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Abstract. Recent analysis of clinical Computer-Interpretable Guideline (CIG) mod-
elling languages from the perspective of the control-flow patterns has revealed lim-
ited capabilities of these languages to provide flexibility for encoding and execut-
ing clinical guidelines [15]. The concept of flexibility is of major importance in
the medical-care domain since no guarantee can be given on predicting the state of
patients at the point of care. In this paper, we illustrate how the flexibility of CIG
modelling languages can be improved by describing clinical guidelines using a
declarative approach. We propose a CIGDec language for modelling and enacting
clinical guidelines.
Keywords: Clinical guidelines, Computer-interpretable guidelines, flexibility, mod-
elling languages, declarative model specification,temporal logic.

1 Introduction

Clinical practice guidelines are “systematically developed statements to assist practi-
tioner decisions about appropriate health actions for specific clinical circumstances”
[7].The main intent of clinical guidelines is to improve the quality of patient care and
reduce costs. To provide patient-specific advice at the point of care the medical commu-
nity has taken initial steps towards the computerization of clinical knowledge contained
in clinical guidelines. Computer-interpretable guidelines were extensively used for devel-
oping decision-support systems [17]. Creating computer-interpretable representations of
the clinical knowledge contained in clinical guidelines is crucial for developing decision-
support systems that can provide patient-specific advice at the point of care. These types
of systems have been shown to affect clinicians’ behavior more than paper-based guide-
lines [17]. Unfortunately, due to the absence of a single standard for developing CIG
modelling languages, the functionality of decision-support systems employing such mod-
elling languages from the perspective of the control-flow differs to a great extent.

We analyzed the suitability of four modelling languages Asbru, PROforma, GLIF
and EON for expressing control-flow patterns [2] and revealed that these languages do
not offer more control-flow flexibility than process modelling languages employed by
the Workflow Management Systems (WFMS) [15]. This is remarkable since one would



expect CIG modelling-languages to offer dedicated constructs allowing for more flexi-
bility. Accommodating flexibility into guidelines means that the CIG would be sensitive
to the characteristics of specific patients and specific health care organizations [31].

The modelling languages we analyzed explicitly model a care process by specifying
the steps and the order in which these steps are to be executed. Although process lan-
guages allow for some flexibility by means of modelling alternative paths, any of which
could be taken depending on some a-priori available data, they are incapable of handling
exceptional or unpredicted situations. Exceptional situations have to be modelled explic-
itly. However, modelling of all possible scenarios results in complex models and is not
feasible since exceptional situations and emergencies may arise at any point in time. This
makes it difficult or even impossible to oversee what activity should be performed next.
To overcome these problems, i.e. reduce the complexity of models, and to allow for more
flexibility in selecting an execution path, in this paper we propose CIGDec as a declara-
tive language for modelling clinical guidelines. Unlike imperative languages, declarative
languages specify the “what” task should be performed without determining of the “how”
to perform it. CIGDec specifies by means of constraints the rules that should be adhered
to by a user during a process execution while leaving a lot of freedom to the user in se-
lecting tasks and defining the order in which they can be executed. CIGDec should be
considered as a variant of ConDec [18] and DecSerFlow [4].

The reminder of this paper is organized as follows. In Section 2 we introduce CIG
modelling languages Asrbu, GLIF, EON and PROforma using a patient-diagnosis sce-
nario. We also briefly describe the similarities and differences between the considered
languages from the perspective of the control-flow patterns. In Section 3 we introduce
CIGDec and illustrate a CIGDec model of the patient-diagnosis scenario. We discuss
the drawbacks and advantages of the proposed language in Section 4. Related work is
presented in Section 5. Section 6 concludes the paper.

2 Computer-Interpretable Guidelines

This section describes the main concepts of four well-known CIG modelling languages:
Asbru, EON, GLIF, and PROforma. These have been evaluated from the control-flow
perspective using the workflow patterns [3]. We introduce the main concepts of these
languages by modelling the following patient diagnosis scenario in the tools AbruView,
Protege-2000 (for EON and GLIF) and Tallis respectively. A patient is registered at a
hospital, after which he is consulted by a doctor. The doctor directs the patient to pass a
blood test and urine test. When the results of both tests become available, the doctor sets
the diagnosis and defines the treatment strategy.

