
newYAWL: Achieving Comprehensive Patterns Support

in Workflow for the Control-Flow, Data and Resource

Perspectives∗

Nick Russell1, Arthur H.M. ter Hofstede1

Wil M.P. van der Aalst1,2, David Edmond1

1BPM Group, Faculty of Information Technology, Queensland University of Technology
GPO Box 2434, Brisbane QLD 4001, Australia

{n.russell,a.terhofstede,d.edmond}@qut.edu.au

2Department of Technology Management, Eindhoven University of Technology
GPO Box 513, NL-5600 MB Eindhoven, The Netherlands

w.m.p.v.d.aalst@tm.tue.nl

Abstract

The Workflow Patterns provide a conceptual foundation for the control-flow,
data and resource perspectives of process-aware information systems (PAIS). In
this paper we present newYAWL, a reference language for PAIS based on the
workflow patterns. newYAWL radically extends previous work undertaken on
the YAWL language and provides a comprehensive formal description of how the
complete set of workflow patterns can be realized and integrated in the context
of an operational PAIS.

1 Introduction

Business process management (BPM) has achieved marked prominence over the past
five years as companies strive to further optimize the manner in which they under-
take their core business activities. Recent surveys [WH06, Kas06] suggest that it
is now a major focus for most medium and large companies and is seen as a key
means of improving efficiency and reducing cost, the mantra of the modern business
environment.

However the increased focus that BPM has received from companies and the media
is at odds with the relative maturity of tools and techniques that are actually avail-
able in the area. Despite the attention that it is receiving, there is a lack of commonly
agreed fundamental concepts that are applicable to the domain and whilst there has
been explosive growth in the variety of enactment tools that are available, there is
a palpable lack of broadly adopted modelling and enactment standards for business

∗This work was partially supported by the Dutch research school BETA as part of the PATINT
program and the Australian Research Council under the Discovery Grant Expressiveness Comparison
and Interchange Facilitation between Business Process Execution Languages.

1

processes. Moreover those notations that show signs of achieving widespread adop-
tance (e.g. BPMN, BPEL, UML) are not based on a rigorous formal foundation but
rather adopt a “committee-based” approach to standards development opportunisti-
cally absorbing concepts from a wide variety of domains without any consideration of
the manner in which they might be integrated with existing language constructs or
how they might actually be enacted in practical terms. The fact that these notations
are specified in an informal manner (typically in natural language) leads to further
ambiguities as concepts are interpreted and implemented in differing ways.

The need for a common conceptual foundation for business processes was one of
the core motivations for the Workflow Patterns Initiative. Over the past seven years,
this research project has identified a series of core business process constructs which
it has presented in the form of patterns. In line with the classic definition of patterns,
these concepts are generic in form and provide solutions to recurring requirements
that arise when modelling and enacting business processes. The patterns encompass
the control-flow, data and resource perspectives of business processes and provide
a common vocabulary with which to describe them. Since their identification, the
applicability of the workflow patterns has been demonstrated in a number of ways:
they have been used for evaluating and comparing the capabilities of a wide variety
of workflow and case handling systems, business process modelling and enactment
languages, for workflow tool selection, for business process education and training.
They have also influenced the development of a variety of commercial and open-source
workflow systems1.

Most recently, the workflow patterns triggered the development of YAWL – an
acronym for Yet Another Workflow Language. Unlike other efforts in the BPM area,
YAWL sought to provide a comprehensive modelling language for business processes
based on a formal foundation. The content of the YAWL language was informed by
the workflow patterns and one of its the major aims was to demonstrate how the
workflow patterns should be both modelled and enacted in a deterministic way. It
also sought to illustrate that they could coexist within a common framework. In
order to validate that the language was capable of direct enactment, the YAWL
System2 was developed, which serves as a reference implementation of the language.
Over time, the YAWL language and the YAWL System have increasingly become
synonymous and have garnered widespread interest from both practitioners and the
academic community alike.

Initial versions of the YAWL System focussed on the control-flow perspective and
provided a complete implementation of 19 of the original 20 patterns in this perspec-
tive. Subsequent releases have incorporated limited support for selected data and
resource patterns, however this effort has been hampered by the lack of a complete
formal description of the patterns in these perspectives. Moreover, a recent review
[RHAM06] of the control-flow perspective has identified 25 additional patterns. Here-
after in this paper, we refer to the collective group of YAWL offerings developed to
date – both the YAWL language as defined in [AH05] and also more recent YAWL
System implementations of the language based on the original definition (up to and
including release Beta 8.1) – as YAWL.

In this paper, we propose a new version of YAWL – which we subsequently refer
1See http://www.workflowpatterns.com/impact.htm for further details.
2See http://www.yawl-system.com for further details of the YAWL System and to download the

latest version of the software.

2

to as newYAWL – which aims to support the broadest range of the workflow pat-
terns in the control-flow, data and resource perspectives. The major contributions of
this paper are as follows: (1) it provides a comprehensive formal description of the
workflow patterns, which to date have only partially been formalized, (2) it provides
a complete abstract syntax and graphical notation for newYAWL which identifies
the characteristics of each of the language elements, and (3) it provides a complete
executable model for newYAWL which defines the runtime semantics of each of the
language constructs.

CPN Tools [Jen97] was selected as the presentation format for the semantic model
of newYAWL for a variety of reasons. It is a well-established modelling and simu-
lation tool that is widely used for large, process-oriented models. It provides highly
effective tool support for the capture, structuring and analysis of such models and
has the added attraction that it shares a common foundation (Petri nets) with YAWL
thus minimising the potential for conceptual inconsistencies to be introduced during
the development of the semantic model. One of the major attractions arising from
grounding the semantic model in CPN Tools is that it is executable, thus opening
up a variety of future opportunities for analysis and simulation of newYAWL. The
complete CPN model is included in this report. It is also available for download from
the YAWL website3.

The remainder of this paper is organized as follows. Section 2 considers the issue
of language design in a business process context, identifying shortcomings of current
efforts (including YAWL) and motivating the requirements for newYAWL. Section 3
introduces newYAWL and discusses the new language extensions. Section 4 presents
a syntactic model for all of the constructs in newYAWL, together with a series of
transformations that allow the control-flow perspective of a newYAWL model to be
simplified and a set of mappings that allow it to be presented in the form of an
initial marking of the semantic model. Section 5 presents a formalization of the
newYAWL runtime environment in the form of a Coloured Petri-Net (CPN) model
which provides a complete semantic description of newYAWL. Section 6 presents a
worked example showing how a design-time newYAWL model can be transformed
to an initial marking of the semantic model and illustrates the operation of several
newYAWL constructs in the context of the semantic model. Section 7 evaluates the
patterns support provided by newYAWL and finally Section 8 concludes the paper.

2 Language Design Principles

In this section we discuss the requirements for a business process modelling language.
We subsequently use these requirements in conjunction with a patterns-based analysis
to examine the language design for YAWL and on the basis of these insights we
determine where shortcomings exist with the current language design. This leads to
a proposal for a comprehensive revision – newYAWL – which will provide modelling
and enactment support for the broadest possible range of the workflow patterns.

3See http://www.yawl-system.com/newYAWL for details.

3

2.1 Establishing Language Foundations

In order to effectively support the capture and enactment of business processes, there
are some key considerations for the design of a business process modelling language.
We consider each of these areas below.

2.1.1 Formality

One of the characterising aspects of the current state of business process modelling
is the absence of a formal basis for defining the requirements of a business process
and the manner in which it should be enacted. A particularly significant shortcoming
is the lack of support for capturing the semantics of a business process (i.e. details
associated with its fundamental intention, content and operation). There are initial
attempts at providing a foundation for specific aspects of business process modelling,
in particular process modelling and organizational modelling, however the field as a
whole lacks a rigorous foundation. This paucity increases the overall potential for
ambiguity when enacting a business process model. For this reason, any approach to
language design must be underpinned by a complete and unambiguous description of
both its syntax and semantics.

2.1.2 Suitability

In order for a modelling language to have the broadest applicability to a problem
domain, it must provide support for the capture and enactment of as wide a range
as possible of the requirements encountered in its field of usage. Key to effective
capture is the ability of the language to record all of the aspects relevant to a given
requirement in a form that accords with its actual occurrence in the problem domain
i.e. there should not be a need for significant conceptual reorganization in order for
a requirement to be recorded and in general terms, the constructs available in a
modelling language should correlate relatively closely with the concepts in associated
application domains in which it will be employed. The notion of suitability in the
context of workflow languages is considered at length in [Kie03].

2.1.3 Conceptual independence

The modelling language should be complete, self-consistent and independent. Re-
sultant models should be portable across a wide range of potential enactment tech-
nologies and the manner in which a model is interpreted must be independent of the
environment in which it is subsequently implemented. To this end, it is vital that
no aspect of the modelling language relies on specific characteristics of underlying
enactment technologies.

2.1.4 Enactability

Ultimately, there is no benefit in proposing a business process modelling language
that is not capable of being enacted. This may seem an obvious statement, but sev-
eral recent initiatives in this area have proposed language elements that are not able
to be enacted without some degree of ambiguity [OADH06, RAHW06]. Of particular
interest in this area is the ability of the process language to facilitate verification and

4

validation activities on process models both to establish their consistency and cor-
rectness but also for more detailed investigations in regard to their likely performance
in actual usage and potential areas for optimization.

2.2 Analysis of YAWL

The original version of YAWL was first proposed in 2002 [AH02]. It satisfies all four of
the criteria for effective language design identified in Section 2.1. Initially it focussed
primarily on the control-flow perspective. Subsequent versions have added support
for aspects of the data and resource perspectives to this, but these perspectives are
not comprehensively catered for and are not formalized. Most recently in 2006 a
comprehensive review of the control-flow perspective was undertaken identifying an
additional 25 patterns and providing a complete formalization of all of the control-flow
patterns based on Coloured Petri nets [RHAM06].

In order to better understand the capabilities of both the YAWL language and the
current implementation (Beta 8.1) across the various perspectives, in this section we
have undertaken a patterns-based analysis of both of them using the control-flow, data
and resource patterns. Table 1 identifies the extent of support for each of the control-
flow patterns. It is immediately evident that there is comprehensive support for the
original control-flow patterns (WCP1–WCP20) with only the Implicit Termination
pattern not fully supported. However there are some gaps in its overall support for
aspects of control-flow. YAWL incorporates notions of cancellation and state, hence
patterns such as the Cancel Region, Cancel MI Activity, Cancelling Discriminator,
Static Cancelling Partial Join for MIs, Acyclic and General Synchronizing Merge,
Critical Section and Interleaved Routing patterns are directly implemented however
other patterns identify areas that lack coverage, in particular there is no direct support
for any form of structured iteration, for any form of external triggers, for partial
AND-joins (i.e. the N-out-of-M join), for thread-based merges and splits. The overall
termination semantics adopted for process instances is also unclear.

No data semantics have been formally defined for the YAWL language, hence all
of these patterns evaluations are “–” (i.e. no support). The YAWL implementation
adopts a net-based approach to data management with variables bound to workflow
nets. Data is passed to and from tasks via input and output parameters. Mappings to
and from these parameters are specified as XQuery expressions which are based on net
variables. Similarly data passing between block tasks and their associated subprocess
decompositions and also to and from multiple instance tasks are also based on XQuery
expressions although in these situations, they are somewhat more complex in form
than those used for atomic tasks. As a consequence of its XQuery foundations, all
data passing is value-based. Table 2 illustrates the data patterns support provided by
both the YAWL language and implementation. Whilst the support that is provided
in the current implementation is effective, it is minimalistic in form and this limited
scope is reflected by the small number of data patterns that are directly supported.

Finally, in Table 3 summarises the extent of resource patterns support by the
YAWL language and implementation. There is no formal definition of the resource
perspective in the YAWL language hence these ratings are negative. For the current
implementation, there is limited support for the resource perspective. It provides the
ability to distribute work items directly to specific users or indirectly via roles, their
lifecycle is relatively simplistic: work items are distributed as soon as they are created,

5

Nr Pattern L
a
n
g
u
a
g
e

Im
p
le

m
e
n
ta

ti
o
n

Nr Pattern L
a
n
g
u
a
g
e

Im
p
le

m
e
n
ta

ti
o
n

Basic Control New Control-Flow Patterns

1 Sequence + + 21 Structured Loop – –

2 Parallel Split + + 22 Recursion – +

3 Synchronization + + 23 Transient Trigger – –

4 Exclusive Choice + + 23 Persistent Trigger – –

5 Simple Merge + + 25 Cancel Region + +

Adv. Branching & Synch. 26 Cancel MI Activity + +

6 Multiple Choice + + 27 Complete MI Activity – –

7 Structured Synch. Merge + + 28 Blocking Discriminator – –

8 Multiple Merge + + 29 Cancelling Discriminator + +

9 Structured Discriminator + + 30 Structured Partial Join – –

Structural 31 Blocking Partial Join – –

10 Arbitrary Cycles + + 32 Cancelling Partial Join – –

11 Implicit Termination +/– +/– 33 Generalized AND-Join + +

Multiple Instance 34 Static Partial Join for MIs + +

12 MI without Synchronization + + 35 Stat. Canc. Part. Join MIs + +

13 MI with a priori D/T Knowl. + + 36 Dynamic Partial Join for MIs – –

14 MI with a priori R/T Knowl. + + 37 Acyclic Synchronizing Merge + +

15 MI without a priori R/T Knowl. + + 38 General Synchronizing Merge + +

State-based 39 Critical Section + +

16 Deferred Choice + + 40 Interleaved Routing + +

17 Interleaved Parallel Routing + + 41 Thread Merge – –

18 Milestone + + 42 Thread Split – –

Cancellation 43 Explicit Termination – –

19 Cancel Activity + +

20 Cancel Case + +

Table 1: Support for Control-Flow Patterns in the YAWL Language and Implemen-
tation

by offering them to one or more users. Allocation of work items to users occurs at
the instigation of specific users and the time of commencement is also chosen by the
user. Users are able to execute multiple work items simultaneously and there is also
support for work item execution without user intervention.

2.3 Shortcomings

As with other patterns-based evaluations, the limitations of YAWL are immediately
evident from a quick glance at Tables 1, 2 and 3.

The control-flow perspective offers a relatively wide range of features, however
there is an obvious lack of support the majority of the new patterns both from a
language and implementation perspective, in particular there is not for any form of
integrated iteration or recursion4. It is not possible for the course of execution to

4Note that this pattern does function in the current implementation although its operation is not
clearly defined and it is not a currently defined language feature

6

Nr Pattern L
a
n
g
u
a
g
e

Im
p
le

m
e
n
ta

ti
o
n

Nr Pattern L
a
n
g
u
a
g
e

Im
p
le

m
e
n
ta

ti
o
n

Data Visibility Data Interaction (cont.)

1 Task Data – – 21 Env. to Case – Push – –

2 Block Data – + 22 Case to Env. – Pull – –

3 Scope Data – – 23 Subproc. to Env. – Push – –

4 Multiple Instance Data – + 24 Env. to Subproc. – Pull – –

5 Case Data – – 25 Env. to Subproc. – Push – –

6 Folder Data – – 26 Subproc. to Env. – Pull – –

7 Global Data – – Data Transfer

8 Environment Data – – 27 by Value Incoming – +

Data Interaction (Internal) 28 by Value Outgoing – +

9 between Tasks – + 29 Copy In/Copy Out – –

10 Block Task to Subprocess – + 30 by Reference – Unlocked – –

11 Subprocess to Block Task – + 31 by Reference – Locked – –

12 to Multiple Instance Task – + 32 Data Transformation – Inp. – +

13 from Multiple Instance Task – + 33 Data Transformation – Outp. – +

14 Case to Case – – Data-based Routing

Data Interaction (External) 34 Task Precond. – Data Exist. – –

15 Task to Env. – Push-Oriented – – 35 Task Precond. – Data Val. – –

16 Env. to Task – Pull-Oriented – – 36 Task Postcond. – Data Exist. – –

17 Env. to Task – Push-Oriented – – 37 Task Postcond. – Data Val. – –

18 Task to Env. – Pull-Oriented – – 38 Event-based Task Trigger – –

19 Case to Env. – Push-Oriented – – 39 Data-based Task Trigger – –

20 Env. to Case – Pull-Oriented – – 40 Data-based Routing – +

Table 2: Support for Data Routing in the YAWL Language and Implementation

be influenced by the external environment, i.e. an explicit trigger concept is missing.
There are also a wide range of join semantics that are not supported, in particular
any forms of Partial Join, as well as the Blocking Discriminator, the Thread Merge
and Dynamic Partial Join for MIs. There is also not a clearly defined basis for the
termination of process instances.

The shortcomings of YAWL from a data perspective are more significant. The
YAWL language does not provide any support for the data perspective. From an
implementation standpoint, the situation is a little better although there are a wide
variety of data representation paradigms that are not supported (task, scope, case,
folder and global) nor is there any recognition of data residing in the external envi-
ronment. Consequently there is no support for any form of data interaction with the
external environment. Data transfer facilities are limited to data passing by value and
there is no support for data passing by reference, for managing concurrent data usage
(e.g. locking) or for manipulating data being passed between tasks. Similarly, there is
minimal support for forms of data-based routing where the sequence of control-flow
is influenced by data values and data-based expressions.

The capabilities of YAWL from the resource perspective are also limited. There
is no language support for the resource perspective. Whilst there is minimalistic re-

7

Nr Pattern L
a
n
g
u
a
g
e

Im
p
le

m
e
n
ta

ti
o
n

Nr Pattern L
a
n
g
u
a
g
e

Im
p
le

m
e
n
ta

ti
o
n

Creation Patterns Pull Patterns (cont.)

1 Direct Allocation – + 24 Sys.-Determ. Wk Queue Cont. – –

2 Role-Based Allocation – + 25 Res.-Determ. Wk Queue Cont. – –

3 Deferred Allocation – – 26 Selection Autonomy – –

4 Authorization – – Detour Patterns

5 Separation of Duties – – 27 Delegation – –

6 Case Handling – – 28 Escalation – –

7 Retain Familiar – – 29 Deallocation – –

8 Capability-Based Allocation – – 30 Stateful Reallocation – –

9 History-Based Allocation – – 31 Stateless Reallocation – –

10 Organizational Allocation – – 32 Suspension/Resumption – –

11 Automatic Execution – + 33 Skip – –

Push Patterns 34 Redo – –

12 Distrib. by Offer - Single Res. – + 35 Pre-Do – –

13 Distrib. by Offer - Mult. Res. – + Auto-Start Patterns

14 Distrib. by Alloc. - Single Res. – – 36 Commencement on Creation – –

15 Random Allocation – – 37 Creation on Allocation – –

16 Round Robin Allocation – – 38 Piled Execution – –

17 Shortest Queue – – 39 Chained Execution – –

18 Early Distribution – – Visibility Patterns

19 Distribution on Enablement – + 40 Conf. Unalloc. Wk Item Visib. – –

20 Late Distribution – – 41 Conf. Alloc. Wk Item Visib. – –

Pull Patterns Multiple Resource Patterns

21 Resource-Init. Allocation – + 42 Simultaneous Execution – +

22 Res.-Init. Exec. - Alloc. WIs – + 43 Additional Resource – –

23 Res.-Init. Exec. - Offer. WIs – –

Table 3: Support for Resource Patterns in the YAWL Language and Implementation

source support in the current implementation, concepts such as deferred distribution,
authorization, distribution constraints based on previous execution history, organi-
zational model and resource capability are missing. There is no opportunity to vary
the distribution lifecycle for work items to enable resources to have more autonomy
in regard to the manner in which work items are progressed or alternatively to give
the system more control over their distribution. Resources are not able to change
the basis on which work items are distributed to them or to assign them to other
users. The timing of a work item cannot be varied for efficiency reasons either by the
system or by individual resources. Finally, there is no ability to restrict the visibility
of unassigned and allocated work items on any form of selectable basis.

2.4 Proposed Strategy for Resolution

The results described in the two preceding sections illustrate that whilst YAWL was
based on the workflow patterns as described in [AH05], the maturing of these pat-
terns across multiple perspectives [RAHE05, RHEA05] and further clarification of

8

the operation of these patterns [MAHR06, RHAM06] have led to a relative mismatch
between the range of patterns now in existence and those supported by the YAWL
offering (both formally from a langguage perspective and also practically in terms of
those features currently implemented in the YAWL system).

As a remedy to this mismatch, in the remainder of this paper we propose an
augmented version of YAWL – newYAWL – which provides direct support for a
significantly wider range of patterns. The aim of this new version is twofold:
(1) to illustrate how a business process language can support the broadest
possible range of the workflow patterns and (2) to demonstrate that the
patterns can function together on an integrated basis.

In order to achieve this, it is first necessary to identify the additional conceptual
extensions that newYAWL will require. These can be determined based on an analysis
of the patterns coverage in Tables 1 to 3 and are as follows:

• Constructs for representing activity iteration (while, repeat loops and recursion)
(WCP-21, WCP-22);

• Trigger inclusion to enable execution of a work item to be initiated from outside
of the process instance (WCP-23, WCP-24);

• A construct to allow a MI activity to be forcibly completed and subsequent
activities to be triggered (WCP-25);

• Introduction of a partial AND-join construct which fires when N of the incoming
M branches have received triggers (WCP-30, WCP-31, WCP-32);

• Extensions to the partial AND-join construct to allow (1) a blocking region to
be specified, comprising activities that cannot be enabled once the join has
fired but not yet reset for subsequent firing and (2) subsequent triggers received
on an incoming branch that has already been enabled to be retained between
partial AND-join resets (WCP-33);

• Inclusion of dynamic partial join support for MI activities (WCP-36);

• Introduction of thread merge and split constructs to allow multiple execution
threads to be coalesced and initiated (WCP-40, WCP-41);

• Introduction of explicit termination semantics for process instances and net
instances within process instances (WCP-43);

• Support for task, scope, case, folder, global and external data elements (WDP-1,
WDP-3, WDP-5, WDP-6, WDP-7, WDP-8);

• The ability to directly pass data elements between task instances (WDP-9);

• The ability to pass data elements between task, case and global constructs and
the external environment (WDP-15 to WDP-26);

• The ability to lock data elements during usage to prevent concurrency issues
from arising (WDP-31);

9

• Support for pre and post-conditions on task instances based on existence of
data elements and values of expressions containing data elements (WDP-34 to
WDP-37);

• The ability to distribute work items based on resource capabilities and autho-
rizations, preceding execution history (both within the process instance and
across all process instances) and details of the organization in which the re-
sources belong (WRP-5, WRP-7 to WRP-10);

• The ability to defer the determination of resource and role identity to runtime
(WRP-3);

• The ability to directly allocate a work item to a resource and also to start the
work item at allocation time (WRP-14, WRP-18);

• The ability to allocate a work item to one of a group of resources based on the
size of the resource’s work queue, on a round-robin or random basis (WRP-15,
WRP-16, WRP-17);

• The ability to limit a resource’s work queue to the item on which they are
currently working (WRP-4, WRP-42);

• Support for a broader range of resource-initiated interventions in the work dis-
tribution process including direct start of offered work items, delegation, deallo-
cation, reallocation on a stateful and stateless basis, and suspension/resumption
of work items (WRP-4, WRP-23, WRP-26, WRP-27, WRP-29 to WRP-33);

• Support for system-initiated escalation of work items including state and re-
source changes (WRP-28);

• Support for various approaches to expediting work item throughput including
automatic commencement at creation and allocation time and also for advanced
distribution paradigms such as piled and chained execution (WRP-36 to WRP-
39);

• Support for work list content management at both resource level and on a
system-wide basis (WRP-24, WRP-25);

• Support for selective visibility of allocated and unallocated work items (WRP-
40, WRP-41).

Subsequent sections will present the graphical form, an abstract syntax and the
underlying semantics for a business process modelling language that achieves these
aims.

3 An Introduction to newYAWL

newYAWL is a reference language for PAIS. It represents a synthesis of the contem-
porary range of control-flow, data and resource patterns. This section provides an
introduction to each of the main constructs in the control-flow, data and resource
perspectives of newYAWL.

10

3.1 Control-flow perspective

Figure 1 identifies the complete set of language elements which comprise the control-
flow perspective of newYAWL. All of the language elements in YAWL have been
retained5 and perform the same functions. There is a brief recap of the operation of
each of these constructs below. A more detailed discussion of YAWL can be found
elsewhere [AH05]. A multitude of new constructs have also been added to address
the full range of patterns that have been identified. Each of these constructs is
subsequently discussed in more detail.

NEW CONSTRUCTS

Persistent trigger task

Transient trigger task

Completion region

Blocking region

EXISTING CONSTRUCTS

Disablement arc

#

#

Composite task

Multiple instances of
an atomic task

Multiple instances of
a composite task

Atomic taskCondition

Input condition

Output condition

AND−join task

XOR−join task

OR−join task

AND−split task

XOR−split task

OR−split task

Thread split task

Thread merge task

Partial−join task

Repetitive task (while/repeat)

Cancellation region

Figure 1: newYAWL symbology

3.1.1 Existing YAWL constructs

newYAWL inherits all of the existing constructs from YAWL together with its repre-
sentation of a process model. As in YAWL, a newYAWL specification is composed of
a set of newYAWL-nets in the form of a rooted graph structure. Each newYAWL-net

5The visual format of the cancellation region is slightly different although its operation is un-
changed.

11

is composed of a series of tasks and conditions. Tasks and conditions in newYAWL
nets play a similar role to transitions and places in Petri nets. Atomic tasks have
a corresponding implementation that underpins them. Composite tasks refer to a
unique newYAWL-net at a lower level in the hierarchy which describes the way in
which the composite task is implemented. One newYAWL-net, referred to as the top
level process or top level net, does not have a composite task referring to it and it
forms the root of the graph.

Each newYAWL-net has one unique input and output condition. The input and
output conditions of the top level net serve to signify the start and endpoint for a
process instance. Similar to Petri nets, conditions and tasks are connected in the
form of a directed graph, however there is one distinction in that newYAWL allows
for tasks to be directly connected to each other. In this situation, it is assumed that
an implicit condition exists between them from a semantic perspective.

It is possible for tasks (both atomic and composite) to be specified as having
multiple instances (as indicated in Figure 1). Multiple instance tasks (abbreviated
hereafter as MI tasks) can have both lower and upper bounds on the number of
instances created after initiating the task. It is also possible to specify that the task
completes once a certain threshold of instances have completed. If no threshold is
specified, the task completes once all instances have completed. If a threshold is
specified, the behaviour of the task depends on whether the task is identified as being
cancelling or non-cancelling. If it is cancelling, all remaining instances are terminated
when the threshold is reached and the task completes. If it is non-cancelling, the task
completes when the threshold is reached, but any remaining instances continue to
execute until they complete normally. However their completion is inconsequential
and does not result in any other side-effects. Should the task commence with the
required number of minimum instances and all of these complete but the required
threshold of instance completions is not reached, the multiple instance task is deemed
complete once there are no further instances being executed (either from the original
set of instances when the task was triggered or additional instances that were started
subsequently). Finally, it is possible to specify whether the number of task instances
is fixed after creating the initial instances (i.e. the task is static) or whether further
instances can be added while there are still other instances being processed (i.e. the
task is dynamic). Through various combinations of these settings, it is possible to
implement all of the MI patterns that have been identified.

Tasks in a newYAWL-net can have specific join and split behaviours associated
with them. The traditional join and split constructs (i.e. AND-join, OR-join, XOR-
join, AND-split, OR-split and XOR-split) are included in newYAWL together with
three new constructs: thread split, thread merge and partial join which are discussed
in detail in Sections 3.1.2 and 3.1.3. The operation of each of the joins and splits in
newYAWL is as follows:

– AND-join – the branch following the AND-join receives the thread of control when
all of the incoming branches to the AND-join in a given case have been enabled.

– OR-join – the branch following the OR-join receives the thread of control when
either (1) each active incoming branch has been enabled in a given case or (2) it is
not possible that any branch that has not yet been enabled in a given case will be
enabled at any future time.

12

– XOR-join – the branch following the XOR-join receives the thread of control when
one of the incoming branches to the XOR-join in a given case has been enabled.

– AND-split – when the incoming branch to the AND-split is enabled, the thread of
control is passed to all of the branches following the AND-split.

– OR-split – when the incoming branch to the OR-split is enabled, the thread of
control is passed to one or more of the branches following the OR-split, based on
the evaluation of conditions associated with each of the outgoing branches.

– XOR-split – when the incoming branch to the XOR-split is enabled, the thread of
control is passed to precisely one of the branches following the XOR-split, based
on the evaluation of conditions associated with each of the outgoing branches.

Finally, newYAWL also inherits the notion of a cancellation region from YAWL.
A cancellation region encompasses a group of conditions and tasks in a newYAWL-
net. It is linked to a specific task in the same newYAWL-net. At runtime, when an
instance of the task to which the cancellation region is connected completes executing,
all of the tasks in the associated cancellation region that are currently executing for
the same case are withdrawn. Similarly any tokens that reside in conditions in the
cancellation region that correspond to the same case are also withdrawn.

This concludes the discussion of constructs in newYAWL that are inherited from
YAWL. We now introduce new constructs for the control-flow perspective.

3.1.2 Thread split and merge

The thread split and thread merge constructs provide ways of initiating and coalescing
multiple independent threads of control within a given process instance thus providing
an alternate mechanism to the multiple instance activity for introducing concurrency
into a process.

The thread split is a split construct which initiates a specified number of outgoing
threads along the outgoing branch when a task completes. It is identified by a #
symbol on the righthand side of the task. Only one outgoing branch can emanate
from a thread split and all initiated execution threads flow along this branch. The
number of required threads is identified in the design-time process model.

The thread merge is a join construct which coalesces multiple independent threads
of control prior to the commencement of an activity. Similar to the thread merge, it
is denoted by a # symbol however in this case it appears on the lefthand side of the
activity. A thread merge can only have a single incoming branch.

Figure 2 provides an illustration of the use of these constructs in the context of a
car inspection process. A car inspection consists of four distinct activities executed
sequentially. First the lights are inspected, then the tyres, then the registration
documents before finally a record is made of the inspection results. It is expected
that a car has five tyres hence five distinct instances of the inspect tyre activity are
initiated. Only when all five of these have completed does the following activity
commence.

13

results

#

inspect
tyre

inspect
registration

inspect
lights

document
inspection

Figure 2: Example of thread split and merge usage

3.1.3 Partial join

The partial join (or the n-out-of-m join) is a variant of the AND-join which fires when
input has been received on n of the incoming branches (i.e. it fires earlier than would
ordinarily be the case with an AND-join which would wait for input to be received
on all m incoming branches). The construct resets (and can be re-enabled) when
input has been received on all (m) of the incoming branches. A blocking region can
be associated with the join, in which tasks are blocked (i.e. they cannot be enabled
or, if already enabled, cannot proceed any further in their execution) after the join
has fired until the time that it resets.

Figure 3 illustrates the use of the partial join in the context of a more comprehen-
sive vehicle inspection process. After the initiate inspection activity has completed,
the mechanical inspection, records inspection and licence check activities run concur-
rently. If all of them complete without finding a problem, then no action is taken
and the file report activity concludes the process instance. However if any of the
inspection activities finds a problem, the defect notice activity is initiated and once
complete any remaining inspection activities are cancelled, followed by a full inspec-
tion activity before the final file report. In this example, the partial join corresponds
to a 1-out-of-3 join without a blocking region.

initiate

notice
full

inspection

file
reportinspection

mechanical
inspection

records
inspection

licence
check

no
action

defect

Figure 3: Example of the partial join: defect notice is a 1-out-of-3 join

3.1.4 Task repetition

Task repetition is essentially an augmentation of the task construct which has pre-test
and/or post-test conditions associated with it. If the pre-test condition is not satisfied,

14

the task is skipped. If the post-test condition is not satisfied, the task repeats. These
conditions allows while, repeat and combination loops to be constructed for individual
tasks. Where a specific condition is not associated with a pre-test or post-test, they
are assumed to correspond to true resulting in the task being executed or completed
respectively

Figure 4 illustrates the implementation of a repeat loop for a given task in the
context of a renew drivers licence process. An instance of the process is started for
each person applying to renew their existing licence. Depending on the results of the
eyesight test activity, a decision is made as to whether to issue a person with a new
licence. For those people that pass the test, they have their photo taken and if they
are not satisfied with the result, have it taken again until they are (i.e. take photo is
executed one or more times). The licence is then issued. Finally the paperwork is
filed for all applicants who apply for a licence.

paperwork
take

photo
issue

licence
eyesight

test
file

Figure 4: Example of a repeat loop

Another example of the use of this construct is illustrated in Figure 5. This shows
how a while loop is implemented in the context of a composite task. The motor safety
campaign process essentially involves a running a series of vehicle inspections at a
given motor vehicle dealer to ensure that the vehicles for sale are roadworthy. It is a
simple process, first the vehicles to be inspected are chosen. Then the list of vehicles
is passed to the conduct inspections task. This is composite in form and repeatedly
executes the associated subprocess while there are vehicles remaining on the list to
inspect.

There is also support for combination loops in newYAWL. This construct is il-
lustrated by the conduct inspection task in Figure 6. It has both a pre-test and a
post-test condition associated with it. These are evaluated at the beginning and end
of each task instance respectively and are distinct conditions. In this example, the
pre-test condition is that there are vehicles to inspect. If this condition is true then an
instance of the conduct inspection task is commenced otherwise the task is skipped.
The post-test condition has two parts: (1) there are no more vehicles remaining to
inspect or (2) there is not enough time for another inspection. If this condition is
false then an instance of the conduct inspection task is commenced (providing the
pre-test evaluates to true) otherwise the thread of control is passed to the following
task.

3.1.5 Persistent and transient triggers

One of the major deficits of YAWL was the inability for processes to be influenced
by or respond to stimuli from the external environment unless parts of the process or
the entire process was subcontracted to an external service. The inclusion of triggers
provides a means for the initiation of work items to be directly controlled from outside
of the context of the process instance. Two distinct types of triggers are recognized

15

report

action

defect
notice

full
inspection

file

select
vehicles

conduct
inspections

mechanical
inspection

records
inspection

initiate
inspection

licence
check

no

Figure 5: Example of a while loop

file
inspections

conduct
inspection

schedule
paperwork

Figure 6: Example of a combination loop

in newYAWL: persistent triggers and transient triggers. These distinguish between
the situations where the triggers are durable in form and remain pending for a task
in a given process instance until consumed by the corresponding work item and those
where the triggers are discarded if they do not immediately cause the initiation of
the associated work item. In both cases, triggers have a unique name and must be
directed at a specific task instance (i.e. a work item) in a specific process instance.
To assist in identifying this information so that triggers can be correlated with the
relevant work item, the process environment may provide facilities for querying the
identities of currently active process and task instances.

Figure 7 illustrates the operation of a persistent trigger in the context of a regis-
tration plate production process. Once initiated, the process instance receives triggers
from an external system advising that another registration plate is required. It passes
these on to the produce plates task. As this is a mechanical process which involves
the use of a specific machine and bulk materials, it is more efficient to produce the
plates in batches rather than individually. For this reason, the produce plates activity
waits until 12 requests have been received and then executes, cancelling any further
instances of the receive registration request task once it has completed. The trigger

16

associated with the receive registration request task is persistent in form as it is im-
portant that individual registration requests are not lost. A transient trigger does
not retain pending triggers (i.e. triggers must be acted on straightaway or they are
irrevocably lost) hence it is unsuitable for use in this situation.

