
Communication Abstractions for Distributed
Business Processes

Lachlan Aldred1, Wil M.P. van der Aalst1,2, Marlon Dumas1, and Arthur H.M.
ter Hofstede1

1 BPM Group, Queensland University of Technology, Australia
{l.aldred,m.dumas,a.terhofstede}@qut.edu.au

2 Department of Mathematics and Computer Science, Eindhoven University of
Technology, The Netherlands
w.m.p.v.d.aalst@tue.nl

Abstract. Languages for business process definition generally suffer
from myopic approaches to capturing communication between distrib-
uted processes. Effective communication between processes requires: sup-
port for conversations involving interrelated interactions spread over
time; ability to select and group messages based on their content, re-
gardless of format and transport technology; and resolving contention
between processes or tasks for common sets of messages. This paper
presents a set of communication abstractions that provide a “glue” be-
tween the process layer and the middleware. The paper also reports on
an implementation of these abstractions and an experimental evaluation.
Keywords: Business process integration, correlation patterns.

1 Introduction

At present, the definition of business processes that interact with one another
in a distributed environment is hampered by a number of factors. Firstly, these
processes are required to run on top of mainstream communication middleware
which often does not support key features needed by applications in general [4,
10, 12, 11], and process-oriented applications in particular. For instance message
selectors in JMS3 cannot filter messages based on their body. Secondly, there
exist conceptual problems with state-of-the-art business process definition lan-
guages in regards to process-to-process communication abstractions. To receive
message batches for example, Business Process Management Systems (BPMSs)
force designers to incorporate dedicated code into the same scope as business
process logic. This leads to brittle process definitions. Finally, apart from cor-
relation mechanisms for routing messages to process instances, BPMSs accept
messages sent to them without filtering, thus forcing unnecessary amounts of
message selection code into the process definition. In summary, the distinction
between process abstractions and communication abstractions is blurred in ex-
isting approaches.
3 Java Message Service: java.sun.com/products/JMS accessed November 2006.

This paper motivates and defines a set of communication abstractions at a
layer in-between the business process and the middleware, that simplify the def-
inition of interactions between distributed processes. The proposed abstractions
have been implemented on top of a communication API, namely JCoupling [5],
that abstracts away from the underlying middleware and protocols. Using this
implementation, we have conducted preliminary experiments to compare this ap-
proach with respect to the approach embodied in the business process execution
languages for Web services (WS-BPEL) [7].

Figure 1 presents the scope of our proposal within the broader context of
business process integration. At the time of writing there are efforts to enhance
any layer mentioned. In practice, however, the top three layers (Contract, Dis-
covery, and Choreography) are almost exclusively performed by people, and the
bottom two layers (Messaging, and Transport) are performed by almost every
form of middleware available.

 Filtering, Composite Messaging, Property Management, Garbage Collection, Contention,

Typing

Partner process, Roles, Relationships, Choreographies

Conversations, Dynamic destinations, Send, Receive, Cancel, Event
Handling

Process Discovery, Semantics

e.g. Sockets, HTTP, SMTP,

Discovery Layer

Choreography Layer

Process Layer

Control Layer

Messaging Layer

Transportation Layer

Contracts, Contract Lifecycles, Negotiation

Contract Layer

SOAP, XML,

Multimedia, etc.

Packaging

Transactional deliv.

Streams, Multicast

Time (de-)coupling,

Channel type (Topic/

Address/ Queue),

Coupling

One-way, Request-

Response,

Faults

Responses

RMI

Fig. 1. Layers supporting process integration.

The remaining two layers (Process, and Control) are where the bulk of current
effort is being directed. WS-BPEL, for example touches heavily on these two
layers, and also deals with Roles and Relationships from the Choreography layer.
These two layers also form the scope of this paper.

The next section presents motivating scenarios and requirements for process-
to-process communication. Section 3 introduces a communication model for dis-
tributed business processes addressing these requirements. Section 4 discusses
the implementation and experimental evaluation of a prototype that implements
these abstractions. Section 5 discusses related work and Section 6 concludes.

2 Motivating Requirements

Implementing interactions between business processes brings new issues on top of
the traditional requirements found in distributed systems implementation (e.g.
coupling over time and space [4, 12], guaranteed delivery, encryption). In this
section we distill some of these specialised requirements. These requirements
are drawn from two studies on patterns in the area of integration of enterprise
applications: the Enterprise Integration Patterns by Hohpe and Woolf [14], and
the Correlation Patterns by Barros et. al. [9].

The correlation patterns described by Barros et. al. review conversation and
message consumption patterns for distributed business processes. Most of those
patterns led to requirements motivating our proposals. From Hohpe and Woolf
we categorised the patterns into (1) Patterns forming requirements for a BPM
messaging solution, (2) Patterns that are supported by most middleware, (3) Pat-
terns composable from any data-aware, message-aware system, (4) Patterns con-
cerning deployment and administration. The communication abstractions pro-
posed in this paper focus on the first category. Following is our categorisations
of Hohpe and Woolf’s patterns.

Patterns that constitute requirements for a BPM messaging solution
Aggregator, Channel Purger, Competing Consumers, Correlation Identifier,
Data Type Channel, Event Driven Consumer, Message Expiration, Message
Filter, Polling Consumer, Publish-Subscribe Channel, Remote Procedure
Invocation, Request-Reply, Return Address, Scatter-Gather, Selective
Consumer, Transactional Client

Well understood patterns that are supported by any middleware solution
Command Message, Document Message, Event Message, Guaranteed de-
livery, Message Endpoint, Message, Messaging, Point to Point Channel,
Message Channel

Patterns composable from any data aware, message aware system
Canonical Data Model, Claim Check, Composed Message Processor,
Channel Adapter, Content Based Router, Content Enricher, Content Filter,
Detour, Dynamic Router, Envelope Wrapper, Format Indicator, Idempotent
Receiver, Invalid Message Channel, Message Broker, Message Bus, Message
Dispatcher, Message History, Message Router, Message Sequence, Message
Store, Message Translator, Messaging Bridge, Messaging Gateway, Mes-
saging Mapper, Normalizer, Pipes and Filters, Process Manager, Recipient
List, Resequencer, Routing Slip, Service Activator, Shared Database, Smart
Proxy, Splitter, Test Message, Wire Tap

Patterns concerning deployment/administration Control Bus, File
transfer

In the remainder of this section, we discuss the different requirements. For
each requirement we cite the related patterns from [9, 14].