While specifying the behavior of the scenario, we immediately reflect on the possibil-
ities to deviate from this scenario which might be necessary for example in an emergency
case. In particular, we indicate whether it is possible to skip a patient registration step and
immediately start with the diagnosis; whether it is possible to perform multiple tests of
the same kind or perform only one of them; whether it is possible to perform the consul-
tancy by the doctor after performing one of the tests again.

While describing the models of the patient-diagnosis scenario we also indicate the
degree of support of the control-flow patterns by the analyzed modelling languages. Ta-
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ble 1 summarizes the comparison of the CIG modelling languages from the perspective
of the control-flow patterns [3]. The complete description of the patterns and how they
are supported by the analyzed languages can be found in [23, 15].

Basic Control–flow 1 2 3 4 New Patterns 1 2 3 4

1. Sequence + + + + 21. Structured Loop + + + +
2. Parallel Split + + + + 22. Recursion + - - -
3. Synchronization + + + + 23. Transient Trigger - - - +
4. Exclusive Choice + + + + 24. Persistent Trigger - - + +
5. Simple Merge + + + + 25. Cancel Region - - - -
Advanced Branching and Synchronization 26. Cancel Multiple Instance Activity + - + +

6. Multi-choice + + + + 27. Complete Multiple Instance Activity + - - +
7. Structured Synchronizing Merge +/- - - + 28. Blocking Discriminator - - - -
8. Multi-merge - - - - 29. Cancelling Discriminator + - - +
9. Structured Discriminator + + + + 30. Structured N-out-of-M Join + - + +
Structural Patterns 31. Blocking N-out-of-M Join - - - -

10. Arbitrary Cycles - + + - 32. Cancelling N-out-of-M Join - - - +
11. Implicit Termination + + + + 33. Generalized AND-Join - - - -
Multiple Instances Patterns 34. Static N-out-of-M Join for MIs - - - -

12. MI without Synchronization - - - - 35. Static N-out-of-M Join for MIs with Cancellation - - - -
13. MI with a priori Design Time Knowledge +/- +/- +/- +/- 36. Dynamic N-out-of-M Join for MIs - - - -
14. MI with a priori Run-Time Knowledge - - - - 37. Acyclic Synchronizing Merge - - - +
15. MI without a priori Run-Time Knowledge - - - - 38. General Synchronizing Merge - - - -
State-Based Patterns 39. Critical Section + - + -

16. Deferred Choice + - + + 40. Interleaved Routing + - + -
17. Interleaved Parallel Routing + - - - 41. Thread Merge - - - -
18. Milestone - - - + 42. Thread Split - - - -
Cancellation Patterns 43. Explicit Termination - - - -

19. Cancel Activity + + + +
20. Cancel Case + - +/- +

Table 1. Support for the Control–flow Patterns in (1)Asbru, (2)EON, (3)GLIF, and (4)PROforma

Figure 1 presents the scenario modelled in AsbruView [1], which is a markup tool
developed to support authoring of guidelines in Asbru [26]. A process model in Asbru
[25] is represented by means of a time-oriented skeletal plan. The root plan (marked as
Plan A) is composed of a set of other plans. The plans are represented as 3-dimensional
objects, where the width represents the time axis, the depth represents plans on the same
level of the decomposition (i.e. which are performed in parallel), and the height repre-
sents the decomposition of plans into sub-plans. Parent plans are considered to be com-
pleted when all mandatory sub-plans completed. Enabling, completion, resumption and
abortion conditions can be specified for each plan if necessary.

As the time axe shows, plans Register patient, Consult with doctor, Test phase and
Define the treatment are executed sequentially. The Test phase plan is a parallel plan
consisting of two activities ask for urine test and ask for blood test. The parallel plan
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Fig. 1. The patient-diagnosis scenario modelled in AsbruView

requires all enclosed activities to be completed in order to pass the flow of control to
the next plan. In this model, we used only two types of plans: sequential (root plan)
and parallel plan (Test phase plan). AbsruView allows to visualize also Any-order Plan,
Unordered Plan, Cyclical Plan, and If-then-else Plan, and two types of actions: Ask and
Variable Assignment.

Deviations from the modelled scenario are not possible in AsbruView, since the all
plans are structured and their order is strictly defined. It would be possible to adjust the
model and implicitly incorporate all required execution paths. In particular, the Cyclical
Plan should be used in order to iterate the execution of a certain task. In order to relax
the parallel order of the blood- and urine-tests’ tasks, an Any-order Plan could be used.
However, the behavior of the model would be still deterministic and not allow for much
flexibility. In Asbru there is a concept of plan activation mode. It allows conditions for
aborting, suspending and resuming a plan. This can be relevant for the case of registering
a patient and not having all the needed data initially: a plan is suspended and later re-
sumed. As the pattern-based analysis showed [15], Asbru is able to support 20 out of 43
control-flow patterns. Asbru uniquely supports the recursive calls and interleaved parallel
routing, which are the features not directly supported by other analyzed languages.