#

receive
registration

request

produce
plates

Figure 7: Example of persistent trigger usage

Figure 8 illustrates the operation of a transient trigger in the context of a refinery
plant initiation process. The request startup task commences the firing up of the
various plant and equipment associated with an oil refinery, however this task can
only proceed when both the refinery plant initiation process has been initiated and
a safety check completed trigger has been received. The safety check completed is an
output from an internal safety check run by the plant machinery every 90 seconds.
The trigger is transient in form and if not consumed immediately, it is discarded and
the user must wait until the next trigger is received before the request startup task
can commence.

startup
request refinery
startup

Figure 8: Example of transient trigger usage

3.1.6 Completion region

Cancellation regions have been retained from YAWL and a new construct – the com-
pletion region – has been introduced which operates in an analogous way to the
cancellation region, except that when the task to which the region is linked com-
pletes, all of the tasks within the region are force-completed. This means that if they
are enabled or executing, they are disabled and the task(s) subsequent to them are
triggered. All such tasks are noted as being “completed” (this may involve inserting
appropriate log entries in the execution log). Where the task is composite in form, it
is marked as having completed and its associated subprocess(es) has all active tasks
within it disabled and any pending tokens removed.

There are two scenarios associated with the completion region that deserve special
merit. The first of these is where a multiple instance is included within the completion
region. In this situation, any incomplete instances are automatically advanced to a
completed state. Where data elements are passed from the multiple instance task to
subsequent tasks (e.g. as part of the aggregator query) there may be the potential

17

for the inclusion of incomplete data (i.e. multiple instance data elements will be
aggregated from all task instances, regardless of whether they have been defined or
not).

The second situation involves data passing from tasks that have not yet com-
pleted. If these tasks pass data elements to subsequent tasks, there is the potential
for ambiguity in the situation where a “force completion” occurs. In particular, the
use of mandatory output data parameters or postconditions (see Section 3.2.4 for
more details on the operation of postconditions) that assume the existence of final
data values may cause the associated work item to hang. In order to resolve this
problem, any tasks within a completion region should not have mandatory output
data parameters or postconditions specified for them that assume the existence of
final data values or care should be taken to ensure that appropriate values are set at
task initiation.

Figure 9 provides an example of the operation of the cancellation region in the
context of the collate monthly statistics process for the motor vehicle registry. At the
end of each month the preceding month’s activities are reviewed to gather statistics
suitable for publication in the department’s marketing brochure. Because this is
a time-consuming activity, it is time-bounded to ensure timely publication of the
statistics. This generally means that only a subset of the previous month’s records are
actually examined. After the review is initiated, this is achieved by setting a timeout.
In parallel with this, multiple instances of the review records task are initiated (one for
each motor vehicle record processed in the last month). The review records task is in
a completion region which is triggered by the timeout activity being completed. This
stops any further records processing and allows the publish statistics task to complete
on a timely basis. Should the review records task complete ahead of schedule, then
the timeout is cancelled.

statisticsreview

timeout

publish

review
records

initiate

Figure 9: Example of completion region usage: timeout forces review records to
complete

A variant of this process is illustrated in Figure 10. Unlike the previous model,
it uses an external trigger to signal when the review process should complete. This
trigger is transient in form as any triggers received before the review records task has
commenced must be ignored. This variant is less efficient as the publish statistics task
can only commence when the publish decision trigger has been received (i.e. there is
no provision for the review records task to complete early).

18

decision

publish
statistics

publish

review
records

initiate
review

Figure 10: Example of completion region usage using transient triggers

3.1.7 Dynamic multiple instance task disablement

The disablement link provides a means of stopping a dynamic multiple instance task
from having any further instances created. It is triggered when another task in the
same process completes. The example in Figure 11 illustrates part of the paper review
process for a conference. After a call for papers has been made, multiple instances of
the accept submission activity can execute. One is triggered for each paper submission
that is received. A manual activity exists for imposing the submission deadline. This
is triggered by an external transient trigger. Once received, it disables the accept
submission activity preventing any further papers from being accepted. However, all
of the processing for already accepted papers completes normally and once done, the
organize reviews activity is initiated.

deadline

organize

accept
submission

call for
papers reviews

impose

Figure 11: Example of dynamic multiple instance task disablement

3.2 Data perspective

The data perspective of newYAWL encompasses the definition of a range of data
elements, each with a distinct scoping. These data elements are used for managing

19

data with a newYAWL process instance and are passed between process components
using formal parameters. In order to integrate the data and control-flow perspectives,
support is provided in newYAWL for specifying logical conditions based on data
elements that define whether the thread of control can be passed to a given branch in
a process (link condition) and also whether a specific process component can start or
complete execution (pre or postcondition). Finally, there is also support for managing
consistency of data elements in concurrent environments using locks. All of these
newYAWL data constructs are discussed subsequently.

3.2.1 Data element support

newYAWL incorporates a wide range of facilities for data representation and handling.
Variables of eight distinct scopings are recognized as follows:

– External variables are defined in the operational environment in which a newYAWL
process executes (but are external to it). They can be accessed throughout all
instances of all newYAWL process models;

– Folder variables are defined in the context of a (named) folder. A folder can be
accessed by one or more process instances at runtime. They do not necessarily
need to relate to the same process model. Individual process instances can specify
the folders they require at the time they initiate execution;

– Global variables are bound to a specific newYAWL specification and are accessible
throughout all newYAWL-nets associated with it at runtime;

– Case variables are bound to an instance of a specific newYAWL specification.
At runtime a new instance of the case variable is created for every instance of
the newYAWL specification that is initiated. This variable instance is accessible
throughout all newYAWL-nets associated with the newYAWL process instance at
runtime;

– Block variables are bound to a specific instance of a newYAWL-net. At runtime a
new instance of the block variable is created for every instance of the newYAWL-net
that is initiated. This variable instance is accessible throughout the newYAWL-nets
at runtime;

– Scope variables are bound to a specific scope within a process instance of a newYAWL-
net. At runtime a new instance of the scope variable is created for every instance
of the newYAWL-net instance that is initiated. This variable instance is accessible
only to the task instances belonging to the scope at runtime;

– Task variables are bound to a specific task. At runtime a new instance of the task
variable is created for every instance of the task that is initiated. This variable
instance is accessible only to the corresponding task instance at runtime; and

– Multiple-Instance variables are bound to a specific instance of a multiple-instance
task. At runtime a new instance of the multiple instance variable is created for
every instance of the multiple instance task that is initiated. This variable instance
is accessible only to this instance of the task instance at runtime.

20

3.2.2 Data interaction support

There are a series of facilities for transferring data elements between internal and
external locations. Data passing between process constructs (e.g. block to task, com-
posite task to subprocess decomposition, block to multiple instance task) is specified
using formal parameters and utilizes a function-based approach to data transfer, thus
providing the ability to support inline formatting of data elements and setting of
default values. Parameters can be associated with tasks, blocks and processes. They
take the following form:

parameter input-vars mapping-function output-vars direction participation

where direction specifies whether the parameter is an input or output parameter and
participation indicates whether it is mandatory or optional. Input parameters are
responsible for passing data elements into the construct to which the parameter is
bound and output parameters are responsible for passing data elements out. Manda-
tory parameters require the evaluation of the parameter to yield a defined result (i.e.
not an undefined value) in order to proceed. Depending on whether the parameter
is an input or output parameter, an undefined result for the parameter evaluation
would prevent the associated construct from commencing or completing.

The action of evaluating the parameter for singular tasks, blocks and processes
occurs in two steps: (1) the specified mapping function is invoked with the values of
the nominated input variables then (2) the result is copied to the nominated output
variable. For all constructs other than multiple instance tasks, the resultant value can
only be copied to one output variable in one instance of the construct to which they are
bound. For multiple instance parameters, the situation is a little more complicated
as the parameter is responsible for interacting with multiple variables in multiple
task instances. The situation for input multiple instance parameters is illustrated
in Figure 12. When a multiple instance parameter is evaluated, it yields a tabular
result (indicated by var saltab). The number of rows indicate how many instances
of the multiple instance task are to be started. The list of output variables for the
parameter correspond to variables that will be created in each task instance. Each
row in the tabular result is allocated to a distinct task instance and each column in
the row corresponds to the value allocated to a distinct variable in the task instance.

For output multiple instance parameters, the situation is reversed as illustrated in
Figure 13 and the values of the input variables listed for the parameter are coalesced
from multiple task instances into a single tabular result that is then assigned to the
output variable.

3.2.3 Link conditions

As a consequence of a fully-fledged data perspective, newYAWL is able to support
conditions on outgoing arcs from OR-splits and XOR-splits. These conditions take
the following form:

link condition link-function input-variables

The value from each of the input-variables is passed to the link function which eval-
uates to a Boolean result indicating whether the thread of control can be passed to
this link or not. Depending on the construct in question, the evaluation sequence of

21

Jones A07

Brown TEMP $23

$62

CEOSmith $140

work items:

parameter:

var saltab:

WI: A.1

name: Smith
position: CEO
rate: $140

WI: A.3

name: Brown
position: TEMP
rate: $23

WI: A.2

name: Jones
position: A07
rate: $62

function

task

type

in vars

out vars name
position

rate

misplit()

saltab

invar

A

A

Figure 12: Multiple instance input parameter handling

function

task

type

in vars

mijoin()

A

outvar

name
rating

change
out var assess

var assess:

25%

0%60%

WI: A.1

name: Smith
rating: 60%
change: 0

WI: A.2

name: Brown
rating: 90%
change: +25%

parameter:

work items: WI: A.3

rating: UNDEF
change: UNDEF

name: Jones

WI: A.4

change: UNDEF
rating: 22%
name: Cooper

Jones

Smith

Brown

Cooper

UNDEF

UNDEF

UNDEF

22%

90%

A

Figure 13: Multiple instance output parameter handling

link conditions varies. For OR-splits, all outgoing link conditions are evaluated and
the thread of control is passed to all that evaluate to true. A default link is specified
for each OR-split and if none of the link conditions evaluate to true, then the thread
of control is passed to this link.

For XOR-splits, there is a sequence specifying the order in which the link condi-
tions should be evaluated. Once the first link condition evaluates to true, then the
thread of control is passed to that link and any further evaluation of link conditions
ceases. Should none of them evaluate to true, then the thread of control is passed to
the link that is specified as the default.

22

3.2.4 Preconditions and postconditions

Preconditions and postconditions can be specified for tasks and processes in newYAWL.
They take the same form as link conditions and are evaluated at the enablement or
completion of the task or process with which they are associated. Unless they evaluate
to true, the task or process instance with which they are associated cannot commence
or complete execution.

3.2.5 Locks

newYAWL allows tasks to specify data elements that they require exclusive access to
(within a given process instance) in order to commence. Once these data elements are
available, the associated task instance retains a lock on them until it has completed
execution preventing any other task instances from using them concurrently. This
lock is relinquished once the task instance completes.

3.3 Resource perspective

newYAWL provides support for a broad range of work distribution facilities, inspired
by the Resource Patterns, that have not been previously embodied in other PAIS.
Traditional approaches to work item routing based on itemization of specific users and
roles are augmented with a sophisticated array of new features. There are a variety
of differing ways in which work items may be distributed to users. Typically these
requirements are specified on a task-by-task basis and have two main components:

1. The interaction strategy by which the work item will be communicated to the
user, their commitment to executing it will be established and the time of its
commencement will be determined; and

2. The routing strategy which determines the range of potential users that can
undertake the work item.

newYAWL also provides additional routing constraints that operate with a given
case to restrict the users a given work item is distributed to based on the routing
decisions associated with previous work items in the case. There is also the ability
to specify privileges for each user in order to define the range of operations that they
can perform when undertaking work items and there are also two advanced operating
modes that can be utilized in order to expedite work throughput for a given user.
Each of these features is discussed in detail below.

3.3.1 Work item interaction strategies

The potential range of interaction strategies that can be specified for tasks in newYAWL
are listed in Table 4. They are based on the specification at three main interaction
points – offer, allocation and start – of the identity of the party that will be respon-
sible for determining when the interaction will occur. This can be a resource (i.e.
an actual user) or the system. Depending on the combination of parties specified for
each interaction, a range of possible distributions are possible as detailed below. From
the perspective of the resource, each interaction strategy results in a distinct experi-
ence in terms of the way in which the work item is distributed to them. The range

23

of strategies supported range from highly regimented schemes (e.g. SSS) where the
work item is directly allocated to the resource and started for them and the resource
has no involvement in the distribution process through to approaches that empower
the resource with significant autonomy (e.g. RRR) where the act of committing to
undertake a work item and deciding when to start it are completely at the resource’s
discretion.

As an aid to understanding the distinctions between the various interactions de-
scribed in Table 4, it is possible to illustrate them quite effectively using UML Se-
quence Diagrams as depicted in Figure 14. These show the range of interactions
between the system and resources that can occur when distributing work items. The
work distribution, worklist handler and management intervention objects corresponds
to the system, resource and process administrator (or manager) respectively. An ar-
row from one object to another indicates that the first party sends a request to the
second, e.g. in the RRR interaction strategy, the first request is a manual offer from
the system to the process administrator. The implications of these requests are dis-
cussed further in Section 5.

3.3.2 Work item routing strategies

The second component of the work distribution process concerns the routing strategy
employed for a given task. This specifies the potential user or a group of users
from which the actual user will be selected who will ultimately execute a work item
associated with the task. There are a variety of means by which the task routing
may be specified as well a series of additional constraints that may be brought into
use at runtime. These are summarized below. Combinations of these strategies and
constraints are also permissible.

Task routing strategies

Direct user distribution
This approach involves routing to a specified user or group of users.

Role-based distribution
This approach involves routing to one or more roles. A role is a “handle” for a group
of users that allows the group population to be changed without the necessity to
change all of the task routing directives. The population of the role is determined at
runtime at the time of the routing activity.

Deferred distribution
This approach allows a task variable to be specified which is accessed at runtime to
determine the user or role that the work item associated with the task should be
routed to.

Organizational distribution
This approach allows an organizational distribution function to be specified for a
task which utilizes organizational data to make a routing decision. As part of the
newYAWL semantic model, a simple organizational structure is supported which
identifies the concept of organizational groups, jobs and an organizational hierarchy
and allows users to be mapped into this scheme. The function takes the following
form.

24

Offer Allocation Start Effect
SSS system system system The system directly allocates work to a re-

source and it is automatically started.
SSR system system resource The system directly allocates work to a re-

source. It is started when the user selects
the start option.

SRS system resource system The system offers work to one or more
users. The first user to choose the select
option for the work item has the work item
allocated to them and it is automatically
started. It is withdrawn from other user’s
work lists.

SRR system resource resource The system offers work to one or more
users. The first user to choose the select
option for the work item has the work item
allocated to them. It is withdrawn from
other user’s work lists. The user can choose
when to start the work item via the start
option.

RSS resource system system The work item is passed to a manager
who decides which resources the work item
should be allocated to. The work item is
then directly allocated to that user and is
automatically started.

RSR resource system resource The work item is passed to a manager
who decides which resources the work item
should be allocated to. The work item is
then directly allocated to that user. The
user can choose when to start the work
item via the start option.

RRS resource resource system The work item is passed to a manager who
decides which resource(s) the work item
should be offered to. The work item is then
offered to those user(s). The first user to
choose the select option for the work item
has the work item allocated to them and it
is automatically started. It is withdrawn
from all other user’s work lists.

RRR resource resource resource The work item is passed to a manager who
decides which resource(s) the work item
should be offered to. The work item is then
offered to those user(s). The first user to
choose the select option for the work item
has the work item allocated to them. It is
withdrawn from all other user’s work lists.
The user can choose when to start the work
item via the start option.

Table 4: Work item interaction strategies supported in newYAWL

25

(a) RRR interaction strategy (b) RRS interaction strategy

(c) RSR interaction strategy (d) RSS interaction strategy

(e) SRR interaction strategy (f) SRS interaction strategy

(g) SSR interaction strategy (h) SSS interaction strategy

Figure 14: Work item interaction strategies in newYAWL
26

function function-name users org-groups jobs user-jobs

where users is the base population from whom the final set of users to whom the work
item will be distributed will be chosen, org-groups is the hierarchy of organizational
groups to which users can belong, jobs indicates the job roles within the organization
and user-jobs maps individual users to the jobs that they perform. The function
returns a set of users to whom the work item should be routed.

Capability-based distribution
Capabilities can be specified for each user which describe the qualities that they
possess that may be of relevance in making routing decisions. A capability-based
distribution function can be specified for each task which allows user capabilities to
be used in making work distribution decisions. The function takes the following form.

function function-name users user-capabilities

where users is the base population from whom the final set of users to whom the work
item will be distributed will be chosen and user-capabilities is the list of capabilities
that each user possesses. The function returns a set of users to whom the work item
should be routed.

Historical distribution
A historical distribution function can be specified for each task which allows historical
data – essentially the content of the execution log – to be used in making work
distribution decisions. The function takes the following form.

function function-name users events

where users is the base population from whom the final set of users to whom the
work item will be distributed will be chosen and events are the list of records making
up the process log. The function returns a set of users to whom the work item should
be routed.

3.3.3 Additional routing constraints

There are several additional constraints supported by newYAWL that can be used to
further refine the manner in which work items are routed to users. They are used in
conjunction with the routing and interaction strategies described above.

Retain familiar
This constraint on a task overrides any other routing strategies and allows a work
item associated with it to be routed to the same user that undertook a work item
associated with a specified preceding task in the same process instance. Where the
preceding task has been executed several times within the same process instance (e.g.
as part of a loop), it is routed to one of the users that undertook a preceding instance
of the task.

Four eyes principle
This constraint on a task operates in essentially the reverse way to the Retain familiar
constraint. It ensures that the potential users to whom a work item associated with
a task is routed does not include the user that undertook a work item associated
with a nominated preceding task in the same process instance. Where the preceding
task has been executed several times within the same process instance, it cannot be
routed to any of the users that undertook a preceding instance of the task.

27

Random allocation
This constraint on a task ensures that any work items associated with it are only ever
routed to a single user where the user is selected from a group of potential users on
a random basis.

Round robin allocation
This constraint on a task ensures that any work items associated with it are only ever
routed to a single user where the user is selected from a group of potential users on a
cyclic basis such that each of them execute work items associated with the task the
same number of times (i.e. the distribution is intended to be equitable).

Shortest queue allocation
This constraint on a task ensures that any work items associated with it are only ever
routed to a single user where the user is selected from a group of potential users on
the basis of which of them has the shortest work queue.

3.3.4 Advanced user operating modes

newYAWL supports two advanced operating modes for user interaction with the
system. These modes are intended to expedite the throughput of work by imposing
a defined protocol on the way in which the user interacts with the system and work
items are allocated to them. These modes are described below.

Chained execution
Chained execution is essentially an operating mode that a given user can choose to
enable. Once they do this, upon the completion of a given work item in a process,
should any of the immediately following tasks in the process instance have potential
to be routed to the same user (or to a group of users that include the user), then
these routing directives are overridden and the associated work items are placed in
the user’s work list with a started status.

Piled execution
Piled execution is another operating mode however it operates across multiple process
instances. It is enabled for a specified user-task combination and once initiated, it
overrides any routing directive for the nominated task and ensures that any work
items associated with the task in any process instance are routed to the nominated
user.

3.3.5 Runtime privileges

newYAWL provides support for a number of privileges that can be enabled on a per-
user basis that affect the way in which work items are distributed and the various
interactions that the user can initiate to otherwise change the normal manner in
which the work item is handled. These are summarized in Table 5.

Additionally, there are also privileges that can be enabled for users on a per task
basis. These are summarized in Table 6.

28

Privilege Explanation
choose The ability to select the next work item to start execution on
concurrent The ability to execute more than one work item simultaneously
reorder The ability to reorder items in the work list
viewoffers The ability to view work items offered to other users
viewallocs The ability to view work items allocated to other users
viewexecs The ability to view work items started by other users
chainedexec The ability to enter the chained execution operating mode

Table 5: User privileges supported in newYAWL

Privilege Explanation
suspend The ability for a user to suspend execution of work items cor-

responding to this task
reallocate The ability for the user to reallocate work items correspond-

ing to this task (which have been commenced) to other users
without any implied retention of state

reallocate state The ability for the user to reallocate work items corresponding
to this task (which have been commenced) to another user and
retain the state of the work item

deallocate The ability for the user to deallocate work items corresponding
to this task (which have not yet been commenced) and cause
them to be re-allocated

delegate The ability for the user to delegate work items corresponding
to this task (which have not yet been commenced) to another
user

skip The ability for the user to skip work items corresponding to
this task

piledexec The ability to enter the piled execution operating mode for
work items corresponding to this task

Table 6: User task privileges supported in newYAWL

29

4 Syntax

This section presents an abstract syntax for the newYAWL reference language. The
syntax facilitates the capture of all aspects of the control-flow, data and resource
perspectives of a newYAWL business process model. The aim of the syntax is twofold.
First, to provide complete coverage of the constructs that make up the newYAWL
reference language. Secondly, to do so in sufficient detail, that it is possible to directly
enact a newYAWL process on the basis of the information captured about it in the
abstract syntax model. The manner in which a newYAWL syntactic model is prepared
for enactment is illustrated in Figure 15.

complete
new

initial marking
transformation

functions
marking

functions
YAWLof

semantic model
YAWLnew

specification

core

specification
newYAWL

Figure 15: Preparing a newYAWL process model for enactment

A complete newYAWL specification corresponds to an instance of the abstract
syntax. Details of the abstract syntax are presented in Section 4.1. However it
is not necessary to describe the enactment of the newYAWL language in terms of
all of the constructs that it contains. Most of the new control-flow constructs in
newYAWL can be transformed into existing YAWL constructs without any loss of
generality. This approach to enactment has two advantages: (1) the existing YAWL
engine can be used as the basis for executing newYAWL processes and (2) the existing
verification techniques established for the control-flow perspective of YAWL continue
to be applicable for newYAWL. The transformation of the newYAWL control flow
constructs into YAWL constructs occurs using a series of transformation functions.
These are described both informally and formally in Section 4.2. The resultant process
model after transformation is called a core newYAWL specification.

The manner in which a newYAWL specification is ultimately enacted is the sub-
ject of Section 5 which presents an operational semantics for newYAWL based on
CP-nets. A core newYAWL specification can be prepared for enactment by mapping
it to an initial marking of the newYAWL semantic model. The activities associated
with transforming a core newYAWL specification to an initial marking of the seman-
tic model are defined via a series of marking functions which are described in Section
4.3.

4.1 Abstract syntax for newYAWL

This section presents a complete abstract syntax for all language elements in newYAWL6.
As described earlier, newYAWL assumes the same conceptual basis as YAWL, and in-
cludes all of its language constructs. A newYAWL specification is a set of newYAWL-
nets which form a rooted graph structure. It also has an Organizational model associ-
ated with it that describes the various resources that are available to undertake work
items and the relationships that exist between them in an organizational context.

6In doing so it utilizes a number of non-standard mathematical notations. These are explained in
further detail in Appendix A

30

Each newYAWL-net has a Data passing model associated with it that describes how
data is passed between constructs within the process specification. Each newYAWL-
net is composed of a series of tasks. In order to specify how each task will actually
be distributed to specific resources when it is enacted, a Work distribution model is
associated with each newYAWL-net. All of these notions are now formalized, starting
with the newYAWL specification.

Definition 1. (newYAWL Specification) A newYAWL specification is a tu-
ple = (NetID, ProcessID, FolderID, TaskID, MITaskID, ScopeID, VarID, TriggerID,
TNmap, NYmap, STmap, VarName, DataType, VName, DType, VarType, VGmap,
VFmap, VCmap, VBmap, VSmap, VTmap, VMmap, PushAllowed, PullAllowed)
such that:

(* global objects *)
– NetID is the set of net identifiers (i.e. the top-level process together with all sub-

processes);
– ProcessID ∈ NetID is the process identifier (i.e. the top-level net);
– FolderID is the set of identifiers of data folders that can be shared among a selected

group of cases;
– TaskID is the set of task identifiers in nets;
– MITaskID ⊆ TaskID is the set of identifiers of multiple instance tasks;
– ScopeID is the set of scope identifiers which group tasks within nets;
– VarID is the set of variable identifiers used in nets;
– TriggerID is the set of trigger identifiers used in nets;

(* decomposition *)
– TNmap : TaskID 9 NetID defines the mapping between composite tasks and

their corresponding subprocess decompositions which are specified in the form of a
newYAWL-net, such that for all t, TNmap(t) yields the NetID of the corresponding
newYAWL-net, if it exists;

– NYmap : NetID → newYAWL-nets, i.e. each net has a complete description of its
contents such that for all n ∈ NetID, NYmap(n) is governed by Definition 2 where
the notation Tn denotes the set of tasks that appear in a net n. Tasks are not
shared between nets hence ∀m,n∈NetID [Tm ∩ Tn 6= ∅ ⇒ m = n]. TaskID is the set
of tasks used in all nets and is defined as TaskID =

⋃
n∈NetID Tn;

– In the directed graph defined by G = (NetID , {(x , y) ∈ NetID × NetID | ∃t∈Tx [t ∈
dom(TNmap) ∧ TNmap(t) = y]}) there is a path from ProcessID to any node
n ∈ NetID ;

– STmap : ScopeID → P+(TaskID) such that ∀s∈ScopeID∃n∈NetID [STmap(s) ⊆ Tn]
i.e. a scope can only contain tasks within the same net;

(* variables *)
– VarName is the set of variable names used in all nets;
– DataType is the set of data types;
– VName : VarID → VarName identifies the name for a given variable;
– DType : VarID → DataType identifies the underlying data type for a variable;
– VarType : VarID → {Global ,Folder ,Case,Block ,Scope,Task ,MI } describes the

various variable scopings that are supported. The notation VarIDx = {v ∈ VarID |
VarType(v) = x} identifies variables of a given type;

31

– VGmap ⊆ VarIDGlobal , identifies global variables that are associated with the entire
process;

– VFmap : VarIDFolder → FolderID identifies the folder to which each folder variable
corresponds, such that dom(VFmap) = VarIDFolder and
∀v1,v2∈dom(VFmap)[VName(v1) = VName(v2) ⇒ (v1 = v2∨VFmap(v1) 6= VFmap(v2))],
i.e. folder variable names are unique within a given folder;

– VCmap ⊆ VarIDCase identifies the case variables for the process;
– VBmap : VarIDBlock → NetID identifies the specific net to which each block vari-

able corresponds, such that dom(VBmap) = VarIDNet ;
– VSmap : VarIDScope → ScopeID identifies the specific scope to which each scope

variable corresponds, such that dom(VSmap) = VarIDScope ;
– VTmap : VarIDTask → TaskID identifies the specific task to which a task variable

corresponds, such that dom(VTmap) = VarIDTask ;
– VMmap : VarIDMI → MITaskID identifies the specific task to which each multiple-

instance variable corresponds, such that dom(VMmap) = VarIDMI ;
– PushAllowed ⊆ VarID identifies those variables that can have their values updated

from external data locations;
– PullAllowed ⊆ VarID identifies those variables that can have their values read from

external data locations;

Having described the global characteristics of a newYAWL specification, we can now
proceed to the definition of a newYAWL-net. Note that newYAWL-nets is the set of
all instances governed by Definition 2.

Definition 2. (newYAWL-net) A newYAWL-net is a tuple (nid, C, i, o, T,
TA, TC , M, F, Split, Join, Default, <XOR, Rem, Comp, Block, Nofi, Disable, Lock,
Thresh, ThreadIn, ThreadOut, ArcCond, Pre, Post, PreTest, PostTest, WPre, WPost,
Trig, Persist) such that:

(* basic control-flow elements *)
– nid ∈ NetID is the identity of the newYAWL-net ;
– C is a set of conditions;
– i ∈ C is the input condition;
– o ∈ C is the output condition;
– T is the set of tasks;
– TA ⊆ T is the set of atomic tasks;
– TC ⊆ T is the set of composite tasks;
– TA and TC form a partition over T ;
– M ⊆ T is the set of multiple instance tasks;
– F ⊆ (C \ {o} × T) ∪ (T × C \ {i}) ∪ (T × T) is the flow relation, such that every

node in the graph (C ∪ T, F) is on a directed path from i to o;
– Split : T 9 {AND ,XOR,OR,THREAD} specifies the split behaviour of each task,

such that ∀t∈dom(Split)[Split(t) = THREAD ⇒ | t • | = 1], i.e. thread splits can only
have one output arc;

– Join : T 9 {AND ,XOR,OR,PJOIN ,THREAD} specifies the join behaviour of
each task such that ∀t∈dom(Join)[Join(t) = THREAD ⇒ | • t | = 1], i.e. thread
merges can only have one input arc;

– Default ⊆ F , Default : dom(Split ¤ {OR,XOR}) → T ∪ C denotes the default arc
for each OR-split and XOR-split.

32

– <XOR⊆ {t ∈ T | Split(T) = XOR} × P(T ∪ C)× (T ∪ C) describes the evaluation
sequence of outgoing arcs from an XOR-split such that for any (t, V) ∈<XOR we
write <t

XOR= V and V is a strict total order over t• = {x ∈ T∪C | (t, x) ∈ F}. Link
conditions associated with each arc are evaluated in this sequence until the first
evaluates to true. If none evaluate to true, the default arc indicated by Default(t)
is selected, thus ensuring that exactly one outgoing arc is enabled;

– Rem : T 9 P+(T ∪ C\{i, o}) specifies the additional tokens to be removed by
emptying a part of the net and tasks that should be cancelled as a consequence of
an instance of this task completing execution;

– Comp : T 9 P+(T) specifies the tasks that are force completed as a consequence
of the completion of an instance of this task completing execution;

– Block : T 9 P+(T) where t ∈ dom(Block) ⇔ Join(t) = PJOIN , specifies the tasks
that are blocked after the firing of a partial join task prior to its reset such that
∀t∈dom(Block) t /∈ Block(t);

– Nofi : M → N × Ninf × Ninf × {dynamic, static} × {cancelling ,non-cancelling}
specifies the multiplicity of each task – in particular the lower and upper bound of
instances to be created at task initiation, the threshold for continuation indicating
how many instances must complete for the thread of control to be passed to subse-
quent tasks, whether additional instances can be created “on the fly” once the task
has commenced and whether partial synchronization results in remaining instances
being cancelled or not;

– Disable : T → P+(M) specifies the multiple-instance tasks that are disabled from
creating further instances as a consequence of an instance of this task completing
execution.

(* locks *)
– Lock : T → P(VarID) is a function mapping tasks to the data elements that they

require locks on during execution;

(* partial joins *)
– Thresh : T 9 N where t ∈ dom(Thresh) ⇔ Join = PJOIN and
∀t∈dom(Thresh) [1 ≤ Thresh(t) < | • t |] identifies the firing threshold for partial
(i.e. n-out-of-m type) joins;

(* thread splits and joins *)
– ThreadIn : T 9 NatExpr where dom(ThreadIn) = dom(Join ¤ {THREAD}) iden-

tifies the number of incoming threads that the task requires in order to fire;
– ThreadOut : T 9 NatExpr where dom(ThreadOut) = dom(Split ¤ {THREAD})

identifies the number of outgoing threads that the task generates on firing;

(* conditions on arcs *)
– ArcCond : F ∩ (dom(Split ¤ {XOR,OR}) × (T ∪ C)) → BoolExpr identifies the

specific condition associated with each branch of an OR or XOR split.

(* pre/post conditions and pre/post tests for task iteration *)
– Pre : T 9 BoolExpr is a function identifying tasks which have a precondition asso-

ciated with them;

33

– Post : T 9 BoolExpr is a function identifying tasks which have a postcondition
associated with them;

– PreTest : T 9 BoolExpr is a function identifying tasks which have an iteration pre-
test condition associated with them. Where this condition is met, at enablement
the task is executed otherwise it is skipped;

– PostTest : T 9 BoolExpr is a function identifying tasks which have an iteration
post-test condition associated with them. Where this condition is not met at task
completion, the task is repeated otherwise it completes execution;

– WPre ∈ BoolExpr indicates the precondition for commencement of a process in-
stance;

– WPost ∈ BoolExpr indicates the postcondition for completion of a process instance;

(* triggers *)
– Trig : T 9 TriggerID identifies tasks which have a trigger associated with them;
– Persist ⊆ dom(Trig) identifies the subset of triggers which are persistent;

Each newYAWL-net is identified by a unique nid. As for YAWL, the tuple (C,T,F)
takes its form from classical Petri nets where C corresponds to the set of conditions, T
to the set of tasks and F to the flow relation (i.e. the directed arcs between conditions
and tasks). However there are two distinctions: (1) i and o describe specific conditions
that denote the start and end condition for a net and (2) the flow relation allows for
direct connections between tasks in additional to links from conditions to tasks and
tasks to conditions.

Expressions are denoted informally via Expr which identifies the set of expressions
relevant to a newYAWL-net. It may be divided into a number of disjoint subsets
including BoolExpr, IntExpr, NatExpr, StrExpr and RecExpr, these being the sets
of expressions that yield Boolean, integer, natural number, string and record-based
results when evaluated. There is also recognition for work distribution purposes of
capability-based, historical and organizational distribution functions that are denoted
by the CapExpr, HistExpr and OrgExpr subsets of Expr respectively.

As already indicated, one of the major features of newYAWL is the inclusion of
the data perspective. In order to facilitate the utilization of data elements during
the operation of the process, it is necessary to define a model to describe the way in
which data is passed between active process components.