Conversations Support for conversations is necessary when business processes
need to exchange more than one related message, and in particular when the
processes are stateful, or execute over long periods. Furthermore typical process
deployments, require many instances to share common channels and conversa-
tions enable messages finding their way to the correct instance. Proposals such as
WS-BPEL may often create the illusion that there is one process instance, when
in fact there are many – because all process instances are hidden behind the one
portType/channel. We know of four approaches to implementing conversations
through correlation:

1. Property-based Correlation assumes that many process instances share the
same channel. Messages get routed to the appropriate instance by applying
process-defined functions to incoming messages and then by matching the
results to process instance values.

2. Token-based Correlation again involves many instances sharing the same
channel. In this case mandatory “correlation tokens” inside the header of
each message identify to which process instance they should be routed.

3. Instance Channels achieve correlation by using separate channels for each
instance. The REST [?] architectural style adopts such an approach, and its
claimed advantages include greater flexibility, transparency, and scalability.
Zur Muehlen et. al. [?] describe the application of the REST architecture to
BPM achieving conversations through instance channels. Such an approach
seems intuitive to many process designers.

4. Protocol-based Correlation – Correlation is performed at the transport layer
of the protocol. i.e. HTTP request-response, or CORBA-RPC.

WS-BPEL supports property-based correlation and WS-BPEL engines sup-
port token-based correlation through the use of implementation-specific tokens
for instance routing, possibly leading to vendor lock-in.
Related to: Key Based Correlation, Property Based Correlation, Reference
Based Correlation, Conversation Overlap, Hierarchical Conversation, Initiator,
Follower [9], Correlation Identifier [14]
Scenario 1: Purchase Order A purchase order is received. The process sends sep-
arate queries to different suppliers for each line item. Each response is correlated
over the purchase order identifier, and over the line item number. This example
demonstrates the need for nested conversations.

Property-Based Message Selection Property-based message selection helps
a process pick the best message off a channel. This significantly reduces the
complexity logic within the process designed to iterate through an internal array
of messages. There should be simpler abstractions for this.

Related to: Message Filter, Selective Consumer [14].
Scenario 2: Line Items A parts buyer wants to proceed with the best quote.

Atomic Multiple Source Consumption When messages need to be joined,
from more than one source, atomic multiple source consumption greatly reduces
complexity in the process model. This is because the messages from each source
may need to match over a certain field or property, and packaging them together
removes the need to do this in the process. Furthermore it is much simpler to
design exception handling if there is only one point of failure in the process. To
demonstrate this, consider the possible outcomes of consuming them separately:
(1) both message arrived, or (2) one failed to arrive, or (3) both failed to arrive, or
(4) they both arrived however there was a property mismatch, or (5) there were
two processes and each consumed only one message. Hence, atomic multiple
source consumption would any exception handling code, by allowing it to be
linked to only one communication task.
Related to: Atomic Consumption [9].
Scenario 3: Purchase processing Task “ship-goods” will not begin until there is
a confirmation of credit from the accounts department, and all line items have
been notified as being “in stock”.

Aggregated Consumption Consuming messages in one “pass” of a process
loop greatly reduces complexity. There is no need to iterate through a set of
receive actions, or to encode loop stop-conditions, which can often be a little
arbitrary if the intent is to consume all available messages. Furthermore it may
be necessary to choose messages only if their properties, taken collectively, satisfy
certain criteria.
Related to: Aggregator [14].
Scenario 4: Shipping Company When at least 100 items have arrived destined
for the same district, and a truck is available, the truck gets dispatched.

Aggregated Consumption involving Time Business processes are in many
cases very time sensitive, for example the hours of business (9am to 5pm, Monday
to Friday, EST). Thus there exists the need to include the notion of time into
the process layer, for example by allowing message selection based on temporal
constraints. Temporal constraints can typically be either absolute or relative i.e.
“15 – 20 November, 2006”, or “within the last 7 days”. Both styles are necessary
with the latter being more challenging due to the group of eligible messages
being in a continual state of flux with the passage of time.
Related to: Time-Based Correlation, Moving Time Window Correlation [9]
Scenario 5: Time If, over the last five working days, more than five percent of
the incoming messages that arrive at the department contain complaints then
an emergency quality control process gets launched.

Contention Contention, or competition, for the same resources, is a natural
phenomenon. For instance, auctions and goods tendering rely on contention be-
tween competitors. Messages, unlike auction items, have little or no intrinsic
value and therefore contention over messages may not seem compelling. How-
ever, contention over messages is an enabling technique for load balancing of

message consumption; wherein many instances of the same process share the
workload by only consuming messages/events when they are ready.
Related to: Competing Consumers [14].

In BPM systems supporting the deferred choice pattern [2] there are two
layers of contention: (a) contention for the same message between different task
instances (b) contention between tasks of the same process instance for shared
control flow triggers.
Scenario 6: Competing Processes Copies of a process are distributed onto differ-
ent hosts. The first process instance to claim the message provides the service,
thus distributing the processing workload.