An EON model of the patient-diagnosis scenario created in Protege-2000 environ-
ment is illustrated in Figure 2. Protege-2000 is an ontology-editor and knowledge-base
framework (cf. http://protege.stanford.edu). Main modelling entities in EON
[28] are scenarios, action steps, branching, decisions, and synchronization [29, 27]. A
scenario is used to characterize the state of a patient. There are two types of Decision
steps in EON, i.e. a Case step (select precisely one branch) and a Choice step (select at
least one branch). An Action step is used to specify a set of action specifications or a
sub-guideline that are to be carried out. Branch and Synchronization steps are used to
specify parallel execution. In Figure 2 these steps are used to do the two tests in parallel.

The following features offered by EON can be used in order to make the model of
the patient-diagnosis scenario more flexible. A Scenario can be used to model different
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Fig. 2. The patient-diagnosis scenario modelled in EON/Protege

entry points to the model. This allows to ”jump” into the middle of the model and to start
execution from that point. This feature is useful for emergency cases where for example
a registration step has to be skipped and immediate treatment procedure has to be started.
Unfortunately, EON offers not much flexibility with respect to synchronization of multi-
ple branches, i.e. it allows the define treatment task to be executed only if a single or all
branches have been executed. However, it is incapable of predicting how many branches
were selected and performing a partial synchronization after all selected branches were
executed. From all analyzed modelling languages, EON supports the lowest number of
the control-flow patterns, i.e. only 11 out of 43.

GLIF3.5 [5] is a specification method for structured representation of guidelines.
To create a model in GLIF, an ontology schema and a graph widget have to be loaded
into the Protege-2000 environment. Figure 3(a) visualizes the GLIF model of the basic
patient-diagnosis scenario. In GLIF3.5 five main modelling entities are used for process
modelling, i.e. an Action Step, a Branch Step, a Decision Step, a Patient-State Step,
and a Synchronization Step. An Action Step is a block used to specify a set of tasks
to be performed, without constraints set on the execution order. It allows for including
sub-guidelines into the model. Decision steps are used for conditional and unconditional
routing of the flow to one out of multiple steps. Branch and Synchronization steps are
used for modelling concurrent steps. A Patient-State Step is a guideline step used for
describing a patient state and for specifying an entry point(s) to a guideline.
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In order to allow the behavior of the basic patient-diagnosis scenario to deviate, all
possible pathes have to be explicitly modelled. Figure 3(b) represents a scenario, in which
Register patient step can be done in parallel to any other step, but it has to be exactly once
to complete the process (if more than once is desired, an iteration condition for Register
patient step can be added which resembles a while loop: while not all patient data has
been entered, repeat Register Patient. In this scenario, a decision can be taken to order
tests or to proceed to treatment without tests. However, treatment or ordering of tests
cannot be done before consulting with a doctor. One or two tests can be ordered before
proceeding to treatment. Figure 3(b) shows how complex the model has become after we
introduced several deviations from the basic scenario. Thus, this specification needs to
model graphically all the possible paths of execution, and it is not very scalable.

   

(a) (b)

Fig. 3. The patient-diagnosis scenario modelled in GLIF3.5/Protege

Similar to EON, GLIF allows multiple entry points into the model to be specified by
means of the Patient-State step. This allows the execution to start from any point where
a patient enters a scenario model while skipping tasks-predecessors. GLIF offers more
variants for synchronizing parallel branches, i.e. to synchronize after one, several or all
tasks have been completed. However, GLIF is incapable of synchronizing branches in the
conditions when it is unknown which branches and how many of them will be chosen.
This explains why the number of control-flow patterns supported by GLIF (17 out of 43)
is bigger than in EON but still smaller than Asbru.

