition 5 (Petri net). A Petri net is a triple PN = (P ,T ,F):
– P is a finite set of places,
– T is a finite set of transitions (P ∩ T = ∅),
– F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation).

A place p is called an input place of a transition t iff there exists a directed
arc from p to t . Place p is called an output place of transition t iff there exists
a directed arc from t to p. We use •t to denote the set of input places for a
transition t . The notations t•, •p and p• have similar meanings, e.g., p• is the
set of transitions sharing p as an input place.

At any time a place contains zero or more tokens. The state, often referred
to as marking , is the distribution of tokens over places. We will represent a state
as follows: 1p1 + 2p2 + 0p3 is the state with one token in place p1, two tokens
in p2, and no tokens in p3. We can also represent this state as p1 + 2p2. A Petri
net PN and its initial marking M are denoted by (PN ,M).

The number of tokens may change during the execution of the net. Transi-
tions are the active components in a Petri net: they change the state of the net
according to the following firing rule:

9

(1) A transition t is said to be enabled iff each input place p of t contains at
least one token.

(2) An enabled transition may fire. If transition t fires, then t consumes one
token from each input place p of t and produces one token for each output
place p of t .

The firing rule specifies how a Petri net can move from one state to another. If
at any time multiple transitions are enabled, a non-deterministic choice is made.
A firing sequence σ = t1t2...tn is enabled if, starting from the initial marking, it
is possible to subsequently fire t1, t2, ..., tn . A marking M is reachable from the
initial marking if there exists an enabled firing sequence resulting in M . Using
these notions we define some standard properties for Petri nets.

Definition 6 (Live). A Petri net (PN ,M) is live iff, for every reachable state M ′

and every transition t, there is a state M ′′ reachable from M ′ which enables t.

Definition 7 (Bounded, safe). A Petri net (PN ,M) is bounded iff for each
place p there is a natural number n such that for every reachable state the number
of tokens in p is less than n. The net is safe iff for each place the maximum
number of tokens does not exceed 1.

3.3.2 Semantics of Components

Figure 2 depicts the mapping from core BPMN objects to Petri-net modules.
It covers all BPMN objects that may be contained within a component of a
well-formed core BPD. A task or an intermediate event is transformed into

Figure 2. Mapping BPMN objects onto Petri-net modules.

10

a transition with one input place and one output place. The transition is di-
rectly named after the task or event. Gateways are mapped onto small Petri-net
modules which describe their routing behaviour explicitly. In particular, for an
event-based gateway the race condition between events or receive tasks is cap-
tured in such a way that all the corresponding event/task transitions share the
same output place of the preceding object of that gateway. Since the transitions
appearing in the different mappings of fork, join, data-based decision, and merge
gateways are only used to capture the routing behaviour, they can be consid-
ered as “silent” transitions [17]. In the case of a fork or join gateway, only one
transition is used and thus can be uniquely identified by that gateway. For a
data-based decision gateway, multiple transitions are used and each of them is
identified by both the gateway and one of the gateway’s output objects. A merge
gateway is also mapped onto a number of transitions, and each of these transi-
tions is identified by both the gateway and one of the gateway’s input objects.
Finally, places are used to link the Petri net modules of two connected BPMN
objects and therefore can be identified by both objects. Also, places are drawn
in dashed borders to indicate that their usage is not unique to one module. For
example, if message event “M1” is followed by task “T1”, the output place of
transition M1 becomes the input place of transition T1. A formal definition of
the mapping from BPD components to Petri nets is given as follows.

Definition 8 (Petri net semantics of components). Let C = (Oc, Fc,
Condc) be a component of a well-formed core BPD. By using the similar set
notations as in the definition of a BPD (see Definition 1), we can write that
Oc = Tc ∪Ec ∪Gc and Gc = GF

c ∪GJ
c ∪GD

c ∪GM
c ∪GV

c . Also, ic denotes the single
source object and oc denotes the single target object in C. C can be mapped onto
a Petri net PNc = (P ′,T ′,F ′) where:

P ′ = {p(entry(C),ic), p(oc ,exit(C))} ∪ – source/sink place
{p(x ,y) | xFcy ∧ x 6∈ GV

c } – other places

T ′ = Tc ∪ Ec ∪ – task/event
{tx | x ∈ GF

c ∪ GJ
c } ∪ – fork/join

{t(x ,y) | x ∈ GD
c ∧ y ∈ out(x)} ∪ – data decision

{t(x ,y) | x ∈ GM
c ∧ y ∈ in(x)} ∪ – merge

F ′ = {(p(x ,y), y) | y ∈ Tc ∪ Ec ∧ x∈in(y) ∧ x 6∈GV
c } ∪

{(y , p(y,z))} | y ∈ Tc ∪ Ec ∧ z ∈ out(y)} ∪ – task/event
{(p(x ,y), ty)} | y ∈ GF

c ∪ GJ
c ∧ x ∈ in(y)} ∪

{(ty , p(y,z))} | y ∈ GF
c ∪ GJ

c ∧ z ∈ out(y)} ∪ – fork/join
{(p(x ,y), t(y,z)) | y∈GD

c ∧ x∈in(y) ∧ z∈out(y)} ∪
{(t(y,z), p(y,z)) | y ∈ GD

c ∧ z ∈ out(y)} ∪ – data decision
{(p(x ,y), t(y,x)) | y ∈ GM

c ∧ x ∈ in(y)} ∪
{(t(y,x), p(y,z)) | y∈GM

c ∧ x∈in(y) ∧ z∈out(y)} ∪ – merge
{(p(x ,y), z) | y ∈ GV

c ∧ x∈in(y) ∧ z∈out(y)} – event decision

In the above definition, generally any sequence flow in a BPD is mapped onto
a place except for event-based decision gateways. With an event-based decision

11

gateway (y), the choice is delayed until one of its immediately following events
or tasks (z ∈ out(y)) is triggered. Let x denote the preceding object of y (i.e.
x ∈ in(y)). The place p(x ,y), which models the sequence flow from x to y , is
directly connected to each transition modelling the event or task z . This way
the mapping captures, for an event-based decision gateway, the moment of choice
when one of its alternative branches is actually started.

3.4 Soundness and Safeness

The main goal of providing a Petri net mapping for BPMN is that it allows us
to discuss the semantics and correctness in a concise and unambiguous manner.
The application of the mapping in Definition 8 to a BPD component results in
a Petri net satisfying some desirable properties which make automated analysis
easier. To capture these properties, it is necessary to introduce the concepts of
WorkFlow nets (WF-net) [1] and free-choice nets [10]. A WF-net is a Petri net
which models the control-flow dimension of a workflow, while free-choice nets
are an important subclass of Petri nets for which strong theoretical results exist.

Definition 9 (Free-choice WF-net). A Petri net PN = (P ,T ,F) is a WF-
net (workflow net) if and only if:

(i) There is one source place i ∈ P such that •i = ∅.
(ii) There is one sink place o ∈ P such that o• = ∅.
(iii) Every node x ∈ P ∪ T is on a path from i to o.

Also, PN is a free-choice net if and only if for every two transitions t1, t2 ∈ T,
•t1 ∩ •t2 6= ∅ implies that •t1 = •t2.

It can be seen that a WF-net has exactly one input place (called source place)
and one output place (sink place). A token in the source place corresponds to a
case (i.e. process instance) which needs to be handled, and a token in the sink
place corresponds to a case which has been handled. Also, in a WF-net there
are no dangling tasks and/or conditions. Tasks are modelled by transitions and
conditions by places. Therefore, every transition or place should be located on
a path from source place to sink place in a WF-net.