Handling Events Processes, by their very nature, need to be able to handle
events that they do not solicit. Actors in the environment being under their own
spheres of influence, generate events that the process may not anticipate, but
the process will need to react to in a given way. Consider the following example:
Related to: Event Driven Consumer [14].
Scenario 7: Event Handling A travel booking may be canceled, should the cus-
tomer decide to do so. The process needs to be able to undo certain actions at
points in the process if such an event occurs, however the process never explicitly
“awaits” the receipt of a cancelation event.

Channel Passing The ability for a process to “learn” about a new actor during
execution by virtue of a reference to a new channel being contained in a received
message. Then, the consequent ability for the process to communicate with this
new actor.
Related to: Return Address [14].
Scenario 8: Channel passing A corporation begins travel booking through an
agency. The agency then supplies the corporation with a channel where the
status of the booking can be queried as it progresses.

Garbage Collection When messages arriving on a channel are too carefully
filtered there becomes the strong possibility of having a large number of uncon-
sumed messages on each channel. Messages have expiry dates however expiry
dates cannot be updated onto a message once it is buffered on the channel.
Special garbage collection filters could be added and removed from the message
layer dynamically during process execution.
Related to: Message Expiration, Channel Purger [14].
Scenario 9: Garbage Collection Once a process completes all unconsumed mes-
sages addressed to this process instance are removed from the set of input chan-
nels.

Interaction Cancelation The ability to cancel incomplete interactions.
Related to: Transactional Client [14], Cancelation [2].
Scenario 10: Cancelation A supplier having posted a receive purchase order
request, discovers that the warehouse needs to be replenished first, and conse-
quently cancels its earlier receive-request.

Summary These requirements, being drawn from the respective patterns stud-
ies, ought to be supported by most state of the art solutions, however we found

that this was not the case. For instance, despite WS-BPEL being possibly the
most widely accepted standard in this domain, it only provides support for the
first requirement. It is one thing to support a wide range of problems in com-
municating business processes, however the language constructs exposed to the
creators of these processes need to be suitable to their purpose, and they should
be as intuitive, or conceptually aligned to their purpose as is possible.

3 Communication Model for Business Processes

In this section we introduce a model supporting interactions between processes
addressing the requirements outlined above. In the proposed model, instances
of a process model are hosted in a process container. The container uses a set of
channels that are referred to by the process model. The channels are hosted in
some form of message-oriented middleware. Channels can be used by a process
container to send messages (outbound channel), receive messages (inbound chan-
nel), or perhaps both directions (bi-directional channel).

Outbound channels are composed of a unique name, possibly a type and/or
an endpoint descriptor (the latter may be determined only at runtime). The
proposed model abstracts away from the specific language used to describe mes-
sage types. A particular embodiment of the concept of channel is one where
message types are captured in XML Schema (or WSDL). Individual messages
sent through the channel are then validated against its XML schema (or WSDL
message type definition). Similarly, we abstract away from the mechanism used
to describe destination endpoints. If using HTTP as a transport protocol for
example, an endpoint can be described as a URL, while if using SOAP/HTTP,
it can be described as a WSDL operation binding. Outbound channels support
a range of message sending primitives which are described in detail in [5]. In the
rest of the paper however, we focus on inbound channels.

Inbound channels have the same components as outbound ones but they
additionally have a set of properties. A property is a function that takes as input
a message and produces a literal value. This is similar to the concept of property
alias defined in BPEL. However, as shown later, the scope of applicability of
properties in our model is wider than that of BPEL. In BPEL, property aliases
(and their composition in the form of correlation sets) are only used to correlate
pairs of outbound and inbound messages. In contrast, in our model, properties
can be used to perform other forms of message selection and aggregation.

A relation (i.e. a database table) is created for each inbound channel used
in any process model. Each relation contains two predefined attributes: one of
type message identifier and the other of type timestamp. Additionally, the
relation contains one attribute (column) per property associated to the channel.

Properties are used to define filters. A filter is a function that is evaluated
against the set of messages available for consumption over one or multiple chan-
nels. When the evaluation of a filter returns a non-empty set of messages, we
say that the filter matches these messages. Filters can fulfill two purposes: (i)
garbage-collecting filters are registered by a business process to discard unwanted

or unnecessary messages over inbound channels; (ii) message consumption filters
are used to consume one or multiple messages from one or multiple channels.
Orthogonally, filters may be one-off or persistent. A one-off filter is immediately
withdrawn after it has matched a message or set of messages, while persistent
filters are preserved until explicitly withdrawn.

A filter is represented as a query over the relations(s) associated with the
channel(s) it refers to. These queries are always constrained to produce a relation
wherein each tuple contains message identifier attributes.

When a message arrives onto a channel, a tuple is inserted into the relation
associated with that channel. This tuple always contains message identifier
and timestamp attribute values, as well as attribute values obtained by applying
each of the channel’s properties to the incoming message. The inserted tuple
represents the incoming message for the purpose of evaluating message filters.
After being abstracted as a tuple, the incoming message is either:

– Immediately routed to a message receipt action if one has registered a filter
that matches the messsage (possibly in combination with other messages).

– Discarded if the message matches any of the garbage-collecting filters regis-
tered for that channel.

– Queued until it matches a garbage-collecting or message consumption filter.

Conceptually, a filter is re-evaluated every time that a new message arrives
to any of the channels it refers to (or continuously in the case of filters whose
query depends on the current time). In practice however, the evaluation can be
made incrementally and only when required.

Primitives for registering and withdrawing filters are provided as part of
the communication framework. Registration and withdrawal of filters can be
initiated either by the process container or by individual process instances. When
a message consumption filter is registered, the filter is run once against the set of
messages available in the channels referenced by the filter. If the filter matches
one or several messages, these are removed atomically from their channel(s) and
given back to the process container or process instance that registered the filter.
If the filter is one-off, it is withdrawn. Should no match between a filter and
the existing set of messages be found upon registration of the filter, the filter
is maintained and re-evaluated whenever required as explained above, until the
filter is either explicitly withdrawn or it matches a message (or set of messages).
Once a match is found, the message(s) are routed to the corresponding process
container or instance and the filter is removed.