PROforma [8] is a formal knowledge representation language for authoring, publish-
ing and executing clinical guidelines. It deliberately supports a minimal set of modelling
constructs: actions, compound plans, decisions, and enquiries that can be used as tasks
in a task network. In addition, a keystone may be used to denote a generic task in a task
network. All tasks share attributes describing goals, control flow, preconditions, and post-
conditions. A model of the basic patient-diagnosis scenario created in Tallis is shown in
Figure 4(a). Note that in PROforma control-flow behavior is captured by modelling con-
structs in combination with the scheduling constraints. Scheduling constraints are visu-
alized as arrows connecting two tasks, meaning that the task at the tail of the arrow may
become enabled only after the task at the head of the arrow has completed. To deviate
from the basic scenario, some of the scheduling constraints should be removed as it is
shown in Figure 4(b).
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Fig. 4. The patient-diagnosis scenario modelled in PROforma/Tallis

In contrast to all examined languages, PROforma allows for late modelling, i.e. if it is
not clear in advance what steps exactly should be performed, these steps are modelled by
means of keystones, which are substituted by a desired type of the task before the model
is deployed. Furthermore, by means of triggers it is possible to specify that a task has to
be performed even if the task’s preconditions were not satisfied. PROforma also allows
for more flexibility during the synchronization of multiple paths, thus it is able to predict
how many paths from the available ones were selected and to merge them when they have
completed. Furthermore, scheduling constraints in PROforma are not obligatory. This
means that stand-alone tasks may be activated upon the fulfillment of a pre-condition.
Such tasks do not depend on the imperatively specified flow of other activities. PROforma
has the highest degree of pattern-support from all analyzed languages, i.e. it supports 22
out of 43 patterns.

Table 2 shows the terms used in the CIG modelling languages and our preferred
terms. These terns will be used in the remainder of this paper.
Terms Asbru EON GLIF PROforma

Process model Plan Guideline Guideline Plan
Task/ activity Plan Action Action Action, Enquiry
Parallel branching Plan type Branch and Branch and Action

Synchronization Synchronization or Enquiry
Exclusive branching Plan precondition, Decision Decision Decision,

Plan type Enquiry and
scheduling constraints

Table 2. Terms used by Asbru, EON, GLIF, and PROforma

The medical community has always emphasized that it is impossible to use work-
flow formalisms because of specific requirements such as flexibility. However, when we
examined guideline modelling languages we didn’t find more flexibility than in todays
workflow and BPM products.
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The analysis of CIG modelling languages [15] showed that these languages are very
similar to BPM languages. Given a large variety of process modelling languages nowa-
days it makes no sense to develop more complicated language which would support more
control-flow patterns. Instead, we take a completely new approach and propose a CIGDec
language for encoding clinical guidelines.

3 Declarative description of clinical guidelines

In this section we present the CIGDec declarative language and show benefits of applying
it for modeling clinical guidelines.

Modelers who use traditional CIG modelling languages have to represent all possible
scenarios (normal and exceptional) that can occur during the execution. Such a model
has to include all possible scenarios that can occur during the execution. This means
that CIG modelers have to predict in detail all possible execution paths in advance for
the guideline they are modelling. The model itself tends to be very complex and strictly
predefines all relationships between all steps in the guideline. Such a model not only
prescribes to users what to do, but it also contains a detailed specification about how to
do it. Hence, traditional CIG modelling languages are of an imperative nature.

CIGDec is a declarative language, i.e., its models specify what to do and leave it up
to the user to decide how to work depending on the case. CIGDec models do not require
all possible scenarios to be predicted in advance. On the contrary, the model consists of
a set of tasks and some dependencies (relationships) between these tasks. Dependencies
between tasks can be seen as some general rules that should always hold in the guideline.
Any task in the model can be performed by a user if and only if none of the specified
rules is violated. As an extreme example, a CIGDec model that consists only of a set of
tasks without dependencies would represent a completely free guideline, where a user
can execute any task in any desired order. As more rules in the model as less possibilities
to deviate from a certain execution order is given to the user. Therefore, rules constrain
the model. Hence, we refer to dependencies between tasks (rules) as to constraints.