Given a WF-net PN = (P ,T ,F), we want to decide whether PN is sound .
Soundness is a notion of correctness. A procedure modelled by a WF-net is
sound iff it satisfies the following two requirements: (1) for any case, the pro-
cedure will terminate eventually and the moment the procedure terminates there
is a token in the sink place and all the other places are empty ;8 and (2) there
should be no dead tasks, i.e., it should be possible to execute an arbitrary task
by following the appropriate route through the WF-net. In [1] we have shown
that soundness corresponds to liveness and boundedness. To link soundness to
liveness and boundedness, we define an extended net PN = (P ,T ,F). PN is
the Petri net obtained by adding an additional transition t∗ which connects sink
place o and source place i . The extended Petri net PN = (P ,T ,F) is defined
as follows: P = P , T = T ∪ {t∗}, and F = F ∪ {o, t∗), (t∗, i)}. We call such an
8 Sometimes the term “proper termination” is used to describe this requirement.

12

extended net the short-circuited net of PN . Also, we use i to denote the state
with only one token in place i and thereby use (PN , i) to denote the Petri net
PN with an initial state i . The short-circuited net allows for the formulation
of the following theorem, which shows that standard Petri net-based analysis
techniques can be used to verify soundness of WF-nets.

Theorem 1. A WF-net PN is sound if and only if (PN , i) is live and bounded.

Proof. See [1]. �

With Theorem 1 we can also use very efficient analysis techniques. In order to
do this, we need to show that any BPD component corresponds to a free-choice
net. Free-choice Petri nets have been studied extensively and are characterised
by strong theoretical results and efficient analysis techniques. In fact, soundness
can be determined in polynomial time for free-choice WF-nets [1]. Moreover, we
require a WF-net to be safe, i.e., no marking reachable from (PN , i) marks a
place twice. Although safeness is defined with respect to some initial marking,
we extend it to WF-nets and simply state that a WF-net is safe or not (given
an initial state i). A sound free-choice WF-net is guaranteed to be safe [2].

Theorem 2. Let C be a component of a well-formed core BPD. PNc, which
denotes the Petri net mapping of C as given in Definition 8, is a free-choice
WF-net.

Proof. We first prove that PNc is a WF-net. There is one source place p(entry(C),ic)

and one sink place p(oc ,exit(C)). Moreover, every node (place or transition) is on a
path from p(entry(C),ic) to p(oc ,exit(C)) since in the corresponding component C all
objects are on a path from the source object to the sink object and all sequence
flows (connecting the objects) are preserved by the mapping given in Definition 8.

Next we prove that PNc is free-choice. Considering places with multiple out-
put arcs, these places all correspond to decision gateways. All the other places
have only one output arc (except the sink place p(oc ,exit(C)) which has none).
All outgoing sequence flows of a decision gateway are mapped onto transitions
with only one input place. If PNc = (Pc ,Tc ,Fc), the above indicates that for
all (p, t) ∈ Fc : |p•| > 1 implies |•t | = 1. Hence, PNc is free-choice. �

The two theorems in this section demonstrate that results related to safeness
and boundedness of free-choice nets can be used to check the soundness of a
core BPMN model in polynomial time. This can be formalized as follows. Let
PNc be the short-circuited net of PNc , we use p(entry(C),ic) to denote the state
with only one token in the source place p(entry(C),ic) of PNc and thereby use
(PNc , p(entry(C),ic)) to denote the Petri net PNc with an initial state p(entry(C),ic).
The WF-net PNc is sound iff (PNc , p(entry(C),ic)) is live and bounded (and this
can be checked in polynomial time). Moreover, using the results presented in [2],
we can also show that if PNc is sound, it is guaranteed to be safe. This implies
that in sound BPMN models an object cannot be activated multiple times for
the same instance. We will use this observation in our translation from BPMN
to BPEL.

13

4 Mapping BPMN onto BPEL

This section presents a mapping from BPMN models to BPEL processes. As
mentioned before, the basic idea is to map BPD components onto suitable
“BPEL blocks” and thereby to incrementally transform a “componentized” BPD
into a block-structured BPEL process. We apply three different approaches to
the mapping of components.9 A component may be well-structured so that it can
be directly mapped onto BPEL structured activities. If a component is not well-
structured but is acyclic, it may be possible to map the component to control
link-based BPEL code. Otherwise, if a component is neither well-structured nor
can be translated using control links (e.g. a component that contains unstruc-
tured cycles), the mapping of the component will rely on BPEL event handlers
via the usage of event-action rules (this will always work but the resulting BPEL
code will be less readable). We identify the above categories of components and
introduce the corresponding translation approaches one by one. Finally, we pro-
pose the algorithm for mapping an entire BPD onto a BPEL process.

4.1 Structured Activity-based Translation

As mentioned before, one of our goals for mapping BPMN onto BPEL is to
generate readable BPEL code. For this purpose, BPEL structured activities
comprising sequence, flow, switch, pick and while, have the first preference if
the corresponding structures appear in the BPD. Components that have a di-
rect and intuitive correspondence to one of these five structured constructs are
considered well-structured. Below, we classify different types of well-structured
components resembling these five structured constructs.

Definition 10 (Well-structured components). Let BPD = (O,F ,Cond) be
a well-formed core BPD and C = (Oc, Fc, Condc) be a component of BPD. ic
is the source object of C and oc is the sink object of C. The following components
are well-structured:

(a) C is a SEQUENCE-component if Oc ⊆ T ∪EI (i.e. ∀ x ∈ Oc, |in(x)|=|out(x)|
= 1) and entry(C) 6∈ GV . C is a maximal SEQUENCE-component if C is a
SEQUENCE-component and there is no other SEQUENCE-component C′ such
that Oc ⊂ Oc′ where Oc′ is the set of objects in C′,

(b) C is a FLOW-component if
- ic ∈ GF ∧ oc ∈ GJ ,
- Oc ⊆ T ∪ EI ∪ {ic , oc},
- ∀ x ∈ Oc\{ic , oc}, in(x) = {ic} ∧ out(x) = {oc}.

(c) C is a SWITCH-component if
- ic ∈ GD ∧ oc ∈ GM ,
- Oc ⊆ T ∪ EI ∪ {ic , oc},
- ∀ x ∈ Oc\{ic , oc}, in(x) = {ic} ∧ out(x) = {oc}.

(d) C is a PICK-component if
9 It should be noted that the first two approaches are inspired by the mapping from

Petri nets to BPEL as described in [7, 14].

14

- ic ∈ GV ∧ oc ∈ GM ,
- Oc ⊆ T ∪ EI ∪ {ic , oc},
- ∀ x ∈ Oc\({ic , oc} ∪ out(ic)), in(x) ⊂ out(ic) ∧ out(x) = {oc}.10

(e) C is a WHILE-component if
- ic ∈ GM ∧ oc ∈ GD ∧ x ∈ T ∪ EI ,
- Oc = {ic , oc , x},
- Fc = {(ic , oc), (oc , x), (x , ic)}.

(f) C is a REPEAT-component if
- ic ∈ GM ∧ oc ∈ GD ∧ x ∈ T ∪ EI ,
- Oc = {ic , oc , x},
- Fc = {(ic , x), (x , oc), (oc , ic)}.

(g) C is a REPEAT+WHILE-component if
- ic ∈ GM ∧ oc ∈ GD ∧ x1, x2 ∈ T ∪ EI ∧ x1 6= x2,
- Oc = {ic , oc , x1, x2},
- Fc = {(ic , x1), (x1, oc), (oc , x2), (x2, ic)}.

Figure 3 illustrates how to map each of the components mentioned above
onto the corresponding BPEL structured activities. Using function Fold in Def-
inition 4, a component C is replaced by a single task tc attached with the corre-
sponding BPEL translation of C. Note that the BPEL code for the mapping of
each task ti (i = 1, ...,n) is denoted as Mapping(ti). Based on the nature of these
task objects they are mapped onto the proper types of BPEL activities. For ex-
ample, a service task is mapped onto an invoke activity, a receive task (like tr in
Figure 3(d)) is mapped onto a receive activity, and a user task may be mapped
onto an invoke activity followed by a receive activity11. Also, a task ti may result
from the folding of a previous component C′, in which case, Mapping(ti) is the
code for the mapping of component C′.