Garbage-collecting filters work similarly: when registered, the filter is eval-
uated against the contents of the channels targeted by the filter. If a match is
found, the matched message(s) are discarded. If the filter is one-off, it is with-
drawn otherwise, it is preserved and it is re-evaluated when required.

The proposal is formally captured as a Coloured Petri net in Fig. 2. The net
shows how inbound messages are stored and matched against filters. A token in
place “incoming message” represents a message received by the communication
layer. A transition called “put” moves tokens from this place to a place called
“message buffer”. This latter place holds a single token containing a list of all

� � � � � � � � �
� � � � � 	 �
 � � � � � � � � � � � �

� � � � �

� � � � � 	 �
 � � � �

� � � � � � � � � � � � � � � � � � �
� � � � � 	 �
 � � � � �

� � � � � 	 �
 � � � �

� � � � � �
 �
� � � � � � � �
� � � � � 	 � �
� � � � � 	 �
 � � � � �

� � � � � � � � �
� � � � � 	 � �

� � � � � � � � � � � � � � � � � � � � � � � � 	
� � � � � � �
� � � � � 	 �
 � � � � �

� � � � � 	 �
 � � � �

� � � � � � �
	 � � � 	 �� � �

� � � � �

� � � � � � �
� � � � � 	 � �

� � �
� ! � � " � # # $ % & � # �

� � � � � � � 	
� � � � � 	 �

� �
' ($)) & " � # # $ %

� � � � � 	 �
� � � � � � � � � � �

� � � � � �� * �
� ! � � " + � & � �

	 � � � 	 �
� � � � � � � � � 	

� � � � � �� * �
+ � & � �

� � � * �

� * �

� �

� � �

� � � � � 	 �
� � � � �

� # # $ % , � $ � $
 $ #

 � � � � � � � � � � � � 	 �
� � � � � �
� � � � � 	 �
 � � � � �

Fig. 2. Petri net capturing the treatment of inbound messages.

unmatched messages over all channels. Two of the places “garbage collecting
filters” and “message consumption filters” are meant to contain one token per
active filter. Transition “collect garbage” fires when there is a garbage-collecting
filter that matches at least one of the messages in the message buffer. This
transition puts back a modified message buffer in which all messages matching
the garbage-collecting filter have been removed. Similarly, transition “match”
fires if there is a consumption filter matching at least one message in the buffer.
This transition also puts back a modified message buffer in which the matched
messages are removed. In addition, it produces a tuple containing the filter and
the set of matched messages into output place “matched messages”. These tokens
can then be routed to the process container or process instance that registered
the filter in question. The latter is identified by a request identifier (“reqID”).
For simplicity, the net only captures the case of “persistent filters”, but it is easy
to extend the net to deal with one-off filters: the only difference being that such
filters should not be put back by transitions “collect garbage” and “match”.

The proposed communication model abstracts away from the way channels
and filters relate to business process activities or events. This way, the model
can be integrated into a wide range of process definition languages. In BPEL, for
example, inbound communication actions appear in two forms: as a standalone
receive activity type and as the second leg of activities of type invoke, where the
first leg corresponds to an outbound communication action. Thus, BPEL can be
extended with the proposed communication primitives by enabling receive and
invoke activities to refer to channels and filters as defined above. Channels can
then be linked to partner links and operations in BPEL.

Similarly, the proposed model can be used to extend the YAWL process defi-
nition language to support a richer set of communication patterns. For example,
we can define a type of message receipt task in YAWL such that: (i) upon en-
ablement, the task registers a one-off message consumption filter defined as part
of a task decomposition; (ii) the task then waits until the filter returns a match;
(iii) should the task be cancelled before a match is found, the filter is withdrawn.
Also, we can allow message consumption filters to be attached to the initial con-
dition of a YAWL process model, to capture scenarios such as: “a new process

instance should be started whenever a given type of message (or combination
of messages) has been received.” An integration of the proposed communication
primitives into YAWL is left as future work.

4 Implementation and Evaluation

The implementation builds on a middleware service, and API, called JCoupling
(available from www.sourceforge.net/projects/jcoupling). JCoupling sup-
ports a superset of the communication styles supported by mainstream com-
munication middleware. It also abstracts away from transport protocol details,
thus allowing us to concentrate on the core aspects of our proposal. It supports
uni- and bi-directional communication, time, space, and synchronisation decou-
pling, and provides support for fault propagation. JCoupling can operate over
open-JMS4 and is able to use XML/HTTP or XML/TCP for message transport.

Figure 3 presents an architectural diagram of the prototype. It shows proper-
ties and filters being used during a simple interaction between two process tasks.
In Fig. 3: (1) A message is sent by task “T1” over channel “Ch1” (denoted by
arrows labelled “1” going from the engine to the controller). (2) Properties “P1”
and “P2” are used to extract values from the message. Next the message is put
onto JCoupling (3.a), and a new tuple (row) is added to the relation (table)
for channel “Ch1” (3.b). (4) The receiver task “T2” posts a filter over channel
“Ch1”. (5) Using the filter, the controller performs a query, over the relation
for channel “Ch1”. That query produces a tuple and the matching message is
extracted from JCoupling (6). The callback to “T2” contains the message (7).

T2
T1

JCoupling Communicator JCoupling Communicator

Workflow Engine

1

Middleware

Host

Ch 1

Ch 2

P1

P2

P3

47

4
1

Proc. InstanceProc. Instance

2

3.b
5

3.a

7Filters Controller

Ch2Ch1

2

6

Workflow Engine

Postgres DB

Properties

JCoupling

Fig. 3. Architecture of the proposal.

4 Open JMS www.openjms.sourceforge.net accessed November 2006.

This section gives further details on the implementation of properties, inter-
actions and filters, and reports on an experimental evaluation of the prototype.