Any CIG model consists of a set of tasks and some relationships between them spec-
ifying the exact order of tasks. Typically, traditional languages use a predefined set of
constructs that can be used to define relations between tasks: 1) sequence, 2) choice,
3) parallelism, and 4) iteration. These constructs are used to define the exact control-
flow (order of tasks) in the guideline. In CIGDec, this set of constructs is unlimited, i.e.,
constructs can be added, changed and removed, depending on the requirements of the
application, domain, users, etc. We refer to constructs used for defining possible types of
dependencies between tasks in CIGDec as to constraint templates. Each template has its
semantics, which is formally represented by one Linear Temporal Logic (LTL) formula.
This semantics is used for the computerized enactment of the guideline [19]. LTL is a
logic extended with special temporal operators - ‘always’ (2), ‘eventually’ (3), ‘until’
t, and ‘next time’ ©. This logic is extensively used in the field of model checking, where
the target model is verified against properties specified in LTL [11, 10]. For computerized
enactment of CIGDec model we use algorithms for translating LTL expressions into au-
tomata developed in the model checking field [9, 4, 19]. Since LTL formulas can be very
complex and hard to understand, each template also has unique graphical representation
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for users. In this way, we ensure that CIGDec users do not have to be LTL experts in
order to work with models [19]. Although the set of templates is ‘open’, we propose a
starting collection of templates in Section 3.1.

3.1 CIGDec templates

When looking at a traditional CIG model, one usually tries to find the starting point and
then follows the control-flow until the end point is reached. This cannot be applied to
CIGDec models. Constructs (lines) do not necessarily describe the order of tasks, but
rather various dependencies between them. In our starting set of constraint templates we
distinguish between two types of templates: ‘existence’ (unary) templates, and binary
templates that can represent a ‘relation’ or ‘negative relation’. Figure ?? shows examples
of templates.

‘Existence’ templates are unary templates because they involve only one task. Gener-
ally, they define the cardinality (possible number of executions) of the task. The top four
examples in Figure 5(a, b, c and d) are unary ‘existence’ templates.

• Existence: at most N times template specifies the upper upper and/or lower bounds
for the numbers of executions of the task, e.g. a cardinality of the type ‘0..N’. In the
example in Figure 5(a) the task announce death can be executed at most once.

• Existence: exactly N times template specifies exact number of executions of the task,
e.g. a cardinality ‘N’. In the example presented in Figure 5(b) task close file has to
be executed exactly once in the process.

• Existence: at least N times template specifies at least how many times a given task
at task has to be executed. In the example in Figure 5(c) task register data has to be
executed at least once.

• Conditional never template specifies that a given task should not be performed if an
associated with the task condition is fulfilled. For example, Figure 5(d) shows that X
ray is performed only is the pregnancy is false.

Binary templates involving two tasks are listed below:

• Responded existence template specifies that if one task is performed then the other
task is performed before or after the first task. The example in Figure 5(e) specifies
that if surgery is performed then the family is informed before or after the operation.

• Response template considers the order of activities, thus specifying that one task has
to be executed at least once after the other task has completed. The example in Fig-
ure 5(f) shows that the surgery report has to be filled in at least once after the surgery.
Note that in all these examples it was possible to have an arbitrary execution of other
tasks between the two related tasks. For example, execution sequence [surgery, in-
form family, fill operation report] fulfills both constraints ‘responded existence’ and
‘response’.

• Choice template specifies that either one of two tasks can be performed. The example
in Figure 5(g) shows that either a prostate or gynecological check are possible. It is
not obligatory to perform any of them, but once one of them is performed the other
one cannot be performed anymore. Also, it is possible to execute the selected task
multiple times.
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(a)

file has to be
closed exactly
once

(b)

data is registered
at least  once

(c)

inform the family
either before or
after operation

after operation
report is filled at

some point

never X ray
if pregnant

either multiple prostate  or
gynecological checks are possible

two anti-hypertensive drugs
should not be given concurrently

visit frequency is not determined
after an antibiotics treatment

cause of caugh is determined
after the X ray

(j)

you can
announce death
at most once

(d)

(e) (f)

(g)

(h)

(i)

either both blood analysis and
blood pressure are performed in
any order, or none of them.

Fig. 5. Examples of CIGDec constraints.

• No-response template specifies that a task can not be executed after the other task
has completed. An example in Figure 5(h) shows that if an infection is ‘treated with
antibiotics’ (once or multiple times), the ‘visit frequency’ is not determined.

• Mutual exclusion template between two tasks prevents them to execute concurrently.
For example, Figure 5(i) depicts that two anti-hypertensive drugs should not be given
simultaneously (ACEI and potassium-sparing diuretics).

• Precedence template. As shown in Figure 5(j), there is a precedence relation be-
tween tasks X ray and cause cough, and therefore, the cause of cough can only be
determined after at least one X ray.
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• Co-existence template between tasks A and B specifies that if A happens then B hap-
pens and vice versa, without specifying in which order. For example, the blood pres-
sure and the analysis of blood of a patient can be performed concurrently or in any
order.