In Figure 3(a) to (e), the mappings of the five components, SEQUENCE,
FLOW, SWITCH, PICK and WHILE, are straightforward. Note that in a PICK-
component (Figure 3(d)), an event-based XOR decision gateway must be fol-
lowed by receive tasks or intermediate message or timer events. For this reason,
a SEQUENCE-component (Figure 3(a)) cannot be preceded by an event-based
XOR decision gateway (as defined by entry(C) 6∈ GV in Definition 10(a)).

In Figure 3(f) and (g), the two components, REPEAT and REPEAT+WHILE,
represent repeat loops. A while loop (see Figure 3(e)) evaluates the loop condi-
tion before the body of the loop is executed, so that the loop is not executed if
the condition is initially false. In a repeat loop, the condition is checked after
the body of the loop is executed, so that the loop is always executed at least
once. In Figure 3(f), a repeat loop of task t1 is equivalent to a single execution

10 Note that out(ic) ⊆ T R ∪ EI is the set of receive tasks and intermediate events
following the event-based XOR decision gateway ic . Between the merge gateway oc

and each of the objects in out(ic) there is at most one task or event object.
11 Since the goal of this paper is to define an approach for translating BPDs with

arbitrary topologies to valid BPEL processes, we do not discuss further how to map
simple tasks in BPMN onto BPEL. Interested reader may refer to [19] for some
guidelines on mapping BPMN tasks into BPEL activities.

15

Figure 3. Mapping a well-structured component C onto a BPEL structured activity
and folding C into a single task object tc attached with the BPEL code for mapping.

16

of t1 followed by a while loop of t1. In Figure 3(g), a repeat loop of task t1 is
combined with a while loop of task t2, and both loops share one loop condition.
Task t1 is always executed once before the initial evaluation of the condition,
which is followed by a while loop of sequential execution of t2 and t1.

4.2 Control Link-based Translation

Since BPMN is a graph-oriented language in which nodes can be connected al-
most arbitrarily, a BPD may contain non-well-structured components, i.e. com-
ponents that do not match any of the “patterns” given in Definition 10. Recall
that BPEL provides a non-structured construct called control link, which allows
for the definition of directed acyclic graphs and thus can be used for the trans-
lation of a large subset of acyclic BPMN components. We use the term “control
link-based flow construct” to refer to a flow activity in which all sub-activities
are connected through links to form directed acyclic graphs.

In addition to the above, it is important to emphasize the following two is-
sues related to link semantics. First, the use of control links may hide errors such
as deadlocks.12 This means that the designer makes a modelling error that in
other languages would result in a deadlock, however, given the dead-path elimi-
nation semantics of BPEL the error is masked. Second, since an activity cannot
“start until the status of all its incoming links has been determined and the
join condition associated with the activity has been evaluated” (Section 12.6.1
of [8]), each execution of an activity can trigger at most one execution of any
subsequent activity to which it is connected through a control link. Taking into
account these two issues, one needs to ensure that an acyclic component is sound
(e.g. deadlock-free) and safe (i.e. each activity is executed at most once) before
attempting to translate it into a graph of BPEL activities connected through
control links.

For example, Figure 4 depicts two acyclic components that are not well-
structured. The one shown in (a) can be mapped onto a control link-based flow
construct without any problem. However, for the one shown in (b), if condi-
tion b does not hold at the data-based decision gateway D2, task T4 will never
be performed, causing the component to deadlock at the join gateway J4 (which
requires that both tasks T3 and T4 are executed). Also, task T3 will be exe-
cuted twice, a behaviour that cannot be represented using control links which
only trigger the target activity at most once. In Petri nets terminology, such a
component cannot be qualified as being “sound” and “safe”.

4.2.1 Components for Control Link-based Translation

We use the term “synchronising process component” to refer to a component
that can be mapped to a control link-based flow construct preserving the same

12 While control links do not create deadlocks, they can lead to models where one or
several actions are “unreachable”, which means that the action in question will never
be executed. See [22] for examples of such undesirable models.

17

Figure 4. Two non-well-structured acyclic components.

semantics. In synchronising process models, “an activity can receive two types of
tokens, a true token or a false token. Receipt of a true token enables the activity,
while receipt of a false token leads to the activity being skipped and the token
to be propagated” [11]. This way the semantics of control links are well captured
and thus the activities can be viewed as being connected via control links.

Definition 11 (Synchronising process component). Let C = (Oc ,Fc ,Condc)
be a component of a well-formed core BPD. C is a synchronising process compo-
nent if it satisfies all the following three conditions.
(a) There are no cycles (i.e., ∀ x ∈ Oc, (x , x) 6∈ F∗);
(b) There are no event-based gateways (i.e., if GV denotes the set of event-based

gateways in the BPD, then Oc ∩ GV = ∅); and
(c) PNc, which denotes the Petri net mapping of C as given in Definition 8, is

a safe and sound free-choice WF-net.

Note that some well-structured components such as SEQUENCE-component,
FLOW-component and SWITCH-component are also synchronising process com-
ponents. When mapping a BPD onto BPEL we will always try to use the
structured activity-based translation described in Section 4.1, until there are
no well-structured components left in the BPD. Therefore, the control link-
based translation only applies to a subset of synchronising process components
that are not well-structured. In addition, we will always try to detect a mini-
mal synchronising process component for translation. A synchronising process
component C = (Oc ,Fc ,Condc) is minimal if there is no any other compo-
nent C′ = (Oc′ ,Fc′ ,Condc′) such that Oc′ ⊂ Oc . It is easy to discover that such
a component always starts with a fork or data-based decision gateway and ends
with a join or merge gateway, given the fact that there are no well-structured
components left (they have been iteratively removed).

4.2.2 Control Link-based Translation Algorithm

The basic idea behind this algorithm is to translate the control-flow relation
between all task and event objects within a synchronising process component
into a set of control links. Before translation, it is necessary to pre-process the
component in the following two steps. First, as aforementioned, a minimal syn-
chronising process component always has a gateway as its source or sink object.
Since control links connects only task/event objects, it is necessary to insert an
empty task (i.e. a task of doing nothing) before the source gateway object of
the component, and to insert an empty task after the sink gateway object of the
component. We call the resulting component a wrapped component .

18

Definition 12 (Wrapped component). Let C = (Oc ,Fc ,Condc) be a compo-
nent of a well-formed core BPD. By inserting an empty task ah before the source
object ic of C and an empty task at after the sink object oc of C, we obtain the
wrapped component of C as being the component C′ = (Oc′ ,Fc′ ,Condc′) where:
– Oc′ = Oc ∪ {ah , at},
– Fc′ = Fc ∪ {(ah , ic), (oc , at)},
– Condc′ = Condc

Next, the BPMN specification states that the conditional branches of a data-
based decision gateway “should be evaluated in a specific order” (Section 9.5.2
on page 72 of [19]). In more detail, “the first one that evaluates as TRUE will
determine the Sequence Flow that will be taken. Since the behavior of this
Gateway is exclusive, any other conditions that may actually be TRUE will be
ignored”. Also, the default branch, which is always the last branch considered,
will be chosen if none of the other branches evaluate to true (see Definition 2).
When using control links to replace a data-based decision gateway, we need to
ensure that the above semantics of the gateway are preserved. This can be done
by refining the conditions on each of the outgoing flows of a data-based decision
gateway. We use {f1, ..., fn} to denote the set of outgoing flows from a data-
based decision gateway and use Cond(fi) (16i6n) to denote the condition on
flow fi . Assume that Cond(fi) is evaluated in the order from f1 to fn , and fn is
the default branch. The refined condition on flow fi is given by

RefinedCond(fi) =

Cond(f1) i = 1
¬(Cond(f1) ∧ ... ∧ Cond(fi−1)) ∧ Cond(fi) 1<i<n
¬(Cond(f1) ∧ ... ∧ Cond(fn−1)) i = n

Note that it is easy to prove that the above pre-processing of a synchronising
process component will not change the nature of the component, i.e. the resulting
component still satisfies the three requirements given in Definition 11.