Definition 3. (Data passing model) Within the context of a newYAWL-net
nid , there is a data passing model (InPar, OutPar, OptInPar, OptOutPar, MIIn-
Par, MIOutPar, InNet, OutNet, OptInNet, OptOutNet, InProc, OutProc, OptInProc,
OptOutProc) with the following components:

(* data passing to/from atomic tasks *)
– InPar : TA×VarID 9 Expr is a function identifying the input parameter mappings

to a task at initiation, such that ∀(t,v)∈dom(InPar)[VTmap(v) = t];
– OutPar : TA×VarID 9 Expr is a function identifying the output parameter map-

pings from a task at completion, such that ∀(t,v)∈dom(OutPar) [v ∈ VarIDGlobal ∪
VarIDFolder ∪ VarIDCase ∨ t ∈ TVBmap(v) ∪ STmap(VSmap(v))], i.e. the output
variable can be a global, case or folder variable, a block variable corresponding to
this net or a scope variable in the same scope as the task;

34

– OptInPar ⊆ dom(InPar) identifies those input mappings to a task which are op-
tional;

– OptOutPar ⊆ dom(OutPar) identifies those output mappings to a task which are
optional;

(* data passing between composite tasks and subprocess decompositions *)
– InNet : TC×VarID 9 Expr is a function identifying the input parameter mappings

to the subprocess corresponding to a composite task at commencement, such that
∀(t,v)∈dom(InNet) [VBmap(v) = TNmap(t)];

– OutNet : TC ×VarID 9 Expr is a function identifying the output parameter map-
pings from a subprocess decomposition to its parent composite task at comple-
tion, such that ∀(t,v)∈dom(OutPar) [v ∈ VarIDGlobal ∪ VarIDFolder ∪ VarIDCase ∨ t ∈
TVBmap(v) ∪ STmap(VSmap(v))], i.e. the output variable can be a global, case or
folder variable, a block variable corresponding to this net or a scope variable in the
same scope as the task;

– OptInNet ⊆ dom(InNet) identifies those input mappings to a subprocess which are
optional;

– OptOutNet ⊆ dom(OutNet) identifies those output mappings from a subprocess
which are optional;

(* data passing to/from multiple-instance tasks *)
– MIInPar : TaskID × P(VarID) 9 RecExpr is a function identifying the input pa-

rameter mapping for each instance of a multiple instance task at commencement,
such that ∀(t,v)∈dom(MIInPar)[t ∈ dom(Nofi) ∧VMmap(v) = t];

– MIOutPar : TaskID × VarID 9 RecExpr is a function identifying output pa-
rameter mappings from the various multiple instance tasks at completion, such
that ∀(t,v)∈dom(OutPar) [t ∈ TVBmap(v) ∪ STmap(VSmap(v)) ∨ v ∈ VarIDGlobal ∪
VarIDFolder ∪ VarIDCase], i.e. the output variable can be a scope variable in the
same scope as the task, a block variable corresponding to this net or any global,
folder or case variable;

(* data passing to/from nets *)
– InProc : VarID 9 Expr is a function identifying the input parameter mappings

to a process instance at commencement, such that ∀v∈dom(InProc)[(VarType(v) =
Scope ∧ STmap(VSmap(v)) ⊆ TProcessID) ∨ (VarType(v) = Block ∧
VBmap(v) = ProcessID) ∨ VarType(v) = Case], i.e. the parameter value can only
be mapped to a scope or block variable in the top level net or a case variable;

– OutProc : VarID 9 Expr is a function identifying the output parameter mappings
from a process instance at completion, such that ∀v∈dom(OutProc)[VarType(v)
∈ {Global ,Folder}], i.e. the parameter value can only be mapped to a folder or
global variable;

– OptInProc ⊆ dom(InProc) identifies optional input mappings to a process;
– OptOutProc ⊆ dom(OutProc) identifies optional output mappings from a process;

newYAWL also incorporates a comprehensive characterization of the resource per-
spective. This characterization is composed of two main components: the Organiza-
tional model which provides a description of the overall structure of the organization
in terms of organizational groups, users, jobs and reporting lines and the Work distri-
bution model which defines the manner in which work items are distributed to users

35

at runtime for execution as well as identifying the interactions that individual users
are able to invoke to influence the way in which this distribution occurs. These two
models are specified in more detail below.

Definition 4. (Organizational model) Within the context of a newYAWL speci-
fication ProcessID , there is an organizational model described by the tuple (UserID,
RoleID, CapabilityID, OrgGroupID, JobID, CapVal, RoleUser, OrgGroupType, Group-
Type, JobGroup, OrgStruct, Superior, UserQual, UserJob) as follows:

(* basic definitions *)
– UserID is the set of all individuals to whom work items can be distributed;
– RoleID is the set of designated groupings of those users;
– CapabilityID is the set of qualities that a user may possess that are useful when

making work distribution decisions;
– OrgGroupID is the set of groups within the organization;
– JobID is the set of all jobs within the organization;
– CapVal is the set of values that a capability can have;

(* organizational definition *)
– RoleUser : RoleID → P(UserID) indicates the set of users in a given role;
– OrgGroupType = {team, group, department , branch, division, organization} identi-

fies the type of a given organizational group;
– GroupType : OrgGroupID → OrgGroupType;
– JobGroup : JobID → OrgGroupID indicates which group a job belongs to;
– OrgStruct : OrgGroupID 9 OrgGroupID forms an acyclic intransitive graph with

a unique root which identifies a composition hierarchy for groups;
– Superior : JobID 9 JobID forms an acyclic intransitive graph which identifies the

reporting lines between jobs;

(* user definition *)
– UserQual : UserID ×CapabilityID → CapVal identifies the capabilities that a user

possesses;
– UserJob : UserID → P(JobID) maps a user to the jobs that they hold;

The newYAWL organizational model takes the form of a tree, based on the report-
ing relationships between groups where the most senior group within the organization
is the root node of the tree. This model is deliberately chosen to be simple and generic
so that it applies to a relatively broad range of situations in which newYAWL may
be used. Finally, the Work distribution model is presented that captures the various
ways in which work items are distributed to users and any constraints that need to
be taken into account when doing so.

Definition 5. (Work distribution model) Within the context of a newYAWL-net
nid , it is possible to describe the manner in which work items are distributed to users
for execution. A work distribution model is a tuple (Auto, TM , Initiator, DistUser,
DistRole, DistVar, SameUser, FourEyes, HistDist, OrgDist, CapDist, UserSel, User-
Priv, UserTaskPriv) as follows:

36

(* work allocation *)
– Auto ⊆ TA is the set of tasks which execute automatically without user interven-

tion, where TA is the set of atomic tasks;
– TM ⊆ TA\Auto is the set of atomic tasks that must be allocated to users for

execution;
– Initiator : TM → {system, resource} × {system, resource} × {system, resource} in-

dicates who initiates the offer, allocate and commence actions;
– DistUser : TM 9 P(User) identifies the users to whom a task should potentially be

distributed;
– DistRole : TM 9 P(Role) identifies the roles to whom a task should potentially be

distributed;
– DistVar : TM 9 P(VarID) identifies a set of variables holding either user or roles

to whom a task should potentially be distributed;
– dom(DistUser), dom(DistRole) and dom(DistVar) form a partition over TM ;
– SameUser : TM 9 TM is an irreflexive function that identifies that a task should

be executed by one of the same users that undertook another specified task in the
same case;

– FourEyes : TM 9 TM is an irreflexive function that identifies a task that should be
executed by a different user to the one(s) that executed another specified task in
the same case;

– HistDist : TM 9 HistExpr identifies a set of historical criteria that users that
execute the task must satisfy;

– OrgDist : TM 9 OrgExpr identifies a set of organizational criteria that users that
execute the task must satisfy;

– CapDist : TM 9 CapExpr identifies a set of capabilities that users that execute the
task must possess;

– UserSel : TM 9 {random, round -robin, shortest-queue} indicates how a specific
user who will execute a task should be selected from a group of possible users;

(* user privilege definition *)
– UserPriv : UserID 9 P(UserAuthKind) indicates the privileges that an individual

user possesses, where UserAuthKind = {choose, concurrent, reorder, viewoffers,
viewallocs, viewexecs, chainedexec};

– UserTaskPriv : UserID ×TaskID 9 P(UserTaskAuthKind) indicates the privileges
that an individual user possesses in relation to a specific task, where UserTaskAu-
thKind = {suspend, start, reallocate, reallocate state, deallocate, piledexec, dele-
gate,skip};

4.2 From complete to core newYAWL

The complete capabilities of newYAWL are captured by Definitions 1 to 5 of the
abstract syntax. Several of the new constructs can be seen in terms of other constructs
and thus can be eliminated through structural transformations to the newYAWL
specification in which they occur, thus minimizing the need to extend the underlying
execution environment. In this section, we present six distinct sets of transformations
that simplify a newYAWL specification and allow these constructs to be directly
embodied within a refinement of the model in which they were originally captured.
The language elements that are addressed by these transformations are as follows:

37

– Persistent and transient triggers;
– While, repeat and combination loops;
– Thread merges;
– Thread splits;
– Partial joins; and
– Tasks directly linked to tasks.

Each of these transformations is described in the following section, first via a high-
level graphical illustration of its operation and then more completely using set theory.
The order in which the transformations are applied is material as later transforma-
tions assume that some structural modifications enacted by earlier transformations
have been completed. For this reason, the transformations should be applied in the
order presented in this section. Once a complete newYAWL specification has been
appropriately simplified through the application of these transformations, it is known
as a core newYAWL specification. Additionally, in order to preserve the integrity
of the specification being transformed, the transformations are not applied to all
constructs in a specification simultaneously but rather on an incremental (i.e. item-
by-item) basis. The transformations are applied iteratively for a given specification
until all constructs have been appropriately dealt with. Note that in the interest of
brevity, for all transformations we only describe changes to the elements in each spec-
ification. Elements that remain unchanged are omitted. The final core newYAWL
specification is obtained by aggregating the latest version of each of the models for
the newYAWL specification, newYAWL-nets, Data passing model, Work distribution
model and Organizational model once all transformations have been applied.

The transformations presented are semantics-defining and give an operational
meaning to the higher-level newYAWL constructs embodied in a complete newYAWL
specification by defining their function in terms of core newYAWL constructs. As
such, they cannot be seen as equivalence-preserving and it is important to note that
whilst some of the transformations appear to change the moment of choice for some
constructs in a complete newYAWL specification, in fact there can be no direct
meaning ascribed to such a specification and it is only when it is appropriately trans-
formed to a core newYAWL specification that the actual moment of choice for these
constructs is revealed.

4.2.1 Persistent and transient triggers

Persistent and transient triggers that are defined for tasks in newYAWL specifications
are operationalized in core newYAWL specifications as specific tasks that identify
when the trigger has been received. Figure 16 illustrates that manner in which a
trigger is incorporated into a newYAWL specification. In essence, the trigger trig
associated with task A becomes the task AT1. This task is only enabled when the
process instance is running (signified by a token in place CT) and triggers received
for the task are collected in condition CA. Any relevant join associated with task A
is moved into a dedicated task which proceeds it. The enablement of task A then
becomes an AND-join based on the normal thread of control and the condition that
collects tokens (CA). The actual transformation for persistent and transient triggers is
identical except that transient triggers have the additional requirement that a means
of deleting the trigger is required if it cannot be utilized immediately. This is provided

38

via reset task AT2 as illustrated in Figure 16 which is associated with the condition
which collects tokens for triggers that are received. Once a trigger has been received,
there is a race condition between the enablement of the task being (A) triggered and
the reset task (AT2) thus ensuring that any tokens that do not immediately trigger
task A are discarded7.

JO
IN

S
P

L
IT

CT

CA

C i Co

nid

AT1

D

transient triggers
only required for CC

A

T2A

AT3JO
IN

S
P

L
IT

A

A

Enid TT

start end

S

Figure 16: Persistent and transient trigger transformation

As the transformation involves the addition of both tasks and conditions as well
as changes to the flow relation, it necessitates changes to the newYAWL specification
and to each newYAWL-net which includes a trigger. There are also minor changes to
the Data passing model to provide task AT3 with access to the data provided by the
input parameters in order to allow the task precondition (if any) to be evaluated8.
There are also changes to the Work distribution model to ensure that any tasks added
by the transformation are automatic (i.e. they do not need to be allocated to a user
for execution). The newYAWL specification is amended to include any new tasks

7In practice, this task would have a delay associated with its enablement to ensure that task A
has first option to utilize any tokens that may be delivered to condition CA before they are discarded.

8Note that where a task is split into several parts by a transformation, the precondition is eval-
uated both for the first task into which it is split and it is also retained for the original task. The
postcondition is retained for the original task and replicated for the last task into which the task is
split. Locking requirements and parameters are also replicated as required.

39

added during steps 1 and 2 of the transformation and also to add them to any scopes
to which they might apply.

The transformation has five steps. First of all, the general extensions are made to
each newYAWL-net that includes triggers. These extensions accommodate all trigger
transformations in a given newYAWL-net and hence only need to be made once. The
next step is to transform each trigger into core newYAWL constructs. The final
three steps amend the Data passing model, Work distribution model and newYAWL
specification. The Organizational model is unchanged.

Step 1: Initial transformations for newYAWL-net nid with triggers

precondition: dom(Trig) 6= ∅

C ′ = C ∪ {CT , Cstart, Cend}
i′ = Cstart

o′ = Cend

T ′ = T ∪ {TSnid
, TEnid

}
T ′A = TA ∪ {TSnid

, TEnid
}

F ′ = F ∪ {(Cstart, TSnid
), (TSnid

, i), (TSnid
, CT), (CT , TEnid

), (o, TEnid
), (TEnid

, Cend)}
Join′ = Join ∪ {(TEnid

,AND)}
Split′ = Split ∪ {(TSnid

,AND)}

Step 2: Transformations for newYAWL-net nid′ (resulting from step 1) to
replace individual triggers with core newYAWL constructs

Let t ∈ dom(Trig ′), transforming t in net nid ′ leads to the following changes:

C ′′ = C ′ ∪ {Ct, Dt}
T ′′ = T ′ ∪ {tT1, tT3} ∪ {xT2 | x ∈ dom(Trig ′)\Persist ′ ∧ x = t}
T ′′A = T ′A ∪ {tT1, tT3} ∪ {xT2 | x ∈ dom(Trig ′)\Persist ′ ∧ x = t}
F ′′ = (F ′\ {(x, t) | x ∈ •t})

∪ {(x, tT3) | x ∈ •t}
∪ {(CT , tT1), (tT1, CT), (tT1, Ct), (Ct, t), (tT3, Dt), (Dt, t)}
∪ {(Cx, xT2) | x ∈ dom(Trig ′)\Persist ′ ∧ x = t}
∪ {(CT , xT2) | x ∈ dom(Trig ′)\Persist ′ ∧ x = t}
∪ {(xT2, CT) | x ∈ dom(Trig ′)\Persist ′ ∧ x = t}

Join ′′ = (Join ′\{(x, Join ′(x)) | x ∈ dom(Join ′) ∧ x = t})
∪ {(xT3, Join ′(x)) | x ∈ dom(Join ′) ∧ x = t}
∪ {(t,AND)}
∪ {(xT2,AND) | x ∈ dom(Trig ′)\Persist ′ ∧ x = t}

Split ′′ = Split ′ ∪ {(tT1,AND)}
Rem ′′ = (Rem ′\{(x,Rem ′(x)) | x ∈ dom(Rem ′) ∧ t ∈ Rem ′(x)})

∪ {(x,Rem ′(x) ∪ {tT3, Dt}) | x ∈ dom(Rem ′) ∧ t ∈ Rem ′(x)})

40

Block ′′ = ((Block ′\ {(x,Block ′(x)) | x ∈ dom(Block ′) ∧ x = t})
\ {(x,Block ′(x)) | x ∈ dom(Block ′) ∧ t ∈ Block ′(x)})
∪ {(xT3,Block ′(x)) | x ∈ dom(Block ′) ∧ x = t}
∪ {(x, ((Block ′(x)\{t}) ∪ {tT3})) | x ∈ dom(Block ′)

∧ t ∈ Block ′(x)}
Lock ′′ = Lock ′ ∪ {(xT3,Lock ′(x)) | x ∈ dom(Lock ′) ∧ x = t}
Thresh ′′ = (Thresh ′\ {(x,Thresh ′(x)) | x ∈ dom(Thresh ′) ∧ x = t})

∪ {(xT3,Thresh ′(x)) | x ∈ dom(Thresh ′) ∧ x = t}
ThreadIn ′′ = (ThreadIn ′\ {(x,ThreadIn ′(x)) | x ∈ dom(ThreadIn ′) ∧ x = t})

∪ {(xT3,ThreadIn ′(x)) | x ∈ dom(ThreadIn ′) ∧ x = t}
Pre ′′ = Pre ′ ∪ {(xT3,Pre ′(x)) | x ∈ dom(Pre ′) ∧ x = t}
Trig ′′ = ∅
Persist ′′ = ∅

Step 3: Transformations for Data passing model for newYAWL-net nid

Let t ∈ dom(Trig), transforming t in net nid leads to the following changes:

InPar ′ = InPar ∪ {((xT3, v), e) | x ∈ dom(Trig) ∧ ((x, v), e) ∈ InPar ∧ x = t}
OptInPar ′ = OptInPar ∪ {(xT3, v) | x ∈ dom(Trig) ∧ (x, v) ∈ OptInPar ∧ x = t}

Step 4: Transformations for Work distribution model for newYAWL-net
nid

Auto′ = Auto ∪ (T ′′nid \Tnid);

Step 5: Transformations for newYAWL specification

TaskID ′ =
⋃

n∈NetID T ′′n
STmap′ = (STmap\ {(s,STmap(s)) | s ∈ dom(STmap)

∧ STmap(s) ∩ dom(Trig) 6= ∅})
∪ {(s,STmap(s) ∪ {tT3}) | s ∈ dom(STmap)

∧ t ∈ STmap(s) ∩ dom(Trig)}

4.2.2 Loops

Loops in newYAWL are based on PreTest and PostTest conditions associated with
individual tasks. Depending on the combination of PreTest and PostTest associated
with a task and whether it has any join or split behaviour, there are a series of
alternate transformations that can be made in order to remove specific reliance on
loop constructs in order to achieve task iteration. The various transformations are
summarized in Figure 17. In essence, they involve varying the process model to
construct looping structures with entry and/or exit conditions which are based on
the conditions identified for the PreTests and PostTests9.

9Note that in the diagrams, ∼PreTest(A) is assumed to be the logical negation of PreTest(A).

41

L1A

JO
IN

L1A

L1A

JO
IN

L1A

L1A

JO
IN

L1A

L1A

JO
IN

L1A

true

false

true

false

true

false

true

false

L1A true

false

~PreTest(A)PreTest(A)

PreTest(A)

PreTest(A)

PreTest(A)

JO
IN

L1A true

false

L1A true

false

false

JO
IN

L1A true

~PreTest(A)

~PreTest(A)

~PreTest(A)

~PostTest(A)

~PostTest(A)

~PostTest(A)

~PostTest(A)

~PostTest(A)

~PostTest(A)

~PostTest(A)

~PostTest(A)

PostTest(A)

PostTest(A)

PostTest(A)

PostTest(A)

PostTest(A)

PostTest(A)

PostTest(A)

~PreTest(A)

~PreTest(A)

~PreTest(A)

~PreTest(A)

PreTest(A)

PreTest(A)

PreTest(A)

PreTest(A)

PreTest(A)

PreTest(A)

PreTest(A)

PreTest(A)

PostTest(A)

PostTest(A)

PostTest(A)

PostTest(A)

PreTest(A)

PostTest(A)

PreTest(A)

PostTest(A)

PreTest(A)

PostTest(A)

PreTest(A)

PostTest(A)

PostTest(A)

S
P

L
IT

JO
IN

S
P

L
IT

JO
IN

S
P

L
IT

JO
IN

S
P

L
IT

JO
IN

JO
IN A

A

A

A

A

A

A

A

A

A

A

A

AL2 A AL4 AL3

AL2 A AL4 AL3

AL2 A AL4 S
P

L
ITAL3

AL2 A AL4 S
P

L
ITAL3

AL2 A AL4 AL3

AL2 A AL4 AL3

AL2 A AL4 S
P

L
ITAL3

AL2 A AL4 S
P

L
ITAL3

AL2 A AL4 AL3

AL2 A AL4 S
P

L
ITAL3

AL2 A AL4 S
P

L
ITAL3

AL2 A AL4 AL3

JO
IN

S
P

L
IT

S
P

L
IT

Figure 17: Transformation of pre-test and post-test loops

42

The specific transformations required are detailed below. They necessitate changes
to each of the individual newYAWL-nets that contain loops to separate the join
and split behaviour which may be associated with tasks possessing PreTest and/or
PostTest conditions from the looping behaviour. As these transformations potentially
necessitate the addition of new tasks, there are also changes to the Data passing model
to ensure that any new tasks have access to the same data elements as the task from
which they were derived and also to the newYAWL specification. Any new tasks are
automatic hence there are also amendments to the Work distribution model.

Step 1: Transformations for newYAWL-net nid

Let t ∈ dom(PreTest)∪dom(PostTest), transforming t in net nid lead to the following
changes:

T ′ = T ∪ {tL1, tL2, tL3, tL4}
T ′A = TA ∪ {tL1, tL2, tL3, tL4}
F ′ = (F\ {(c, t) | c ∈ •t} ∪ {(t, c) | c ∈ t•})

∪ {(c, tL2) | c ∈ •t} ∪ {(tL3, c) | c ∈ t•}
∪ {(tL2, tL1), (tL1, t), (t, tL4), (tL1, tL3), (tL4, tL1), (tL4, tL3)}

Split′ = (Split\ {(x, Split(x)) | x ∈ dom(Split) ∧ x = t})
∪ {(xL3, Split(x)) | x ∈ dom(Split) ∧ x = t}
∪ {(tL1,XOR), (tL4,XOR)}

Join′ = (Join\ {(x, Join(x)) | x ∈ dom(Join) ∧ x = t})
∪ {(xL2, Join(x)) | x ∈ dom(Join) ∧ x = t}
∪ {(tL1,XOR), (tL3,XOR)}

Default ′ = (Default\ {(x,Default(x)) | x ∈ dom(Default)
∧ Split(x) ∈ {OR,XOR} ∧ x = t})

∪ {(xL3,Default(x)) | x ∈ dom(Default)
∧ Split(x) ∈ {OR,XOR} ∧ x = t}

∪ {(tL1, t), (tL4, tL3)}
<
′
XOR= (<XOR\{(x,<x

XOR) | x ∈ dom(Split) ∧ Split(x) = XOR ∧ x = t})
∪ {(xL3, <

x
XOR) | x ∈ dom(Split) ∧ Split(x) = XOR ∧ x = t}

∪ {(tL1, {(t, tL3)})} ∪ {(tL4, {(tL1, tL3)})}
Rem ′ = ((Rem\ {(x,Rem(x)) | x ∈ dom(Rem) ∧ x = t})

\{(x,Rem(x)) | x ∈ dom(Rem) ∧ t ∈ Rem(x)})
∪ {(xL3,Rem(x)) | x ∈ dom(Rem) ∧ x = t}
∪ {(x,Rem(x) ∪ {tL1, tL2, tL3, tL4}) | x ∈ dom(Rem) ∧ t ∈ Rem(x)}

Comp′ = (Comp\ {(x,Comp(x)) | x ∈ dom(Comp) ∧ x = t})
∪ {(xL3,Comp(x)) | x ∈ dom(Comp) ∧ x = t}

43

Block ′ = ((Block\ {(x,Block(x)) | x ∈ dom(Block) ∧ x = t})
\ {(x,Block(x)) | x ∈ dom(Block) ∧ t ∈ Block(x)})
∪ {(xL2,Block(x)) | x ∈ dom(Block) ∧ x = t}
∪ {(x, ((Block(x)\{t}) ∪ {tL2})) | x ∈ dom(Block) ∧ t ∈ Block(x)}

Disable ′ = (Disable\ {(x,Disable(x)) | x ∈ dom(Disable) ∧ x = t})
∪ {(xL3,Disable(x)) | x ∈ dom(Disable) ∧ x = t}

Lock′ = Lock ∪ {(xL1, Lock(x)) | x ∈ dom(Lock) ∧ x = t}
∪ {(xL2,Lock(x)) | x ∈ dom(Lock) ∧ x = t}
∪ {(xL3,Lock(x)) | x ∈ dom(Lock) ∧ x = t}
∪ {(xL4, Lock(x)) | x ∈ dom(Lock) ∧ x = t}

Thresh ′ = (Thresh\ {(x,Thresh(x)) | x ∈ dom(Thresh) ∧ x = t})
∪ {(xL2,Thresh(x)) | x ∈ dom(Thresh) ∧ x = t}

ThreadIn ′ = (ThreadIn\ {(x,ThreadIn(x)) | x ∈ dom(ThreadIn) ∧ x = t})
∪ {(xL2,ThreadIn(x)) | x ∈ dom(ThreadIn) ∧ x = t}

ThreadOut ′ = (ThreadOut\ {(x,ThreadOut(x)) | x ∈ dom(ThreadOut) ∧ x = t})
∪ {(xL3,ThreadOut(x)) | x ∈ dom(ThreadOut) ∧ x = t}

ArcCond ′ = (ArcCond\{((x, c),ArcCond(x, c)) | x ∈ dom(Split)
∧ Split(x) ∈ {OR,XOR} ∧ c ∈ x • ∧x = t})

∪ {((xL3, c),ArcCond(x, c)) | x ∈ dom(Split)}
∧ Split(x) ∈ {OR,XOR ∧ c ∈ x • ∧x = t}

∪ {((xL1, x),PreTest(x)) | x ∈ dom(PreTest) ∧ x = t}
∪ {((xL1, x), true) | x /∈ dom(PreTest) ∧ x = t}
∪ {((xL1, xL3), qPreTest(x)) | x ∈ dom(PreTest) ∧ x = t}
∪ {((xL1, xL3), false) | x /∈ dom(PreTest) ∧ x = t}
∪ {((xL4, xL3),PostTest(x)) | x ∈ dom(PostTest) ∧ x = t}
∪ {((xL4, xL3), true) | x /∈ dom(PostTest) ∧ x = t}
∪ {((xL4, xL1), qPostTest(x)) | x ∈ dom(PostTest) ∧ x = t}
∪ {((xL4, xL1), false) | x /∈ dom(PostTest) ∧ x = t}

Pre ′ = Pre ∪ {(xL2,Pre(x)) | x ∈ dom(Pre) ∧ x = t}
Post ′ = Post ∪ {(xL3,Post(x)) | x ∈ dom(Post) ∧ x = t}
PreTest ′ = PreTest\ {(x,PreTest(x)) | x ∈ dom(PreTest) ∧ x = t}
PostTest ′ = PostTest\ {(x,PostTest(x)) | x ∈ dom(PostTest) ∧ x = t}

44

Step 2: Transformations for Data passing model for newYAWL-net nid

Let t ∈ dom(PreTest) ∪ dom(PostTest), transforming t in net nid leads to the fol-
lowing changes:

InPar ′ = InPar ∪ {((xL1, v), e) | x ∈ dom(PreTest) ∪ dom(Lock)
∧ ((x, v), e) ∈ InPar ∧ x = t}

∪ {((xL2, v), e) | x ∈ dom(Pre) ∪ dom(Lock)
∧ ((x, v), e) ∈ InPar ∧ x = t}

∪ {((xL3, v), e) | x ∈ dom(Split) ∪ dom(Post) ∪ dom(Lock)
∧ ((x, v), e) ∈ InPar ∧ x = t}

∪ {((xL4, v), e) | x ∈ dom(PostTest) ∪ dom(Lock)
∧ ((x, v), e) ∈ InPar ∧ x = t}

OptInPar ′ = OptInPar ∪ {(xL1, v) | x ∈ dom(PreTest) ∪ dom(Lock)
∧ (x, v) ∈ OptInPar ∧ x = t}

∪ {(xL2, v) | x ∈ dom(Pre) ∪ dom(Lock)
∧ (x, v) ∈ OptInPar ∧ x = t}

∪ {(xL3, v) | x ∈ dom(Split) ∪ dom(Post) ∪ dom(Lock)
∧ (x, v) ∈ OptInPar ∧ x = t}

∪ {(xL4, v) | x ∈ dom(PostTest) ∪ dom(Lock)
∧ (x, v) ∈ OptInPar ∧ x = t}

Step 3: Transformations for Work distribution model for newYAWL-net
nid

Auto′ = Auto ∪ (T ′nid \Tnid);

Step 4: Transformations for newYAWL specification

TaskID ′ =
⋃

n∈NetID T ′n
STmap′ = (STmap\ {(s,STmap(s)) | s ∈ dom(STmap)

∧ STmap(s) ∩ (dom(PreTest) ∪ dom(PostTest)) 6= ∅})
∪ {(s,STmap(s) ∪ {tL1, tL2, tL3, tL4}) | s ∈ dom(STmap)

∧ t ∈ STmap(s) ∩ (dom(PreTest) ∪ dom(PostTest))}

4.2.3 Thread merge

The thread merge construct coalesces a specified number of execution threads from
the same process instance. The transformation for this construct is illustrated in
Figure 18. It essentially involves the creation of an AND-join precondition to the
construct that can only fire when the required number of incoming tokens (i.e. in-
coming execution threads) have been received and there is one of the tokens in each
of the conditions CAM1

...CAMn
enabling the AND-join for task A to fire. We assume

that there is a notion of “fairness” that applies to the model that will eventually
result in the tokens being distributed across the input conditions in this way.

45

#

S
P

L
ITA

S
P

L
IT

Mn

AM1

CA

M2A

CA

AMn

CAMA
M1

M2

A

Figure 18: Transformation of thread merge construct

There are three steps involved in this transformation. First the thread merge tasks
in each newYAWL-net are transformed into core newYAWL-net constructs, then the
associated Work distribution models are transformed to ensure all added tasks are
automatic and finally any new tasks are added to the newYAWL specification.

Step 1: Transformations for newYAWL-net nid to replace individual thread
merges with core newYAWL constructs

Let t ∈ dom(ThreadIn), transforming t in net nid leads to the following changes:

C ′ = C ∪ {CtMi | 1 ≤ i ≤ ThreadIn(t)}
T ′ = T ∪ {tM} ∪ {tMi | 1 ≤ i ≤ ThreadIn(t)}
T ′A = TA ∪ {tM} ∪ {tMi | 1 ≤ i ≤ ThreadIn(t)}
F ′ = (F\{(x, t) | x ∈ •t})

∪ {(x, tM) | x ∈ •t}
∪ {(tM , CtM1)}
∪ {(CtMi , tMi) | 1 ≤ i ≤ ThreadIn(t)}
∪ {(tM(i−1), CtMi) | 2 ≤ i ≤ ThreadIn(t)}
∪ {(CtMi , t) | 1 ≤ i ≤ ThreadIn(t)}
∪ {(tMn, CtM1) | n = ThreadIn(t)}

Join′ = (Join \ {(t,THREAD)}) ∪ {(t,AND)}
ThreadIn ′ = ThreadIn\ {(x,ThreadIn(x)) | x ∈ dom(ThreadIn) ∧ x = t}

46

Step 2: Transformations for Work distribution model for newYAWL-net
nid

Auto′ = Auto ∪ (T ′nid \Tnid);

Step 3: Transformations for newYAWL specification

TaskID′ =
⋃

n∈NetID T ′n

4.2.4 Thread split

The thread split construct diverges a single thread of execution into multiple concur-
rent threads, which initially flow through the same branch. Figure 19 illustrates how
the transformation for this construct operates. Essentially it creates an AND-split in
place of the thread split which has the required number of outgoing branches. These
branches are subsequently joined at a common place (CAS) and the associated tokens
are passed on to subsequent tasks by task AS on an as required basis.

Sn

JO
IN

JO
IN

#

A A

C

C

C

AS1

A

ASn

S2 ASASC

A

A

A

S1

S2

Figure 19: Transformation of thread split construct

The transformations associated with this proceed in three steps. First the thread
split tasks in each newYAWL-net are transformed into Core newYAWL-net con-
structs, then any newly introduced tasks also added as automatic tasks to the Work
distribution model associated with the newYAWL-net and finally any new tasks are
added to the newYAWL specification.

Step 1: Transformations for newYAWL-net nid replace individual thread
splits with core newYAWL constructs

Let t ∈ dom(ThreadOut), transforming t in net nid leads to the following changes:

C ′ = C ∪ {CtS} ∪ {CtSi | 1 ≤ i ≤ ThreadOut(t)}
T ′ = T ∪ {tS} ∪ {tSi | 1 ≤ i ≤ ThreadOut(t)}
T ′A = TA ∪ {tS} ∪ {tSi | 1 ≤ i ≤ ThreadOut(t)}
F ′ = (F\{(t, x) | x ∈ t•})

∪ {(tS , x) | x ∈ t•}
∪ {(CtS , tS)}
∪ {(t, CtSi) | 1 ≤ i ≤ ThreadOut(t)}
∪ {(CtSi , tSi) | 1 ≤ i ≤ ThreadOut(t)}
∪ {(tSi, CtS) | 1 ≤ i ≤ ThreadOut(t)}

47

Split′ = (Split\{(t,THREAD)}) ∪ {(t,AND)}
ThreadOut ′ = ThreadOut\ {(x,ThreadOut(x)) | x ∈ dom(ThreadOut) ∧ x = t}

Step 2: Transformations for Work distribution model for newYAWL-net
nid

Auto′ = Auto ∪ (T ′nid \Tnid);

The final step in the transformation process is ensure that all tasks that have been
added are also included in the newYAWL specification.

Step 3: Transformations for newYAWL specification

TaskID′ =
⋃

n∈NetID T ′n

4.2.5 Partial join

The partial join construct has probably the most complex series of transformations
associated with it. It is illustrated diagrammatically in Figure 20 and essentially
involves replacing the partial join construct with the set of all possible AND-joins that
would enable the set of input branches to trigger a join when the required threshold
for the join was reached. For example where the partial join had four inputs and
two were required for the join to proceed, then the partial join would be replaced
by six two-input AND-joins, each of which is linked to one combination of incoming
branches that could trigger the join as illustrated by the tasks prefixed AZJ . As this

is a combinatorial function, there are
(

m
n

)
of these tasks. Similarly, there are the

same number of tasks prefixed AZR which reset the join and allow it to fire again.
Only when one of the AZJ joins has fired can the actual task A be enabled.

A feature of the partial join is the blocking link, which allows specified tasks to
serve as gateways into the blocking region for a task. The blocking region is a group
of preceding tasks and their associated branches where only one thread of execution
should be active on each incoming branch to the partial join for each triggering of the
join. The block function identifies the set of tasks that constitute the blocking region
for a given task. In Figure 20, task X has a blocking link associated with it. Once task
A has fired, task X is prevented from being enabled until inputs have been received
on all branches to task A and it has reset. In the transformed newYAWL-net, each
“blocking task” has a place associated with it (e.g. CXB1

). Initially it has a token
in it. This is removed when one of the permutations of input branches allows the
(partial) join to fire and only when the partial join has reset, is the token replaced in
the place allowing the “blocking task” to fire again.

The transformation proceeds in six stages. First, initialization conditions are
inserted into any newYAWL-net that contains blocking tasks associated with partial
joins. These conditions allow the blocking tasks to be enabled in a given net providing
the associated partial join has not been enabled.

48

1

1C

2C

1C

2C

JO
IN

S
P

LI
T

JO
IN

S
P

LI
T

S
P

LI
T

A

X XB2XB1

A

AJ A

A

Z Z

R

R
Z

J
Z

Z corresponds to one of the
combinations of input places

note:

and k =

1

k k

S
P

LI
T

A

X

m(n)
m(n)

C

n−1

Cn

C

n−1

n

o
2

T

C

E2nid

2
endC

CA,XB1 B1A

C2
i

TS2
nid

C 2
start

C

C

Figure 20: Transformation of partial join construct

Step 1: Initial transformation for newYAWL-net nid with partial joins

precondition: ran(Blocknid) 6= ∅
C ′ = C ∪ {C2

start, C
2
end}}

i′ = C2
start

o′ = C2
end

T ′ = T ∪ {TS2nid
, TE2nid

}

49

F ′ = F ∪ {(C2
start, TS2nid

), (TS2nid
, i), (o, TE2nid

), (TE2nid
, C2

end)}
∪ {(TS2nid

, CtB1) | t ∈ dom(Thresh)}
∪ {(CtB1 , TE2nid

) | t ∈ dom(Thresh)}
Split′ = Split ∪ {(TSnid

,AND)}
Join′ = Join ∪ {(TEnid

,AND)}

The next step is to transform each of the partial joins in a given net. These need to
be undertaken incrementally (on a task-by-task basis) and involve the insertion of a
series of AND-join constructs (AZJ1...A

Z
Jk) such that a distinct AND-join is added for

each combination of incoming paths that could enable the partial join. Associated
with each AND-join is another AND-join (AZR1...A

Z
Rk) that allows the partial join

to be reset when execution threads have been received on the remaining incoming
branches. There is also a condition (CAB1

) inserted for each partial join to ensure
that each of the reset tasks (AZR1...A

Z
Rk) are on a path from the start to end condition

in the newYAWL-net.