Table 4 in the Appendix shows CIGDec templates and its corresponding LTL formu-
las.

3.2 CIGDec model for the diagnosis scenario

Figure 6 depicts a CIGDec model of our patient-diagnosis scenario. It consists of five
tasks. In an extreme case, it would be possible to make and use the model consisting
only out of these tasks and without any constraints. This would be a unrestricted model
allowing for maximum flexibility, where tasks could be executed an arbitrary number of
times (‘0..*’) and in any order. This model would have an infinite number of execution
possibilities (different process instances). However, to develop a model that provides
guidance, we add five constraints derived from three constraint templates.

Fig. 6. CIGDec model for the diagnosis scenario.

First, there is one unary (involving one task) constraint created from the template
‘existence’ - constraint presented as cardinality 1..* above the task register patient. This
constraint specifies that the task register patient has to be executed at least once within
one process (guideline) enactment.

Second, there are two constraints created from the template ‘precedence’ as shown in
Figure 6: one between tasks consult doctor and blood test and one between tasks consult
doctor and urine test. Precedence is a binary template, i.e., it defines a dependency be-
tween two tasks. A ‘precedence’ between two tasks A and B means that task B can only
be executed after task A was executed at least once [4]. It is possible that other tasks are
executed between A and B. Hence, if we want to execute task blood test we can do so
only after we have executed task consult doctor. Note that other tasks from the model
can be executed between consult doctor and blood test. Task test urine also has a ‘prece-
dence’ relation with task consult doctor and it can be executed only after task consult
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doctor. Similarly, there could be other tasks between them. Moreover, the doctor may be
consulted multiple times before and after doing the tests.

Third, we use a binary template ‘response’ to create two constraints: one between
tasks blood test and treatment and one between tasks urine test and treatment. Template
‘response’ between tasks A and B defines that after every execution of task A task B has
to be executed at least once while it is possible that other tasks are executed between A
and B. Thus, after every blood test at least one treatment should follow, and there could
be other taks from the model executed between them. The same holds for tasks urine test
and treatment.

The possibilities given to a user during execution of the model depicted in Figure 6
are defined as a combination of all five constraints in the model. When looking at the
models designed by means of the analyzed language Asbru, the execution always had
to start with the task register patient. This may cause problems in cases of emergency,
when there is no time for the registration requiring the procedure with doctor (task consult
doctor) to start immediately. While in EON and GLIF allow multiple entry-points to a
scenario, these entrance steps have to be modelled explicitly. In PROforma a task can be
modelled without use of scheduling constraints which allows this task to be executed at
any moment. Note however, that the CIG languages assume that a task can be executed
once during the model execution or iteratively a specified number of times. In CIGDec
model a patient-registration step can be performed at any moment during the CIGDec
process. Furthermore, CIGDec model allows to perform register patient multiple times
in case the required data is not available on time.

If we look at the traditional models Figures 1, 2, 3 and 4 (i.e. mode using Absru, EON,
GLIF and PROforma), task consult doctor was executed exactly once. CIGDec model
allows this task not to be executed at all, but it also allows it to be executed multiple times.
For example, some patients use medication periodically. For them only the treatment task
has to be performed either before or after the register patient has been executed. On the
other hand, in some complex cases, task consult doctor can be performed more than once
at various points during the CIGDec execution.

If necessary, a doctor can order a blood test many times or not at all during the
CIGDec process. However, constraint ‘precedence’ between this task and consult doctor
makes sure that blood test can not be done for a patient that has not seen the doctor before.
Note that his holds only for the first blood test. Sometimes, the results can be unexpected
and doctor can order a different type of blood test without having to see the patient again.
After every blood test, task treatment is performed. It is possible that during treatment
no medication is prescribed due to the good test results. However, it is also possible to
wait and to perform several blood tests in order to make a good decision before the task
treatment is performed.

Since task urine test has the same relationships as task blood test (‘precedence’ with
consult doctor and ‘response’ with treatment), the same variants of execution paths hold
like for the task blood test. However, note that none of the tasks ‘blood test’ and ‘urine
test’ do not have to execute at all, or each of them can be executed one or more times, or
only one of them can be executed one or more times.