We now derive from the structure of a pre-processed synchronising compo-
nent, the set of control links used to connect all tasks and events in the compo-
nent. First, we would like to capture the control flow logic between every two
task/event objects that are directly or indirectly (via gateways) connected within
the component. To this end, we define two functions as shown in Figure 5. One
named PreTEC-Sets (line 1), takes an object x and generates the set of sets each
containing the preceding tasks, events, and/or conditions13 for x by relying on
the other function named PreTEC-SetsFlow (lines 2-17). This function produces
the same type of output as PreTEC-Sets but takes as input a flow rather than
an object. It operates based on the type of the source object of the flow. If the
flow’s source is a task or an event, a set is returned containing a singleton set
of that task or event (line 5). Otherwise, if the flow’s source is a gateway, the
algorithm keeps working backwards through the component, traversing other
gateways, until reaching a task or an event. In particular, if a flow originates
from a data-based decision gateway, the (refined) condition on the flow is added
13 These are the conditions specified on the outgoing flows of data-based decision gate-

ways.

19

to each of the set elements in the resulting set (line 11). This captures the fact
that the condition specified on an outgoing flow of a data-based decision gate-
way is part of each trigger that enables the corresponding object following the
gateway. In the case of a flow originating from a merge or a join gateway, the
function is recursively called for each of the flows leading to this gateway. For a
merge gateway, the union of the resulting sets captures the fact that when any
of these flows is taken, the gateway may be executed (line 14). Similarly, for a
join gateway, the cartesian product of the resulting sets captures the fact that
when all of these flows are taken, the gateway may be executed (line 16).

1: function PreTEC-Sets(x : Object) =
⋃

y∈in(x) PreTEC-SetsFlow(y , x)

2: function PreTEC-SetsFlow(y : Object, x : Object)
3: begin
4: if y is a task or an event then
5: PreTEC-SetsFlow := {{y}}
6: else
7: if y is a fork gateway then
8: PreTEC-SetsFlow := PreTEC-Sets(y)
9: else
10: if y is a data-based decision gateway then
11: PreTEC-SetsFlow := AddCond(RefinedCond(y , x), PreTEC-Sets(y))
12: else
13: if y is a merge gateway then
14: PreTEC-SetsFlow :=

⋃
z∈in(y) PreTEC-SetsFlow(z , y)

15: else // i.e. y is a join gateway

16: PreTEC-SetsFlow :=
∏

z∈in(y) PreTEC-SetsFlow(z , y)

17: end
18: // Note the above function makes use of the following auxiliary function:

19: // AddCond(b, {p1, p2, ..., pn}) = {p1 ∪ {b}, p2 ∪ {b}, ..., pn ∪ {b}}

Figure 5. Two functions for deriving the set of preceding tasks and/or events sets for
an object within a pre-processed synchronising process component.

Based on the above, Figure 6 defines an algorithm which takes an input of
a pre-processed synchronising process component C, and produces the set of
control links with their associated transition conditions (given by TransCond)
for connecting all the tasks and events in C and also the join conditions for each
of these tasks and events (given by JoinCond). A transition condition associated
with a control link is a boolean expression that functions as a guard on the
link, and a join condition associated with a task/event object is specified as a
boolean expression over the status of each of the incoming links to the object.
In Figure 6, the algorithm begins by collecting the set of tasks and events in
component C (line 5). In the set returned by function PreTEC-Sets for each
task/event object x , each element p is a set containing task/event objects and
optionally conditions. To this end, we define function TE-SetIn (line 8) which
extracts the task/event objects from p. Since each element a in TE-SetIn(p) is
a preceding task/event object of x , we define a link la,x connecting a (source
object) and x (target object). The transition condition of la,x is specified as
a conjunction of all the conditions appearing in element p (line 9). The join

20

condition is computed for each task/event object x . On the one hand, since all
the preceding task/event objects in TE-SetIn(p) capture one possible way to
reach x , all the resulting incoming links to x must carry a true token to enable
x and thereby a conjunction of these link status is applied. On the other hand,
since each element p in PreTEC-Sets(x) represents one possible way to reach
x , the join condition for x is then defined as a disjunction of the above results
(line 10).

1: input: C: pre-processed synchronising process component
2: output: TransCond: Set(Link, Bool-Expr);
3: output: JoinCond: Set(Object, Bool-Expr)
4: begin
5: let T Ec = the set of tasks and events in C
6: for each x ∈ T Ec

7: for each p ∈ PreTEC-Sets(x)
8: TE-SetIn(p) :=

⋃
te∈p∩T Ec

te

9: TransCond := TransCond ∪ (
⋃

a∈TE-SetIn(p){(la,x ,
∧

c∈p\TE-SetIn(p) c)})
10: JoinCond := JoinCond ∪ {(x ,

∨
p∈PreTE-Sets(x)(

∧
a∈TE-SetIn(p) la,x))}

11: end

Figure 6. Algorithm for deriving the set of control links with their associated tran-
sition conditions and the join conditions for each of the tasks and events within a
pre-processed synchronising process component.

Finally, the set of control links with their associated transition conditions and
the join conditions for each of the task/event objects derived from the above, can
be specified using the BPEL syntax thus generating the target process definition.
For example, assume that both task objects x and y are mapped onto invoke
activities. The definition of link lx ,y can be BPEL-encoded as follows:

<flow>
<links>

<!-- declaration of all control links -->
<link name="lx ,y" condition="TransCond(lx ,y)"/>
. . .

</links>
<!-- all activities (tasks and events) -->
<invoke name="x" ...>

<!-- if there are any incoming links to x -->
<target .../>
. . .
<!-- all outgoing links from x -->
<source linkName="lx ,y"/>
. . .

</invoke>
<invoke name="y" joinCondition="JoinCond(y)">

<!-- all incoming links to y -->
<target linkName="lx ,y"/>
. . .

21

<!-- if there are any outgoing links from y -->
<source .../>
. . .

</invoke>
. . .

</flow>

A detailed example of applying control link-based algorithm to the translation
of a BPMN process model is given in Section 5.2.

It is important to mention the interplay between the structured activity-
based approach (Section 4.1) and the control link-based approach for translating
BPDs into BPEL. First the structured activity-based translation is applied iter-
atively. If there are no longer well-structured components, the control link-based
translation is used. Applying the control link-based translation may again en-
able a structured activity-based translation, etc. Hence it is possible that both
types of reductions alternate. Unfortunately, there are BPDs that cannot be
translated into BPEL using these two approaches. The next subsection shows a
“brute force” approach that can be used as a last resort.

4.3 Event-Action Rule-based Translation

A well-formed core BPD may also contain components that are neither well-
structured nor can be translated using control links, e.g. components capturing
multi-merge patterns [5] or unstructured loops. We present an approach that
can be used to translate such component into a scope activity by exploiting the
“event handler” construct in BPEL. Since an event handler is an event-action
rule associated with a scope, we name the approach, in a more general sense,
event-action rule-based translation approach. It should be mentioned that this
approach can be applied to translating any component to BPEL. However, it
produces less readable BPEL code and hence we resort only to this approach
when there are no components left in the BPD, which are either well-structured
or which can be translated using control links.

The basic idea behind the event-action rule-based approach is to map each
object (task, event or gateway) onto event handler(s). An incoming flow of the
object captures the occurrence of an “event” that triggers the corresponding
event handler. The actions taken by the event handler must ensure to invoke
“events”, which signal the completion of the object being executed, in the correct
logic order. Note that the “events” we mention here are events within the context
of event-action rules, and thus are different from BPMN event objects.