4.1 Implementing Properties

The prototype implementation contains an interface called Property. This in-
terface and three implementing classes are presented in Fig. 45. Instances of
Property extract various scalar values from messages. Parametric classes (i.e.
“generics”) are used to define the return type for the method accessValue().

We envision a configuration tool for creating property instances such that
process designers do not need to write Java code. For example if the process de-
signer wishes to create an XPath property, to extract “PurchaseOrderID’s” from
messages then it would only be necessary to supply a property name, a channel
binding, an XPath expression, and a Type (i.e. Text, Numeric, or Timestamp6)
defining what type the XPath expression produces (e.g. ‘PurchaseOrderId’,
‘PO_Chann’, ‘/order/@po-id/text()’, ‘Text’).

+accessValue(in message) : Object

-name : String

-xpathExpr : String

-type : Type

XPathProperty

-Text = Text

-Numeric = Numeric

-Timestamp = Timestamp

«enumeration»

Type

+accessValue(in : Message)

+getName() : String

+getDBColumnType() : Type

Property

:T

+accessValue(in : Message) : Date

Timestamp

:Date

+accessValue(in : Message) : String

-propname : String

Header

:String

<<interface>>

. . .

Fig. 4. UML of the property Interface.

Here is a listing of the Property interface, in Java 5.

Listing. 1. Property Interface.
1 ...
2 public interface Property<T> {
3 /**
4 * The name of the property.
5 * @return the name.*/
6 public String getName();
7

8 /**
9 * Retrieves the value of the property from the message.

10 * @return a type ’T’ value of the property.*/

5 The proposal is not limited to these three property classes. For example: an
EdiProperty class could be created for use with EDI messages.

6 It can be seen that in our implementation Properties can produce values of either
Text, Timestamp, or Numeric. This list could possibly be extended in the future.

11 public T accessValue(Message message) throws Exception;
12

13 /**
14 * @return the relational attribute type for storing the property value.*/
15 public Type getDBColumnType();
16

17 /** The relational attribute types currently supported by property. */
18 public enum Type {Text, Numeric, Timestamp}
19 }

The prototype contains three implementations of the interface Property:

TimestampProperty inspects the message for the time it arrived on the chan-
nel. The method accessValue(Message message) uses the generic typing
in Java to return a ‘Date’. The method getDBColumnType() returns the
enumerated type Property.Type.Timestamp.

XPathProperty extracts values out of the XML body content of the message
using XPath statements passed in through its constructor. The method
accessValue(Message message) returns an object that is either a ‘Date’,
a ‘Double’, or a ‘String’ – depending on the Property.Type and the XPath
statement passed into its constructor.

HeaderProperty extracts the values of any named properties from the message
header. The method accessValue(Message message), uses Java’s generics
to return a ‘String’. The constructor receives the name of the message header
property, which is used to name its corresponding relational attribute for that
property, and is used to extract the value from the header.

In our implementation each channel has its own, dedicated database relation
for storing its own property values that we refer to as the property relation.
Adding new properties to a channel results in new columns being added to
that channel’s property relation. For example adding property PurchaseOrderId
to channel PO-Chan causes the attribute PurchaseOrderId to be added to its
property relation (PO-Chan). Any newly added attribute is declared to allow
‘null’ values, and hence new columns may be added during execution without
causing an SQL error, if there is data in the relation. To match messages SQL
queries may be executed over the property tables to find messages that match
certain property values. These may be in many cases quite simple. On the other
hand the SQL expressions can be quite sophisticated, as we shall see in Sect. 4.3.

As mentioned in Sect. 3, each channel’s property relation has two default
attributes (columns): messageid and timestamp. Table 1 presents a relation for
channel QuotesCh.

QuotesCh
messageid timestamp quote amount

C0000M0001 2006-11-15 16:35:50 4000 1100
C1111M0002 2006-11-16 18:12:20 3000 1000
C2222M0001 2006-11-16 20:42:53 2500 1001
C3333M0003 2006-11-17 16:57:21 2000 999

Table 1. Relation corresponding to channel QuotesCh

4.2 Resolving Contention

A process may have to wait days before an appropriate message can be received.
Hence, the prototype stores send/receive requests and performs callbacks when
the interactions are complete. Indeed requests to send/receive, have their own
lifecycle, including interaction cancelation (i.e. when process state change makes
unnecessary an incomplete interaction). A race condition between two receive
tasks is a perfect example of this. For example, a task “receive-bill-payment” and
a task “receive-purchase-order-cancelation” operate such that the completion of
one disables the other.

Timeout

Receive

Payment

Enabled

Fig. 5. Example of a YAWL process with a deferred choice involving a receive task.

Figure 5 illustrates a race condition between a timeout task and a receive
task. Here, the token in the place enables two tasks, a timeout task, and a
receive-payment task. Which ever task finishes first will claim the token, dis-
abling the other, and causing the loser’s unfinished action to be cancelled. The
first message to arrive will make the other message unnecessary. This is a “pick”
activity in BPEL, or a “deferred choice” in YAWL [1]. Accordingly the prototype
(being a control layer between a process and the message layer), exposes a ‘with-
draw’/‘cancel’, primitive for send and receive interactions – also implementing
the cancelation requirement (Sect. 2).

Another form of contention occurs where two tasks both want the same
message/s. Contention may be a requirement (for example load balancing, Sce-
nario 6), or it may be accidental, or perhaps even unavoidable due to the nature
of the business process. Regardless contention, being a natural and sometimes
necessary phenomenon, mandates a graceful approach to handling it7.

To overcome the problems of contention within the context of our proposal
we adopted the following algorithm in the prototype.

1. The receive request, containing its messages filter, is stored in the prototype.

7 This is a distinguishing point from WS-BPEL, which throws runtime exceptions
when contention between two receive-tasks occurs. Also, WS-BPEL’s greedy routing
of messages to process instances precludes the possibility to support contention.