Step 2: Transformations for newYAWL-net nid’ (from step 1) to replace
individual partial joins with core newYAWL constructs

Let t ∈ dom(Thresh ′), transforming t in net nid ′ leads to the following changes:

C ′′ = C ′ ∪ {CtB1}
T ′′ = T ′ ∪ {tCJ | C ∈ P(•t) ∧ |C| = Thresh ′(t)}

∪ {tDR | D ∈ P(•t) ∧ |D| = | • t| − Thresh ′(t)}
F ′′ = (F ′\{(c, t) | c ∈ •t})

∪ {(c, tCJ) | C ∈ P(•t) ∧ |C| = Thresh ′(t) ∧ c ∈ C}
∪ {(c, tDR) | D ∈ P(•t) ∧ |D| = | • t| − Thresh ′(t) ∧ c ∈ D}
∪ {(tCJ , tDR) | C ∈ P(•t) ∧ |C| = Thresh ′(t) ∧ D = •t \ C}
∪ {(tCJ , t) | C ∈ P(•t) ∧ |C| = Thresh ′(t)}
∪ {(TS2nid

, CtB1), (CtB1 , TE2nid
)}

∪ {(CtB1 , t
C
J) | C ∈ P(•t) ∧ |C| = Thresh ′(t)}

∪ {(tDR, CtB1) | D ∈ P(•t) ∧ |D| = | • t| − Thresh ′(t)}
Split′′ = Split′ ∪ {(tCJ ,AND) | C ∈ P(•t) ∧ |C| = Thresh ′(t)}

∪ {(xDR,AND) | x ∈ dom(Thresh ′) ∩ dom(Block ′) ∧ D ∈ P(•x)
∧ |D| = | • x| − Thresh ′(x) ∧ x = t}

Join′′ = (Join′ \ {(t,PJOIN)})
∪ {(t,XOR)}
∪ {(tCJ ,AND) | C ∈ P(•t) ∧ |C| = Thresh ′(t)}
∪ {(tDR,AND) | D ∈ P(•t) ∧ |D| = | • t| − Thresh ′(t)}

Block ′′ = (Block ′ \ {(x,Block ′(x)) | x ∈ dom(Block ′) ∧ t ∈ Block ′(x)})
∪ {(x, (Block ′(x)\{t}) ∪ {tCJ}) | x ∈ dom(Block ′) ∧ t ∈ Block ′(x)

∧ C ∈ P(•t) ∧ |C| = Thresh ′(t)}

50

Rem ′′ = (Rem ′ \ {(x,Rem ′(x)) | x ∈ dom(Rem ′) ∧ t ∈ Rem ′(x)})
∪ {(x,Rem ′(x) ∪ {tCJ} ∪ {tDR}) | C ∈ P(•t) ∧ |C| = Thresh ′(t)

∧ D ∈ P(•t) ∧ |D| = | • t| − Thresh ′(t) ∧ t ∈ Rem ′(x)}
Lock ′′ = Lock ′ ∪ {(tCJ ,Lock ′(t)) | C ∈ P(•t) ∧ |C| = Thresh ′(t) ∧ t ∈ dom(Lock)}
Pre ′′ = Pre ′ ∪ {(xCJ , P re′(x)) | x ∈ dom(Pre ′) ∧ C ∈ P(•x)

∧ |C| = Thresh ′(x) ∧ x = t}
Thresh ′′ = Thresh ′\ {(t,Thresh ′(t))}

The third step is to replace each blocking task with core newYAWL constructs. As
each of these tasks may have joins and/or splits associated with them, it is neces-
sary to move these to preceding and subsequent tasks in order to ensure that they
are evaluated separately from the blocking action associated with each task under
consideration. Similarly other constructs associated with each blocking task (e.g. arc
conditions, evaluation sequence of arc conditions, default arcs etc.) may also need
to be migrated and others (e.g. locks, preconditions, postconditions) may need to be
replicated.

Step 3: Transformation for newYAWL-net nid” (from step 2) to replace
individual blocking tasks with core newYAWL constructs

Let b ∈ ⋃
t∈Tnid′′

Block ′′(t), transforming b in net nid leads to the following changes:

C ′′′ = C ′′ ∪ {Cb,xB1
| x ∈ dom(Thresh ′′) ∧ b ∈ Block ′′(x)}

T ′′′ = T ′′ ∪ {bB1, bB2}
T ′′′A = T ′′A ∪ {bB1, bB2}
F ′′′ = ((F ′′\ {(c, b) | c ∈ •b})\ {(b, c) | c ∈ b•})

∪ {(c, bB1) | c ∈ •b} ∪ {(bB2, c) | c ∈ b•} ∪ {(bB1, b), (b, bB2)}
∪ {(Cb,xB1

, xCJ) | x ∈ dom(Block ′′) ∧ b ∈ Block ′′(x)
∧ C ∈ P(•x) ∧ |C| = Thresh ′′(x)}

∪ {(xDR, Cb,xB1
) | x ∈ dom(Block ′′) ∧ b ∈ Block ′′(x)
∧ D ∈ P(•x) ∧ |D| = | • x| − Thresh ′′(x)}

∪ {(TS2nid
, Cb,xB1

) | x ∈ dom(Block ′′) ∧ b ∈ Block ′′(x)}
∪ {(Cb,xB1

, TE2nid
) | x ∈ dom(Block ′′) ∧ b ∈ Block ′′(x)}

∪ {(Cb,xB1
, b) | x ∈ dom(Block ′′) ∧ b ∈ Block ′′(x)}

∪ {(b, Cb,xB1
) | x ∈ dom(Block ′′) ∧ b ∈ Block ′′(x)}

Split ′′′ = (Split ′′\{(x,Split ′′(x)) | x ∈ dom(Split ′′) ∧ x = b})
∪ {(xB2,Split ′′(x)) | x ∈ dom(Split ′′) ∧ x = b}
∪ {(b,AND)}

Join ′′′ = (Join ′′ \ {(x, Join ′′(x)) | x ∈ dom(Join ′′) ∧ x = b})
∪ {(xB1, Join ′′(x)) | x ∈ dom(Join ′′) ∧ x = b}
∪ {(b,AND)}

51

Default ′′′ = (Default ′′ \ {(x,Default ′′(x)) | x ∈ dom(Default ′′) ∧ x = b})
∪ {(xB2,Default ′′(x)) | x ∈ dom(Default ′′) ∧ x = b}

<
′′′
XOR= (<′′

XOR\{(x,<′′x
XOR) | x ∈ dom(Split ′′ ¤ {XOR}) ∧ x = b})
∪ {(xB2, <

′′x
XOR) | x ∈ dom(Split ′′ ¤ {XOR}) ∧ x = b}

Rem ′′′ = ((Rem ′′\{(x,Rem ′′(x)) | x ∈ dom(Rem ′′) ∧ x = b})
\ {(x,Rem ′′(x)) | x ∈ dom(Rem ′′) ∧ b ∈ Rem ′′(x)})
∪ {(xB2, Rem′′(x)) | x ∈ dom(Rem ′′) ∧ x = b}
∪ {(x,Rem ′′(x) ∪ {bB1, bB2}) | x ∈ dom(Rem ′′) ∧ b ∈ Rem ′′(x)}

Comp′′′ = (Comp′′\{(x,Comp′′(x)) | x ∈ dom(Comp′′) ∧ x = b})
∪ {(xB2, Comp′′(x)) | x ∈ dom(Comp′′) ∧ x = b}

Block ′′′ = Block ′′\ {(b,Block′′(b))}
Disable ′′′ = (Disable ′′\{(x,Disable ′′(x)) | x ∈ dom(Disable ′′) ∧ x = b})

∪ {(xB2,Disable ′′(x)) | x ∈ dom(Disable ′′) ∧ x = b}
Lock ′′′ = Lock ′′ ∪ {(xB1,Lock ′′(x)) | x ∈ dom(Lock ′′) ∧ x = b}

∪ {(xB2,Lock ′′(x)) | x ∈ dom(Lock ′′) ∧ x = b}
ArcCond ′′′ = (ArcCond ′′ \ {((x, c), cond1) | x ∈ dom(Split ′′ ¤ {OR,XOR})

∧ ((x, c), cond1) ∈ ArcCond ′′ ∧ c ∈ x • ∧x = b})
∪ {((bB2, c), cond1) | x ∈ dom(Split ′′ ¤ {OR,XOR})

∧ ((x, c), cond1) ∈ ArcCond ′′ ∧ c ∈ x • ∧x = b})
Pre ′′′ = Pre ′′ ∪ {(xB1,Pre ′′(x)) | x ∈ dom(Pre ′′) ∧ x = b}
Post ′′′ = Post ′′ ∪ {(xB2,Post ′′(x)) | x ∈ dom(Post ′′) ∧ x = b}

The fourth step is to replicate any parameters passed to each blocking task to the
(inserted) task preceding and following the blocking task. This is necessary as the
preceding task may have associated preconditions or locks and the following task may
have splits, postconditions or locks which rely on data elements passed to the blocking
task in order to be evaluated.

Step 4: Transformations for Data passing model for newYAWL-net nid

Let t ∈ Tnid, transforming t in net nid leads to the following changes:

InPar ′ = InPar ∪ {((tB1, v), e) | x ∈ dom(Block)
∧ t ∈ (dom(Pre) ∪ dom(Lock)) ∩ Block(x)
∧ ((t, v), e) ∈ InPar}

∪ {((tB2, v), e) | x ∈ dom(Block)
∧ t ∈ (dom(Split ¤ {OR,XOR}) ∪ dom(Post)

∪ dom(Lock)) ∩ Block(x)
∧ ((t, v), e) ∈ InPar}

∪ {((xCJ , v), e) | x ∈ dom(Thresh) ∧ C ∈ P(•x)
∧ |C| = Thresh(x) ∧ ((x, v), e) ∈ InPar ∧ x = t}

52

OptInPar ′ = OptInPar ∪ {(tB1, v) | x ∈ dom(Block)
∧ t ∈ (dom(Pre) ∪ dom(Lock)) ∩ Block(x)
∧ (t, v) ∈ OptInPar}

∪ {(tB2, v) | x ∈ dom(Block)
∧ t ∈ (dom(Split ¤ {OR,XOR}) ∪ dom(Post)

∪ dom(Lock)) ∩ Block(x)
∧ (t, v) ∈ OptInPar}

∪ {(xCJ , v) | x ∈ dom(Thresh) ∧ C ∈ P(•x)
∧ |C| = Thresh(x) ∧ (x, v) ∈ OptInPar ∧ x = t}

The fifth step is to transform the Work distribution model associated with the newYAWL-
net in order to ensure all added tasks are automatic (i.e. do not need to be distributed
to resources for execution).

Step 5: Transformations for Work distribution model for newYAWL-net
nid

Auto′ = Auto ∪ (T ′′′ \T);

The final step in the transformation process is ensure that all tasks that have been
added are also included to the newYAWL specification.

Step 6: Transformations for newYAWL specification

TaskID ′ =
⋃

n∈NetID T ′′′n

STmap′ = ((STmap\ {(s,STmap(s)) | s ∈ dom(STmap)
∧ STmap(s) ∩ dom(Thresh) 6= ∅})

\ {(s,STmap(s)) | s ∈ dom(STmap)
∧ x ∈ dom(Block)
∧ STmap(s) ∩ Block(x) 6= ∅})

∪ {(s,STmap(s) ∪ {tCJ}) | s ∈ dom(STmap)
∧ t ∈ STmap(s) ∩ dom(Thresh)
∧ C ∈ P(•t) ∧ |C| = Thresh(t)}

∪ {(s,STmap(s) ∪ {tB1, tB2}) | s ∈ dom(STmap)
∧ x ∈ dom(Block)
∧ STmap(s) ∩ Block(x) 6= ∅}

4.2.6 Tasks directly linked to tasks

newYAWL supports the direct linkage of one task to another in a process model.
However, during execution, it is necessary that the state of a process instance can
be completely captured. For this reason, an implicit condition is inserted between
directly connected tasks, reflecting the Petri net foundations on which newYAWL is
based. Figure 21 illustrates this transformation.

This transformation only applies to elements of a newYAWL-net as described in
Definition 2. There are no changes to the other models.

53

BA B A CAB

Figure 21: Inserting an implicit condition between directly linked tasks

Transformations for newYAWL-net nid to insert conditions between di-
rectly linked tasks

C ′ = C ∪ {Ct1,t2 | (t1, t2) ∈ F ∩ (T × T)}
F ′ = (F\(T × T))

∪ {(t1, Ct1t2) | (t1, t2) ∈ F ∩ (T × T)}
∪ {(Ct1t2 , t2) | (t1, t2) ∈ F ∩ (T × T)}

Rem ′ = (Rem\{(t,Rem(t)) | (t1, t2) ∈ F ∩ (T × T) ∧ t ∈ dom(Rem)
∧ {t1, t2} ⊆ Rem(t)})

∪ {(t,Rem(t) ∪ {Ct1,t2}) | (t1, t2) ∈ F ∩ (T × T) ∧ t ∈ dom(Rem)
∧ {t1, t2} ⊆ Rem(t)}

ArcCond ′ = (ArcCond \ {((t1, t2), cond1) | ((t1, t2), cond1) ∈ ArcCond
∧ (t1, t2) ∈ F ∩ (T × T)})

∪ {((t1, Ct1t2), cond1) | ((t1, t2), cond1) ∈ ArcCond
∧ (t1, t2) ∈ F ∩ (T × T)}

Default ′ = (Default \ {(t1,Default(t1)) | t1 ∈ dom(Default)
∧ (t1,Default(t1)) ∈ F ∩ (T × T)})

∪ {(t1, Ct1t2) | t1 ∈ dom(Default)
∧ (t1,Default(t1)) ∈ F ∩ (T × T)})

<
′t
XOR={(t, (<t

XOR ∩ (C × C))
∪ {(x,Ct,t′) | t′ ∈ T ∩ t • ∧x ∈ C ∧ (x, t′) ∈<t

XOR}
∪ {(Ct,t′ , x) | t′ ∈ T ∩ t • ∧x ∈ C ∧ (t′, x) ∈<t

XOR}
∪ {(Ct,t′ , Ct,t′′) | t′ ∈ T ∩ t • ∧t′′ ∈ T ∩ t • ∧(t′, t′′) ∈<t

XOR})
| t ∈ dom(Split) ∧ Split(t) = XOR}

4.3 Semantic model initialization

This section presents a series of marking functions which describe how a core newYAWL
specification can be transformed into an initial marking of the newYAWL semantic
model. The act of doing this prepares a newYAWL specification for enactment.
Moreover, because the newYAWL semantic model is formalized using CP-nets, once
the resultant initial marking is applied to the semantic model in the CPN Tools envi-
ronment, it is possible to directly execute the newYAWL specification. The marking
functions presented below operate between a core newYAWL specification and the
semantic model presented in Section 5. They assume the existence of the auxiliary
functions described subsequently.

54

4.3.1 Auxiliary functions

In order to describe the various transformations more succinctly, we first present
eleven auxiliary functions. Throughout this section the designated value procid is
assumed to be the identifier for the newYAWL specification under consideration.

FUN (fn(p1, p2, ...pn)) = fn where fn(p1, p2, ...pn) is a function definition. FUN re-
turns the name of the function;

VARS(fn(p1, p2, ...pn)) = {p1, p2, ...pn}. VARS returns the set of data elements in
the function definition;

VAR(fn(p1)) = p1 where p1 is of type RecExpr, i.e. p1 is a record-based formal
parameter containing a single data element in a tabular format for use with a multiple
instance task. VAR returns the record-based data element;

LCONDS takes a task and returns a sequence of the link condition tuples for the
outgoing arcs associated with the task, together with the set of variables and the
condition used to evaluate whether the arc should be selected10. For XOR-splits, the
sequence defines the order in which the arc conditions should be evaluated in order
to determine the arc that will be enabled. The order is immaterial for OR-splits as
several arcs can potentially be enabled.

LCONDS(t) ={
[(ArcCond(t, c),VARS(ArcCond(t, c)), c) | c ← [t•]<t

XOR] if Split(t) = XOR
[(ArcCond(t, c),VARS(ArcCond(t, c)), c) | c ← [t•]] if Split(t) = OR

CAPVALS(u) = [{(c, v) | UserQual(u, c) = v}], i.e. CAPVALS returns a list of the
capability-value tuples corresponding to a nominated user u. The ordering of these
tuples is arbitrary;
VDEF takes a variable v of type VarID and returns the static definition for the
variable in the form used in the semantic model;

VDEF(v) =

< gdef:(procid ,VName(v)) > if v ∈ VarIDGlobal

< bdef:(procid ,VFmap(v),VName(v)) > if v ∈ VarIDFolder

< cdef:(procid ,VName(v)) > if v ∈ VarIDCase

< bdef:(procid ,VBmap(v),VName(v)) > if v ∈ VarIDBlock

< sdef:(procid ,VSmap(v),VName(v)) > if v ∈ VarIDScope

< tdef:(procid ,VTmap(v),VName(v)) > if v ∈ VarIDTask

< mdef:(procid ,VMmap(v),VName(v)) > if v ∈ VarIDMI

PUSAGE identifies whether parameter p is a mandatory or optional parameter in
the context of task t;

PUSAGE(x, p) =

′′opt′′ if ((x, p) ∈ (dom(OptInPar) ∪ dom(OptOutPar)
∪ dom(OptInNet) ∪ dom(OptOutNet))

∨ (x =′′ null′′ ∧ p ∈ dom(OptInProc)
∪ dom(OptOutProc))

′′mand′′ otherwise

10Details of the sequence comprehension notation used herein can be found in Appendix A.

55

MT YPE identifies whether task t is a singular or multiple-instance task;

MT YPE(t) =
{ ′′multiple′′ if t ∈ dom(Nofi)

′′singular′′ otherwise

PREC returns true if task x precedes task t (i.e. there is a path from x to t);

PREC(x, t) = (x, t) ∈ F ∗, where F ∗ is the reflexive transitive closure of the flow
relation F ;

The following three functions support the transformation of a newYAWL-net to a
corresponding reset net that allows the enablement of an OR-join construct to be
determined based on Wynn et al.’s algorithm [WEAH05]. These functions are based
on the transformations illustrated in Figure 4.3.1.

p1

t

pN

p1

t

pN

t

p1

pN

t

p1

pN

t

p1

pN

tp

p1

pN

tS pt

p1

pN

pt

tS

p1

tS

pN

p1

pN

tEpt

p1

pN

pt

tE

p1

tE

pN

p1

pN

pt

tE

p1

tE

p1N

tE

pN

p tS pt tE

YAWL Reset net YAWL Reset net

t tS pt tE

Figure 22: Reset net transformations for newYAWL constructs
(from [WEAH05])

RNILS(tOR) returns the set of input arcs to tasks in the reset net corresponding
to the newYAWL-net of which the OR-join tOR is a member. Only the tasks which
precede tOR are included in this set.

RNILS(tOR) =
{(x, tS) | t /∈ dom(Join) ∪ dom(Split) ∧ x ∈ •t ∧ PREC(t, tOR)}
∪ {(pt, tE) | t ∈ T ∧ t ∈ T ∧ t /∈ dom(Join)∪ dom(Split)∧ x ∈ •t∧PREC(t, tOR)}
∪ {(x, tS) | t ∈ T ∧ Join(t) = AND ∧ x ∈ •t ∧ PREC(t, tOR)}
∪ {(pt, tE) | t ∈ T ∧ Split(t) = AND ∧ PREC(t, tOR)}
∪ {(x, txS) | t ∈ T ∧ Join(t) = XOR ∧ x ∈ •t ∧ PREC(t, tOR)}
∪ {(pt, t

x
E) | t ∈ T ∧ Split(t) = XOR ∧ x ∈ t • ∧PREC(t, tOR)}

∪ {(pt, t
x
E) | t ∈ T ∧ Split(t) = OR ∧ x ∈ P+(t•) ∧ PREC(t, tOR)}

RNOLS(tOR) returns the set of output arcs to tasks in the reset net corresponding
to the newYAWL-net of which the OR-join tOR is a member. Only the tasks which
precede tOR are included in this set.

56

RNOLS(tOR) =
{(tS , pt) | t ∈ T ∧ t /∈ dom(Join) ∧ t /∈ dom(Split) ∧ PREC(t, tOR)}
∪ {(tE , x) | t ∈ T ∧ t /∈ dom(Join) ∧ t /∈ dom(Split) ∧ x ∈ t • ∧PREC(t, tOR)}
∪ {(tS , pt) | t ∈ T ∧ Join(t) = AND ∧ PREC(t, tOR)}
∪ {(tE , x) | t ∈ T ∧ Split(t) = AND ∧ x ∈ t • ∧PREC(t, tOR)}
∪ {(txS , pt) | t ∈ T ∧ Join(t) = XOR ∧ x ∈ •t ∧ PREC(t, tOR)}
∪ {(txE , x) | t ∈ T ∧ Split(t) = XOR ∧ x ∈ t • ∧PREC(t, tOR)}
∪ {(txE , y) | t ∈ T ∧ Split(t) = OR ∧ x ∈ P+(t•) ∧ y ∈ x ∧ PREC(t, tOR)}

RNRLS(tOR) returns the set of reset arcs to tasks in the reset net corresponding
to the newYAWL-net of which the OR-join tOR is a member. Only the tasks which
precede tOR are included in this set.

RNRLS(tOR) =
{(tE , x) | t ∈ T ∧ t /∈ dom(Split) ∧ PREC(t, tOR)

∧ x ∈ {{pt′ | t′ ∈ Rem(t) ∩ T ∧ PREC(t′, tOR)}
∪ {c | c ∈ Rem(t) ∩ C ∧ PREC(c, tOR)}}}

{(tE , x) | t ∈ T ∧ Split(t) = AND ∧ PREC(t, tOR)
∧ x ∈ {{pt′ | t′ ∈ Rem(t) ∩ T ∧ PREC(t′, tOR)}

∪ {c | c ∈ Rem(t) ∩ C ∧ PREC(c, tOR)}}}
{(tpE , x) | t ∈ T ∧ Split(t) = XOR ∧ p ∈ t • ∧PREC(t, tOR)

∧ x ∈ {{pt′ | t′ ∈ Rem(t) ∩ T ∧ PREC(t′, tOR)}
∪ {c | c ∈ Rem(t) ∩ C ∧ PREC(c, tOR)}}}

{(tyE , x) | t ∈ T ∧ Split(t) = OR ∧ y ∈ P+(t•) ∧ PREC(t, tOR)
∧ x ∈ {{pt′ | t′ ∈ Rem(t) ∩ T ∧ PREC(t′, tOR)}

∪ {c | c ∈ Rem(t) ∩ C ∧ PREC(c, tOR)}}}
RNCS(tOR) returns the set of conditions in the reset net corresponding to the
newYAWL-net of which the OR-join tOR is a member. Only the conditions which
precede tOR are included in this set.

RNCS(tOR) = dom(RNILS (tOR)) ∪ ran(RNOLS (tOR));

4.4 newYAWL marking functions

This section presents a series of marking functions which describe how a core newYAWL
specification can be transformed into an initial marking of the newYAWL semantic
model. They assume the existence of the auxiliary functions described above. The
population of a place in the CPN Tools environment is assumed to be a multiset
however, for the purposes of these transformations, there is no requirement for mul-
tiplicity. As part of these transformations, it is assumed that a mechanism exists for
mapping conditions that exist within a core newYAWL specification to corresponding
ML functions that describe their evaluation in the CPN Tools environment.

The process state place records the newYAWL conditions in which tokens are present
within a newYAWL specification. Initially this place is empty as there are no tokens
yet.

pop(process state) = ∅

57

The folder mappings place records the correspondences between the folder names used
when defining variable usage in a process definition and the actual folder IDs assigned
to a process instance at initiation. Initially it is empty as the correspondences are
recorded when a process instance is initiated.

pop(folder mappings) = ∅
The scope mappings place identifies the tasks which correspond to a given scope. It
is populated from the STmap function in the abstract syntax model.

pop(scope mappings) = {< procid , s,STmap(s) > | s ∈ ScopeID}
inlinks and outlinks records the incoming and outgoing arcs for tasks in the flow
relation. They are initially populated from the function F in the abstract syntax
model;

inlinks = {< procid , c, t > | (c, t) ∈ F ∧ c ∈ C ∧ t ∈ T}
outlinks = {< procid , t, c > | (t, c) ∈ F ∧ c ∈ C ∧ t ∈ T}
The flow relation place is the aggregation of inlinks and outlinks.

pop(flow relation) = inlinks ∪ outlinks

The variable instances place holds the values of variables instantiated during the
execution of a process instance. Initially it is empty.

pop(variable instances) = ∅
The variable declarations place holds the static definitions of variables used during
execution of the process. It is populated using the VDEF function along with data
from the PushAllowed and PullAllowed attributes and the DType functions in the
abstract syntax model.

Let V arTX = {< VDEF(v), v ∈ PushAllowed , v ∈ PullAllowed ,DType(v) >
| v ∈ VarIDX}

pop(variable declarations) = {< VarTGlobal ,VarTFolder ,VarTCase ,VarTBlock ,
VarTScope ,VarTTask ,VarTMI >}

The lock register place holds details of variables that have been locked by a specific
task instance during execution. Initially it is empty as no variables exist.

pop(lock register) = ∅;
The process hierarchy place identifies the correspondences between composite tasks
and their corresponding newYAWL-net decompositions. It is initially populated from
Tn and the TNmap and STmap functions in the abstract syntax model.

Let Scopes(nid) = {s ∈ ScopeID | ∃t∈STmap(s)[t ∈ Tnid]}
pop(process hierarchy) = {< procid , t, in, on, Tn,Scopes(n) >

| t ∈ dom(TNmap) ∧ n = TNmap(t)}
tinpars, toutpars, binpars, boutpars, miinpars, mioutpars, pinpars, poutpars identify
the input and output parameter mappings for task, block, multiple instance and
process constructs respectively. They are populated from the InPar, OutPar, InNet,
OutNet, MIInPar, MIOutPar, InProc and OutProc functions in the abstract syntax
model.

58

tinpars = {< procid , t,VARS(e),FUN (e), {v},′′ invar′′,PUSAGE(t, v),
MT YPE(t) > | (t, v, e) ∈ InPar}

toutpars = {< procid , t,VARS(e),FUN (e), {v},′′ outvar′′,PUSAGE(t, v),
MT YPE(t) > | (t, v, e) ∈ OutPar}

binpars = {< procid , n,VARS(e),FUN (e), {v},′′ invar′′,PUSAGE(n, v),
MT YPE(n) > | (n, v, e) ∈ InNet}

boutpars = {< procid , n,VARS(e),FUN (e), {v},′′ outvar′′,PUSAGE(n, v),
MT YPE(n) > | (n, v, e) ∈ OutNet}

miinpars = {< procid , t,VAR(e),FUN (e), v,′′ invar′′,′′mand′′,MT YPE(t) >
| (t, v, e) ∈ MIInPar}

mioutpars = {< procid , t,VAR(e),FUN (e), v,′′ outvar′′,′′mand′′,MT YPE(t) > |
(t, v, e) ∈ MIOutPar}
pinpars = {< procid ,′′ null′′,VARS(e),FUN (e), {v},′′ invar′′,PUSAGE(′′null′′, v),

′′singular′′ > | (v, e) ∈ InProc}
poutpars = {< procid ,′′ null′′,VARS(e),FUN (e), {v},′′ outvar′′,

PUSAGE(′′null′′, v),′′ singular′′ > | (v, e) ∈ OutProc >}
The parameter mappings place is populated from the aggregation of tinpars, toutpars,
binpars, boutpars,miinpars, mioutpars, pinpars and poutpars.

pop(parameter mappings) = tinpars ∪ toutpars ∪ binpars ∪ boutpars
∪miinpars ∪mioutpars ∪ pinpars ∪ poutpars

The mi a place holds work items that are currently active. It is initially empty.

pop(mi a) = ∅;
The mi e place holds work items that have been enabled but not yet started. It is
initially empty as no work items are active in any process instances.

pop(mi e) = ∅;
The exec place holds work items that are currently being executed. It is initially
empty.

pop(exec) = ∅;
The mi c place holds work items that have been completed but have not yet exited
(and triggered subsequent tasks). It is initially empty.

pop(mi c) = ∅;
atask, ctask, mitask and cmitask record details of atomic, composite, multiple-instance
and composite multiple-instance tasks respectively that determine how they will be
dealt with at runtime. They are populated from the T and M sets and the TNmap
function in the abstract syntax model.

atasks = {< atask:(procid , t) > | t ∈ TA\M};
ctasks = {< ctask:(procid , t,TNmap(t)) > | t ∈ TC\M};
mitasks = {< mitask:(procid , t,min,max , th, sd , canc) >

| t ∈ M\TA ∧Nofi(t) = (t,min,max , th, sd , canc)};
cmitasks = {< cmitask:(procid , t,TNmap(t),min,max , th, sd , canc) >

| t ∈ M ∩ TC ∧Nofi(t) = (t,min,max , th, sd , canc)}
The task details place is populated from the aggregation of atask, ctask, mitask and
cmitask.

59

pop(task details) = atasks ∪ ctasks ∪mitasks ∪ cmitasks;

The active nets place identifies the particular newYAWL-nets that are active (i.e.
have a thread of execution running in them). Initially it is empty as no process
instances (and hence no particular nets) are active.

pop(active nets) = ∅;
The preconditions place identifies task and process preconditions that must be satis-
fied in order for a task instance or process instance to proceed. It is populated from
the Pre and WPre functions in the abstract syntax model.

pop(preconditions) = {< procid , t,FUN (Pre(t)),VARS(Pre(t)) >
| t ∈ dom(Pre) >}

∪ {< procid ,′′ null′′,FUN (WPre),VARS(WPre) >};
The postconditions place identifies task and process postconditions that must be
satisfied in order for a task instance or process instance to complete execution. It is
populated from the Post and WPost functions in the abstract syntax model.

pop(postconditions) = {< procid , t,FUN (Post(t)),VARS(Post(t)) >
| t ∈ dom(Post) >}

∪ {< procid ,′′ null′′,FUN (WPost),VARS(WPost) >};
The assign wi to resource place holds work items that have been enabled but need to
be distributed to users who can undertake them. Initially it is empty.

pop(assign wi to resource) = ∅;
The wi started by resource place holds work items that have been started by a user
but not yet completed. Initially it is empty.

pop(wi started by resource) = ∅;
The wi completed by resource place holds work items that have been completed by a
user but have not had their status changed to completed from a control-flow perspec-
tive. Initially it is empty.

pop(wi completed by resource) = ∅;
The wi to be cancelled place holds work items that are in the process of being dis-
tributed to users but now need to be cancelled. Initially it is empty.

pop(wi to be cancelled) = ∅;
asplits, osplits and xsplits identify AND, OR and XOR splits in a newYAWL-net. For
OR and XOR splits details of the outgoing link conditions and default link conditions
are captured as part of this definition. They are populated from the Split and Default
functions in the abstract syntax model and the LCONDS condition.

asplits = {< asplit : (procid , t) > | Split(t) = AND}
osplits = {< osplit : (procid , t,LCONDS(t),Default(t)) > | Split(t) = OR}
xsplits = {< xsplit : (procid , t,LCONDS(t)),Default(t)) > | Split(t) = XOR}
The splits place is populated from the aggregation of asplits, osplits and xsplits.

pop(splits) = asplits ∪ osplits ∪ xsplits;

60

ajoin, ojoin and xjoin identify AND, OR and XOR joins in a newYAWL-net. In
the case of an OR-join, the details of the reset net which can be used to determine
when the OR-join can be enabled is also recorded. They are populated from the Join
function and in the case of the OR join, also utilize the RNILS, RNOLS, RNRLS
and RNCS functions to determine the incoming, outgoing and reset links and the
set of conditions associated with the corresponding reset net.

ajoins = {< ajoin : (procid , t) > | Join(t) = AND}
ojoins = {< ojoin : (procid , t,RNILS(t),RNOLS(t),RNRLS(t),RNCS(t)) >

| Join(t) = OR}
xjoins = {< xjoin : (procid , t) > | Join(t) = XOR}
The joins place is populated from the aggregation of ajoins, ojoins and xjoins.

pop(joins) = ajoins ∪ ojoins ∪ xjoins;

The task instance count place records the number of instances of each task that have
executed for a process. Initially it is empty.

pop(task instance count) = ∅;
The required locks place identifies the locks on specific variables that are required for
a task before an instance of it can be enabled. The place is populated from the Lock
function.

pop(required locks) = {< procid , t,VDEF(v) >| v ∈ Lock(t)};
The cancel set place identifies tasks instances that should be cancelled or force-
completed when an instance on a nominated task in the same process instance com-
pletes. The place is populated from the Rem and Comp functions.

pop(cancel set) = {< procid , t,Rem(t) ∩ C,Rem(t) ∩ T,Comp(t) >
| t ∈ dom(Rem) ∩ dom(Comp)}

∪ {< procid , t,Rem(t) ∩ C,Rem(t) ∩ T, ∅ >
| t ∈ dom(Rem)\dom(Comp)}

∪ {< procid , t, ∅, ∅, dom(Comp) >
| t ∈ dom(Comp)\dom(Rem)}

The disable set place identifies multiple tasks instances that should be disabled from
being able to create further dynamic instances “on the fly” when an instance on a
nominated task in the same process instance completes. The place is populated from
the Disable function.

pop(disable set) = {< procid , t,Disable(t) > | t ∈ dom(Disable)}
The chained execution users place identifies which users are currently operating in
chained execution mode. Initially it is empty.

pop(chained execution users) = ∅;
The piled execution users place identifies which users are currently operating in piled
execution mode. Initially it is empty.

pop(piled execution users) = ∅;
The distributed work items place identifies work items that can be distributed to
users. Each work item has had its routing determined, but the work items have not
yet been distributed to specific users. Initially it is empty.

61

pop(distributed work items) = ∅;
The task distribution details place identifies the routing strategy to be used for dis-
tributing work items corresponding to a given task. It is populated from the DistUser,
DistRole, DistVar and Initiator functions.

pop(task distribution details) =
{< procid , t, users:DistUser(t), o, a, s >

| t ∈ dom(DistUser) ∧ (o, a, s) = Initiator(t)}
∪ {< procid , t, roles:DistRole(t), o, a, s >

| t ∈ dom(DistRole) ∧ (o, a, s) = Initiator(t)}
∪ {< procid , t, vars:DistVar(t), o, a, s >

| t ∈ dom(DistVar) ∧ (o, a, s) = Initiator(t)}
∪ {< procid , t,AUTO ,′′ system′′,′′ system′′,′′ system′′ > | t ∈ Auto}

The offered work items place identifies work items that have been offered to users.
Initially it is empty as there are no work items.

pop(offered work items) = ∅;
The allocated work items place identifies work items that have been allocated to users.
Initially it is empty as there are no work items.

pop(allocated work items) = ∅;
The started work items place identifies work items that have been started by users.
Initially it is empty as there are no work items.

pop(started work items) = ∅;
The allocation requested place identifies work items that users have requested to have
allocated to them. Initially it is empty as there are no work items.

pop(allocation requested) = ∅;
The in progress place identifies work items that users are currently executing. Initially
it is empty as there are no work items.

pop(in progress) = ∅;
The logged on users place identifies users that have logged on. Initially it is empty
as no users are logged on.

pop(logged on users) = ∅;
The logged off users place identifies users who are not currently logged on (and hence
cannot execute work items). Initially all users are deemed to be logged off.

pop(logged off users) = UserID ;

The task user selection basis identifies a user routing strategy for specific tasks where
they must be distributed to precisely one user. The place is populated from the
UserSel function.

pop(task user selection basis) = {< procid , t,UserSel(s) > | t ∈ dom(UserSel)}
The users place identifies the users to whom work may be distributed. It is populated
from the UserID type.