Figure 7 illustrates how to map each type of BPMN objects onto BPEL
event handlers. We use ey,x to denote an “event” captured by the sequence flow
connecting from object y to object x . This “event” signals the completion of
object y so that the execution of object x may start. In more detail, each task,
event, fork gateway, or decision gateway object is mapped onto one event handler,
which is triggered upon the occurrence of the “event” from the only incoming
flow of the object. For a task or event object x , the resulting event handler
first executes that task or event, whose mapping is denoted as Mapping(x), and

22

Figure 7. Mapping BPMN objects onto BPEL event handlers.

then invokes the “event”, which signals the completion of the execution of x
and is captured by the only outgoing flow of x . For a fork or decision gateway,
the corresponding event handler invokes the “events” to be captured by their
outgoing flows in a logic order as defined by the gateway. To this end, the flow
activity is used for the mapping of a fork gateway, switch is used for the mapping
of a data-based decision gateway, and pick is used for the mapping of an event-
based decision gateway with the immediately followed events and/or receive

23

tasks. Next, a merge gateway is mapped onto multiple event handlers in a way
that each of them can be triggered upon the occurrence of the “event” from
one of the multiple incoming flows of the gateway. Finally, for a join gateway,
the mapping is less straightforward because BPEL only supports the situation
where an event handler is triggered by the occurrence of a single event. As
shown in Figure 7, a join gateway x can be mapped onto one event handler by
separating the “event” (ey1,x) on the first incoming flow from those (ey2,x , ...,
eyn ,x) on the rest of the incoming flows. Although the resulting event handler
can be triggered by the occurrence of ey1,x , the real action, i.e. invoking ex ,z , will
not be performed until all the remaining “events” ey2,x to eyn ,x have occurred.

Based on the above, we can map a component C onto a BPEL scope. The
scope has a number of event handlers as mappings of all the objects in C. Let
eentry(C),ic denote the “event” captured by the sequence flow connecting to the
source object ic from the entry point entry(C) outside the component C. The
resulting scope may be encoded as follows:

<scope>
<onEvent eentry(C),ic> . . . </onEvent>
. . .
<onEvent ...> . . . </onEvent>
<invoke eentry(C),ic/>

</scope>

The main activity of the scope is to invoke “event” eentry(C),ic . The occurrence of
eentry(C),ic triggers the execution of the source object of C, and the entire scope
completes after its main activity and all active event handlers have completed.

Finally, it should be mentioned that the above events for triggering event
handlers are performed by an invoke activity via a local partner link between
the final BPEL process (i.e. mapping of the BPD to which component C belongs)
and itself. The interested reader may refer to [21] for definitions of a local partner
link and an event being invoked or consumed via a local partner link.

4.4 Overall Translation Algorithm

Based on the mapping of each of the components aforementioned, we define an
algorithm for translating a well-formed core BPD into BPEL. Figure 8 shows
this algorithm which takes a well-formed core BPD with one start event and one
end event, and produces the corresponding BPEL process. For such a BPD Q ,
we use OQ to denote the set of objects in Q , and [Q]c the set of components
in Q . If Q is a trivial BPD, its mapping to BPEL is straightforward (lines 5-9).
Otherwise, for a non-trivial BPD, the basic idea is to select a component in the
BPD, provide its BPEL translation, and fold the component (lines 10-28). This is
repeated until no component is left in the BPD, and the resulting BPEL process
definition is then given by the mapping of the task object t ic that is created from
the last folding (line 29).

More specifically, for a non-trivial BPD, the component mapping always
starts from a maximal SEQUENCE-component after each folding (lines 13 to 15).
When there are no sequences left in the BPD, other well-structured components

24

1: input: Q : a well-formed core BPD with one start event and one end event
2: output: P : String
3: begin
4: let s := start event of Q ; e := end event of Q
5: if [Q]c = ∅
6: then // Mapping of a trivial BPD

7: x := OQ\{s, e}
8: BPELcode := basic activities corresponding to x
9: P := <process> BPELcode </process>

10: else // Mapping a non-trivial BPD

11: i := 0; Mapping := {}
12: while [Q]c 6= ∅ do
13: if ∃ a maximal SEQUENCE-component C ∈ [Q]c
14: then BPELcode := sequence activity corresponding to C
15: then BPELcode := according to Figure 3(a) in Section 4.1
16: else if ∃ a well-structured (non-sequence) component C ∈ [Q]c
17: then BPELcode := structured activity corresponding to C
18: then BPELcode := according to Figure 3(b) to (g) in Section 4.1
19: else select a minimal non-well-structured component C ∈ [Q]c
20: if C is a synchronising process component
21: then BPELcode := control link-based flow construct corresponding
22: then BPELcode := to C as specified in Section 4.2.2
23: else BPELcode := scope activity with event handlers corresponding
24: else BPELcode := to C as specified in Section 4.3
25: i := i + 1
26: create a new task object t ic
27: Mapping := Mapping ∪ {(t ic , BPELcode)}
28: Q := Fold(Q , C, t ic)
29: P := <process> Mapping(t ic) </process>

30: end

Figure 8. Algorithm for translating a well-formed core BPD into a BPEL process.

are processed (lines 16 to 18). Since all well-structured non-sequence compo-
nents are disjoint, the order of mapping these components is irrelevant. Next,
when no well-structured components are left, the algorithm selects a minimal
non-well-structured component for translation (line 19). Note that C is a mini-
mal non-well-structured component, if within the same BPD there is no other
component C′ such that the set of nodes in C′ is a subset of the set of nodes
in C. The algorithm selects a minimal non-well-structured component C and
not a maximal one to avoid missing any “potential” well-structured component
that may appear after the folding of C. This means that there is always a prefer-
ence for smaller structured activities rather than large flows. The algorithm then
checks if C is a synchronising process component so that the control link-based
translation approach can be applied (lines 20-22). Otherwise, the event-action
rule-based translation approach is used as a last resort (lines 23-24). Using the
event-action rule-based translation only as a last resort, reflects the desire to
produce readable BPEL code. In most cases, event-action rule-based transla-
tions can be avoided or play a minor part in the translation. This is illustrated
by the examples in the next section and by empirical studies [14].

25

5 Case Studies

This section provides two examples of business processes modelled using BPMN.
We show how these two models can be translated into BPEL using the algorithm
presented in the previous section.

5.1 Example 1: Complaint Handling Process

Consider the complaint handling process model shown in Figure 9. It is described
as a well-formed core BPD. First the complaint is registered (task register), then
in parallel a questionnaire is sent to the complainant (task send questionnaire)
and the complaint is processed (task process complaint). If the complainant re-
turns the questionnaire in two weeks (event returned-questionnaire), task process
questionnaire is executed. Otherwise, the result of the questionnaire is discarded
(event time-out). In parallel the complaint is evaluated (task evaluate). Based
on the evaluation result, the processing is either done or continues to task check
processing. If the check result is not OK, the complaint requires re-processing.
Finally, task archive is executed. Note that labels DONE , CONT , OK and NOK

on the outgoing flows of each data-based XOR decision gateway, are abstract
representations of conditions on these flows.

Figure 9. A complaint handling process model.

Following the algorithm in Section 4, we now translate the above BPD to
BPEL. Figure 10 sketches the translation procedure which shows how this BPD
can be reduced to a trivial BPD. Six components are identified. Each compo-
nent is named Ci where i specifies in what order the components are processed,
and Ci is folded into a task object named t ic . Also, we assign an identifier ai to
each task or intermediate event and an identifier gi to each gateway in the initial
BPD. We use these identifiers to refer to the corresponding objects in the follow-
ing translation. It should be mentioned that since we focus on the control-flow
perspective, the resulting BPEL process definition will be presented in simplified
BPEL syntax which defines the control flow for the process but omits all details
related to data definitions such as partners, messages and variables.