2. Once the filter produces a non empty set (Ω) of message-identifiers, it is
locked to ensure that the receiver (task) cannot withdraw the request.

3. Then the message engine attempts to lock every message in Ω.
4. If all messages were successfully locked, then for each message-id in Ω, that

property tuple is deleted, and each corresponding message gets removed from
the buffer and sent to the requestor in a callback.

5. Finally the request filter is withdrawn from the engine.

Should the receiver be unable to lock the filter at step 2 the prototype with-
draws the filter. At step 3, should any of the messages in Ω be already locked
then the filter locked during step 2 is unlocked, and the filter is rescheduled.
Hence the first locker of the message succeeds.

When we link a business process layer to our prototype we plan to have Step
2 cause a receive task to attempt to lock its input tokens. This will prevent a
receive task from locking its filter, and then receiving a message, only to find
that another task has already used its enabling triggers (tokens).

4.3 Implementing Filters

This section shows how the extensions to JCoupling outlined above, support the
motivating requirements of Sect. 2. Property relations, abstracting from message
content, enable the use of restricted SQL queries to produce relations containing
message identifiers. The primary restriction we place over the queries is that
their outer projections must only be over attributes of the domain messageid.
i.e. for all attributes of a relation produced by applying any query to the property
relations, the domain of that attribute must be messageid.

A single property, or combinations of properties can be used to select mes-
sages. We envision that the process modeller would have a library of config-
urable filter templates, each containing semi-complete queries. The filter tem-
plates would also allow a “design time” binding to process variables, enabling
runtime data to be inserted into parameterised SQL. Alternatively, for those
situations requiring sophisticated aggregate operations, or complex joining ex-
pressions, the process designer may instead write their own SQL.

Property Based Selection Scenario 2 captured the need to select and proceed
with the best quote, which is an example of selecting messages based on property
values. The query in Listing 2 uses two properties defined over the channel
“QuotesCh” (see Table 1). These are “price” and “quantity”. When a receive
request containing a query is invoked over the prototype, it will apply the query
– returning messages in a callback to the requestor when results are found.

Listing. 2. This query combines ‘price’ and ‘quantity’ to find the best value offer.

1 SELECT messageid
2 FROM QuotesCh
3 WHERE quantity >= 1000
4 AND price/quantity =
5 (SELECT min (CostPerUnit)
6 FROM (SELECT price/amount AS CostPerUnit
7 FROM QuotesCh) AS Q1)

Conversations Scenario 1 outlined the need to correlate messages to an outer
conversation for “purchase-order-ID” and an inner (nested) conversation for
“line-item-id”. Messages will only be correlated to a nested conversation if they
satisfy correlation filters for the inner conversation, and all parent conversations.
To achieve this we append an AND-Clause to the query. The following query (see
Scenario 1) extracts runtime data from two process variables visible to the receive
task: namely PurchaseOrderID and LineItemID.

Listing. 3. Achieving nested correlation through querying correlation properties.

1 SELECT messageid
2 FROM PoResponseCh
3 WHERE PoID = $PurchaseOrderID$
4 AND ItemID = $LineItemID$

We envision that the process layer will generate queries for conversations
from a “conversation” construct in the process model. This construct would de-
clare which message properties are to be used for correlation, and whether each
communication task involved initialises the conversation, or follows it. Further-
more if any task involved in the conversation wants to apply message filters we
may have the task append more AND clauses to the generated query. No proposal
that we know offers this expressive power or flexibility.

We plan to introduce channel variables, and use the bi-directional channels
of JCoupling to achieve Instance Channel Correlation and Protocol-based Cor-
relation.

Atomic Multiple Source, and Aggregate Consumption Achieving a com-
bination of atomic multiple source consumption and aggregate consumption is
possible by applying a query to two or more property relations. For example Sce-
nario 4 required aggregate consumption of 100 packages destined for the same
area, and a truck availability message from another channel. Listing 4 extracts
runtime data from a process level variable called deliveryDistrict. The query
either returns at least 100 tuples, or returns nothing.

Listing. 4. This query produces a relation of messageid’s wherein the attribute

(Pack.messageid) refers to messages from Channel Packages, and the attribute

Truck.messageid refers to a message on Channel TruckWaiting. Related messages

are linked, thus removing the need to relate messages in the process.

1 SELECT Pack.messageid, Truck.messageid
2 FROM Packages As Pack, (SELECT messageid FROM TruckWaiting LIMIT 1) AS Truck
3 WHERE Pack.deliveryDistrict = ’$deliveryDistrict$’
4 AND 100 <= (SELECT count(*)
5 FROM Packages
6 WHERE deliveryDistrict = ’$deliveryDistrict$’)

Aggregated Selection Involving Time Scenario 5 sought to find if at least
5% of messages that are less than 7 days old contain complaints; drawing on
solutions to both time and aggregated selection. Additionally complaints were
sought on all channels. A join between property relations will not work as every
tuple from each relation represents one discrete event that needs to be considered

separately. So unlike Listing 4, the result relation will have one attribute. A view
over the union of source channels (property relations), solves this. In Listing 5
this view is named “Merged”. It combines properties (messageid, timestamp,
and complaint) from each of the source property relations.

Listing. 5. Using union and view to combine input sources for aggregate operations.

1 CREATE VIEW Merged AS (
2 SELECT messageid, timestamp, complaint
3 FROM CustomerCh
4 UNION SELECT messageid, timestamp, complaint
5 FROM PartnerCh)

Using the above view, aggregate calculations over the messages, taken collec-
tively, becomes feasible. Listing 6 demonstrates this. Lines 5 – 12 produce false
unless 5%, or more, of the messages are complaints. Lines 3, 8, & 12 show the
use of relative time expressions over the timestamp property. In cases like this
we imagine that the process creator would write Listings 5 and 6 manually.