62

pop(users) = UserID ;

The user role mappings place identifies the users that correspond to each role. It is
populated from the RoleUser function.

pop(user role mappings) = {< r,RoleUser(r) > | r ∈ RoleID};
The four eyes constraints place identifies task pairs within a process instance that
cannot be executed by the same user. It is populated from the FourEyes function.

pop(four eyes constraints) = {< procid , t,FourEyes(t) > | t ∈ dom(FourEyes)}
The retain familiar constraints place identifies task pairs within a process instance
that must be executed by the same user. It is populated from the SameUser function.

pop(retain familiar constraints) = {< procid , t,SameUser(t) >
| t ∈ dom(SameUser)}

The org group mappings place identifies the type and parent group (if any) for each
organizational group. It is populated from the GroupType and OrgStruct functions.

pop(org group mappings) =
{< og,GroupType(og),OrgStruct(og) >

| og ∈ OrgGroupID ∩ dom(OrgStruct)}
∪ {< og,GroupType(og),′′ null′′ >

| og ∈ OrgGroupID\dom(OrgStruct)}
The user job mappings place identifies the jobs that a given user possesses. It is
populated from the UserJob function.

pop(user job mappings) = {< u, j > | u ∈ UserID ∧ j ∈ UserJob(u)}
The org job mappings place identifies the organizational group and superior job (if
any) for a given job. It is populated from the JobGroup and Superior functions.

pop(org job mappings) = {< j, JobGroup(j),Superior(j) > | j ∈ dom(Superior)}
∪ {< j, JobGroup(j),′′ null′′ > | j ∈ JobID\dom(Superior)}

The work item event log place holds a list of significant work item events. Initially it
is empty.

pop(work item event log) = ∅;
The organizational task distributions place holds details of tasks that are to be dis-
tributed using an organizational distribution function. It is populated from the
OrgDist function.

pop(organizational task distributions) =
{< procid , t,FUN (OrgDist(t)) > | t ∈ dom(OrgDist)}

The historical task distributions place holds details of tasks that are to be distributed
using a historical distribution function. It is populated from the HistDist function.

pop(historical task distributions) =
{< procid , t,FUN (HistDist(t)) > | t ∈ dom(HistDist)}

The capability task distributions place holds details of tasks that are to be distributed
using a capability-based distribution function. It is populated from the CapDist
function.

63

pop(capability task distributions) =
{< procid , t,FUN (CapDist(t)) > | t ∈ dom(CapDist)}

The user capabilities place identifies capabilities and their associated values that
individual users possess. It is populated using the CAPVALS function.

pop(user capabilities) = {< u, CAPVALS(u) > | u ∈ UserID}
The failed work items place identifies work items that could not be routed to any
user. Initially it is empty.

pop(failed work items) = ∅;
The user privileges place identifies the privileges associated with each user. It is
populated from the UserPriv function.

pop(user privileges) = {< u,UserPriv(u) > | u ∈ dom(UserPriv)}
The user task privileges place identifies the privileges associated with each user in
relation to a specific task. It is populated from the UserTaskPriv function.

pop(user task privileges) = {< u, t,UserTaskPriv(u, t) >
| (u, t) ∈ dom(UserTaskPriv)}

The requested place holds the identity work items identified for being upgraded or
downgraded in a user’s work list. Initially it is empty.

pop(requested) = ∅;
The work list view place provides a list of the work items currently in a nominated
user’s work list. Initially it is empty.

pop(work list view) = ∅;
The new offerees place identifies an alternate set of users to whom a work item may
be offered. Initially it is empty.

pop(new offerees) = ∅;

5 Semantics

The preceding sections have laid the groundwork for newYAWL describing its objec-
tives, proposing a new set of suitable language primitives that enable the broadest
range of the patterns to be supported, detailing an abstract syntax model and describ-
ing how a candidate process model captured using the abstract syntax can be mapped
into an initial marking of the semantic model thus allowing it to be directly executed.
This section presents the semantic model for newYAWL, using a formalization based
on CP-nets. This model has been developed using CPN Tools11 and hence offers the
dual benefits of both providing a detailed definition of the operation of newYAWL
and also supporting the direct execution of a process model that is captured in this
format. This provides an excellent basis for investigating and validating the opera-
tion of individual language elements as well as confirming they can be coalesced into
a common execution environment and effectively integrated. Furthermore, such a

11For interested readers, the CP-net model for newYAWL is available from the YAWL website:
see http://www.yawl-system.com/newYAWL for more details.

64

model provides an extremely effective platform for reasoning about the operation of
specific constructs as well as investigating potential execution scenarios in real-world
newYAWL models.

This section is organized in four parts. First an overview of the semantic model
is presented. Then the core operational concepts underpinning the model are intro-
duced. The third section describes the manner in which the control-flow and data
perspectives are operationalized. Finally the fourth section introduces the work dis-
tribution facilities in newYAWL.

5.1 Overview

The CP-net model for newYAWL logically divides into two main parts: (1) the
control-flow and data sections and (2) the work distribution, organizational model
and resource management sections. These roughly correspond to definitions 1 and 2
and definitions 3, 4 and 5 of the abstract syntax model respectively, which in turn seek
to capture the majority of control-flow and data patterns and the resource patterns.

Figure 23, which is the topmost CP-net diagram in the semantic model, provides
a useful summary of the major components and their interrelationship. The various
aspects of control-flow, data management and work distribution are encoded into the
CP-net model as tokens in individual places. The toplevel view of the lifecycle of
a process instance is indicated by the transitions in this diagram connected by the
thick black line. First a new process instance is started, then there are a succession of
enter→start→complete→exit transitions which fire as individual task instances
are enabled, the work items associated with them are started and completed and the
task instances are finalized before triggering subsequent tasks in the process model.
Each atomic work item needs to be distributed to a suitable resource for execution,
an act which occurs via the work distribution transition. This cycle repeats until
the last task instance in the process is completed. At this point, the process instance
is terminated via the end case transition. There is provision for data interchange
between the process instance and the environment via the data management tran-
sition. Finally where a process model supports task concurrency via multiple work
item instances, there is provision for the dynamic addition of work items via the add
transition.

The major data items shared between the activities which facilitate the process
execution lifecycle are shown as shared places in this diagram. Not surprisingly, this
includes both static elements which describe characteristics of individual processes
such as the flow relation, task details, variable declarations, parameter mappings,
preconditions, postconditions, scope mappings and the hierarchy of processes and
subprocesses which make up an overall process model, all of which remain unchanged
during the execution of particular instances of the process. It also includes dynamic
elements which describe how an individual process instance is being enacted at any
given time. These elements are commonly known as the state of a process instance
and include items such as the current marking of the place in the flow relation, variable
instances and their associated values, locks which restrict concurrent access to data
elements, details of subprocesses currently being enacted, folder mappings (identifying
shared data folders assigned to a process instance) and the current execution state of
individual work items (e.g. enabled, started or completed).

65

�������

��������

��� ��������� �������

	
�� � ��� ���� �
�	
���� ��� ���� �
�

�����������������������������

�������	
��� ����
�
������ ����� ������� �
���
�������	
��� ����� ��������������� ���������
����� ����� ���	
 ��� ����� ��������

�� ���� ���	
��� �������� ����� ��	
��� ���� �
���
�� �� �
����
���
���
���

����
�� �� �
����������
���

�� ������ ��������� ���������

��
���������� �����
�������
 ��� ��������� ���
 ��� �����

��	��������� ��� ���	������
���������� ��� ������
 ��� �� �� �
 ��� � �� ����

	 � �
 ������ ���� !�	 � �
�������� ���
���� ��!����� ����	
�� ����� ��"!��
��� �#����� ������
��

��
����$�� �� ��$� �!%���

� �
	�� ��� �
� ��&��
	&� �
��
��������� ���� �����

��� ���	��
 ���
���� ��!��

#��������������� ��'� ������
#� �������� �� ��� �
�� �'�'� ���� ���
� ���� ���� � ��()�*�

�������� ��� �'� ����+������� �����,� �� !��
��,� ��!�+��+� ��,� ��!��
���� ��!��

���� ��	
��� ���� �� ���	
��� ����

��� ���	
 ��� ����� �������� �
�������	
��� ����� ��������������� ���������
��
����	
��� ����

���������������

	
���� ��� ���� �
�

��� �������

��������

Figure 23: Overview of the process execution lifecycle

66

There is relatively tight coupling between the places and transitions in Figure 23,
illustrating the close integration that is necessary between the various aspects of the
control-flow and data perspectives in order to enact a process model. The coupling
between these places and the work distribution transition however is more sparse.
There are no static aspects of the process that are shared with other transitions in
the model and other than the places which serve to communicate work items being
distributed to resources for execution (and being started, completed or cancelled), the
variable instances place is the only aspect of dynamic data that is shared with
the work distribution subprocess.

All of these transitions in Figure 23 are substitution transitions (as illustrated by
the double borders) for significantly more complex subprocesses that we will discuss
in further detail in subsequent sections. These discussions will seek to both describe
how the various language primitives in the newYAWL syntax are implemented as
well as more generally explaining how the various patterns in the control-flow, data
and resource perspectives are realized.

5.2 Core concepts

The CP-net model for newYAWL assumes some common concepts that are adopted
throughout the semantic model. In the main, these extend to the way in which core
aspects such as tasks, work items, subprocesses, data elements, conditional expres-
sions and parameters are identified and utilized. Each of these issues is discussed
below in more detail.

5.2.1 Work item characterization

In order to understand the issues associated with identifying a work item, it is first
necessary to recap on some basic assumptions in regard to process elements that were
made in the abstract syntax model and continue to hold in the semantic model. As
previously indicated in this section, a process is assumed to be identified by a distinct
ProcessID. Similarly each block or subprocess within that model is also assumed to be
uniquely identified within the model by a unique NetID. The combination ProcessID
× NetID therefore precisely identifies a given process model whether it is the toplevel
process or a subprocess or block within a process model. (It should be noted that
where a given block is the toplevel block in a process model then ProcessID = NetID).
Individual tasks in a process model are uniquely identified by a distinct TaskID. A task
can only appear once in a given process model12 and it corresponds to one of the four
newYAWL task types: i.e. atomic, composite, multiple-instance or composite multiple-
instance. Each executing instance of a process is termed a case or process instance
and is identified by a unique case identifier or CID. When a given task is instantiated
within an executing process instance, a new instance of the task termed a work item
is created. Each time a given task within a process is instantiated, it is given a unique
instance identifier Inst. This is necessary to differentiate between distinct instances
of the same task such as might occur if the task is part of a loop. The use of instance

12Note that as a task name is assumed to be a handle for a given implementation – whether it
is atomic or composite in form – this does not preclude the associated implementation from being
utilized more than once in a given process, it simply restricts the number of times a given task
identifier can appear.

67

identifiers allows distinct instances of an atomic task to be identified, however in the
situation where the task has multiple instances, each of these instances also needs
unique identification, hence each instance of a multiple instance task is assigned a
unique task number (denoted TaskNr) when it is created. Hence, in order to precisely
identify a work item a five part work item identifer is necessary composed as follows:
ProcessID × CID × TaskID × Inst × TaskNr.

5.2.2 Subprocess characterization

For the same reason that it is necessary to uniquely identify each work item, the
same requirement also exists for each instantiation of a given block within a process
model. Although each block within a process model can be uniquely identified, it
is possible for more than one composite task to have a given block as its subprocess
decomposition. Moreover, the use of recursion within a process model (an augmented
control-flow pattern supported by newYAWL) gives rise to the possibility that a given
block may contain a composite task that has that block as its subprocess decomposi-
tion. In order to distinguish between differing execution instances of the same block,
the notion of a subprocess case identifier is introduced13. In this scheme, the case
identifier for a subprocess is based on the CID with which the relevant composite
task is instantiated together with a unique suffix. Two examples of this are shown
in Figure 24. In the first of these, composite task C is instantiated with CID = 3. It
has block X as its subprocess decomposition which is subsequently instantiated with
(unique) CID = 3.1. At the conclusion of block X, the thread of control is passed
back to composite task C which then continues with CID = 3. In the second example,
composite multiple-instance task F is instantiated with CID = 4.5. The data passed
to this task causes three distinct instances of it to be initiated. Each of these has a
distinct subprocess CID, these being 4.5.1, 4.5.2 and 4.5.3 respectively.

CID = 4.5.3 CID = 4.5.3Y

Y CID = 4.5.2 CID = 4.5.2

Y CID = 4.5.1 CID = 4.5.1

C

X

CID = 3 CID = 3

CID = 3.1 CID = 3.1

CID = 4.5 CID = 4.5

F

Figure 24: Subprocess identification

5.2.3 Data characterization

Seven distinct data scopings are supported in newYAWL: global, folder, case, block,
scope, task and multiple-instance together with support for interaction with external

13This is not a new concept but rather a variant of the scheme first proposed in the original YAWL
paper [AH05].

68

data elements. Individual data elements are identified by a static definition which
precisely identifies the process element to which the data element is bound and the
scope of its visibility. Table 7 outlines each of the types supported, the specific
element to which they are bound in the static process definition and the scope of
their visibility when instantiated at runtime.

Data
Element
Type

Binding Element Scope of Visibility

Global Process definition Accessible to all work items in all in-
stances of the process

Folder Data folder Accessible to all work items of pro-
cess instances to which the folder is
assigned at runtime

Case Process definition Accessible to all work items in a given
process instance

Block Specific block in a process def-
inition

Accessible to all work items in a spe-
cific instantiation of the nominated
block

Scope Specific scope in a process def-
inition

Accessible to all work items con-
tained within the nominated scope in
a specific instantiation of the block to
which the scope is bound

Task Specific task in a process def-
inition

Accessible to a specific instantiation
of a task

MI Task Specific multiple instance task
in a process definition

Accessible to a specific instance of a
multiple instance task

Table 7: Data scopes in newYAWL

The identification required for data elements varies by data element type. Fur-
thermore, a deterministic means is required to allow the static declaration for a
given variable to be transformed into its runtime equivalent. Table 8 illustrates the
static and dynamic naming schemes utilized for the various data types supported in
newYAWL.

5.2.4 Conditional expression characterization

Several aspects of a newYAWL model utilize conditional expressions to determine
whether or not a specific course of action should be taken at runtime:

– Processes and tasks can have preconditions which determine whether a specific
process or task instance can commence;

– Processes and tasks can have postconditions which determine whether a specific
process or task instance can conclude;

– OR-splits can have link conditions on individual arcs which determine which of
them will be enabled. If none of them evaluate to true, the default arc is taken;
and

69

Data
Element
Type

Static Identification Runtime identification

Global ProcessID × VarName ProcessID × VarName

Folder ProcessID × FolderID × VarName ProcessID × FolderName × VarName

Case ProcessID × VarName ProcessID × CID × VarName

Block ProcessID × NetID × VarName ProcessID × CID × NetID × VarName

Scope ProcessID × ScopeID × VarName ProcessID × CID × ScopeID × VarName

Task ProcessID × TaskID × VarName ProcessID × CID × TaskID × Inst × Var-
Name

MI Task ProcessID × TaskID × VarName ProcessID × CID × TaskID × Inst × TaskNr
× VarName

Table 8: Data element identification in newYAWL

– XOR-splits can have link conditions on individual arcs which are evaluated in a
specific order until the first of them evaluates to true allowing that specific branch
to be enabled. If none of them evaluate to true, the default arc (being that with
the lowest priority in the ordering) is taken.

In each of these cases, the relevant conditions are expressed in terms of a specific
function name and a set of input data elements. The function is passed the values of
the input data elements on invocation and must return a Boolean result.

5.2.5 Parameter characterization

Formal parameters are used in newYAWL to describe the passing of data values to
or from a process instance, block instance (where the parameters are associated with
a composite task which has the block as its associated subprocess decomposition), or
task instance at runtime. Parameters have three main components, a set of input data
elements, a parameter function and one (or several in the case of multiple instance
parameters) output data element. All data passing is by value and is based on the
evaluation of the parameter function when the values for each of the nominated
input data elements are passed to it. The resultant value is subsequently assigned
to the nominated output data element. Each of the input data elements must be
accessible to the process element to which they are bound when it is instantiated (in
the case of input parameters) or when it concludes (in the case of output parameters).
Parameters can be specified as mandatory or optional. For mandatory parameters,
all input data elements must have a defined value before the parameter evaluation can
occur. This is not necessary in the case of optional parameters which are evaluated
where possible. Generally, the output data elements for a parameter mapping reside
in the same block as the process element to which the parameter is bound however for
parameters passed to a composite task, the resultant output value will be assigned to
a data element in the block instance to which the composite task is mapped. At the
conclusion of this block, the output parameters for the composite task will map data
elements from the block instance back to the data elements accessible in the block
to which the composite task is bound. The potential range of input and output data
elements for specific parameter types is summarized in Table 9

70

Parameter
Type

Binding
Element

Input
Data
Elements

Output
Data
Elements

Incoming

Process Global, Folder Case, Block, Scope
Block (via compos-
ite task)

Global, Folder,
Case, Block, Scope

Block, Scope

Task Global, Folder,
Case, Block, Scope

Task

MI Task Global, Folder,
Case, Block, Scope

Task, Multiple In-
stance

Outgoing

Process Global, Folder,
Case, Block, Scope

Global, Folder

Block (via compos-
ite task)

Global, Folder,
Case, Block, Scope,
Task

Global, Folder,
Case, Block, Scope

Task Task Global, Folder,
Case, Block, Scope

MI Task Multiple Instance Global, Folder,
Case, Block, Scope

Table 9: Parameter passing supported in newYAWL

As indicated in Figure 23, the newYAWL semantic model essentially divides into
two main parts: control-flow and data handling, and work distribution. The following
sections focus on these areas.

5.3 Control-flow & data handling

This section presents the operational semantics for control-flow and data handling
in newYAWL. This involves consideration of the following issues: case start and
completion, task instance enablement and work item creation, work item start and
completion, task instance completion, multiple instance activities and data interaction
with the external environment. Each of these areas is discussed in detail.

5.3.1 Case commencement

The start case transition handles the initiation of a process instance. It is illus-
trated in Figure 25. Triggering a new process instance involves passing the ProcessID
and CID to the transition together with a list of any data folders that are to be
assigned to the process instance during execution. There are three prerequisites for
the start case transition to be able to fire:

1. The precondition associated with the process instance must evaluate to true;
2. Any data elements which are inputs to mandatory input parameters must exist

and have a defined value (i.e. they must not have the UNDEF value); and
3. All mandatory input parameters must evaluate to defined values.

Once these prerequisites are satisfied, the process instance can commence. This
involves:

71

1. Placing a token representing the new CID in the input place for the process;
2. Creating variable instances for any case data elements, block data elements for the

topmost block and scope data elements for scopes in the top-level block;
3. Mapping the results of any input parameters for the process to the relevant output

data elements created in step 2; and
4. Adding folder mappings to identify the folders assigned to the process instance

during execution.

����������
���� 	��
 ������ ��� �� ��������������������������
�� ��� ��� ���������
�� �������

���������������������� ����� ��
��� ��������������������� ��� ������

������������ �� ��������������� ��� ���� ���������
������
 �� ������� ������
��������� ������������ �� ����

�������	�� �� ��	���� �� ���������������� !���� ���
����"�������������� #� ����������"��
�� �� ��� ������� #� �$�� ��

�� �
� ������������ %� �
� � ���
��� ����
�� �
� ���� %� �
� �&�� ����

��������������� � �������� �����
��� ����� ��������$'��$�� �����
���

���
���

������

��� ���

Figure 25: Start case process

5.3.2 Case completion

The end case transition is analogous in operation to the start-case transition de-
scribed above except that it ends a case. In order for a process instance to complete,
three prerequisites must be satisifed:

1. The postcondition associated with the process instance must evaluate to true;
2. Any data elements which are inputs to mandatory output parameters must exist

and have a defined value; and
3. All mandatory output parameters must evaluate to defined values.

Once these prerequisites are satisfied, the process instance can complete. This in-
volves:

1. Placing a token in the output place for the process;
2. Cancelling any work items or blocks in the process instance that are still executing;
3. Mapping the results of any output parameters for the process to the relevant

output data elements;
4. Removing any remaining variable instances for the process instance; and
5. Removing any folder mappings associated with the process instance.

72

���������� �������
	�
� ����������� ���� ����������������������� ��� ��������� ������������ ������

����
��
����������� ���������

����� ��� ��
���
����

��������
� ��������������������� �������������
�
��� ��������������������� ������������ ������� ���� ��� ���� ��
����� �
� �
����� ����������������������������������� �

������
� �� ��
���� ������
���� ���� ������
����� �� ����

������	� �� ��	 ��� !��
������������� !����
�

�� �� ������
����� "� �� �!���

���������
����� #���!��� �� ���$��� �� ��� ��
���� %��&� ��
�� ���$��
���
����� %���
������

������

���
���

���

��� ���

Figure 26: End case process

The execution of a work item involves the execution of a sequence of four distinct
transitions. The naming and coupling of these transitions is analogous to the formal-
ization proposed in the original YAWL paper [AH05]. In the newYAWL semantic
model, the same essential structure for work item enactment is maintained however
this structure is augmented with a complete executable model defining precisely how
the control-flow, data and resource perspectives interact during work item execution.
This sequence is described in detail in the following four sections.

5.3.3 Task instance enablement & work item creation

Task instance enablement is the first step in work item execution. It is depicted
by the enter transition in Figure 27. The first step in determining whether a task
instance can be enabled is to examine the marking of the input places to the task.
There are four possible scenarios:

– If the task has no joins associated with it, then the input condition to the task
simply needs to contain a token;

– If the task has an AND-join associated with it, each input condition needs to
contain a token with the same ProcessID × CID combination;

– If the task has an XOR-join associated with it, one of the input conditions needs
to contain a token; and

– If the task has an OR-join associated with it, one (or more) of the input conditions
needs to contain a token and a determination needs to be made as to whether in
any future possible state of the process instance, the current input conditions can
retain at least one token and another input condition can also receive a token. If
this can occur, the task is not enabled, otherwise it is enabled. This issue has
been subject to rigorous analysis and an algorithm has been proposed [WEAH05]
for determination of exactly when an OR-join can fire. The newYAWL semantic
model implements this algorithm.

Depending on the form of task that is being enabled (singular or multiple-instance),
one or more work items may be created for it. If the task is atomic, the work item(s)

73

is created in the same block as the task to which it corresponds. If the task is com-
posite, then the situation is slightly more complicated and two things occur: (1) a
“virtual” work item is created in the same block for each instance of the task that
will be initiated (this enables later determination of whether the composite task is in
progress or has completed) and (2) a new subprocess decomposition (or a new block)
is started for each task instance. This involves the placement of a token in the input
place to the subprocess decomposition which has a distinct subprocess CID. Table
10 indicates the potential range of work items that may be created for a given task
instance.

�������

������	��

�	��
� ��

���

���	 ��

����	�

�	�� ��	�����	�� �����
�	�����	���� �������� ��� ������	���	��������� ���������� ���	 ������ ���� ������ ���������� ����

�� ����� ���������� ������
��������	 ���� ������ ��� ��	��������� ��

� ��
������������	��������������� ���� ����������

������ ��� �����	���� ��� ������
����� �� ������ ��� ��	�����������������������

������ ���
��

�����

���� ��

��� ��� �
�	� �� ��� ��	�������	��� ���� ����������� ��� ���� ����� ���	 �����	���
�	�������

���� ���� ����������� ��� ���������� ��� �����	�����	��� ������	���
�	������ ����� ������ ����� �����	� ������������� �	� ������ �	 � ������ ����� ��� ����� ������� ������� ������� ���� ������� ����� ���	 �����	���
�	��������	 � �� !���" �� ����� ����	 � 	����� !�	� ������������	 � � ���	������	 � �����
�	���� ���� �����	������ ��� ���	�������	 � ������� ������ ��� ������������ ������ ����� �����	� ������������� ���� �������	����!�#$% &����'	��

� ��� ��	����!�#$% (� ��� �'	������ ��������� �)*)��*����

�	�	��� ��	����!�#$% +	�	��

�� 	���#$% ,	��-�	 ������������� �	 ����#$% '	�
������! ��� �#$% *%./&

	�� ���	������� ��0,#��� ��� �1� ���1� ���

 ����� �	 ���#$% (���)� �

��������	� #$% '	����!

������� � ����#$% +��.����
����#$% 0#�

�	��	�����
 ��� ����#$% 2	 �-�� ��
���	#$% 0.,#3,�

�	��	������	����#$% 2	�#���
	�� �!�� �� ��������#$% 0#�#$%

#$%
#$%

#$%

#$%
#$%

#$%

#$%
#$%

#$% #$%

#$%

#$%

#$%
Figure 27: Enter work item process

In order for a task to be enabled, all prerequisites associated with the task must
be satisfied. There are five prerequisites for the enter transition to be able to fire:

1. The precondition associated with the task must evaluate to true;
2. All data elements which are inputs to mandatory input parameters must exist and

have a defined value;
3. All mandatory input parameters must evaluate to defined values;
4. All locks which are required for data elements that will be used by the work items

associated with the task must be available; and
5. If the task is a multiple instance task, the multiple instance parameter when eval-

uated must yield a number of rows that is between the minimum and maximum
number of instances required for the task to be initiated.

Once these prerequisites are satisfied, task enablement can occur. This involves:

74

Task Type
Instances Initiated at Commencement
Singular Multiple Instances

Atomic Single work item created in the
same block.

Multiple work items created in
the same block, each with a dis-
tinct TaskNr.

Composite Single “virtual” work item cre-
ated in the same block and a
new subprocess is initiated for
the block assigned as the task
decomposition.

Multiple “virtual” work items
created in the same block. Ad-
ditionally a distinct subprocess
is initiated for each work item
created, each with a distinct
subprocess CID and TaskNr

Table 10: Task instance enablement in newYAWL

1. Removing the tokens marking input conditions to the task for the instance enabled.
The exact number of tokens removed depends on whether there is a join associated
with the task or not and occurs as follows:

– No join: one token corresponding to the ProcessID × CID combination trig-
gered is removed from the input condition to the task;

– AND-join: one token corresponding to the ProcessID × CID combination trig-
gered is removed from each of the input conditions to the task;

– XOR-join: one token corresponding to the ProcessID × CID combination trig-
gered is removed from one of the input conditions to the task; and

– OR-join: one token corresponding to the ProcessID × CID combination trig-
gered is removed from any of the input conditions to the task which currently
contain tokens of this form.

2. Determining which instance of the task this is. The instance identifer must be
unique for each task instance and all work items and data elements associated
with this task instance in order to ensure that they can be uniquely identified.
A record is kept of the next available instance for a task in the task instance
count place.

3. Determining how many work item instances should be created. For a singular task
(i.e. an atomic or composite task), this will always be a single work item, however
for a multiple instance task (i.e. an atomic or composite multiple instance task),
the actual number started will be determined from the evaluation of the multiple
instance parameter which will return a composite result containing a number of
rows of data. The number of rows returned indicates the number of instances to
be started. In all of these situations, individual work items are created which share
the same ProcessID, CID, TaskID and Inst values, however the TaskNr value is
unique for each work item and is in the range 1...number of work items created ;

4. For all work items corresponding to composite tasks, distinct subprocess CIDs
need to be determined to ensure that any variables created for subprocesses are
correctly identified and can be accessed by the work items for the subprocesses
that will subsequently be triggered;

5. Creating variable instances for data elements associated with the task. This varies
depending on the task type and the number of work items created for the task:

75

– For atomic tasks which only have a single instance, this will involve the creation
of relevant task variables.

– For atomic multiple instance tasks, this will involve the creation of both task
variables and multiple instance variables for each task instance. The required
multiple instance variables are indicated by the output data elements listed for
the multiple instance parameter. and this set of variables is created for each
new work item.

– For composite tasks that only have a single instance, any required task variables
are created in the subprocess decomposition that is instantiated for the task.
Also, there may be block and scope variables associated with the subprocess
decomposition that need to be created; and

– For composite multiple instance tasks, any required block, scope, task variables
and multiple instance variables are created for each subprocess decomposition
that is initiated for the task.

6. Mapping the results of any input parameters for the task instance to the rele-
vant output data elements. For multiple instance parameters, this can be quite a
complex activity as illustrated in Figure 12;

7. Recording any variable locks that are required for the execution of the task in-
stance;

8. For all work items corresponding to atomic tasks (other than for automatic tasks
which can be initiated without distribution to a resource), requests for work item
distribution need to be created. These are routed to the assign wi to resource
place and are subsequently dealt with by the work distribution transition; and

9. Finally, work items with an enabled status need to be created for this task instance
and added to the mi e place in accordance with the details outlined in Table 10.

5.3.4 Work item start

The action of starting a work item is denoted by the start transition in the newYAWL
semantic model as shown in Figure 28. For a work item that corresponds to an atomic
task, the work item can only be considered to be executing when a notification has
been received that a resource has commenced executing it. This event is indicated
by the presence of a token for the work item in the wi started by resource place.
When this occurs, the start transition can fire and the work item token can be moved
from the mi e place to the exec place.

A work item corresponding to a composite task can be started at any time. This
simply involves changing the state of the work item from entered to executing, noting
that a new subprocess has been initiated by adding an entry to the list in the active
nets place and initiating a new block (or subprocess decomposition) for the work
item by placing a token indicating the subprocess CID in the input condition for the
subprocess. Note that for work items corresponding to composite tasks, the start
transition receives a notification to start the subprocess, hence the exec place is
updated with a work item corresponding to the CID of the parent work item that
initiated the subprocess and the list in the active nets place links the parent work
item to the subprocess that has been newly initiated by this transition.

76

������ ��
�	�

��
 ���	�

������ ��
������ �
���������� ����� ��� ���� ��
		�������	����� �����������
���	�� ���� ��
������ �
���������� ��� ��� �� ����
�������������
���	��
�����
�����

�� ������� ������ �����
��
� �� �
������ �
��������� ������� ���� �� �������� ��� �����	��� ������ ���������
 ��

�
�� �� ���� ��
	�������
 �� ������� ����� �� ���
 ���	��������� ����	���
���� ���������
 ���	�������� ����	�� ����� ������� �������
� ��������	� �
�� ������� �
 � ������� ���� �� ���� � ���
 �������� ����������� ����� �� ���
 ���	��������� ����	����
 � �
� ����� � ���
� �����������	���
 � ��	 � �
����� �	����� ������� ���� ���
���������	� ��	� �

� � ��������	�� �������!"# $!�
�
��	��
 ���!"# %
��&��
 ���

� � ��
 ���	�� �������!"# '$!�

�� �������!"# (�)���� ���������
��!"# *
����
����!"# $!�

���������� �
 ����!"# *
�
����!"# $!�!"#

!"#
!"#

!"#!"#

!"#
!"#

!"#

Figure 28: Start work item instance process

5.3.5 Work item completion

There are two distinct (but interrelated) transitions for completing an individual
work item. These are the terminate block transition that completes a work item
corresponding to a composite task and the complete transition that finishes a work
item corresponding to an atomic task. Both of these transitions are illustrated in
Figure 29.

The terminate block transition fires when a subprocess decomposition corre-
sponding to a composite task has completed. This is indicated by a token for the sub-
process CID in the output condition for the block. When this occurs, the terminate
block transition can fire and in doing so, any work items that are currently executing
for this subprocess (or any children of it resulting from composite tasks that it may
contain) are removed, similarly any markings in places in the process model for this
subprocess (or its children) are also removed. Finally a work item is added to the
mi c place indicating that the parent work item corresponding to the composite task
which launched this subprocess is complete.

The complete transition fires when a work item corresponding to an atomic task is
complete. This occurs when a notification is received (via a work item token in the wi
completed by resource place) that a work item assigned to a resource for execution
has been completed. When this occurs, the state of the work item is changed from
executing to completed by moving the work item from the exec to the mi c place.

5.3.6 Task instance completion

The act of completing a task instance is illustrated by the exit transition in Figure
30. It is probably the most complex transition associated with the execution of a
process instance. In order for the exit transition to fire for a given task instance, a
series of prerequisites must be met. These are:

1. The work item corresponding to a given task instance must have completed or, in

77

������ ���� 	�
�
�
 ��
� � ������ ��

������ ����	�� ��
������������	�
�
�
 ��
� � ������ �� 	�
�� ��
�����
������� 	�
�
�
 ��
� � �����

������ 	�
�� ��
����������

�������
������� 	�
�
�
 ��
�� �����

	�
�
�
 ��
� � �������
����

�����
�� ������������������������ ������� 	�����
���

����� 	�����
�� ������� 	�
�
 ���
�
�����
�����
�� ��
 ��
�� ���� ���	���� 	������������������� 	�����
�� �

������������ �� ���� ����������������� 	�����
������ ��
�����
����� 	�����
������ ��
���� ������� 	�
�
�
 ��
�� ���� ���	���� 	�������������� ����	�����
������ ��
�����

� � ����������� ����������� ���

������� ���
��������������� �����!