1st Translation. The algorithm first tries to locate SEQUENCE-components.
In the initial BPD shown in Figure 9, the component C1 consisting of tasks a6

and a7 is the only SEQUENCE-component that can be identified. Hence, C1 is
folded into a task t1

c attached with the BPEL translation sketched as:

26

Figure 10. Translating the complaint handling process model in Figure 9 into BPEL.

<sequence name="t1
c ">

<invoke name="process complaint".../>
<invoke name="evaluate".../>

</sequence>

2nd Translation. When no SEQUENCE-components can be identified, the al-
gorithm tries to discover any well-structured non-sequence component. As a
result, the component C2 is selected. It is a PICK-component and is folded into
a task t2

c attached with the BPEL translation sketched as:
<pick name="t2

c ">
<onMessage operation="returned-questionnaire"...>

<invoke name="process questionnaire".../>
</onMessage>
<onAlarm for=‘P14DT’>

<empty/>
</onAlarm>

</pick>

Assume that the maximal waiting period for the returned questionnaire is two
weeks, i.e. 14 days. In BPEL, this is encoded as P14DT.

3rd Translation. Folding C2 into t2
c introduces a new SEQUENCE-component

C3 consisting of tasks a2 and t2
c . C3 is folded into a task t3

c attached with the
BPEL translation sketched as:

27

<sequence name="t3
c ">

<invoke name="send questionnaire".../>
<pick name="t2

c "> ... </pick>
</sequence>

4th Translation. After the above three components C1 to C3 have been folded
into the corresponding tasks t1

c to t3
c , there is no well-structured components left

in the BPD. The algorithm continues to identify any minimal non-well-structured
component. As a result, the component C4 is selected. Since C4 contains cycles,
it is not a synchronising process component. Below, we map C4 onto a scope
with event handlers.

<scope name="t4
c ">

<!-- mapping of g4 -->
<onEvent eg1,g4>

<invoke eg4,t1c
/>

</onEvent>
<onEvent eg6,g4>

<invoke eg4,t1c
/>

</onEvent>
<!-- mapping of t1

c -->
<onEvent eg4,t1c

>
<sequence>

<sequence name="t1
c "> ... </sequence>

<invoke et1c ,g5/>
</sequence>

</onEvent>
<!-- mapping of g5 -->
<onEvent et1c ,g5>

<switch>
<case condition="DONE">

<invoke eg5,g7/>
</case>
<case condition="CONT">

<invoke eg5,a8/>
</case>

</switch>
</onEvent>
<!-- mapping of a8 -->
<onEvent eg5,a8>

<sequence>
<invoke name="check processing".../>
<invoke ea8,g6/>

</sequence>
</onEvent>
<!-- mapping of g6 -->
<onEvent ea8,g6>

28

<switch>
<case condition="OK">

<invoke eg6,g7/>
</case>
<case condition="NOK">

<invoke eg6,g4/>
</case>

</switch>
</onEvent>
<!-- mapping of g7 -->
<onEvent eg5,g7>

<invoke eg7,g8/>
</onEvent>
<onEvent eg6,g7>

<invoke eg7,g8/>
</onEvent>
<!-- to trigger source object g4 -->
<invoke eg1/>

</scope>

5th Translation. Folding C3 to t3
c and C4 to t4

c introduces a FLOW-component
C5. C5 is folded into a task t5

c attached with the BPEL code sketched as:

<flow name="t5
c ">

<sequence name="t3
c "> ... </sequence>

<scope name="t4
c "> ... </scope>

</flow>

6th Translation. After C5 has been folded into t5
c , a new SEQUENCE-component

C6 is introduced. This is also the only component left between the start event
and the end event in the BPD. Folding C6 into task t6

c leads to the end of the
translation, and the final BPEL process is sketched as:

<process name="complaint handling">
<sequence name="t6

c ">
<invoke name="register">
<flow name="t5

c "> ... </flow>
<invoke name="archive">

</sequence>
</process>

5.2 Example 2: Order Fulfillment Process

Figure 11 depicts an order fulfillment process at the customer side using BPMN.
The process starts by making a choice between two conditional branches, depend-
ing on whether the shipper supports the Universal Business Language (UBL) or
the Electronic Data Interchange (EDI) standard. The choice between these two
standards is exclusive and EDI is always the default one to choose. If UBL is

29

used, the process needs to receive both the despatch advice and the invoice from
the shipper before it can continue. Alternatively, if EDI is used, the process
needs to receive both EDI 856 for the Advanced Shipment Notice (ASN) and
EDI 810 for the Invoice before it can proceed. Next, upon the receipt of either
EDI 810 or the invoice (formatted in UBL), a payment request can be sent to
the shipper. Once the payment request has been sent out and either EDI 856 or
the despatch advice (formatted in UBL) has been received, the customer sends
the fulfillment notice and by then the process completes.

Figure 11. An order fulfillment process model.

Figure 12 sketches how the above BPD can be reduced to a trivial BPD. Two
components are identified. Below, we describe the translation step by step.

Figure 12. Translating the order fulfillment process model in Figure 11 into BPEL.

1st Translation. Initially, no well-structured components can be detected in
the BPD shown in Figure 11. The component C1 consisting of tasks a1 to a5 is
the only minimal non-well-structured component identified. It is acyclic and has
no event-based gateway. Figure 13 shows the Petri net mapping of C1, which is
proven to be sound and safe. Thus, the component C1 is a synchronising process
component and can be mapped to a control link-based BPEL flow construct.

First, we pre-process the component C1 as illustrated in Figure 14. Two
empty tasks ah and at are inserted respectively before the data-based decision
gateway d1 (source object of C1) and after the join gateway j6 (sink object of C1).

30

Figure 13. The Petri net mapping of component C1 shown in Figure 12.

Also, the conditions on the outgoing flows of d1 are refined. The component C1,
after the above pre-processing, is then renamed C ′

1.

Figure 14. Pre-processing the component C1 shown in Figure 12.

Second, we generate the set of preceding tasks for each task object in compo-
nent C ′

1 (C ′
1 has no event objects). There are totally seven sets as listed below:

PreTEC-Sets(ah) = ∅,
PreTEC-Sets(a1) = PreTEC-Sets(a2) = {{ah , UBL}},
PreTEC-Sets(a3) = PreTEC-Sets(a4) = {{ah , ¬UBL∧EDI}},
PreTEC-Sets(a5) = {{a2}, {a4}}, and
PreTEC-Sets(at) = {{a1, a5}, {a3, a5}}

Third, we can then derive the set of control links with their associated tran-
sition conditions for connecting all the tasks in component C ′

1 and the join
conditions for each of these tasks. These are:

TransCond={(lah ,a1 , UBL), (lah ,a2 , UBL), (lah ,a3 ,¬UBL∧EDI), (lah ,a4 ,¬UBL∧EDI),
TransCond={(la2,a5 , TRUE), (la4,a5 , TRUE), (la1,at

, TRUE), (la3,at
, TRUE), (la5,at

, TRUE)}

JoinCond={(ah , TRUE), (a1, lah ,a1), (a2, lah ,a2), (a3, lah ,a3), (a4, lah ,a4),
JoinCond={(a5, la2,a5 ∨ la4,a5), (at , (la1,at

∧ la5,at
) ∨ (la3,at

∧ la5,at
)}

Note that task ah is the source object of component C ′
1 and has no incoming

links. Hence, JoinCond(ah) = TRUE implies that no join condition needs to be
specified for ah in the corresponding BPEL definition.