Table 3 shows three (out of many) examples (cases) of possible usages of the CIGDec
model from Figure 6. First, in the ‘case A’ a periodical medication is prescribed to a

12



chronic patient: only register patient and treatment tasks are executed. In the ‘case B’
an urgent vist starts directly with consult doctor and only afterwards the task register
patient is executed. The urine test was not necessary. The results of the blood test were
unclear so the treatment is executed only after the results of the second blood test became
available and an additional consult doctor task. In the ‘case C’, the situation was not
urgent, so task register patient was performed before the task consult doctor. Both urine
test and blood test are performed. However, due to alarming results of the urine test
an immediate treatment was executed to prescribe appropriate medication. The results of
blood test arrived later, and an additional treatment task was executed to handle the blood
test results as well.

case A case B case C
register patient consult doctor register patient

treatment blood test consult doctor
register patient urine test

blood test treatment
consult doctor blood test

treatment treatment

Table 3. Some examples of possible enactments of CIGDec model in Figure 6

During the execution, users are guided to follow the constraints from the model. At
any point in time a constraint can be fulfilled, temporarily violated or permanently vi-
olated. The state of each of the constraints is indicated in the worklist tool by different
colors: green for fulfilled, orange for temporarily violated, and red for permanently vi-
olated. One example of a temporarily violated constraint is our ‘response’ constraint
between blood test and treatment: the moment after the task blood test is executed and
before the task treatment is executed it is temporarily violated, but it becomes fulfilled as
soon as the task treatment is executed. Because all constraints in the model in Figure 6
are mandatory (i.e., they have to be followed) the enactment system will make sure they
do not reach the state when they are permanently violated. CIGDec constraints can also
be optional. Optional constraints are showed as dashed lines and are used as a warning
system and users can permanently violate them. CIGDec has a developed warning sys-
tem for optional constraints. Let us assume that it is possible to execute urine test without
a previous consult doctor task, i.e, it is allowed to permanently violate constraint ‘prece-
dence’ between these two tasks. However, if a user is about to violate this constraint,
(s)he should be warned by the system. In this case, we can set the constraint to be op-
tional. In order to generate an informed warning, for each optional constraint we specify:
(1) to which group (policy) it belongs; (2) priority level and (3) context related message.
Figure 7 (a) shows how policies are defined on the system level. Figure 7 (b) shows the
full warning presented to the user when (s)he is about to violate this constraint.
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(a) Groups of Constraints (b) Violation warning

Fig. 7. Specification of optional constraints.

4 Discussion

We have shown that CIGDec can be used to define the degree of flexibility given to a
user during the process execution. We have also indicated that a degree of the absolute
flexibility can be reached by leaving out all constraints resulting in the freedom given
to a user to select any task and execute tasks in any desired order. Since the degree
of flexibility has to be controlled in the context of medical care in order to adhere to
strict and desirable recommendations, the mandatory and optional constraints have to
specified for a modelled guideline. To control the adherence to the specified constraints,
the execution engine CIGDec prohibits the violation of the mandatory constraints while
allowing the optional constraints to be neglected. All user steps that might result in the
violation of constraints are communicated to a user by means of warnings.

The advantages of the proposed CIGDec-based approach over the analyzed modelling
languages that employ the imperative approach are as follows:

• CIGDec enables the flexibility in selection, meaning that a user executing a model
specified in CIGDec gets a freedom in choosing an execution sequence, without
requiring this sequence to be thought of in advance and explicitly modelled during
the design-time.

• CIGDec enables late binding, meaning that it allows to choose an appropriate task
at the point of care. This feature is particular important in modelling of CIG since it
is not always possible to predict what steps will need to be executed, thus the task
selection is case-dependent.

• CIGDec ensures the absence of change, meaning that it prohibits choices of users
that would violate mandatory constraints.

• CIGDec allows for extendability and allows new LTL formulas to be introduced,
thus applicability of CIGDec could be tailored to a specific situation.

The disadvantages of using CIGDec are as follows:

• If a process to be modelled has to be very strict and should allow for flexibility, then
the use of CIGDec may result in a complex model.
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• CIGDec aims at the modelling of rather small processes, since the description of
large processes (containing approximately several thousands of tasks) becomes dif-
ficult to understand.

Since both imperative and declarative languages have disadvantages, in order to improve
the flexibility of the CIG modelling languages we recommend to augment the CIG lan-
guages with the features offered by CIGDec.

5 Related Work

The recent Workflow Patterns initiative [2] has taken an empirical approach to identi-
fying the most common control constructs inherent to modelling languages adopted by
workflow systems. In particular, a broad survey of modelling languages resulted in 20
workflow patterns being identified [12]. The collection of patterns was originally limited
to the control-flow perspective, thus the data, organizational and application perspectives
were missing. In addition, the set of control-flow patterns was not complete since the
patterns were gathered non-systematically: they were obtained as a result of an empirical
analysis of the modelling facilities offered by selected workflow systems.