������� ���
������� ���

�������"�� �� ��"���� ��

��� ������������������ #��$�������

���

���
���

���
���

���

Figure 29: Complete work item instance and terminate block process

the case of a multiple instance task, at least as many work items as the threshold
value for the task must have completed execution;

2. All data elements which are outputs to mandatory output parameters must exist
and have a defined value; and

3. All mandatory output parameters must evaluate to defined values.

When the exit transition fires for a given task instance, a series of actions occur:

– The set of work items which cause this task instance to complete are determined;
– The set of work items which are to be cancelled as a consequence of the completion

of this task instance are determined;
– The set of work items which are to be force completed as a consequence of the

completion of this task instance are determined;
– The set of subprocess instances that are to be terminated as a consequence of the

completion of this task instance are determined, e.g. for a partial join composite
multiple instance task;

– All work items (including those in subprocesses of this task instance) currently
in the enabled, executing and completed states that are to be cancelled or force
completed are removed from the lists in the mi e, exec and mi c places;

78

��
�� ���� ����� ��	
���
���� ��

 �� ����

���� ��� �����
���� ���� ��

����
���� ���� �� �����
� ���

� ����

� ����
���� ������ �� ���� � ����

� ����

����
����� ����
��

� ��� ���

���

���

� �� ��

�� ���
������
���� � ����� �
������ ����� ����
�� �� ����� �� �� ���
�������

������
���� � ����� �
������ ����� ����
�� �� ���� �� ��� ���
�������

�� ��
� ��� ����

��� ����������� � ��
������� ���� �� ��
���
��� ���� ����� � �� ��
��� ����� ����� ���
�� ��� � ���

��

��

���� ��� ����� ������ �
� ����� � ��

�� ���

� ������ ��� � �� ������
 �� ����� ����� ���
 ��� ��� � ��

����� ���� ��� ��

��� ��� � ��� ���� ��
������

� ������
���� � �����
����
�� �� ���� �� ��� ��
���
����
��� ����
����� ���

���� �� �� �� �� ���� ����
��� ��� ��
� ���� ��
���
���� ��
�� �����

� ���

� ��� � ��� � ��� �� � �� � ��
����� ����� ���� ��� �� ��� � ��� ����
� ��� ���� ����
����
����

��� ����� ����� � ���
����� ���� �� ����
����
�� ���� �� ��
���� ��
� ���� � ��� �����
� ��� ���� �� ��� � ��
������� ����� ����� �
���� ����
� ���� ���
��� ���� ��
� �����
��
��������� ����
��� �
���
���� �� ������
��� ��� ���� ����� �� ��� ��
� � ���� ��� � ��� ��� ��� �� �

�� � �� ����� ����� ��
����� �� ��� � ��� ���� � ��� ���� �
���
���� ����

���� ��������� ����
� ����� ����� ������
	�� ����������� ���

���� ���� ���� 	��� �
��� ����������
���
��� ���� � ��

���� �� ��
���� ���
���� ���� ��� � ��� ��
������� �����
��� �����
��� ���
� ������� �� �� �� ���
�
��� ���������� �� ��
����� ���������� ��� �������� ��� �� ��
���� �� ���� �� ������
 �� ��
��� �����

������ ��� ����
���� ���

��� ��������� � ����� �
��� � �� ������ �� ���� �
� ������� ���������

���� ����
���� ����
�� �� ���������� �� ��
���� �� ��� �� ����
� �����

����� �� ������� �
���� �����
���� ���
�
��� ���� ���� ����
�

���� �� ��� � ������
��� ����� ����� ����
� ����� ���� ���
��� �
��� ���

�����
�� ���������
����
��� ����
����
�� ������ ����

� �� � ��� ���� �� �� � ����

��� � �� ���� !"# $ ��%� ���

� ����� ���� ��	� !"# & ����� ' ���

� ���� ���� ��	� !"# $ ���� ' ��
�

�� � �� ��������� # ��(!

� �� ������ ���� ��	�� %' %�� ���

��� ���� !"#) ��� �� ����

�� ����� � ��� �� �� � !"# ' ��

� �� � !"# (!�

�� �� !"#(!�

������ ����*� �� *� ��
�� �
 ��� �� ��� !"# &� �
*��

�� ����� �� ��� !"# ' ��� ��	

��� ����$�� ��� $�� ���� ��� ���� �� ���� !"# %���
+ ����

� ��� �� 	����� !"#,#+- $ ��� �� ��� ���� ����� !"#. �� ! ���
�

�� �� !"#(!���� �� ��� �� �� �� �� ���� !"# . �� � ���

�� �� !"# (+) !/)
�

!"#

!"# !"#

!"#!"#

!"#

!"#

!"#

!"#

!"#

!"#
!"#

��

!"#

!"#

!"#

Figure 30: Exit work item process
79

– All subprocesses instances which are completed or terminated by this task instance
are removed from the list in the active nets place;

– All output parameter mappings for this task instance are evaluated and the rele-
vant output data elements are updated. In the case of a task instance which has
multiple work items, the multiple instance data elements from individual instances
are coalesced as illustrated in Figure 13. Note that it is possible that some data
elements may be undefined where not all work items corresponding to the task
instance have completed;

– All data elements for work items associated with this task instance as well as those
for subprocesses of this task instance and work items to be cancelled (but not force-
completed) by this task instance are destroyed and removed from the list in the
variable instances place;

– Any locks on variables that were held by the task instance are released;
– Cancellation requests are sent to the work distribution transition for any atomic

work items that are enabled or currently executing and are being cancelled as a
consequence of the completion of this task instance;

– Any tokens in conditions in the process model to be cancelled by the completion
of this task instance are removed (including those associated with subprocesses);

– Any conditions on outgoing links from this task are evaluated and tokens are placed
in the associated output places. For a task without any splits or with an AND-
split this means tokens are placed in all output conditions. Where the task has an
associated OR-split, they are placed in the output condition for each link which
has a link condition which evaluates to true (or the default condition if none of
them evaluate to true) and for a task with an XOR-split a token is placed in the
condition associated with the first link-condition to evaluate to true (or the default
if none evaluate to true).

In general, the exit transition results in the completion of all work items as-
sociated with a task instance, however in the situation where a task has multiple
instances and its specified completion threshold is lower than the maximum number
of instances allowed and the remaining instances are not cancelled when the task
instance completes, it is possible that some related work items may continue execut-
ing after the task instance has completed. These work items are allowed to continue
execution but their completion will not result in any further action or other side-
effects, in particular the exit transition will not fire again and no data elements will
be retained for these work items.

5.3.7 Multiple instance activities

Where a task is specified as being multiple-instance, it is possible for several work
items associated with it to execute concurrently and also for additional work item
instances to be added dynamically (i.e. during task execution) in some situations.
The add transition in Figure 31 illustrates how an additional work item is added.
The prerequisite conditions for the addition of a work item are:

– The task must be specified as a multiple-instance task which allows for dynamic
instance addition; and

– The number of associated work items currently executing must be less than the
maximum number of work items allowed for the task.

80

����� �����
��������

	
�� �
������� ���

�	� ���
 ������	� �� ������������������ �
��	
�� ���	������������������ ���� ��� �
� ��������
��

���� ��

���� �
��� ��������������

 ���� ������� ���� �
������ �
����

�
�
�� ������ �����������
�� � ���������� ������� ���� ����� ��� �� � ��

��������� �

������

� ��������������� ����
��� �
������

����� ������� ����������
��������������� �
����� ������� �� �
����������� �
����� ���� ������ ������� ����� ������
�� � ������ ����� �� �� ���������
 ������������������������ �����������
������ �	����������������������������������� ���� �
������ �

��
� ��������� !" #�
� �$��� ������������� !" %����$���
��� �	����� !" %��&����

	� �����
�� � ��� ���� !" '��(�� �
�

 �����������)*+

	� �������������� !" '�� ����

�������� ��������� !" &�����

���� !")*+ ,+�

����
��� �� !" +���(��� ��
��� ���� ��� �������� !") �

���� !") �
���������� �� ���� !" $�� !"

 !"

 !"
 !"

 !"

 !"

 !"

 !"
 !"

 !" !"

Figure 31: Add work item process

Where an additional work item is created, the following actions occur:

1. The task instance is recorded as having an additional work item associated with
it;

2. An additional work item is created with an enabled status and added to the mi e
place (note that this work item shares the same ProcessID, CID, TaskID and Inst
as the other work items for this task instance but it has a unique TaskNr); and

3. If the task is atomic, then a request is made to the work distribution transition
for allocation of the work item to a resource for execution.

5.3.8 Data interaction with the external environment

Support is provided via the data management process for data interaction between a
given process instance and the operating environment via push and pull interactions
with variables supported by the newYAWL environment or those which may exist
outside of the process environmnent. A push interaction allows an existing variable
instance to be updated with a nominated value from another location. A pull inter-
action allows its value to be accessed and copied to a nominated location. Push and
pull interactions are supported both in both directions for newYAWL data elements.
Each variable declaration allows these operations to be explicitly granted or denied
on a variable-by-variable basis. Figure 32 illustrates how these interactions occur.

81

������ �
�� ��������� �� 		
���� �� ��� ���

� ��
���� ����� �

� ��

����� ���������� ���� ��� ��� ����		
���������������������
���

�����

���� ����� �
����

����
�� ���������� ������������� 		
���� �� ��� ���

� �� � ��
���������� ���� ��� ��� ����		
���������������

������
����� ����� ��� �������� ������� ���

��� �
�������������� ������ �� ������� ���

�
����������� ������ �� ������� ���

��� �
�������� ����� ��� ������ �� ������� ���

����
�� � ��
����
���������
�� � ��
��� ��
�����

����
�� � ��
��������� �����
�� � ��
������
����

����
�� � ��
�����
����

��
�������� ��
�� ����� ��
��� �
��
�������������� ��
���

����
�� � ��
����
����

����
�� � ��
������
�����
����
�� ���
����� !����

����
�� � ��
�����
�����
��
��

Figure 32: Data management – interactions between newYAWL and the operating
environment

5.4 Work distribution

The main motivation for PAIS is achieving more effective and controlled distribution
of work. Hence the actual distribution and management of work items are of par-
ticular importance. The process of distributing work items is summarized by Figure
3314. It comprises four main components:

– the work item distribution transition, which handles the overall manage-
ment of work items though the distribution and execution process;

– the work list handler, which corresponds to the user-facing client software
that advises users of work items requiring execution and manages their inter-
actions with the main work item distribution transition in regard to com-
mitting to execute specific work items, starting and completing them;

– the management intervention transition, that provides the ability for a pro-
cess administrator to intervene in the work distribution process and manually
reassign work items to users where required; and

– the interrupt handler transition that supports the cancellation, force com-
pletion and force fail of work items as may be triggered by other components
of the process engine (e.g. the control-flow process, exception handlers).

14Note that the high-level structure of the work distribution process is influenced by the earlier
work of Pesic and van der Aalst [PA05].

82

���� ��������	
� ����� ������������ ������� ����	 ��� ����� �������� �����	 ��� ����� ����������������� ����� �������������� ���� ����� ��� ����
������	
� ��� ��
�������	
� �

������
������������ ��������

	 ��� ������	���� ����� ��������������

�� �
�� �� ���������
������� ���� �����
�� �� ������ ��

�������������� ���� � ��������������������� ���� ������� �� �
�	���� ����� ��

��
�	 ������ �� ����� � ������ ���	��� ��� �� ����� ��

���
���	���� �������� ���

���� �������� 	 ��� ����� ������ ���

�����
����	 ���� ��� ����
 ���������	 ���� ��� ��������� ��� ���	 ������������ ��� ���

��� ���	���� �������� ����

 ������

��� ��� ������ � ��������� �� ��������

�

����	���� ����� ���������� ��	���� ����� ������
	��

��� ������	�
���� ������
�����
������

��� �������������
���

��� ������
����	 ������� �� ���
�

��� ��� ���

���

��� ���������������� � ��������
�����
�

��� ��� �������
���� � ��

������� ������������� ������
��� �� ���

���
�� ������

��!���	 �����
���	�����
�� ��� ���
� ���	������� � ���

���� � ������
���

���

�����

����
�������	
� ������������ ���� ����� ��� ����� �����	 ��� ����� ��� ���� ������������ ���

Figure 33: Top level view of the main work distribution process

Work items that are to be distributed through this process are added to the work
items for distribution place. This then prompts the work item distribution
transition to determine how they should be routed for execution. This may involve the
services of the process administrator in which case they are sent to the management
intervention transition or alternatively they may be sent directly to one or more
users via the worklist handler transition. The various places between these three
activities correspond to the range of requests that flow between them. There is a direct
correspondence between these place names and the interaction strategies illustrated in
Figure 14. In the situation where a work item corresponds to an automatic task, it is
sent directly to the autonomous work item start place and no further distribution
activities take place. An automatic task is considered complete when a token is
inserted in the autonomous work item finish place.

A common view of work items in progress is maintained between the work item
distribution, worklist handler and management intervention transitions via
the offered work items, allocated work items and started work items places.
There is also shared information about users in advanced operating modes that is

83

recorded in the piled exec users and chained exec users places. Although there
is significant provision for shared information about the state of a work items, the
determination of when a work item is actually complete rests with the work item
distribution transition and when this occurs, it inserts a token in the completed
work items place. Similarly, work item failures are notified via the failed work
items place. The only exception to these arrangements are for work items that are
subject to some form of interrupt (e.g. an exception being detected and handled).
The interrupt handler transition is responsible for managing these occurrences on
the basis of cancellation, force completion and failure requests received in the cancel
work item, complete work item and fail work item places respectively.

All of the activities in the work distribution process are illustrated by substi-
tution transitions indicating that each of them are defined in terms of significantly
more complex subprocesses. The following sections present the CP-net models for
each of them.

5.4.1 Work item distribution

The work item distribution process, illustrated in Figure 34 and 35, supports
the activities of distributing work items to users and managing interactions with
various worklist handlers as users select work items offered to them for later execution,
commence work on them and indicate that they have completed them. It also support
various “detours” from the normal course of events such as deallocation, reallocation
and delegation of work items. It receives work items to be distributed from the enter
or add transitions which forms part of the main control-flow process and sends back
notifications of completed work items to the complete transition in the same process.
The main paths through this process are indicated by thick black arcs. In general,
the places on the lefthand side of the process correspond to input requests from either
the main control-flow process or from the management intervention or worklist
handler processes that require some form of action. Typically this results in some
form of output that is illustrated by the places on the righthand side of the process.

One of the most significant aspects of this process is its ability to manage work
item state coherence between itself, the worklist handler and management intervention
process. This is a particular problem in the face of potential race conditions that the
various parties (i.e. users, the process engine, the process administrator) involved in
work distribution and completion may invoke. This is managed by enforcing a strict
interleaving policy to any work item state changes where user-invoked changes are
handled first (and are reflected back to the user) prior to any process engine or process
administrator initiated changes. External interrupts override all other state changes
since they generally result in the work item being cancelled.

5.4.2 Worklist handler

The worklist handler process, illustrated in Figure 36, describes how the user-
facing process interface (typically a worklist handler software client) operates and
interacts with the work item distribution process. Once again, the main path
through this process are indicated by the thick black arcs. There are various transi-
tions that make up the process, these correspond to actions that individual users can
request in order to alter the current state of a work item to more closely reflect their

84

Figure 34: Work item distribution process (top half)

85

Figure 35: Work item distribution process (bottom half)

86

current handling of it. These actions may simply be requests to start or complete it
or they may be “detour” requests to reroute it to other users e.g. via delegation or
deallocation.

�� �� �������� �������

	�
��� �����������	�
��� ������� �����

��� ����� ��

����� ������� ������������ ����� ��� �������
������� ���� �������������� �� ��� �������

�		�� ������� ���		�� �������� ��
�� ���
���
���� ��� �
���
��

��� ���������� �������
�� �������� ������

���� �� �����
������
�
��� ���� � ���	�����

��	�������� ���	��	�����

����
 �
� �������
�
������ ������ � ���	�� ����
����� ������� ����� ����������� �
������ ��� ����� �������� ������� ���	���� ����� ����������� ���	���� �������� ������ ���	���� ����

��� �����
 ���

���������� ��
�
 ���

����� ������� ���������� ���������� ���� ���������� ���

�� ��������� ���
��� ���������� ���

�		�� ������� ���
 ��� ����	���� ��������
���� ������ ����� ���� ������ ��
�
 ���
� ������ ��
��������� ������

�
 �������� ������
������ �
����� ����

����� ������� ��
 ������� ��
 ��� �� ������� ����� �������
 ���

��	�������� ���

���������
 ����

���

�
 ���
�
�

�
 ����������

���
���

������

�

�

��� ��� ��� ��� ���
�� ����

����
�
����

��	�����

��� ��
�����
����

�� ������
��� �������

�� ��� �
���
���		�� �������� ��������� �� ��� �������
����� ����� ��� �������

��� ��

	�
��� ������� �����

� �������

Figure 36: Work list handler process

5.4.3 Management intervention

The management intervention process, illustrated in Figure 37, provides facilities
for a process administrator to intervene in the distribution of work items both for
clarifying which users specific work items should be distributed to and also for es-
calating non-performing work items by removing them from one (or several) user’s
worklist and placing them on others, possibly also changing the state of the work
item whilst doing so (e.g. from offered to allocated).

87

�� ������ �

��

��	 �
��� ��������� ������
�� ���

��	 �
��� ��������� ���������	 �
��� ������ ��� �������

��
�� ��

��
�� ��

�� ����

�� �����

�
��	 �
��� ������ ��� ������

��	 �
��� ������ ��� �������

�� ��

��
�� ��

�� �� � ��������

� �

����� ������ ���� ��� ��
���� ������� ������ � ������ ������������ ��������� ���� ��� ������ ���� ���� ��� ���� � �� ���� ������������ �� �������� ���� � ������ ����� ���� ���� ��� ���� � �� ���� ������������ ������

���� ����� ������ ����� � ������ ������������ �� ���

���� �������� � �� ���� ����������� ����� ���� ��� ��� �� ����

�� �������� �������� ������ ���
��� ����������� ����

������ ��� �� ������ ��� ���� � ��

����� ������ ���� ��� �� � ! � ���������� ���� ��� ��"�� ! #$�� �
��� �������� ����� %" $! �

� ������ ������ ���"�� ! #$���

� ��������� ��"�� ! #$����

� ������������ ����� %" ��$! �

���� ������� ����� %" $! �

������� ���� ��$�� ��
$����$���� �$�� �$���

��� �������"�� ! #$���

������ �"�� ! #$����
����� ����� � � !

����� �� ������ ��� � ! �

 �
"��

"��
$����

 %"

 %"

"��

"��

 %"
"�� �

Figure 37: Management intervention process

5.4.4 Interrupt handler

The interrupt handler process, illustrated in Figure 38, provides facilities for inter-
vening in the normal progress of a work item where required as a result of a request
to cancel, force-fail or force-complete a work item received from external parties.

88

� ��� ���� �� 	
 � ��� ����� ��� 	
��
�	� 	 ���� �� 	

��
�	� 	 ����� ��� 	

����	� ���� �� 	
 ����	� ����� ��� 	

� ��� ��� �� 	� ���� �� 	
� ���� ��� �
	������

���� �� 	
� � ��� ��� ��� �� ��� ���� � �

�� ��� 	� � � �� ��	�	�� 	� � � �� �

� ���	� ���� �� 	
� � ��� ���
�	� 	� ���� �� 	
� ���� �
�

��� 	�	� ���� �� 	
� ��� �� � �������� 	� ���� �� 	
� ��� �� � �
�� ��� 	� ���� �� 	
� ��� �� � �

��
�	� 	 ���� �� 	
 � �� � � ��� ���� �� 	
 � �� �

�	� 	�� 	� � �� �� �

����	� ���� �� 	
 � �� �

�� � 	� 	� �� ��� � �� �� ������ �� � ��� 	� � �� �� �� �� � ��

� �

� ��

� �� �

������ ���

��� � ��

� � � �
���

���

����	� ����� ��� 	
 ��
�	� 	 ����� ��� 	
 � ��� ����� ��� 	

Figure 38: Interrupt handler process

89

5.4.5 Work item distribution process – individual activities

Work item distribution involves the routing of work items to users for subsequent
execution. Each work item corresponds to an instantiation of a specific task in the
overall process which has specific distribution information associated with it, in par-
ticular this identifies potential users who may execute the work item and describes
the manner in which the work item should be forwarded to the user (e.g. offered to a
range of users on a non-binding basis, allocated to a specific user for execution at a
later time, allocated to a user for immediate start or sent to the process administrator
who can make appropriate routing decisions at run-time).

The work item routing activity is the first part of the distribution process. It
takes a new work item and determines the population to whom it should be dis-
tributed. This decision process takes into account a number of distribution directives
associated with the work item including constraints based on who executed preceding
work items in the same case, organizational constraints which limit the population to
those who have specific organizational characteristics (e.g. job roles, seniority, mem-
bers of specific organizational units), historical constraints which limit the population
on the basis of previous process executions and capability-based constraints limiting
the population to users who possess specific capabilities. Chained and piled execution
modes (i.e. subsequent work items in a case being immediately started for a given
user when them have completed a preceding item or work items corresponding to a
specific task always being allocated to the same user) are also catered for as part of
the distribution activity. Finally there are also facilities to limit the population to a
single user on a random, round-robin or shortest-queue basis.

���

� �������������� 	� �
 ��� ����� �����
��� ������

� ��

����� �����
�������� ����������� �� ��������� ��������� ���� ��� ����

���

���

��

���

���

��� ������

��� ���
�������� ������ �� ��

	� �� ��� ��� �� ��������� �� 	

����� �� ���������������� �� �� ���� ���������� �� ��� ��� �� ����������� ��� �������������� ! "�������

� ����������� ����� ! #$����� ������� ����� ! #$������ �� �� ��� ��� ��� �� �%#&%���#��& �� ���� '��� ��� ! #��%������� ���'� �� ��� ! #���
���� ����(� � � ��� ����� ���� ! $��

���� ������ ���� !)������ � �� ��������� �*#����*#+��� ���� � ��� ����� ������ ���� ! %+���
� ��� ���������� ����� ! $�'#���,���

�� �� �#� �#���
��������� ���� ����� � ��� ����� �����!%-!��-���+����� ���������� �� �#.#��.��+��� ����� ���� � ����� ��� ����� ���� �/%-/���-���+���

�� � ����������� �#0#��0��+���(��� 1������ �� ���� �-#-�((#� ��

���������1 ��� �� ��� ����� ���� �.%-.��-���+���

��� ����������� �0+0��+���� �� � ������������ �!2!��2����+������ �� (������ ������ �� ���� �&#&��#���
� !

� !� !

� !
� !� !� !� !

� !
Figure 39: work item routing activity

90

The process distribution failure activity caters for the situation where the
work item routing activity fails to identify any users to distribute a work item to.
In this situation, the work item is simply noted as having failed and is not subject to
any further distribution activities.������� � ���� ��	 �
���� 	 �� ���� ������� ��� ����� ����� ��� ���� ����� ��� �� ����� �� ��� ���� �� ����� ������ �	 �
������� ������ ��� ����� ��� �� ������� ��� ����	��� �������� ��� ��� �������	��� �������� �������� ������ ���

Figure 40: process distribution failure activity

The route offers activity takes a distributed work item which is be offered to
one or more users and (based on the population identified for the work item) creates
work items for each of these users which are then forwarded for insertion in their
respective work lists. It is not possible for the activity to execute for a work item
that is to be distributed to a user operating in chained execution mode (regardless of
the original distribution scheme specified for the work item). This is necessary as any
work items intended for chained execution users must be started immediately and
not just offered to users on a non-binding basis. It also ensures that the work engine
records the fact that the work item has been offered to the respective users.

������� � ���� ��	 �
���� �������� �� �	 �
����	��
�����

������ �� �	 �
������	 ��
� ���� ��������� ����������� �� �� ����
��
������ �� ��� ����� �� ����
��
������ ������� �	 �
��� ��� ��� ������������� �� �� ����
��
�������� �

�� ������� ��� ����� �������� ���� !�
���� � ��� ����� ������� ������ �"#���"#���
���� ��� 	��� �������� !��

� ��� �������!����� !�� ����$������
���
��� ���

���

Figure 41: route offers activity

The route allocation activity takes a distributed work item which is be directly
allocated to a user and creates a work item for insertion in that users’s worklist. It also
ensures that the work engine records the fact that the work item has been allocated
to the user. As for the route offers activity, it is not possible for this activity
to execute for a work item that is to be distributed to a user operating in chained
execution mode (regardless of the original distribution scheme specified for the work
item).

The route immediate start activity takes a distributed work item which is be
directly allocated to a user and started immediately, and it creates a work item for
insertion in that users’s worklist. It also ensures that the work engine records the
fact that the work item has been allocated to the user and automatically started. As
for the route offers and route allocation activities, it is not possible for this

91

������� � ���� ��	 �
���� ��
�	�� �	 ������������
	 ����������
	 ���������
	 �������� ���� ������ ����� ��������� ���� �� ����
��
������ �� ��� ����� �� ����
��
������ ������� �	 �
������ ��� ���������� ���� �� ����
��
�������� �

�� ������� ��� ����� �����

� �������	��� �������� ��� ��
�� �������� � �� ����� ������ � �

���� � ��� ����� ������� ������ �!"���!"���
� ��� ������� ����� �������#������

��� ������
���

���

Figure 42: route allocation activity

activity to execute for a work item that is to be distributed to a user operating in
chained execution mode as this is handled by a distinct activity. In order for the
work item to be automatically started for the user, that user must either have an
empty worklist or have the concurrent privilege allowing them to execute multiple
work items simultaneously. If a user does not have this privilege and already has an
executing item in their worklist, then the work item is regarded as having failed to
be distributed and no further action is taken with it.

������� � ���� ��	 �
����
��
�����

�	 ���	 ���������� �� �	 �
������� ����� �� �	 �
��
������
�	 ����
������ �� �	 �
������� ����� �� �	 �
��
������
�	 ���������� �� �	 �
������� ����� �� �	 �
��
������
�	 ����� ���� �� �������� ����� �� �	 �
��
������
�	��� �� ������� ��	 � � ��� �����

������
����� 	��� ������� ����� ���� ��� ���������� ��� �� ����
��
�	 ��
������ �� ���

����� �� ����
��
�	 ��
������ ������ �	 �
��� �� ��� ��� ��������� ��� �� ����
��
�	 ��
�������� �� �����!� ��� ��"#$ %����

���� � ��� ����� ������� ���"#$ �&'���&'���

��� ����	��� �����"#$ ��%("�
����� ������� ��$�� %("��� ����$�� %("� ��� �������("�"#$ ("!%����)���

��� ����� ���*��%���+���� �%+%���+����
�� ����	��� �����$�� ("$��

%���+����
"#$ $��$��

"#$

"#$

"#$
Figure 43: route immediate start activity

The manual distribution activity is responsible for forwarding any work items
that are recorded as requiring manual distribution to the process administrator for
action.

The route manual offers activity takes any work items that have been identified
by the process administrator to be offered to users and creates work items for those
users for subsequent insertion in their worklists with an offered status.

The route-manual-allocation activity takes any work items that have been
identified by the process administrator to be allocated to a user and creates a work
item for subsequent insertion in the user’s worklist with an allocated status.

92

������� � ���� ��	 �
����
������� � ���� ��	 �
����

������� � ���� ��	 �
����
	 �

����
����

� ����
� ����

� ���� 	 �
	 ��������� ����� ������ ����� �� �� ����
����� �� ��� ����� �� ����
������������ �	 �
��� ���� ��� ���������� ����� �� �� ����
������� �

���� �� ������ �������� �� ����� �� ����
����� �� ��� ����� �� ����
����� ������� �	 �
��� ���� ��� ���������� �� ����� �� ����
������� �
���� �� ���� � ��� ������� ������ �� ����
����� �� ��� ����� �� ����
����� ������� �	 �
��� ���� ��� ���������� ������ �� ����
������� �

���� ����� ���� ��
� ��� �������	��� ������� ��� �� ��!���

���� �������� ����� ������ �� ������ ������ ��

���� � ��� ����� ������� ������ �"#���"#������

���
������
���

Figure 44: manual distribution activity�� ���� ����� ��	

� �� �� ����������	��� ����� �	

� ��� �����	

� ���� �������� 	

� ��� �	�� �������� ���������
Figure 45: route manual offers activity

The process manual immediate start activity takes any work items that have
been identified by the process administrator to be allocated to a user and directly
started, and creates a work item for subsequent insertion in the user’s worklist with
a started status.

The autonomous initiation activity provides an autonomous start trigger to
work items that execute automatically and do not need to be assigned to a user. It
is anticipated that this trigger would be routed outside of the process environment in
order to initiate a remote activity such as a web service.

�� �� �� ��������� ��	
���� ������ ���� ����
��� ����� �� ������ ���

� ���������
� ������� �	����
� ����������
� ������ ������ ���

�
��� ������ ����� �����
�� ���
���

���
Figure 46: route manual allocation activity

93

����������� ��	 ���� ���� ���� �� �� ���� ��
����� ����� ������ ���� ��� �� ��� ������� ��� ����� ����� ������ ���� ��� ���� �������
��� �������� �������� �	����

����� ������� ����� ������
����� ���

Figure 47: process manual immediate start activity

�������� �� �� �� �	
�� � �� �� ���� �
�
�����	������� ��	�� ��
���� ��� �� ����	
��� �� ��� ����� �� ����	
��� ������� �� �� �
�� ������� ��� ��
���� ��� �� ����	
����� �
�
�� � ��� ����� �����
 ������ ���
����
��
�����	�����
 ����� ����� �� �� ��� ����� ������ ������ ���

���
Figure 48: autonomous initiation activity

The autonomous completion activity responds to a trigger from an external au-
tonomous activity indicating that it has finished. It forwards this response to the
process engine allowing it to enable subsequent activities in the process.���� � � ���� �������	
	��
���������� �
	���
���������� �
	� � ����� �� �����	
	����� �
	����� �������

Figure 49: autonomous completion activity

The process selection request activity responds to a request from a user for
a work item to be allocated to them. If the work item is one that is defined as being
started by the user, then the work item is recorded as having an allocated status and
the user is advised that it has been allocated to them. If is one that is automatically
started on allocation, then it is recorded as having a started status and the user is
advised of this accordingly. In both cases, any offers pending for this work item for
other users are withdrawn thus ensuring that these users can not request that the
work item be subsequently allocated to them.

The reject offer activity handles requests from users for a work item previously
offered to them to be allocated to them where the work item in question has already
been allocated to a different user. These requests are rejected and the requesting user
is advised accordingly.

The process start request activity responds to a request from a user to start
a work item. It can only start the work item if it has been previously allocated to
the same user. Where it has, the status of the work item is changed from allocated
to started and the user is advised accordingly.

94

���

�� ��� ���� ��	 �
�� �	 ����������� ����� � ��� ���	 ��� ��� ���� ��	 �
�� �	 ����������� ����� � ��� ���	 �

�� ��� ���� ��	 �
�� �	����������� ����� � ��� ���	 �

�	 �����
�� ��� ���� ��	 �
�� �	 ����������� �� � ��� ��	 ����	���

�����

�	 ����� �	 �
�� �	 ��	 ���

	 �� �� ��	���� ��
�� �	 ��	 ����	 �
�	 �� �	 �����
�� ��� ���� ��	 �
�� �	����������� ��	 �� � ��� ���

�� ��� ���� ��	 �
�� �	 ����������� ���	 � � ��� �����
���������
�� �	 ��� �	 �� ����������

������� �� ���� ��� �������
���� �	 �� �	 ��

�� �����!�� "#$
����� ������� ��!�� "#$

��� ����!�� "#$
��� ����	��% �����$&! "#$�

���% � ��� ��'�� ������� ���$&! �()���()���
	 ������	 ���� �!�� "#$�� ����$� "#$

���� ���	��% �����$&! "#$� � ��������	��% �����$&! "#$�

�� ������!�� "#$

	��% ��������� ���$&! *�����$&!

!��

$&!$&!

$� !��
$&!

$&!
!��

!��
!��

Figure 50: process selection request activity

�� ��� ����� ������	
�� ���� �� �� ��� ����������� ���
���� ��� ���� ������� ������ �����
 ����

���

���
Figure 51: reject offer activity

������ �� �����
������� ����	��
 �� �� ��� ��

�� ������ ���	� �	������ �� ����
��� ����� ��������������� ������������

�	� �	����	 ����	� �	�� ���
� �����	������ �	������ ������
�	� �	������ �	������ ���������

���
�� ��	

���������
Figure 52: process start request activity

95

The suspension resumption activity responds to suspend or resume requests
from a user, causing a specified work item to be recorded as suspended or (re-)started.

����������� �� �� ��� ��
�� �		����

�� ��
�� �		����

�� ��

�� ��
 ���
������� �� ��
 ����� �� �

������������ �� ����

������������ ��
 �� ��
��� �������� �������� ������

��������� ���

�������� ���
������������ ����� ������

�

�
���
Figure 53: suspension resumption activity

The process completion activity responds to user requests to record as com-
pleted work items that are currently recorded as being executed by them. Once this
is done, the fact that the work item has been completed is signalled to the high-level
process controller enabling subsequent work items to be triggered. The completion of
the work item is also recorded in the execution log. For the purposes of this model,
we only record instances where a work item is completed as these are relevant to
other work distribution activities however in actual practice, it is likely that all of the
activities identified in this work distribution model would be logged.

������� ������� �� �� ���	� �
�� ���� ������������ �	�	�������
���	� �
 ������������� �� ��	� �
� ��� ������� ������� ������ ������� ����������� ������������ ��� ������� ��������
�� ���

���

Figure 54: process completion activity

The route delegation activity responds to a request from a user to allocate a
work item currently recorded as being allocated to them to another user. As part
of this activity, the record of the work item being allocated to the current user is
removed.

96

����� �� ���� �� �	�� �
����� ���� �
�� � �� �������� ����� ��� � ������ ������ ���
� ������������ ����
��� ����
�� �������� ���
� ��������� ��������

��� ���
Figure 55: route delegation activity

The process deallocation activity responds to a request from a user to make
a work item recorded as being allocated to them available for redistribution. As part
of this activity, the record of the work item being allocated to the current user is
removed.

����� ������� �� � ���
	
 �� ��� ���� ��� �� �����
��	
� ������ ���	
� ������
�� ��� ��� ��	 ��� ���� ������ ������

� ������
	��� ��
����� ���������
���

��
Figure 56: process deallocation activity

The state oriented reallocation activity responds to a request from a user
to migrate a work item that they are currently executing to another user. Depending
on whether the activity is called on a stateful or stateless basis, the current working
state of the work item is either retained or discard when it is passed to the new
user respectively. As part of this activity the work item is directly inserted into the
worklist of the new user with a started status.

�� ��
�� �� �� �� ��� ���� ��	

����� �	�

���� �	
���� �	

���� �	
���� �	

�� �� ��� ���� ��	

����� �	�
���� �	

���� �	

������ ����� ������� ������ ����� ���� ��� �� ���� ��	�

������ ������� ���� ������ ����� ���� ��� �� ������	�
����� ������� ��������� ��� ��� ������� ������ �������� �������� ������ ����� ������� ����� ���������� ���� ��������� ����� ���

���
�����

Figure 57: state oriented reallocation activity

97

The route reoffers activity responds to requests from the process administra-
tor to escalate specific work items that are currently in a offered, allocated or started
state by repeating the act of offering them to prospective users. The process admin-
istrator identifies who the work item should be offered to and suitable work items
are forwarded to their work lists. Any existing worklist entries for this work item are
removed from user’s work lists. The state of the work item is also recorded as being
offered.

���� ���� �� �	� �
���� �����	�� � ��� ��� 	� �
���� ���� ������������������� ������ �� 	� �
��� � ��� ������

�� �����
����� ������ �� 	� �
�� ������

	� �
���
� �� �� ������ �� 	� �
�� ������

� ���������� �� 	� �
 ������ �����

�� �� �	� �
�� ������
������ �� 	� �
���� �� �� ������ �� 	� �
�� ������

�� �� �	� �
 ������
� �� �������� �� 	� �
 ������ ����������� ��

�� ��� ��� 	� �
���� ���� ����������������
���� ������� �������� ����

���� ������ ������ ���
������ ��� ��������

����� �� ���� ���� ���
�� �������� ���

�� �������� �������� ����

���� ���� ���
�� ������ ���

 ����������� �������� ����
�� �������� �����

���

��
���

���
������

�� ���
���

Figure 58: route reoffers activity

The route reallocation activity responds to requests from the process admin-
istrator to escalate specific work items that are currently in a offered, allocated or
started state by directly allocating them to a specific (and most likely different) user.
The process administrator identifies who the work item should be allocated to and a
suitable work item is forwarded to their work list. Any existing worklist entries for
this work item are removed from user’s work lists. The state of the work item is also
recorded as being allocated.