Listing. 6. This query, adapted from a continuous query in [8], produces a non-empty

result of messageid’s when 5%, or more, of last week’s messages contain complaints.

1 SELECT messageid
2 FROM Merged
3 WHERE timestamp > (CURRENT_TIMESTAMP - INTERVAL ’7 days’)
4 AND complaint = true
5 AND (SELECT count(*)
6 FROM Merged
7 WHERE complaint = true
8 AND timestamp > (CURRENT_TIMESTAMP - INTERVAL ’7 days’)
9) >= (

10 SELECT 0.05 * count(*)
11 FROM Merged
12 WHERE timestamp > (CURRENT_TIMESTAMP - INTERVAL ’7 days’)
13)

4.4 Garbage Collection

So far we have introduced the notion of a filter that is addable to the prototype
that helps in receiving messages. We extended the API slightly to have a spe-
cial type of filter that removes stale messages. Like receive filters the garbage
collection filters contain a set of channels, and an SQL statement designed to
be applied over the property tables for each channel. The rules of execution
of receive filters is exactly the as that of garbage collection filters, except that
garbage collection filters do not attempt to lock or callback any receivers. They
just remove messages from the channels when a match is found.

4.5 Performance Evaluation

To compare our correlation approach with that of WS-BPEL, we conducted
experiments where up to ten thousand interactions were executed over our pro-
totype and over a WS-BPEL simulator. Each experiment involved creating, in
random order, at fixed intervals, a set of XML messages, all identical except for

the value of one element which was mapped to a property. Receiving processes
were spawned in the same way, each of which waited for one of the created mes-
sages. The code for the experiments is released with the JCoupling distribution.

The WS-BPEL correlation simulator was built using the same middleware as
our prototype. This simulator receives messages off a designated channel. Each
time a message arrives, an XPath expression is evaluated against it to extract
a property value (this is called a propertyAlias in WS-BPEL). The extracted
property value is then stored in a hash table together with the corresponding
message identifier.8 Concurrently, the simulator handles requests to consume
incoming messages based on property values. When the simulator finds a match
between a receive request and a message, the corresponding entry is deleted from
the hash table, symbolising that the message has been correlated.

Number of Interactions 50 100 250 500 1000 2500 5000 10000

Time (ms)
Proposed Approach 611 951 2230 5064 9003 25276 71409 234211
WS-BPEL Approach 524 938 2103 4046 7825 20506 44204 133933

Performance Difference 14% 1% 6% 20% 13% 19% 38% 43%

Table 2. Results of performance tests

The test results are presented in Table 2. The table shows that our approach
slightly underperforms that of WS-BPEL for small numbers of messages. This
difference grows for larger numbers of messages. The accentuated difference can
be explained by the fact that in the implementation of our approach, queries
to match uncorrelated messages with pending receive requests are run against
a persistent database, whereas in the WS-BPEL simulator, the corresponding
lookup is done in-memory9. For larger numbers of messages, this leads to a per-
formance penalty due to database cache management. A more consistent perfor-
mance could be achieved by using an in-memory database system to implement
our approach. Indeed, it is not necessary to make the correlation data structures
persistent, only the messages themselves need to be persistent. In future, we plan
to implement a more refined version of our approach and run a fairer and more
detailed comparison against the WS-BPEL approach.

The performance penalty of our approach should be weighed against the ad-
ditional functionality that it brings in. Indeed, our approach supports aggregate
messaging, multi-source consumption and message contention. Moreover, as pre-
viously mentioned, there are opportunities to optimise the brute-force approach
used in our implementation through incremental query evaluation.

5 Related Work

Communication in the context of distributed business processes has tradition-
ally been researched from the perspective of protocol or contract definition. For
8 In the interest of fairness, each entry is written to disk after being added to the

in-memory hash table, as our prototype stores property values in persistent tables.
9 Although entries are written to disk, lookups over the hash table are done in-memory.

example, the CrossFlow system [13] enables process designers to define contracts
governing the communication between multiple workflows, possibly distributed
across organisational boundaries. These contracts can be statically checked
for consistency. Similarly, [3] proposes a method for capturing inter-workflow
communication protocols and detecting deadlocks that can arise when inter-
connecting processes with incompatible communication protocols. This body of
work is complementary to our proposal, as we do not deal with static analysis,
but rather with the routing of messages to processes at runtime.

WS-BPEL exhibits strong support for conversations with the exception of
Instance Channels, which are not supported because WSDL ports are not gener-
ated during process execution. WS-BPEL supports event handling and provides
some support for channel passing. WS-BPEL, does not support the selection
of messages based on their properties despite the use of properties in corre-
lation sets. Nor does it support atomic-batched consumption. Contention over
messages is not supported as messages are greedily consumed off channels and
allocated to process instances immediately. Time-based message selection is not
supported either. A WS-BPEL process consumes everything sent to it, thus forc-
ing the modeller to select and throw away unwanted messages, as part of the
core process logic. WS-CDL [15] has some distinguishing features, with respect to
WS-BPEL, such as abstractions for channel passing and a global viewpoint over
all actors in a choreography. However, in terms of the motivating requirements
outlined in this paper, WS-CDL has very similar strengths and weaknesses to
WS-BPEL.

Widom et al. [8, 16] propose an approach to optimising the evaluation of
continuous queries over one or many data streams. They address some of the
problems associated with scalability of such queries and propose incremental
evaluation techniques based on the type of query. We plan to apply some of their
findings to enhance and optimise the evaluation of filters used in our proposal.
In particular, [16] details techniques to make continuous queries more scalable
while slightly sacrificing accuracy in some cases.