The first shortcoming has been addressed by means of the systematic analysis of data
and resource perspectives and resulted in the extension of the collection of the control-
flow patterns by 40 data patterns and 43 resource patterns [22, 24]. The issue of the
incompleteness of the control-flow patterns we have resolved by means of the system-
atic analysis of the classical control-flow patterns against Workflow Pattern Specification
Language [14]. Furthermore, we revised the current set of the control-flow patterns and
extended it with new patterns. The revised set of the control-flow patterns [23] we have
used in this paper to evaluate CIS’s modelling languages.

Many workflow systems and standards such as XPDL, UML, BPEL, XLANG, WSFL,
BPML, and WSCI were evaluated from the perspective of the control-flow patterns, a
summary of which is available at [2].

There have been many attempts to enrich the flexibility of workflow (process) man-
agement systems. Case-handling systems are systems that offer more flexility by focusing
on the whole case (process instance), instead of individual tasks [21]. An example of such
a system is FLOWer [16], where users can ‘move up and down’ the process by opening,
sipping and re-doing tasks, rather than just executing tasks. Although users have a major
influence on execution in FLOWer, their actions are seen as going backwards or forward
in a traditional process model. Moreover, this might some unwanted side-effects. For ex-
ample, if the user wishes to execute again (re-do) an earlier task, s(he) will also have to
execute again (re-do) all tasks that followed it. Unlike in FLOWer, deviations are not seen
as an exception in CIGDec but as ‘normal’ behavior while the process instance unfolds
further according to the choices of users.

Flexibility of process enactment tools is greatly increased by their adaptivity. ADEPT
is an example os an adaptive system where users can change the process model during
the enactment [20]. ADEPT is a powerful tool which enables users to insert, move and
delete tasks form the process instance they are currently working on. However, the user
has to be a process modelling expert in order to change the model. Moreover, in medical
domain cases may have many differences and adaptations would be too frequent and time
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consuming. CIGDec does not see deviations as changes in the model and a good-designed
CIGDec model can cover a wide variety of cases.

One of a promising ways to introduce flexibility is to replace imperative by declara-
tive. Various declarative languages “describe the dependency relationships between tasks,
rather than procedurally describing sequences of action” [6]. Generally, declarative lan-
guages propose modeling constraints that drive the model enactment [6, 13, 30]. Con-
straints describe dependencies between model elements. Constraints are specified using
pre and post conditions for target task [30], dependencies between states of tasks (en-
abled, active, ready, etc.) [6] or various model-related concepts [13].

6 Conclusions

In this paper, we have proposed a declarative approach which could be applied to over-
come problems experienced by the imperative languages used for modelling clinical
guidelines. In particular, we have shown how by means of applying the CIGDec lan-
guage more flexibility in selection can be achieved than the considered CIG modelling
languages offer. Furthermore, we showed how the model declared in CIGDec can be
enacted. In addition, we discussed differences between the proposed declarative and ana-
lyzed imperative languages, their advantages and disadvantages, and made a proposition
to combine the features of imperative and declarative approaches in order to increase
their applicability and usability.

A CIGDec Constraint Templates

template type LTL formula
a at most once (0..1) unary ¬(3(A.completed ∧ ©(3A.completed)))

b exactly once (1) unary (3A.completed) ∧ (¬3(A.completed ∧ ©(3A.completed)))

c at least once (1..*) unary 3A.completed

d absence (0) unary ¬(3A.completed)

e responded existence binary 3A.completed ⇒ 3B.completed

f response binary 2(A.completed ⇒ 3B.completed)

g choice binary (3A.completed ⇒ ¬(3B.completed))
∧ 3B.completed ⇒ ¬(3A.completed)

h not response binary 2(A.completed ⇒ ¬(3B.completed))

i mutual exclusion binary 2((A.started ⇒ ©(3B.started

⇒ (¬B.started t (A.completed ∨A.canceled)))))∧
2((B.started ⇒ ©(2A.started
⇒ (¬A.started t (B.completed ∨B.canceled)))))

j precedence binary 3B.completed ⇒ ((¬B.completed) tA.completed)

Table 4. Some examples of possible enactments of CIGDec model in Figure 6
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