98

����� ������	 �
 �� ��� ��
�� ���� ������	 �
 �� ��� ��
�

� ��
 �	 � ��� ��� ��
������ � ���� ��	 �� ��� ��
��
�� ��	�
���	� ����� ��� 	
	 	������� ���� �� � ���� ��	 �� ��� ��
��
����	�
���	� ������ �� 	
	 	��������� ������	 �
 �� ��
�� ��	�
�
�	 � ��� ��
�� ��	�
�

� �� ��������	 �
 �� ��
�� ��	�
�

�� ��	�

�� � ���� ��	 �� ��� ��
��
����	�
���	� ������ �� 	
	 	����
����	�	� ���� ���

�� ���� ��	 �� ��� ��
��
����	�
��
�	�	��	���� ���

� ����	���� ��	�
�!� �����

�	� ����	�� ��"�
	� � ���� ������ ���
�� ��	��� ���
��� 	"	��� ������ ���

�� ��	���� ��	�
�!� �����

	 	��	��!� ����!�

�!�
����� �����

�!�

���
Figure 59: route reallocation activity

The reject reoffer activity responds to requests from the process administrator
to escalate a work item by repeating the act of offering it where the work item is not
in the offered, allocated or started state. This may be because the work item has
failed, already been completed or is currently being redistributed at the request of a
user. In any of these situations, the action is to simply ignore the reoffer request.

���� �� � �������� ���	�
� ���� ������������ �����
� ���� ���
� ����� ����� ���������� ���	�������� ��	 ���� �������� ���� � �������	���� �������� ��������� ���	���� �������� ������
������ ��� ���������� ��� ������

Figure 60: reject reoffer activity

The reject reallocation activity responds to requests from the process admin-
istrator to escalate a work item by directly allocating it to a user it where the work
item is not in the allocated or started state. This may be because the work item has
failed, already been completed or is currently being redistributed at the request of a
user. In all situations, the action is to simply ignore the reallocate request.

99

� ������� ��	
 ��� ���������� ������ ������� �� ���� �� �� ��� ��������������

� � ����������� ������� ������ �������� ������ ��� ������� ������� �������
��

���

Figure 61: reject reallocation activity

5.4.6 Work list handler activities

The select activity handles the insertion of work items offered by the process engine
into user worklists. It also handles the deletion of previously offered work items that
have been subsequently allocated to a different user.

� �����
���� �� ���	�
�
� ��
� ��
� ��
� �

� ����� �� ���	 ��	������ ��� ���

� �

���	 ��	������ ��� ��

� ����
���
� ��

�� ���	 �����	�� ���� �����	 ����� � ����	� ���� ��� ���� ������� ����	 ��	������ ��� ���� �
��
�� ��	� �����	�� � ����������	���
� ��
� ������ �	 �����	�� ��	��������	��	 ����
� ��
� ��� ���� ��� !�

� �����	 �����"
��	���#$!��
������ ���#$ ���

� �	�� ��� ���� ��� !�
�� ���	$
	 !�

���� ������� �	���� !��
$
	

��

�#$
�#$

��

Figure 62: select activity

The allocate activity manages the insertion of work items directly allocated to
a user into their work list.

The start activity provides the ability for a user to commence execution of a
work item that has been allocated to them. In order to start it, they must be logged
in, have the choose privilege which allows them to select the next work item that
they will execute and either not be currently executing any other work items or have
the concurrent privilege allowing them to execute multiple work items at the same
time.

100

�� � �� ������� ���� ��� ��	
��� �	����� �	 ��� � ��	
�� �	��� ���
� ��	
��������������� �������

��
Figure 63: allocate activity

���������� ���	�

������ �

������� ��� ������ ���� ������ ��

�

��
���� ���	� ������� ���

��� ���

����	���� ����
������

�� ���� ��� ��	�
������������� ��� ��� � ��������������������� � ��
������ ���������� ��� ��� � ��������������������� ��	�
���
����� �����
��� ������ ���	��� � ���� ��	�
����������� ���������������� � ��
������ ��������� ����������������� ��	�
����	 �����
��� ����

���� � ���� ������

��� � �������� �
���� ��� ��� ����� ����

��� ����� �
�������� ���� �� ���� ����
��� ��!�� �"#��
���	#� �"#

�

��� �����$�����	#%! �"#�

����	 �������#%! ���� ������� ��������#%! �"#�#%! #%!

#%!
#� !��

���� ����

Figure 64: start activity

The immediate start activity allows work items to be directly inserted in a user‘s
worklist by the process engine with a currently executing status. As with the start
activity, this is only possible if the user is not currently executing any other work
items or has the concurrent privilege.

�� �� �������� �� �� �	�
� ���	�
� �� ������ ���� ������ �� �� ����� ��� ���		������� 	�
����������
�������� � �� ���	��� 	������� 	�
����������
�������� �� ���	������ 	�������� 	�
�� ���� � ���� � ��� ����� ��������������� ������������
�� ���� ������ �!������� ����� ���� �!���

��
���������

Figure 65: immediate start activity

At the request of the process engine, the halt instance activity immediately
removes a specified work item from a user’s worklist.

The complete activity allows a user to mark a work item as complete, resulting
in it being removed from their worklist. This can only occur if the user is logged in
and the process engine has recorded the fact that the user has commenced work on
the activity.

101

���� ������� �� �� ��� ���� � �	
����	��
� ��	���	��� �� �� �� �� �
��
	����� �������� 	�	��� ����� �����
���

Figure 66: halt instance activity

������� �� �� ���	� �
���	� �
 ��	� �

�� �� ����������� ���������� �� ��	� �
���� ������ ��� ���������� ���

�� ��� ������� ����
����� ��������� ����� ����

���
���

��
Figure 67: complete activity

The suspend activity provides the ability for a user to cease work on a specified
work item and resume it at some future time. In order to suspend a work item, they
must possess the suspend privilege. To resume it, they must either have no other
currently executing work items in their worklist or possess the concurrent privilege.

������
����

������	 ����
���� ��������� ��� �������

�� ����
���� ��� ���� ������ ������ ������ ��� �� ����� ������ ��� ���� ��
���������� ����
������������������������������ � �� ������ ����������������������������� ��� ��������� ��������� ����� ���� � �����

���������� ����
�� � ����� �� ��� ��� ������������ �� ����� ��������� ���� ��! ��! ����� ������ ��� ������������������������ ��� �� ����� ��������� ��� � ���

��� ����� ������ �"#"���#����

��� � �������� ������ �"$#"���$���#����

������%�� "&'
������ "&'

������ ������'(% "���
������%�� "&'� ��������'(% "&'�'(% %��

'(%

%��
Figure 68: suspend activity

102

The skip activity provides the user with the option to skip a work item that is
currently allocated to them. This means it transitions from a status of allocated to
one of completed. They can only do this if they have the skip privilege.

�������
������� �	 ��
���� �����	 ��� ���

���� �����	 ��� ��
�	 �������	��� ����
�� � ����� �	 ��� ��� ������� ����� �����	 ��� ���� � �� ��� ������������ ��� ��� ��� ����� �����	 ��� ��������������������

��� ����� ������ �� !���� ���!����"��������#�� �$%

��&������%'# �$%� ������ ������%'# ����%'#%'#

#��
Figure 69: skip activity

The delegate activity allows a user to pass a work item currently allocated to
them to another user. They can only do this if they have the delegate privilege and
the process engine has recorded the fact that the work item is allocated to them.

�
����� �� ��

��	
	�� �� �	 ��� �
�
����	

�� �	�� � �� ����
����� �
��������� �	 ���� ���� �	���	�
���� ����� �� ��� ��� �� ������ ����
���
����	� �	� �	�	��	 ��	� ��	��
�� ����
���
 ��� �	� ����� �����	 �� !�	�� �	�!���	
��"��	
�#� ����	

	� ��$
���� �����
�#�
��

�	��	

Figure 70: delegate activity

The abort activity operates at the request of the process engine and removes a
work item currently allocated to a user from their worklist. If they have also requested
that its execution be started, this request is also removed.

�� � �� �� ������� �� �� �����	�
 ���
 �� �������� �� �� ��������� ���
	 ��
�	� �
���������� ���������

Figure 71: abort activity

The stateful reallocate activity allows a user to reassign a work item that
they are currently executing to another user with complete retention of a state i.e.

103

the next user will continue executing the work item from the place at which the
preceding user left off. In order for the user to execute this activity, the work item
must be recorded by the process engine as currently being executed by them and they
must possess the reallocate privilege.

����� �� �� ��	
���
������ �� �� ��� ���� � ��� ��
�� ����� ��
��������
��� �������������� �� �� �� ���� �������	
�� ����� �� ��� ��� �� ����
�� ��������������	
�����

�������
�� �������� �� ���
	
�� ��!�� ��"#���
"���#
���
���
��� � ��

���
����
� ����
���
�� 	
�!
��� $� �� � $� ���
�
 � ���

Figure 72: stateful reallocate activity

The stateless reallocate activity operates in a similar way to the stateful
reallocate activity although in this case, there is no retention of state and the
subsequent user effectively restarts the work item. In order for the user to execute
this activity, the work item must be recorded by the process engine as currently being
executed by them and they must possess the delegate privilege.

����� �� ����� ���	
	�� ���	 ��� �
�
����	

�� �	��� �����
� ���� �
��� �
���
 ��
� �����������
 	
�
�������� �	 �� �� ���� �	���	�
������� ���� ��� ��� �� ������ ����
���
����	�
	
�
� ��		��� �����
���
 ���

	
� �
���� ���
�	��	�	��	 ��	� ��	��
�	� ����� �����	 �� !�	�� �	�!���	

�� ������		�"� ����	�"� �	��	
��

��

Figure 73: stateless reallocate activity

The manipulate worklist activity provides the user with the facility to reorder
the items in their work list and also to restrict the items that they view from it. In
order to fully utilize the various facilities available within this activity, the user must
possess the reorder, viewoffers, viewallocs and viewexecs privileges.

The logonandoff activity supports the logonand logoff of users from the process
engine. A number of worklist functions require that they be logged in in order to
operate them. Depending on the privileges that they possess, the user is also able to
trigger chained and piled execution modes as part of this activity. This requires that
they possess the chainedexec and piledexec privileges respectively. Only one user
can be nominated to execute a given task in piled execution mode at any given time.

104

� � ����
������

�� �� ������	��
 �� �� ����	 �	���� ��� ����������	 �	���� ��� ��� �� ��
������

���	 �	���� ��� �� ������	��
 �� �� ����	 �	���� ��� ����

������ ������
�� ��

������� �� �� �� �������� ���� ����������������	��� �� ��� ��� �������	 ����� ����� ���� �������� ���� ������� ����������	 ��� ����� ��� �������	 �������� �� �������� ���� ���� �������������	 ��� �� ��� ��� �������	 ����� ���������������� �	�������� ���	��� � ����	� �� ��� ���� ����������� �� ! ����	 �	������� ����� ��� ��� ������������� ��� �� ! ����	 �	���� ��� ���� " ��� ����������� �	���� ���� ���	��� � ����	� �� ��� ���� ����������� �� ! ����	 �	���� ��� ����� ������ ������������� ��� �� ! ����	 �	������� ���� " ���
����	� ���

���� �����	 ������� �	������� � �����	������ �	������� ���� ������� �	���
�	� �	������ �	���#$% &'#�� �����	������ �	���#$% &'#����� ������� �	���#$% &'#�

��� ����� ������ �&(&���(����
��� ��&�� �� �&�� �&���

��)���	��#$% ��&'#�
���� ���	� ��� �� &'#�

#$%
&�� ��

#$% #$% #$%

Figure 74: manipulate worklist activity

�
����� ���� �������

��	
���
�������� ����

���� ����� ����� ������� �� ���� ��� ��
�	
���

����� �
�

�
�

� ������ 	���������� ��� ��
 ���
������	
�� ����� 	�����������	
�������� ��� �	�������
� ������� � ���������� ��� ���������� ��� ��
 ���
�����	
�� ������ ����������	
�������� ��� ��� ������ ��� ��� ��

��� ���
����� ������������

���
 ��� �	
�� ���������
����
��� ��� ���
����
������
	
�� ������ ���

���

	���� �������
��!" ���
�������� �������� ���
��!" ���
�
������ �����
��!" ���

������ ������
� ����
���

�!"

�!" �!"

���
����
���

Figure 75: logonandoff activity

5.4.7 Interrupt handling processing

The cancel work item process provides facilities to handle a cancellation request
initiated from outside the work distribution process. It enables a work item currently
being processed (and in any other state than completed) to be removed from both the
work distribution and worklist handler processes. No confirmation is given regarding
work item cancellation.

105

���� ������ �������� ��� ��

���	�
���� �� �
�� ��
� �� ��� ��	��

� ��	�
� ��	�� �
� ��� �

� �	��������� �� �� ���	� �	����� �	 ��������� �� �� ��� ������
� �

�� �� ��� ������ ���
�� � ���	 ��� �� ���	� �	���� 	���� �	�� ������� �� �� ���	� �	����� ��� ���	�

���� ��

� ����� �� �� ��� ��� ������
�� � ���	 ��� �� ������ ��� 	���� �	�� ������� �� �� ������ ���� ��� ���	��� � ���	 ��� �� ��� ������ 	���� �	��������� �� �� ��� ������� ��� ���	�

�	� �	��� �� �� ��� ���	� �	����

����� �
�� ��	 ���
	������ �	������ �� �� ��	� �� ��	��� � �
����� �
�������������� �	��������� � �

����� �� ��	 ���
	������ �	��
�� ���	 ��� �� ������ ����� ��������	��	���� � �� �����	 �������� ��� � �� ��� ���� �� �� ��	� �� ��	��� � ���

������	������ �	������ ���
� ��	 ���
	������ �	������ ��� ����!��	
���� �	����� � � ��	 ���
	 ������ ���

�	� �	���� ���� ���	���� ������� ��� �� �	���� �� �	������
	 ����
	 ��

���� ������� �	������ ���

� �����	������ �	������ ���

��	�� ������� ��
	 ����"��	���
	 ��
�	� �	������ �	������ ������

�
	�
	
���

���

�
	��
����

���
���

���

Figure 76: cancel work item process

The complete work item process provides facilities to handle a force-complete
request initiated from outside the work distribution process. It enables a work item
currently being processed (and in any other state than completed) to be marked as
having completed and for it to be removed from both the work distribution and
worklist handler processes. If the request is successful, the work item completion is
indicated via a token in the completed work items place which is passed back to
the high-level process execution process (i.e. as illustrated in Figure 23).

106

���

� ��
� ��

�������� �� �� ��
	
 ������ ��	 ����

	 ����� ��
� � 	 ���� � ���� ��

� ���� ��� ��� �

� ���	 ������
 �� �� ����� ��
	�� ���	 ������
 �� �� ��� �����
�� � ���� ��
 �� �����
 ����� ������������
	���
�� ���� ��
 ��
 � ��

� �
	
 �� ��� �����
 ��

�� � ���� ��
 �� ����� ��
	� ��
�����	 ������
 �� �� ����� ��
	�
 ��

����
���
 ��

� ����� 	
 �� ��� ��� �����

�� � ���� ��
 �� �����
 �� � �
�����	 ������
 �� �� �����
 ��
 ��

������ � ���� ��
 �� ��� ����� � �
�� ���	 ������
 �� �� ��� �����
 ��

����
��� ��
	� 	
 �� ��� ����� ��
	�

�����
�
��	 ��� �����
	���� ��
���
� �� �	 ���� �	 ���� � ��
�����
�
������
��
	���� ��
���
���� � ��

�����
�
	 ��� �����
	���� ��
�
�� ���� ��
 �� �����
 ����� ������������
	� ��
 ��
��� ���
���� � � � �
 ��
 ��
� �� �	 ���� �	 ���� � ��

	 ��� �����
	���� ��
����� �� !�
��"���
�� �� ��
����� 	 ��� ����� ������ ���

��� ��
	�� !���
 �
��
	�� !��
�����
�
	���� ��
����� ���

�����
�
���� ��
��� �� ����

��� ������ !��

���
 �
	���� ��
����� !���

� ������
	���� ��
����� !���

� ���	������
 ���� !���
#
��
	��� !��
��� ��
	���� ��
����� !������

������

���

���

�����
���

����

���
���

Figure 77: complete work item process

The fail work item process provides facilities to handle a force-fail request ini-
tiated from outside the work distribution process. It enables a work item currently
being processed (and in any other state than completed) to be marked as having
failed and for it to be removed from both the work distribution and worklist handler
processes. If the request is successful, the work item failure is indicated via a to-
ken in the failed work items place which is passed back to the high-level process
execution process.

107

�� � ���� ��� �� �	�
���� ��� ������ ���� ��� ��� �	������ ���� ����������� �� �� �	��� ������� ��� � �� �� ������� �� �� �	��� ������

� ��

�������� �� �� ��
�� �������	� �����

� ����
� ���� � � � �

� �� ��� �

� �� ��������� �� �� �	��� ����������� ������� �� �� �	� ������
�� � ���� ��� �� �	���� ����� ������������������� ��� � � ��� �������

�� �� ��� �	���� ���
�� � ���� ��� �� �	��� ������ ���� ���� ������� �� �� �	��� ������� ��� �����

���� ��

� ����� �� �� ��� �	� ������
�� � ���� ��� �� �	���� ��� ���� ����������� �� �� �	���� ���� ��� ������� � ���� ��� �� �	� ������ ���� ����������� �� �� �	� ������� ��� �����

��� ����� �� �� ��� �	��� ������

�� �� �� ��� ����������� �������� �� �� ���� �� ������ � ��
�� �� �������������� ����������� ���

�� �� � ��� ����������� ����
�� ���� ��� �� �	���� ����� ���������� ������ ��� ����� �������� � �� � �� ��� ���� �� �� ���� �� ������ � ����

� ��� ����������� ������� !�
"����#���
�� �� �������� � ��� ����� ���� !��

��� ����� "!��� ������� "!�
�� �������� ����� �� !�

�� ���� �� ����� !� �����
���� �� �� "!�

���� ������� ������� "!��

� ������������ ������� "!��

����� ������� � �� "!���$����� �� "!�
��� �������� ������� "!����

 �� ��
��

��

 ���
 ��

��

��
��

Figure 78: fail work item process

6 Worked Example

In this section, we provide a worked example of a complete newYAWL model in order
to clarify the correspondences between the abstract syntax and semantic models and
also to illustrate the operation of the various transformation functions which allow
some of the new language elements to be catered for within the existing YAWL
framework. Having mapped a candidate newYAWL model from a static design time
representation to an instance of the semantic model (in the form of an initial marking),
we can then execute the newYAWL model. This occurs in the CPN Tools environment
and allows us to examine how individual newYAWL language elements are catered for
and how they are integrated in order to facilitate the execution of process instances.

Figure 79 illustrates the newYAWL model that we will examine for the purposes
of this exercise. It includes several of the new language elements in a model that
comprises two distinct nets.

The data elements defined for the model are described in Table 11. The specific
construct to which each of them is bound is identified along with those that are passed
as parameters to or from any of the tasks during execution.

108

A

C

G

#

KJ

B

D

F

L

E

Figure 79: Working model

VarID Name Type Binding InPar OutPar
v1 wv1 int p1
v2 wv2 emprecs p1 A A
v3 fv1 string f1 C C
v4 fv2 int f1
v5 cv1 string p1 F F
v6 bv1 string p2 J J
v7 sv1 string s1 E E
v8 tv1 int A
v9 tv2 string B
v10 tv3 string E
v11 tv4 int F
v12 tv5 string J
v13 mv1 string B
v14 mv2 int B
v15 mv3 string B

Table 11: Data elements in working model

There is also a simple work distribution model which comprises six users: user1
... user6 organized into three roles: role1 ... role3. Each user is associated with one
or more jobs j1 ... j5 each of which are attached to a specific organizational unit.
The specific work distribution criteria for each task are listed in Table 12

The complete population of the abstract syntax model corresponding to this model
is listed in Appendix B. As well as mirroring the control-flow elements depicted in
Figure 79, it also includes details of the data and resource (i.e. work distribution)
considerations associated with this model.

In order to utilize this model, it first needs to be “unfolded” using the transforma-
tion functions described in Section 4.2. This yields an augmented control-flow model
as illustrated in Figure 80. The persistent trigger, partial join and while loop con-
structs appearing in the initial model have been transformed out of this model. This
has necessitated some changes to the process model, in particular some tasks and new
arcs have been added. This also requires additional work distribution directives (in

109

Task Routing Interaction Strategy Other Con-
straints

A user1, user2, user3,
user4, user5, user6

system,system,system org dist function
org1()

B role1, role3 system,resource,resource hist dist function
lastA()

D user1, user2, user3,
user4

resource,system,resource

E role1, role2, role3 system,system,resource
F user1 resource,resource,resource
G AUTO system,system,system
J user1, user2, user3,

user4
system,resource,system cap dist function

capval1()
K user1, user2, user3,

user4
system,resource,resource same user as J

L role2, role3 system,resource,resource different user to K

Table 12: Work distribution in working model

most cases added tasks are AUTO) and some additional data passing specifications
(e.g. task JL1 shares access to the same data elements as task J). Specific additions
or changes to the abstract syntax model are identified in Appendix C.

Finally, the complete unfolded newYAWL specification is transformed to an initial
marking for the semantic model (included in Appendix D) based on the transforma-
tions identified in section 4.2. By including this set of markings in the CPN model on
which the newYAWL semantic model is based, it is possible to execute the process
model. In the following sections, we illustrate the operation of some of the more
significant new constructs supported by newYAWL.

6.1 Initiation of process instance

Figure 81 illustrates the manner in which a new process instance is started. Two
distinct inputs are required for initiation: the ProcessID and CID to identify the
particular instance being started and the list of folders being assigned to it. The
absence of a bold border around the start case transition indicates that it is not
yet able to fire as a precondition for its enablement has not been satisfied. In this
case, the precondition that the wv2 variable have a value is not met as it does not
yet exist.

Once a value is inserted into the variable instances place for this data element,
the transition is enabled and can fire. Figure 82 illustrates the results of the case being
enabled: (1) a token is placed in the input condition for the process (see the process
state place) and the required case and scope variables are created.

6.2 Task enablement and initiation

Once a token exists in the input condition for the process, the first task can potentially
be enabled subject to preconditions, locks and mandatory parameters being available.

110

D

C
JL1JL3

ACi

EP1ST
P2

Cstart endC TEP2

CFB1

T3 DDBDT3C

CCAC

CFJ1FR1

R1

R2

FJ2FR2C

CFG

G

oC

L3

J1

J2

CDE

L2 L1 L4
C

JL2JL1 JL1JC CJJL4 C
JL4JL3

C
JL4JL1

CJL3S

CJL3S1

C

C

JL3S2

JL3S3

S2

S3

S1

M1C

M2C

M1

M2

CAB

TC CD

CBE

CCFJ2

CEFJ1 CFJ2F

CFJ1F

P1ST DT1 T

B

F

J JL3JJ

D

J J

L

F

F

L

JL3

JL3

F

L

K

E

F

Figure 80: Unfolded working model

The enablement of a specific task instance is handled by the enter transition. In
Figure 83, we consider the triggering of a work item for task A. Initially, this cannot
proceed because variable wv1 does not have a defined value. Once a value is inserted
for this variable, all preconditions for the task are met and it is enabled as illustrated
in Figure 84. Upon the firing of the enter transition, a work item is created for the
task which can subsequently be assigned to a resource for execution. The relevant
data elements required for the work item are created. In this case, task variable tv1 is
created and is assigned a value based on applying the inc function to global variable
wv1.

111

Figure 81: Working model – case start

Figure 82: Working model – case start after enablement

6.3 Work item routing

Immediately after a work item has been enabled, it is routed to an appropriate re-
source for subsequent execution. The transition which does this is illustrated in Figure
86. The routing decision is based on a number of factors as illustrated by the number
of input places to the transition. In this case, the work item corresponds to task A
and will be offered to all users providing are members of organizational group A. An
organizational task distribution function (org1) is used to determine the appropriate
group of users. The results of apply this function as part of the work item routing are
indicated in Figure 87 and the work item is subsequently offered to user1 and user2.

There is a separation of concerns between the main work item distribution
process which normally occurs as part of (and resides with) the main process engine
and the work list handler. The work list handler is the user-facing software
that manages their interaction with the process environment. Unlike the work item
distribution process, which runs in response to distribution requests and reactions
from users, the work list handler runs under the auspices of an individual users
based on their response to individual requests. The interface between the two pro-

112

�������

������	��

�	��
� ��

���

���	 ��

����	�

�	�� ��	�����	�� �����
�	�����	���� �������� ��� ������	���	��������� ���������� ���	 ������ ���� ������ ���������� ����

�� ����� ���������� ������
��������	 ���� ������ ��� ��	��������� ��

� ��
������������	��������������� ���� ����������

������ ��� �����	���� ��� ������
����� �� ������ ��� ��	�����������������������

������ ���
��

�����

���� ��

��� ��� �
�	� �� ��� ��	�������	��� ���� ����������� ��� ���� ����� ���	 �����	���
�	�������

���� ���� ����������� ��� ���������� ��� �����	�����	��� ������	���
�	������ ����� ������ ����� �����	� ������������� �	� ������ �	 � ������ ����� ��� ����� ������� ������� ������� ���� ������� ����� ���	 �����	���
�	��������	 � �� !���" �� ����� ����	 � 	����� !�	� ������������	 � � ���	������	 � �����
�	���� ���� �����	������ ��� ���	�������	 � ������� ������ ��� ������������ ������ ����� �����	� ������������� ���� �������	����!�#$% &����'	��

� ��� ��	����!�#$% (� ��� �'	������ ��������� �)*)��*����

�	�	��� ��	����!�#$% +	�	��

�� 	���#$% ,	��-�	 ������������� �	 ����#$% '	�
������! ��� �#$% *%./&

	�� ���	������� ��0,#��� ��� �1� ���1� ���

 ����� �	 ���#$% (���)� �

��������	� #$% '	����!

������� � ����#$% +��.����
����#$% 0#�

�	��	�����
 ��� ����#$% 2	 �-�� ��
���	#$% 0.,#3,�

�	��	������	����#$% 2	�#���
	�� �!�� �� ��������#$% 0#�#$%

#$%
#$%

#$%

#$%
#$%

#$%

#$%
#$%

#$% #$%

#$%

#$%

#$% 4

4 45��6�46�646�6
 �46�6
46�� �6�46�646�6
�76�6
76��4

4

44
4 45��

44

4

4 45��6�46�6.(846�646�4�� �6�46�6. �6�646�4��

4
4 45��6�46�646�6-,46�4�4��

4
4 45��6�46�646�6-,46�4�4����	�����

4 45��! ��� ��6�46�6��46������	 ��93-:(����! ��� ��6�46�6��76������	 ������	 ��6#.6�� ��	 ��;<����	 ��6';=6��� ���	 ��6+>6�� ��	 ��?7����	 ��6=@46��� ���	 ��61.6�� ��	 ��A7����	��6-@B6������ �� ��� ��6�46�646�6��46������	 ��93-:(��� �� ��� ��6�46�646�6�46�6��46������	 ��93-:(���
4 45��6�46�646�6-,46�4�4��

Figure 83: Working model – prior to enablement of task A

�������

������	��

�	��
� ��

���

���	 ��

����	�

�	�� ��	�����	�� �����
�	�����	���� �������� ��� ������	���	��������� ���������� ���	 ������ ���� ������ ���������� ����

�� ����� ���������� ������
��������	 ���� ������ ��� ��	��������� ��

� ��
������������	��������������� ���� ����������

������ ��� �����	���� ��� ������
����� �� ������ ��� ��	�����������������������

������ ���
��

�����

���� ��

��� ��� �
�	� �� ��� ��	�������	��� ���� ����������� ��� ���� ����� ���	 �����	���
�	�������

���� ���� ����������� ��� ���������� ��� �����	�����	��� ������	���
�	������ ����� ������ ����� �����	� ������������� �	� ������ �	 � ������ ����� ��� ����� ������� ������� ������� ���� ������� ����� ���	 �����	���
�	��������	 � �� !���" �� ����� ����	 � 	����� !�	� ������������	 � � ���	������	 � �����
�	���� ���� �����	������ ��� ���	�������	 � ������� ������ ��� ������������ ������ ����� �����	� ������������� ���� �������	����!�#$% &����'	��

� ��� ��	����!�#$% (� ��� �'	������ ��������� �)*)��*����

�	�	��� ��	����!�#$% +	�	��

�� 	���#$% ,	��-�	 ������������� �	 ����#$% '	�
������! ��� �#$% *%./&

	�� ���	������� ��0,#��� ��� �1� ���1� ���

 ����� �	 ���#$% (���)� �

��������	� #$% '	����!

������� � ����#$% +��.����
����#$% 0#�

�	��	�����
 ��� ����#$% 2	 �-�� ��
���	#$% 0.,#3,�

�	��	������	����#$% 2	�#���
	�� �!�� �� ��������#$% 0#�#$%

#$%
#$%

#$%

#$%
#$%

#$%

#$%
#$%

#$% #$%

#$%

#$%

#$% 4

4 45��6�46�646�6
 �46�6
46�� �6�46�646�6
�76�6
76��4

4

44
4 45��

44

4

4 45��6�46�6.(846�646�4�� �6�46�6. �6�646�4��

4
4 45��6�46�646�6-,46�4�4��

4
4 45��6�46�646�6-,46�4�4����	�����

4 45��! ��� ��6�46�6��46������	 ����	 ��9�����! ��� ��6�46�6��76������	 ������	 ��6#.6�� ��	 ��:;����	 ��6':<6��� ���	 ��6+=6�� ��	 ��>7����	 ��6<?46��� ���	 ��61.6�� ��	 ��97����	��6-?@6������ �� ��� ��6�46�646�6��46������	 ��A3-B(��� �� ��� ��6�46�646�6�46�6��46������	 ��A3-B(���
4 45��6�46�646�6-,46�4�4��

Figure 84: Working model – enablement of task A

cesses is defined by the places in the two substitution transitions that represent them
in the work distribution process. Continuing with the distribution of work items

113

�������

������	��

�	��
� ��

���

���	 ��

����	�

�	�� ��	�����	�� �����
�	�����	���� �������� ��� ������	���	��������� ���������� ���	 ������ ���� ������ ���������� ����

�� ����� ���������� ������
��������	 ���� ������ ��� ��	��������� ��

� ��
������������	��������������� ���� ����������

������ ��� �����	���� ��� ������
����� �� ������ ��� ��	�����������������������

������ ���
��

�����

���� ��

��� ��� �
�	� �� ��� ��	�������	��� ���� ����������� ��� ���� ����� ���	 �����	���
�	�������

���� ���� ����������� ��� ���������� ��� �����	�����	��� ������	���
�	������ ����� ������ ����� �����	� ������������� �	� ������ �	 � ������ ����� ��� ����� ������� ������� ������� ���� ������� ����� ���	 �����	���
�	��������	 � �� !���" �� ����� ����	 � 	����� !�	� ������������	 � � ���	������	 � �����
�	���� ���� �����	������ ��� ���	�������	 � ������� ������ ��� ������������ ������ ����� �����	� ������������� ���� �������	����!�#$% &����'	��

� ��� ��	����!�#$% (� ��� �'	������ ��������� �)*)��*����

�	�	��� ��	����!�#$% +	�	��

�� 	���#$% ,	��-�	 ������������� �	 ����#$% '	�
������! ��� �#$% *%./&

	�� ���	������� ��0,#��� ��� �1� ���1� ���

 ����� �	 ���#$% (���)� �

��������	� #$% '	����!

������� � ����#$% +��.����
����#$% 0#�

�	��	�����
 ��� ����#$% 2	 �-�� ��
���	#$% 0.,#3,�

�	��	������	����#$% 2	�#���
	�� �!�� �� ��������#$% 0#�#$%

#$%
#$%

#$%

#$%
#$%

#$%

#$%
#$%

#$% #$%

#$%

#$%

#$% 4

4 45��6�46�646�6
 �46�6
46�� �6�46�646�6
�76�6
76��4

4

44
4 45��

44

4

4 45��6�46�6.(846�646�4��

4
4 45��6�46�646�696�4�4�� �6�46�646�6-,46�4�4��

4
4 45��6�46�646�696�4�4����	����� �6�46�646�6-,46�4�4����	�����

4 45��! ��� ��6�46�6��46������	 ����	 ��:�����! ��� ��6�46�6��76������	 ������	 ��6#.6�� ��	 ��;<����	 ��6';96��� ���	 ��6+=6�� ��	 ��>7����	 ��69?46��� ���	 ��61.6�� ��	 ��:7����	��6-?@6������ �� ��� ��6�46�646�6��46������	 ��A3-B(��� �� ��� ��6�46�646�6�46�6��46������	 ��A3-B(��� � ��� ��6�46�646�696�4�6�46������	 ����	 ��<����
4 45��6�46�646�696�4�4�� �6�46�646�6-,46�4�4��

Figure 85: Working model – initiation of task A & work item creation

Figure 86: Working model – work item routing

associated with task A, the offer of these work items is illustrated in Figure 88 with
the offer requests indicated by the two tokens in the offer place.

Upon receipt by the respective worklist handler, these requests are recorded in
the work queue for the relevant user with a status of offered. A user can indicate
their intention to execute the work item at some future time by initiating the select
work item for allocation transition.

114

Figure 87: Working model – routing based using an organizational distribution func-
tion

Figure 88: Working model – distribution of requests between work item distribution
and work list handler processes

6.4 Rerouting of work items

Although the distribution and execution of work items is generally fairly predictable
in that they are offered or assigned to users who at some future time execute and
complete them, there are occasions where this sequence of events needs to be varied
and the ultimate user who will execute them needs to be varied. The variation
can be initiated by a user, the process engine or by a system administrator and
various permutations of reassignments are possible. In this section we consider the
user-initiated delegation of a work item allocated to them that they do not wish to
undertake. The effects of user1 initiating the delegation of work item A to user6 are
illustrated in Figure 89 with the delegation request flowing from the worklist handler
to the work item distribution process. This is subsequently confirmed by the work
item distribution process (as shown in Figure 90) and the work item is reassigned to
user6 with an allocated status as illustrated in Figure 91.

115

Figure 89: Working model – delegation request from work list handler to work item
distribution process

Figure 90: Working model – delegation confirmation from work item distribution
process to work list handler

Once the work item corresponding to task A is complete, two subsequent tasks can
potentially be enabled as task A is associated with an AND-split. Both of these have
interesting characteristics: task B is a multiple instance task and task C is composite
in form. We discuss each of them below.

6.5 Multiple instance tasks

The precursor to a multiple instance task is that the complex data element referred
to by the multiple invar parameter exists and does indeed hold data in the required
tabular form indicated by the parameter. Figure 92 illustrates this situation, the
incoming parameter to task B will pass data to three multiple instance task variables
from global variable wv2 and it holds data of the required form. As there are no
other preconditions to the task, it is enabled.

Once the enter transition has fired for the task, the number of task instances
created is determined from the number of lines resulting from the evaluation of the
incoming multiple instance parameter. In this case, there are three lines, resulting in
three work items for subsequent assignment and nine multiple instance data elements
are created as there are three data values for each instance. Figure 93 illustrates the
firing of the transition for task B.