6 Conclusion
This paper proposed an inter-workflow communication and control layer, to lie
between traditional workflow and messaging layers – providing an isolated area
for the description and execution of communication. This would provide relief
from using “spaghetti” solutions to achieve non-trivial interactions. The proposal
is based on a strong and relatively simple set of abstractions – namely channels,
properties, property relations and filters. Channels abstract from middleware
topics, and queues. Properties abstract from message content and format, while
property relations provide the foundation for property filters. Filters abstract
from the business level requirements for choosing and selecting messages. These
enable all forms of correlation, message selection, aggregated message consump-
tion, and time based message consumption, over a single or multiple channels
evaluated collectively. The possibility of contention between process/task in-
stances is overcome by locking messages, and filter requests. The proposal has
been implemented on top of a communication API, namely JDecouple, that
abstracts away from the underlying middleware and communication protocols.

Future work will aim at integrating the proposed communication abstractions
into process definition languages. Specifically, we aim to extend YAWL with the
ability to attach communication actions to various elements of the notation.

Further Work Considering that a message engine built using our proposal
could act as a messaging hub to perhaps, thousands of process instances, there
is a need to address potential issues of computational overhead. Fortunately our
approach allows us to keep the datasets small, and as the number of outstanding
queries increases there should be a corresponding drop in the amount of uncon-
sumed messages, keeping the datasets small and helping the approach to scale.
Nevertheless the prototype currently re-evaluates all queries when any new mes-
sage arrives on any channel, or when a delta of time has elapsed (to re-evaluate
any time-relative queries). The first optimisation would be to only re-evaluate a
select set of the queries each time a new message arrives.

We also plan to optimise any select-project-join query, that does not contain
a time-relative expression. The strategy relies on the fact that all existing mes-
sage/s in the channel/s have already been evaluated against the query and have
produced no results. Therefore if the query is over only one channel (contains no
join) then it can be optimized by only applying the query over the newly arrived
message. If the query is over more than one channel then we need to apply the
query over the join of the tuple that represents the newly arrived message and
the other relations referred to by the query. Thus greatly reducing the size of
the joined result, making the query more efficient. To implement this we propose
the use of database triggers that get added when a query a select-project-join.
If the trigger produces a result then there would be a callback to the message
engine, and the trigger, itself, would be withdrawn.
Acknowledgements This work is funded by ARC Discovery Grant DP0451092.
The third author is funded by a Queensland Smart State Fellowship. We would
also like to thank Chun Ouyang for her advice concerning event handling.

References

1. W. van der Aalst and A. ter Hofstede. YAWL: Yet Another Workflow Language.
Information Systems, 30(4):245–275, June 2005.

2. W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow
patterns. Distributed and Parallel Databases, 14(3):5–51, 2003.

3. W. van der Aalst and M. Weske. The P2P approach to Interorganizational Work-
flows. In K.R. Dittrich, A. Geppert, and M.C. Norrie, editors, Proceedings of
the 13th International Conference on Advanced Information Systems Engineering
(CAiSE’01), volume 2068 of Lecture Notes in Computer Science, pages 140–156.
Springer-Verlag, Berlin, Germany, 2001.

4. L. Aldred, W. van der Aalst, M. Dumas, and A. ter Hofstede. On the Notion of
Coupling in Communication Middleware. In In Proceedings of the 7th International
Symposium on Distributed Objects and Applications (DOA). Agia Napa, Cyprus,
November 2005, pages 1015 – 1033. Springer Verlag, 2005.

5. L. Aldred, W. van der Aalst, M. Dumas, and A. ter Hofstede. Understanding
the challenges in getting together: The semantics of decoupling in middleware.

Technical Report BPM-06-19, Business Process Management Center, Brisbane,
Qld, Australia, 2006. http://www.bpmcenter.org accessed February 2007.

6. L. Aldred, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Abstrac-
tions for communication between distributed business processes. Technical Report
BPM-06-28, Business Process Management Center, Brisbane, Qld, Australia, 2006.
www.bpmcenter.org accessed February 2007.

7. A. Alves, A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, C. Liu,
D. Knig, M. Marin, V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri, and A. Yiu.
Web Services Business Process Execution Language. Initial Draft of standards pro-
posal by OASIS, June 2006. http://www.oasis-open.org/apps/org/workgroup/

wsbpel/ accessed July 2006.
8. S. Babu and J. Widom. Continuous queries over data streams. SIGMOD Record,

30(3):109–120, 2001.
9. A. Barros, G. Decker, M. Dumas, and F. Weber. Correlation Patterns in Service-

Oriented Architectures. In Proceedings of the 10th International Conference on
Fundamental Approaches to Software Engineering (FASE), Braga, Portugal, March
2007, pages 245–259, Springer Verlag, 2007.

10. A. Beugnard, L. Fiege, R. Filman, E. Jul, and S. Sadou. Communication Abstrac-
tions for Distributed Systems. In ECOOP 2003 Workshop Reader, volume LNCS
3013, pages 17 – 29. Springer-Verlag Berlin Heidelberg, 2004.

11. R. Cypher and E. Leu. The semantics of blocking and nonblocking send and receive
primitives. In H. Siegel, editor, Proceedings of 8th International parallel processing
symposium (IPPS), pages 729–735, April 1994.

12. P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec. The Many Faces of Pub-
lish/Subscribe. ACM Computing Surveys, 35(2):114–131, June 2003.

13. P. Grefen, K. Aberer, Y. Hoffner, and H. Ludwig. CrossFlow: Cross-organizational
Workflow Management in Dynamic Virtual Enterprises. International Journal of
Computer Systems, Science, and Engineering, 15(5):277–290, 2001.

14. G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley, Boston, MA, USA, 2003.

15. N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, and C. Barreto.
Web Services Choreography Description Language Version 1.0. Candidate Recom-
mendation, http://www.w3.org/TR/ws-cdl-10/, November 2005.

16. C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over
distributed data streams. In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, pages 563–574, New York, NY,
USA, 2003. ACM Press.