Finally, based on the above, component C1 can be folded into a task t1
c

attached with the BPEL translation sketched as:

31

<flow name="t1
c ">

<links>
<link name="lah ,a1" condition="UBL"/>
<link name="lah ,a2" condition="UBL"/>
<link name="lah ,a3" condition="¬UBL∧EDI"/>
<link name="lah ,a4" condition="¬UBL∧EDI"/>
<link name="la2,a5" condition="TRUE"/>
<link name="la4,a5" condition="TRUE"/>
<link name="la1,at

" condition="TRUE"/>
<link name="la3,at

" condition="TRUE"/>
<link name="la5,at

" condition="TRUE"/>
</links>
<empty name="ah">

<source linkName="lah ,a1"/>
<source linkName="lah ,a2"/>
<source linkName="lah ,a3"/>
<source linkName="lah ,a4"/>

</empty>
<invoke name="receive despatch-advice"
<invoke joinCondition="bpws:getLinkStatus(lah ,a1)">

<target linkName="lah ,a1"/>
<source linkName="la1,at

"/>
</invoke>
<invoke name="receive invoice"
<invoke joinCondition="bpws:getLinkStatus(lah ,a2)">

<target linkName="lah ,a2"/>
<source linkName="la2,a5"/>

</invoke>
<invoke name="receive EDI 856"
<invoke joinCondition="bpws:getLinkStatus(lah ,a3)">

<target linkName="lah ,a3"/>
<source linkName="la3,at"/>

</invoke>
<invoke name="receive EDI 810"
<invoke joinCondition="bpws:getLinkStatus(lah ,a4)">

<target linkName="lah ,a4"/>
<source linkName="la4,a5"/>

</invoke>
<invoke name="send payment-request"
<invoke joinCondition="bpws:getLinkStatus(la2,a5) or
<invoke joinCondition="bpws:getLinkStatus(la4,a5)">

<target linkName="la2,a5"/>
<target linkName="la4,a5"/>
<source linkName="la5,at

"/>
</invoke>

32

<empty name="at"
<empty joinCondition="(bpws:getLinkStatus(la1,at

) and
<empty joinCondition="(bpws:getLinkStatus(la5,at

)) or
<empty joinCondition="(bpws:getLinkStatus(la3,at

) and
<empty joinCondition="(bpws:getLinkStatus(la5,at

))">
<target linkName="la1,at"/>
<target linkName="la3,at"/>
<target linkName="la5,at

"/>
</empty>

</flow>

2nd Translation. After C1 has been folded into t1
c , a new SEQUENCE-component

C2 is introduced. This is also the only component left between the start event
and the end event in the BPD. Folding C2 into task t6

c leads to the end of the
translation, and the final BPEL process is sketched as:

<process name="order fulfillment">
<sequence name="t2

c ">
<flow name="t1

c "> ... </flow>
<invoke name="send fulfillment-notice">

</sequence>
</process>

6 Related Work

White [19,27] informally sketches a translation from BPMN to BPEL. However,
as acknowledged in [19] this translation is fundamentally limited, e.g. it excludes
diagrams with arbitrary topologies. Specifically, [19] states that acyclic graphs
with arbitrary topologies could be translated to control links, which is however
left as future work. Also, a method for translating some types of unstructured
cycles is outlined, but no automated and general method is given. In addition,
several steps in White’s translation require human input to identify patterns in
the source model. A detailed review of White’s translation from BPMN to BPEL
can be found in [21].

Research into structured programming in the 60s and 70s led to techniques
for translating unstructured flowcharts into structured ones. However, these tech-
niques are not applicable when AND-splits and AND-joins are introduced. An
identification of situations where unstructured process diagrams cannot be trans-
lated into equivalent structured ones (under weak bisimulation equivalence) can
be found in [12,15], while an approach to overcome some of these limitations for
processes without parallelism is sketched in [13]. However, these related work
only address a piece of the puzzle of translating from graph-oriented process
modelling languages to BPEL.

This paper combines insights from two of our previous studies. In [6], we
describe a case study where the requirements of a bank system are captured as
Coloured Workflow nets (a subclass of Coloured Petri nets) and the system is

33

then implemented in BPEL. In this study we use a semi-automated mapping
from Coloured Petri nets to BPEL that has commonalities with a subset of the
translation discussed in this paper. This mapping has been implemented in a tool
called Workflownet2BPEL4WS [7, 14] and is also supported by recent versions
of ProM14 Importantly, this tool does not attempt to automatically map every
Coloured Petri net. Instead, it maps as many fragments of the net as it can using
a pre-defined library of patterns. When the tool can not apply any of the available
patterns, the user must intervene to identify at least one remaining fragment that
can be translated by some means, possibly leading to a new translation pattern
being added into the library. The approach has been empirically tested on 100
real-life Protos15 process models created in student projects [14]. Meanwhile,
in [21] we present a mapping from a graph-oriented language supporting AND-
splits, AND-joins, XOR-splits, and XOR-joins, into sets of BPEL event handlers.
In this paper, we have extended this previous mapping to cover a broader set of
BPMN constructs and to improve the readability of the generated code. Whereas
in [21] the generated code relies heavily on BPEL event handlers, in this paper
we make greater use of BPEL’s block-structured constructs and control links.

In parallel with our work, Mendling et al. [16] have developed four strategies
to translate from graph-oriented process modelling languages (such as BPMN)
to BPEL. Firstly, the so-called Structure-Identification Strategy works like the
structured activity-based translation approach presented in this paper. Next, the
Element-Preservation Strategy and the Element-Minimization Strategy translate
acyclic graph-oriented models into BPEL process definitions with control links.
But the authors simply point out that the two strategies can be applied to the
transformation of acyclic graphs, while in this paper, we have formally char-
acterised the set of acyclic process models that can be mapped to BPEL using
control links. Also, the Element-Preservation Strategy generates BPEL processes
that contain many unnecessary empty activities. The Element-Minimization
Strategy then tries to mitigate this problem but it does not completely eliminate
all these empty activities. Meanwhile, our proposal for translating synchronising
BPMN process models into BPEL control links does not generate such unnec-
essary empty activities. Finally, the Structure-Maximization Strategy tries to
derive a BPEL process with as many structured activities as possible and for
the remaining unstructured fragments, it tries to apply the strategies that rely
on control links. None of these four strategies permit the translation of processes
with arbitrary cycles as we do in our proposal.

7 Conclusion

This paper presented an integrated set of techniques to translate models captured
using a core subset of BPMN into BPEL. The proposed techniques are capable of

14 The ProM framework offers a wide range of tools related to process mining (http:
//www.processmining.org).

15 Protos is a process modelling tool developed by Pallas Athena (http://uk.
pallas-athena.com/).

34

generating readable BPEL code by discovering “patterns” in the BPMN models
that can be mapped onto BPEL block-structured constructs or acyclic graphs of
control links. One of the techniques can deal with unstructured BPMN models
by translating the control dependencies in the BPMN model into a collection of
BPEL event handlers that trigger one another to emulate these dependencies.
This latter technique enables any core BPMN process model to be translated
into BPEL, but at the price of reduced readability. The integration of the pro-
posed techniques is therefore defined in a way that maximises the use of struc-
tured BEL constructs and minimises the use of event handlers. The integrated
technique has been implemented as an open-source tool, namely BPMN2BPEL,
available at http://www.bpm.fit.qut.edu.au/projects/babel/tools. Test-
ing has been performed against the case studies presented in this paper as well
as examples extracted from the BPMN standard specification. The correctness
of the generated BPEL process definitions has been validated by loading them
into the Oracle BPEL Process Manager (version 10.1.2)16.

A possible avenue for future work is to extend the proposed techniques to
cover a larger subset of BPMN models, e.g. models involving exception handling
and other advanced constructs such as OR-joins. Unfortunately, many advanced
constructs of BPMN are under-specified and are still being refined by the relevant
standardisation body. A preliminary step to extend the translation is therefore
to unambiguously define these constructs, for example by extending the Petri
net semantics of core BPMN models defined in this paper (e.g. using YAWL as
an intermediate step).

The work reported in this paper is motivated by the fact that business pro-
cess models, while primarily intended for process documentation, communication
and improvement, are often also used as input for developing process-oriented
software systems. Thus a translation between BPMN models and languages used
by developers, e.g. BPEL, is a first step in instrumenting end-to-end methods
for this class of systems. But as the BPEL process definition is modified during
implementation, inconsistencies may arise between the original business process
models and the implemented process definitions. To tackle this issue, it would be
desirable to have reversible transformations, so that the modified BPEL models
can be viewed in BPMN and any deviations with respect to the original BPMN
model can be easily identified. We conjecture that for the class of structured
and synchronising process models, such reversible transformations are possi-
ble. However, characterising larger classes of BPMN models for which reversible
transformations can be defined is a challenging problem. In addition, defining
the notion of “reversibility” in the context of BPMN-to-BPEL translations may
prove to be a challenge on its own.

Acknowledgments. The authors are extremely grateful to Stephan Breutel for
his efforts in implementing the BPMN2BPEL tool. Moreover, we thank Kristian
Bisgaard Lassen for developing and implementing some of the ideas in a pure
Petri net setting and implementing this in the context of CPN Tools and ProM.

16 http://www.oracle.com/technology/products/ias/bpel/

35

References

1. W.M.P. van der Aalst. Verification of workflow nets. In P. Azéma and G. Balbo,
editors, Proceedings of 18th International Conference on Application and Theory
of Petri Nets, volume 1248 of Lecture Notes in Computer Science, pages 407–426,
Toulouse, France, June 1997. Springer-Verlag.

2. W.M.P. van der Aalst. Workflow verification: Finding control-flow errors using
Petri-net-based techniques. In Business Process Management: Models, Techniques,
and Empirical Studies, volume 1806 of Lecture Notes in Computer Science, pages
161–183. Springer-Verlag, 2000.

3. W.M.P. van der Aalst, J. Desel, and E. Kindler. On the Semantics of EPCs: A
Vicious Circle. In M. Nüttgens and F.J. Rump, editors, Proceedings of the EPK
2002: Business Process Management using EPCs, pages 71–80, Trier, Germany,
November 2002. Gesellschaft für Informatik, Bonn.

4. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2004.

5. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(3):5–51, July 2003.

6. W.M.P. van der Aalst, J.B. Jørgensen, and K.B. Lassen. Let’s go all the way:
From requirements via colored workflow nets to a BPEL implementation of a new
bank system. In On the Move to Meaningful Internet Systems 2005: CoopIS, DOA,
and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and
ODBASE 2005, volume 3760 of Lecture Notes in Computer Science, pages 22–39.
Springer-Verlag, 2005.

7. W.M.P. van der Aalst and K.B. Lassen. Translating workflow nets to BPEL4WS.
BETA Working Paper Series, WP 145, Eindhoven University of Technology, Eind-
hoven, 2005.

8. A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, C. K. Liu,
S. Thatte, P. Yendluri, and A. Yiu, editors. Web Services Business Process Ex-
ecution Language Version 2.0. Committee Draft. WS-BPEL TC OASIS, Decem-
ber 2005. Available via http://www.oasis-open.org/committees/download.php/

16024/.
9. J. Becker, M. Kugeler, and M. Rosemann, editors. Process Management. A Guide

for the Design of Business Processes. Springer-Verlag, 2003.
10. J. Desel and J. Esparza, editors. Free Choice Petri Nets, volume 40 of Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge,
UK, 1995.

11. B. Kiepuszewski, A.H.M. ter Hofstede, and W.M.P. van der Aalst. Fundamentals
of control flow in workflows. Acta Informatica, 39(3):143–209, 2003.

12. B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On structured workflow
modelling. In Proceedings of 12th International Conference on Advanced Informa-
tion Systems Engineering (CAiSE 2000), volume 1789 of Lecture Notes in Com-
puter Science, pages 431–445, London, UK, 2000. Springer-Verlag.

13. J. Koehler and R. Hauser. Untangling unstructured cyclic flows - A solution
based on continuations. In R. Meersman, Z. Tari, W.M.P. van der Aalst, C. Bus-
sler, and A. Gal et al., editors, On the Move to Meaningful Internet Systems
2004: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences,
CoopIS, DOA, and ODBASE 2004, volume 3290 of Lecture Notes in Computer Sci-
ence, pages 121–138, 2004.

14. K.B. Lassen and W.M.P. van der Aalst. WorkflowNet2BPEL4WS: A Tool for
Translating Unstructured Workflow Processes to Readable BPEL. Accepted for

36

14th International Conference on Copperative Information Systems (CoopIS 2006),
also published as BETA Working Paper Series, WP 167, Eindhoven University of
Technology, Eindhoven, 2006.

15. R. Liu and A. Kumar. An analysis and taxonomy of unstructured workflows.
In Proceedings of the International Conference on Business Process Management
(BPM2005), volume 3649 of Lecture Notes in Computer Science, pages 268–284,
Nancy, France, 2005. Springer-Verlag.

16. J. Mendling, K.B. Lassen, and U. Zdun. Transformation strategies between
block-oriented and graph-oriented process modelling languages. In F. Lehner,
H. Nösekabel, and P. Kleinschmidt, editors, Multikonferenz Wirtschaftsinformatik
2006. Band 2, pages 297–312. GITO-Verlag, Berlin, Germany, 2006.

17. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, April 1989.

18. OMG. Unified Modeling Language: Superstructure. UML Superstructure Specifi-
cation v2.0, formal/05-07-04. OMG, August 2005. Available via http://www.omg.

org/cgi-bin/doc?formal/05-07-04.
19. OMG. Business Process Modeling Notation (BPMN) Version 1.0. OMG Final

Adopted Specification. OMG, February 2006. Available via http://www.bpmn.

org/.
20. G. Oulsnam. Unravelling unstructured programs. Computer Journal, 25(3):379–

387, 1982.
21. C. Ouyang, M. Dumas, S. Breutel, and A.H.M. ter Hofstede. Translating Standard

Process Models to BPEL. In Proceedings of 18th International Conference on
Advanced Information Systems Engineering (CAiSE 2006), volume 4001 of Lecture
Notes in Computer Science, pages 417–432, Luxembourg, 2006. Springer-Verlag.
An extended version as a technical report is available via http://is.tm.tue.nl/

staff/wvdaalst/BPMcenter/reports/2005/BPM-05-27.pdf.
22. C. Ouyang, H.M.W. Verbeek, W.M.P. van der Aalst, S. Breutel, M. Dumas,

and A.H.M. ter Hofstede. Formal semantics and analysis of control flow in
WS-BPEL. Technical Report BPM-05-15, BPMcenter.org, September 2005.
Available via http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2005/

BPM-05-15.pdf.
23. J. Recker, M. Indulska, M. Rosemann, and P. Green. Do process modelling tech-

niques get better? A comparative ontological analysis of BPMN. In D. Bunker
B. Campbell, J. Underwood, editor, Proceedings of the 16th Australasian Confer-
ence on Information Systems. Australasian Chapter of the Association for Infor-
mation Systems, Sydney, Australia, 2005.

24. J. Recker and J. Mendling. On the translation between BPMN and BPEL: Con-
ceptual mismatch between process modeling languages. In T. Latour and M. Petit,
editors, Proceedings of Workshops and Doctoral Consortium for the 18th Interna-
tional Conference on Advanced Information Systems Engineering. Namur Univer-
sity Press, Luxembourg, Grand-Duchy of Luxembourg, 2006.

25. M. Rosemann. Preparation of Process Modeling. In J. Becker, M. Kugeler, and
M. Rosemann, editors, Process Management. A Guide for the Design of Business
Processes, pages 41–78. Springer-Verlag, 2003.

26. S. Thatte. XLANG Web Services for Business Process Design, 2001.
27. S. White. Using BPMN to Model a BPEL Process. BPTrends, 3(3):1–18, March

2005.

37