6.6 Composite tasks

A composite activity has a subprocess (i.e. another net) associated with it. The
enablement of a composite task occurs in the same way as that for a normal atomic
tasks. It can have preconditions and parameters associated with it, however in this
case the parameters map data elements to the subprocess that implements the task
rather than to the task itself. Figure 94 illustrates this process. A key part of it is

116

�� �� �������� �������

	�
��� �����������	�
��� ������� �����

��� ����� ��

����� ������� ������������ ����� ��� �������
������� ���� �������������� �� ��� �������
�		�� ������� ���		�� �������� ��

�� ���
���
���� ��� �
���
��

��� ���������� �������
�� �������� ������

���� �� �����
������
�
��� ���� � ���	�����

��	�������� ���	��	�����

����
 �
� �������
�
������ ������ � ���	�� ����
����� ������� ����� ����������� �
������ ��� ����� �������� ������� ���	���� ����� ����������� ���	���� �������� ������ ���	���� ����

��� �����
 ���

���������� ��
�
 ���

����� ������� ���������� ���������� ���� ���������� ���

�� ��������� ���
��� ���������� ���

�		�� ������� ���
 ��� ����	���� ��������
���� ������ ����� ���� ������ ��
�
 ���
� ������ ��
��������� ������

�
 �������� ������
������ �
����� ����

����� ������� ��
 ������� ��
 ��� �� ������� ����� �������
 ���

��	�������� ���

���������
 ����

���

�
 ���
�
�

�
 ����������

���
���

������

�

�

��� ��� ��� ��� ���
�� ����

����
�
����

��	�����

��� ��
�����
����

�� ������
��� �������

�� ��� �
���
���		�� �������� ��������� �� ��� �������
����� ����� ��� �������

��� ��

	�
��� ������� �����

� �������

 !�� !�� !��

 !�"#��� �$#% "#� #%# #%#&#% % ''�

 !��
(

 !"#��� �$#% "#� #%# #%#&#% % ''

Figure 91: Working model – delegation handing in work list handler

the determination of the subprocess CID which is used to differentiate a subprocess
instance from an execution thread in the net from which it was created. In this case,
the subprocess CID is 1.1. Any variables created for the subprocess are created with
this CID as illustrated by the block variable bv1 which receives its value from folder
variable fv1.

The act of starting a composite task corresponds to the placement of token with
the subprocess CID in the input place for the net corresponding to the subprocess
decomposition. This is illustrated in Figure 95.

117

�������

������	��

�	��
� ��

���

���	 ��

����	�

�	�� ��	�����	�� �����
�	�����	���� �������� ��� ������	���	��������� ���������� ���	 ������ ���� ������ ���������� ����

�� ����� ���������� ������
��������	 ���� ������ ��� ��	��������� ��

� ��
������������	��������������� ���� ����������

������ ��� �����	���� ��� ������
����� �� ������ ��� ��	�����������������������

������ ���
��

�����

���� ��

���

�	� �� ��� ��	�������	��� ���� ����������� ��� ���� ����� ���	 �����	���
�	�������

���� ���� ����������� ��� ���������� ��� �����	�����	��� ������	���
�	������ ����� ������ ����� �����	� ������������� �	� ������ �	 � ������ ����� ��� ����� ������� ������� ������� ���� ������� ����� ���	 �����	���
�	��������	 � �� !���" �� ����� ����	 � 	����� !�	� ������������	 � � ���	������	 � �����
�	���� ���� �����	������ ��� ���	�������	 � ������� ������ ��� ������������ ������ ����� �����	� ������������� ���� �������	����!�#$% &����'	��

� ��� ��	����!�#$% (� ��� �'	������ ��������� �)*)��*����

�	�	��� ��	����!�#$% +	�	��

�� 	���#$% ,	��-�	 ������������� �	 ����#$% '	�
������! ��� �#$% *%./&

	�� ���	������� ��0,#��� ��� �1� ���1� ���

 ����� �	 ���#$% (���)� �

��������	� #$% '	����!

������� � ����#$% +��.����
����#$% 0#�

�	��	�����
 ��� ����#$% 2	 �-�� ��
���	#$% 0.,#3,�

�	��	������	����#$% 2	�#���
	�� �!�� �� ��������#$% 0#�#$%

#$%
#$%

#$%

#$%
#$%

#$%

#$%
#$%

#$% #$%

#$%

#$%

#$%

��� �

4

4 45��6�46�646�6
 �46�6
46�� �6�46�646�6
�76�6
76��4

4

44
4 45��

44

4

4 45��6�46�6.(846�646�4�� �6�46�6.986�646�4�� �6�46�6.9.6�646�4��

4
4 45��6�46�646�6-,46�4�4��

4
4 45��6�46�646�6-,46�4�4����	�����

4 45��! ��� ��6�46�6��76������	 ������	 ��6#.6�� ��	 ��:;����	 ��6':96��� ���	 ��6+<6�� ��	 ��=7����	 ��69>46��� ���	 ��61.6�� ��	 ��?7����	 ��6->@6������ �� ��� ��6�46�646�6��46������	 ��A3-B(��� �� ��� ��6�46�646�6� 46�6��46������	 ��A3-B(��� �! ��� ��6�46�6��46������	 ����	 ��;����
4 45��6�46�646�6-,46�4�4��

Figure 92: Working model – precursor to enablement of a multiple instance task

�������

������	��

�	��
� ��

���

���	 ��

����	�

�	�� ��	�����	�� �����
�	�����	���� �������� ��� ������	���	��������� ���������� ���	 ������ ���� ������ ���������� ����

�� ����� ���������� ������
��������	 ���� ������ ��� ��	��������� ��

� ��
������������	��������������� ���� ����������

������ ��� �����	���� ��� ������
����� �� ������ ��� ��	�����������������������

������ ���
��

�����

���� ��

���

�	� �� ��� ��	�������	��� ���� ����������� ��� ���� ����� ���	 �����	���
�	�������

���� ���� ����������� ��� ���������� ��� �����	�����	��� ������	���
�	������ ����� ������ ����� �����	� ������������� �	� ������ �	 � ������ ����� ��� ����� ������� ������� ������� ���� ������� ����� ���	 �����	���
�	��������	 � �� !���" �� ����� ����	 � 	����� !�	� ������������	 � � ���	������	 � �����
�	���� ���� �����	������ ��� ���	�������	 � ������� ������ ��� ������������ ������ ����� �����	� ������������� ���� �������	����!�#$% &����'	��

� ��� ��	����!�#$% (� ��� �'	������ ��������� �)*)��*����

�	�	��� ��	����!�#$% +	�	��

�� 	���#$% ,	��-�	 ������������� �	 ����#$% '	�
������! ��� �#$% *%./&

	�� ���	������� ��0,#��� ��� �1� ���1� ���

 ����� �	 ���#$% (���)� �

��������	� #$% '	����!

������� � ����#$% +��.����
����#$% 0#�

�	��	�����
 ��� ����#$% 2	 �-�� ��
���	#$% 0.,#3,�

�	��	������	����#$% 2	�#���
	�� �!�� �� ��������#$% 0#�#$%

#$%
#$%

#$%

#$%
#$%

#$%

#$%
#$%

#$% #$%

#$%

#$%

#$%

��� �

4

4 45��6�46�646�6
 �46�6
46�� �6�46�646�6
�76�6
76��4

4

44
4 45��

44

4

4 45��6�46�6.(846�646�4�� �6�46�6.9.6�646�4��

4
4 45��6�46�646�686�4�4�� �6�46�646�686�4�7�� �6�46�646�686�4�:�� �6�46�646�6-,46�4�4��

4
4 45��6�46�646�686�4�:����	����� �6�46�646�6-,46�4�4����	�����

4 45��! ��� ��6�46�6��76������	 ������	 ��6#.6�� ��	 ��;<����	 ��6';96��� ���	 ��6+=6�� ��	 ��>7����	 ��69?46��� ���	 ��61.6�� ��	 ��@7����	 ��6-?:6������ �� ��� ��6�46�646�6��46������	 ��A3-B(��� �� ��� ��6�46�646�6� 46�6��46������	 ��A3-B(��� �! ��� ��6�46�6��46������	 ����	 ��<���� � ��� ��6�46�646�686�4�6�76������	 ��A3-B(��� ����� ��6�46�646�686�4�4�6��46������	 ����	 ��6#.6���� �������6�46�646�686�4�4�6��76������	 ����	 ��;<���� ����� ��6�46�646�686�4�4�6��:6������	 ����	 ��6';96���� ����� ��6�46�646�686�4�7�6��46������	 ����	 ��6+=6���� ����� ��6�46�646�686�4�7�6��76������	 ����	 ��>7���� ����� ��6�46�646�686�4�7�6��:6������	 ����	 ��69?46���� ����� ��6�46�646�686�4�:�6��46������	 ����	 ��61.6���� ����� ��6�46�646�686�4�:�6��76������	 ����	 ��@7���� ����� ��6�46�646�686�4�:�6��:6������	 ����	 ��6-?:6����
4 45��6�46�646�686�4�4�� �6�46�646�686�4�7�� �6�46�646�686�4�:�� �6�46�646�6-,46�4�4��

Figure 93: Working model – initiation of a multiple instance task

118

�������

������	��

�	��
� ��

���

���	 ��

����	�

�	�� ��	�����	�� �����
�	�����	���� �������� ��� ������	���	��������� ���������� ���	 ������ ���� ������ ���������� ����

�� ����� ���������� ������
��������	 ���� ������ ��� ��	��������� ��

� ��
������������	��������������� ���� ����������

������ ��� �����	���� ��� ������
����� �� ������ ��� ��	�����������������������

������ ���
��

�����

���� ��

���

�	� �� ��� ��	�������	��� ���� ����������� ��� ���� ����� ���	 �����	���
�	�������

���� ���� ����������� ��� ���������� ��� �����	�����	��� ������	���
�	������ ����� ������ ����� �����	� ������������� �	� ������ �	 � ������ ����� ��� ����� ������� ������� ������� ���� ������� ����� ���	 �����	���
�	��������	 � �� !���" �� ����� ����	 � 	����� !�	� ������������	 � � ���	������	 � �����
�	���� ���� �����	������ ��� ���	�������	 � ������� ������ ��� ������������ ������ ����� �����	� ������������� ���� �������	����!�#$% &����'	��

� ��� ��	����!�#$% (� ��� �'	������ ��������� �)*)��*����

�	�	��� ��	����!�#$% +	�	��

�� 	���#$% ,	��-�	 ������������� �	 ����#$% '	�
������! ��� �#$% *%./&

	�� ���	������� ��0,#��� ��� �1� ���1� ���

 ����� �	 ���#$% (���)� �

��������	� #$% '	����!

������� � ����#$% +��.����
����#$% 0#�

�	��	�����
 ��� ����#$% 2	 �-�� ��
���	#$% 0.,#3,�

�	��	������	����#$% 2	�#���
	�� �!�� �� ��������#$% 0#�#$%

#$%
#$%

#$%

#$%
#$%

#$%

#$%
#$%

#$% #$%

#$%

#$%

#$%

��� �

4

4 45��6�46�646�6
 �46�6
46�� �6�46�646�6
�76�6
76��4

4

44
4 45��

44

4

4 45��6�46�6.(846�646�4��

4
4 45��6�46�64946�6.6�4�4�� �6�46�646�686�4�4�� �6�46�646�686�4�7�� �6�46�646�686�4�:�� �6�46�646�6-,46�4�4��

4
4 45��6�46�646�6.6�4�4����	����� �6�46�646�686�4�:����	����� �6�46�646�6-,46�4�4����	�����

4 45��! ��� ��6�46�6��76������	 ������	 ��6#.6�� ��	 ��;<����	 ��6';=6��� ���	 ��6+>6�� ��	 ��?7����	 ��6=@46��� ���	 ��61.6�� ��	 ��A7����	 ��6-@:6������ �� ��� ��6�46�646�6��46������	 ��B3-C(��� �� ��� ��6�46�646�6� 46�6��46������	 ��B3-C(��� �! ��� ��6�46�6��46������	 ����	 ��<���� � ��� ��6�46�646�686�4�6�76������	 ��B3-C(��� ����� ��6�46�646�686�4�4�6��46������	 ����	 ��6#.6���� �������6�46�646�686�4�4�6��76������	 ����	 ��;<���� ����� ��6�46�646�686�4�4�6��:6������	 ����	 ��6';=6���� ����� ��6�46�646�686�4�7�6��46������	 ����	 ��6+>6���� ����� ��6�46�646�686�4�7�6��76������	 ����	 ��?7���� ����� ��6�46�646�686�4�7�6��:6������	 ����	 ��6=@46���� ����� ��6�46�646�686�4�:�6��46������	 ����	 ��61.6���� ����� ��6�46�646�686�4�:�6��76������	 ����	 ��A7���� ����� ��6�46�646�686�4�:�6��:6������	 ����	 ��6-@:6���� ����� ��6�46�64946�6�76�6��46������	 ����	 ��@����
4 45��6�46�646�686�4�4�� �6�46�646�686�4�7�� �6�46�646�686�4�:�� �6�46�646�6-,46�4�4��

Figure 94: Working model – initiation of a composite task

�������

������	��

�	��
� ��

���

���	 ��

����	�

�	�� ��	�����	�� �����
�	�����	���� �������� ��� ������	���	��������� ���������� ���	 ������ ���� ������ ���������� ����

�� ����� ���������� ������
��������	 ���� ������ ��� ��	��������� ��

� ��
������������	��������������� ���� ����������

������ ��� �����	���� ��� ������
����� �� ������ ��� ��	�����������������������

������ ���
��

�����

���� ��

��� ��� �
�	� �� ��� ��	�������	��� ���� ����������� ��� ���� ����� ���	 �����	���
�	�������

���� ���� ����������� ��� ���������� ��� �����	�����	��� ������	���
�	������ ����� ������ ����� �����	� ������������� �	� ������ �	 � ������ ����� ��� ����� ������� ������� ������� ���� ������� ����� ���	 �����	���
�	��������	 � �� !���" �� ����� ����	 � 	����� !�	� ������������	 � � ���	������	 � �����
�	���� ���� �����	������ ��� ���	�������	 � ������� ������ ��� ������������ ������ ����� �����	� ������������� ���� �������	����!�#$% &����'	��

� ��� ��	����!�#$% (� ��� �'	������ ��������� �)*)��*����

�	�	��� ��	����!�#$% +	�	��

�� 	���#$% ,	��-�	 ������������� �	 ����#$% '	�
������! ��� �#$% *%./&

	�� ���	������� ��0,#��� ��� �1� ���1� ���

 ����� �	 ���#$% (���)� �

��������	� #$% '	����!

������� � ����#$% +��.����
����#$% 0#�

�	��	�����
 ��� ����#$% 2	 �-�� ��
���	#$% 0.,#3,�

�	��	������	����#$% 2	�#���
	�� �!�� �� ��������#$% 0#�#$%

#$%
#$%

#$%

#$%
#$%

#$%

#$%
#$%

#$% #$%

#$%

#$%

#$% 4

4 45��6�46�646�6
 �46�6
46�� �6�46�646�6
�76�6
76��4

4

44
4 45��

44

4

4 45��6�46�6.(846�646�4�� �6�46�6. �76�64946�4��

4
4 45��6�46�646�686�4�4�� �6�46�646�686�4�7�� �6�46�646�686�4�:�� �6�46�646�6-,46�4�4��

4
4 45��6�46�646�6.6�4�4����	����� �6�46�646�686�4�:����	����� �6�46�646�6-,46�4�4����	�����

4 45��! ��� ��6�46�6��76������	 ������	 ��6#.6�� ��	 ��;<����	 ��6';=6��� ���	 ��6+>6�� ��	 ��?7����	 ��6=@46��� ���	 ��61.6�� ��	 ��A7����	 ��6-@:6������ �� ��� ��6�46�646�6��46������	 ��B3-C(��� �� ��� ��6�46�646�6� 46�6��46������	 ��B3-C(��� �! ��� ��6�46�6��46������	 ����	 ��<���� � ��� ��6�46�646�686�4�6�76������	 ��B3-C(��� ����� ��6�46�646�686�4�4�6��46������	 ����	 ��6#.6���� �������6�46�646�686�4�4�6��76������	 ����	 ��;<���� ����� ��6�46�646�686�4�4�6��:6������	 ����	 ��6';=6���� ����� ��6�46�646�686�4�7�6��46������	 ����	 ��6+>6���� ����� ��6�46�646�686�4�7�6��76������	 ����	 ��?7���� ����� ��6�46�646�686�4�7�6��:6������	 ����	 ��6=@46���� ����� ��6�46�646�686�4�:�6��46������	 ����	 ��61.6���� ����� ��6�46�646�686�4�:�6��76������	 ����	 ��A7���� ����� ��6�46�646�686�4�:�6��:6������	 ����	 ��6-@:6���� ����� ��6�46�64946�6�76�6��46������	 ����	 ��@����
4 45��6�46�646�686�4�4�� �6�46�646�686�4�7�� �6�46�646�686�4�:�� �6�46�646�6-,46�4�4��

Figure 95: Working model – subprocess initiation

119

7 Pattern Support in newYAWL

As a benchmark of the capabilities of newYAWL, this section presents the results of
a patterns-based evaluation of the language using the control-flow, data and resource
patterns. For comparative purposes, this evaluation is contrasted with one for YAWL.
Although there is a formal definition for YAWL, it is limited to the control-flow
perspective. For this reason, the evaluation results in this section are based on the
latest version of the YAWL System (Beta 8). The newYAWL results are based on the
capabilities demonstrated by the abstract syntax and the semantic models presented
earlier. Subsequent sections in this section present the results of pattern evaluations
in three perspectives: control-flow, data and resource.

7.1 Control-flow perspective

Table 13 identifies the extent of support by YAWL and newYAWL for the control-
flow patterns. YAWL supports 19 of the 20 original control-flow patterns. The only

Nr Pattern Y
A
W

L

n
e
w

Y
A
W

L

Nr Pattern Y
A
W

L

n
e
w

Y
A
W

L

Basic Control New Control-Flow Patterns
1 Sequence + + 21 Structured Loop – +
2 Parallel Split + + 22 Recursion – +
3 Synchronization + + 23 Transient Trigger – +
4 Exclusive Choice + + 23 Persistent Trigger – +
5 Simple Merge + + 25 Cancel Region + +

Adv. Branching & Synchronization 26 Cancel MI Activity + +
6 Multiple Choice + + 27 Complete MI Activity – +
7 Structured Synchronising Merge + + 28 Blocking Discriminator – +
8 Multiple Merge + + 29 Cancelling Discriminator + +
9 Structured Discriminator + + 30 Structured Partial Join – +

Structural 31 Blocking Partial Join – +
10 Arbitrary Cycles + + 32 Cancelling Partial Join – +
11 Implicit Termination +/– – 33 Generalized AND-Join + +

Multiple Instance 34 Static Partial Join for MIs + +
12 MI without Synchronization + + 35 Static Canc. Partial Join for MIs + +
13 MI with a priori Design Time Knowl. + + 36 Dynamic Partial Join for MIs – +
14 MI with a priori Runtime Knowl. + + 37 Acyclic Synchronizing Merge + +
15 MI without a priori Runtime Knowl. + + 38 General Synchronizing Merge + +

State-based 39 Critical Section + +
16 Deferred Choice + + 40 Interleaved Routing + +
17 Interleaved Parallel Routing + + 41 Thread Merge – +
18 Milestone + + 42 Thread Split – +

Cancellation 43 Explicit Termination – +
19 Cancel Activity + +
20 Cancel Case + +

Table 13: Support for control-flow patterns in Original YAWL vs newYAWL

omission being Implicit Termination which, although being the preferred method of
process termination, is not fully implemented in the YAWL system. It fares less well in
terms of support for the new control-flow patterns. The availability of the cancellation
region construct allows YAWL to support the Cancel Region, Cancel MI Task and
Cancelling Discriminator patterns. Similarly, the availability of a multiple instance

120

task construct ensures the Static Partial Join for MIs and the Static Cancelling
Join for MIs patterns are supported. Considerable work [WEAH05] has gone into
OR-join handling in YAWL, hence the Acyclic and General Synchronizing Merge are
supported. Finally the Petri net foundation for YAWL provide a means of supporting
the Critical Section and Interleaved Routing patterns. None of the other new control-
flow patterns are supported.

In contrast, newYAWL supports 42 of the 43 patterns. The only omission is the
Implicit Termination pattern which is not supported as the termination semantics of
newYAWL are based on the identification of a single defined end node for processes.
When the thread of control reaches the end node in a newYAWL process instance,
it is deemed to be complete and no further work is possible. Thus it achieves a
full support rating for the Explicit Termination pattern which is a distinction from
previous versions of the YAWL System which were based on Implicit Termination.

7.2 Data perspective

Table 14 illustrates data pattern support in YAWL and newYAWL. The data model
in YAWL is based on the use of net variables which are passed to and from tasks using
XQuery statements. These can be used for data passing to all forms of task hence
the Block Data and Multiple Instance Data patterns are directly supported together
with the various Data Interaction patterns relevant to these constructs. The use of
XQuery for data passing ensures the Data Transfer by Value – Incoming and Outgoing
patterns are also supported together with the corresponding Data Transformation
patterns. There is also support for Data-based Routing.

Nr Pattern Y
A
W

L

n
e
w

Y
A
W

L

Nr Pattern Y
A
W

L

n
e
w

Y
A
W

L

Data Visibility Data Interaction (Ext.) (cont.)
1 Task Data – + 21 Env. to Case – Push-Oriented – +
2 Block Data + + 22 Case to Env. – Pull-Oriented – +
3 Scope Data – + 23 Workflow to Env. – Push-Orient. – +
4 Multiple Instance Data + + 24 Env. to Workflow – Pull-Orient. – +
5 Case Data – + 25 Env. to Workflow – Push-Orient. – +
6 Folder Data – + 26 Workflow to Env. – Pull-Orient. – +
7 Workflow Data – + Data Transfer
8 Environment Data – + 27 by Value Incoming + +

Data Interaction (Internal) 28 by Value Outgoing + +
9 between Tasks + + 29 Copy In/Copy Out – +
10 Block Task to Sub-work. Decomp. + + 30 by Reference – Unlocked – –
11 Sub-work. Decomp. to Block Task + + 31 by Reference – Locked – +/–
12 to Multiple Instance Task + + 32 Data Transformation – Input + +
13 from Multiple Instance Task + + 33 Data Transformation – Output + +
14 Case to Case – + Data-based Routing +

Data Interaction (External) 34 Task Precondition – Data Exist. – +
15 Task to Env. – Push-Oriented – + 35 Task Precondition – Data Val. – +
16 Env. to Task – Pull-Oriented – + 36 Task Postcondition – Data Exist. – +
17 Env. to Task – Push-Oriented – + 37 Task Postcondition – Data Val. – +
18 Task to Env. – Pull-Oriented – + 38 Event-based Task Trigger – +
19 Case to Env. – Push-Oriented – + 39 Data-based Task Trigger – +
20 Env. to Case – Pull-Oriented – + 40 Data-based Routing + +

Table 14: Support for data patterns in Original YAWL vs newYAWL

121

newYAWL markedly improves on this range of capabilities and supports all but
two of the patterns. One of the two remaining patterns – Data Transfer by Reference
– Locked – receives a partial support rating. This is a consequence of the value-
based interaction strategy that newYAWL employs for data passing. newYAWL does
provide locking facilities for data elements, hence it is possible to prevent concurrent
use of a nominated data element thus achieving the same operational effect as required
for support of this pattern however as it is not directly implemented in this form, it
only achieves a partial support rating.

7.3 Resource perspective

Table 15 illustrates the extent of resource pattern support by the two offerings. YAWL
provides relatively minimal consideration of this perspective supporting only 8 of the
43 patterns.

Nr Pattern Y
A
W

L

n
e
w

Y
A
W

L

Nr Pattern Y
A
W

L

n
e
w

Y
A
W

L

Creation Patterns Pull Patterns (cont.)
1 Direct Allocation + + 24 System-Determ. Wk Queue Cont. – +
2 Role-Based Allocation + + 25 Resource-Determ. Wk Queue Cont. – +
3 Deferred Allocation – + 26 Selection Autonomy – +
4 Authorization – + Detour Patterns
5 Separation of Duties – + 27 Delegation – +
6 Case Handling – – 28 Escalation – +
7 Retain Familiar – + 29 Deallocation – +
8 Capability-Based Allocation – + 30 Stateful Reallocation – +
9 History-Based Allocation – + 31 Stateless Reallocation – +
10 Organizational Allocation – + 32 Suspension/Resumption – +
11 Automatic Execution + + 33 Skip – +

Push Patterns 34 Redo – –
12 Distrib. by Offer - Single Resource + + 35 Pre-Do – –
13 Distrib. by Offer - Multiple Resources + + Auto-Start Patterns
14 Distrib. by Allocation - Single Resource – + 36 Commencement on Creation – +
15 Random Allocation – + 37 Creation on Allocation – +
16 Round Robin Allocation – + 38 Piled Execution – +
17 Shortest Queue – + 39 Chained Execution – +
18 Early Distribution – – Visibility Patterns
19 Distribution on Enablement + + 40 Conf. Unalloc. Work Item Visibility – +
20 Late Distribution – + 41 Conf. Alloc. Work Item Visibility – +

Pull Patterns Multiple Resource Patterns
21 Resource-Init. Allocation + + 42 Simultaneous Execution + +
22 Resource-Init. Exec. - Alloc. Wk Items + + 43 Additional Resource – –
23 Resource-Init. Exec. - Offer. Wk Items – +

Table 15: Support for resource patterns in Original YAWL vs newYAWL

In contrast, newYAWL supports 38 of the 43 resource patterns. The five that are
not supported are:

– Case Handling – as this implies that complete process instances are allocated to
users rather than individual work items as is the case in the majority of current
PAIS;

– Early Distribution – as work items in newYAWL can only be allocated to users
once they have been enabled;

122

– Pre-Do – as work items can only be executed at the time they are enabled and
cannot be allocated to a resource prior to this time;

– Redo – as work items cannot be re-allocated to a user at some time after their
execution has been completed; and

– Additional Resource – as work items are only ever undertaken by a single resource
in newYAWL and there is no provision for the additional involvement of non-human
resources.

8 Epilogue

The main objectives of this research initiative were to provide a definitive seman-
tic meaning for each of the catalogue of workflow patterns in the control-flow, data
and resource perspectives and to demonstrate that they could be implemented on a
common platform in an integrated manner. The workflow patterns embody individ-
ual recurring constructs that have generic applicability when modelling and enacting
process-aware information systems. They are derived from empirical observations of
actual process modelling formalisms and execution environments hence it is to be ex-
pected that they are able to be formally defined and enacted as this research initiative
has illustrated. In addition to successfully achieving these goals, we have also shown
how these patterns can be enacted in an integrated operational environment. This
work forms the basis of the design for the newYAWL offering, a reference language for
process-aware information systems. An implementation of which is currently being
developed by the BPM Group at QUT.

One of the main propositions underlying the approach taken to completing this
research has been that the design and development of large-scale software initiatives
such as newYAWL should be based on formal specification of the intended function-
ality prior to the actual software development. This notion is not novel and whilst
widely lauded in various sections of the software community, it has been extremely
difficult to achieve. The motivations for pursuing a formal approach to software speci-
fication lie in the belief that the underlying design will be both correct and consistent.
Moreover the use of formal techniques should allow for the experimentation with a
wider range of design alternatives and the selection of the most appropriate of them
at an earlier stage in the overall software development process.

We have been able to successfully produce a complete formal design for the
newYAWL offering based on formal principles. However, whilst we agree with the
need for the use of formal techniques in software development, there are two immedi-
ate observations that are pertinent to this work: (1) in order to prevent the need to
develop a design completely from first principles, the approach used for specifying the
design must be based on a formal underlying model that itself is both self-consistent
and capable of embodying various levels of abstraction and (2) there must be an
environment available in which the model can developed, tested for consistency and
executed. Unless it is possible to satisfy both of these requirements, it is not possible
to produce a complete design of a complex software offering such as newYAWL in a
tractable and reliable manner.

For our purposes we selected the Coloured Petri-Net modelling formalism and
used the CPN Tools offering to develop the formal semantic model for newYAWL.
This decision has suited our purposes admirably. We have been able to build a

123

comprehensive model of newYAWL in a relatively efficient manner. Indeed the overall
design effort has been less than 10% of the total development budget for the initial
version of the YAWL System, which has a significantly smaller range of functionality.
CPN Tools provides an interactive development environment for modelling that allows
candidate models to be executed. This provides immediate feedback on the efficacy
and relative merit of potential solutions to a specific problem and allows specific
design alternatives to be tested and decided on at a relatively early stage in the
software process with some certainty of the actual impact of these choices from an
execution standpoint.

The hierarchical nature of the CPN model has proven to be extremely effective
in delineating the various structural components of newYAWL and the interfaces be-
tween them. Moreover, it allows different processing paradigms to be embodied within
the same model. For example: the control-flow and data perspectives in newYAWL
are tightly interrelated and involve a limited number of interactions between a large
range of data resources where as the resource perspective involves a relatively broad
range of possible interactions between a smaller range of data resources. In visual
terms, the former perspectives are embodied by CPN models involving a wide range
of persistent data elements linked to a small number of transitions whilst the latter
leads to process models which have a much larger number of transitions (and possible
execution paths linking those transitions) but involve a more limited range of data
elements.

An additional benefit of the hierarchical modelling approach is the ability to
clearly delineate common functionality and the interfaces between various structural
components. As an example, the control-flow and data perspectives communicate
with the resource perspective through four specific interaction points. Similarly, the
interface between the work item distribution, work list handler and management in-
tervention processes that comprise the resource perspective are also clearly delineated
and the specific range of interactions that are allowed between these components can
be defined accordingly.

The overall modelling process for newYAWL, whilst extremely complex, has been
relatively time-efficient. Much of this progress is attributable to the design decisions
taken early in the project and the capabilities of the modelling tools chosen. Whilst
extremely powerful, there are several aspects of the CPN Tools environment that
would benefit from the inclusion of additional capabilities. In particular, the ability
to incrementally wind back the execution state of a given execution would be useful,
as would the ability to save an execution state for later execution. The interaction
facilities for the CPN model are particularly effective, however there are less features
provided for tracing and altering the execution of ML code segments that form part
of a CPN model. The inclusion of features such as these in future CPN Tools releases
would be extremely beneficial.

124

A Mathematical Notations

This appendix outlines mathematical notations used in this report that are not in
general use and hence merit some further explanation.

In the context of a newYAWL net, where t ∈ T is a task, •t denotes the input
conditions or tasks (as in newYAWL, tasks can be directly linked to tasks) to the
task and t• denotes the output conditions or tasks. In a more formal sense, •t =
{x ∈ T ∪ C | (x, t) ∈ F} where T is the set of tasks, C the set of conditions and F
the flow relation (i.e. the set of arcs) associated with a net. Similarly, t• = {x ∈
T ∪ C | (t, x) ∈ F}.

In the context of a function f : A → B, range restriction of f over a set R ⊆ B is
defined by f ¤ R = {(a, b) ∈ f | b ∈ R}.

P(X) denotes the power set of X where Y ∈ P(X) ⇔ Y ⊆ X.

P+(X) denotes the power set of X without the empty set ie. P+(X) = P(X)\{∅}.

Let V = {v1, ...vn} be a non-empty) set and < a strict total order over V , then
[V]< denotes the sequence [v1, ...vn] such that ∀1≤i≤j<n[vi < vj] and every element
of V occurs precisely once in the sequence. [v] denotes the sequence in arbitrary
order. Sequence comprehension is defined as [E(x) | x ← [V]<] yielding a sequence
[E(v1)...E(vn)].

125

B newYAWL Specification for Working Example

newYAWL-net = p1
NetID = {p1,p2}
FolderID = {fn1,fn2}
ProcessID = {p1}
TaskID = {A,B,C,D,F,F,G,J,K,L}
ScopeID = {s1}
VarID = {v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12,v13,v14,v15}
TriggerID = {t1}
TNmap = {((p1,C),p2)}
NTmap = {(p1,{A,B,C,D,F,F,G}),(p2,{J,K,L})}
STmap = {(s1,{B,D,E})}
VarNames = {wv1,wv2,fv1,fv2,cv1,bv1,sv1,tv1,tv2,tv3,tv4,tv5,mv1,mv2,mv3}
DataTypes = {string,int,bool,emprecs}
VName = {(v1,wv1),(v2,wv2),(v3,fv1),(v4,fv2),(v5,cv1),(v6,bv1),(v7,sv1),
(v8,tv1),(v9,tv2),(v10,tv3),(v11,tv4),(v12,tv5),(v13,mv1),(v14,mv2),
(v15,mv3)}
DType = {(v1,int),(v2,emprecs),(v3,string),(v4,int),(v5,string),(v6,string),
(v7,string),(v8,int),(v9,string),(v10,string),(v11,int),(v12,string),
(v13,string),(v14,int),(v15,string)}
VarType = {(v1,Global),(v2,Global),(v3,Folder),(v4,Folder),(v5,Case),
(v6,Block),(v7,Scope),(v8,Task),(v9,Task),(v10,Task),(v11,Task),(v12,Task),
(v13,MI),(v14,MI),(v15,MI)}
VGmap = {(v1,p1),(v2,p2)}
VFmap = {(v3,fn1),(v4,fn2)}
VCmap = {(v5,p1)}
VBmap = {(v6,p2)}
VSmap = {(v7,s1)}
VTmap = {(v8,A),(v9,B),(v10,E),(v11,F),(v12,J)}
VMmap = {(v13,B),(v14,B),(v15,B)}
PushAllowed = {v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12}
PullAllowed = {v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12}

nid = p1
C = {Ci,Co}
i = Ci
o = Co
T = {A,B,C,D,E,F,G}
F = {(Ci,A),(A,B),(A,C),(B,D),(B,E),(D,E),(E,F),(C,F),(F,G),(G,Co)}
Split = {(A,AND),(B,XOR)}
join = {(E,XOR),(F,PJOIN)}
Default = {(B,D)}
<XOR = {(B,{(1,D),(2,E)}])}
Rem = {}
Comp = {(F,{B})}
Block = {}
Disable{(C,{B})}
Nofi = {(B,1,5,2,dynamic,cancelling)}
Lock = {(A,v2)}
Thresh = {(F,1)}
ThreadIn = {}

126

ThreadOut = {}
ArcCond = {((B,D),undef(v9)),((B,E),isdef(v9))}
Pre = {(A,isdef(v1))}
Post = {(G,isdef(v4))}
WPre = isdef(v2)
WPost = true
PreTest = {}
PostTest = {}

nid = p2
C = {Ci2,Co2}
i = Ci2
o = Co2
T = {J,K,L}
F = {(Ci2,J),(J,K),(K,L),(L,Co2)}
Split = {(J,THREAD)}
Join = {(L,THREAD)}
Default = {}
<XOR = {}
Rem = {}
Comp = {}
Block = {}
Disable{}
Nofi = {}
Lock = {}
Thresh = {}
ThreadIn = {(L,3)}
ThreadOut = {(J,3)}
ArcCond = {}
Pre = {}
Post = {}
WPre = true
WPost = true
PreTest = {(J,less3(v12))}
PostTest = {}

InPar = {((A,v8),inc(v1)),((E,v10),copy(v7),((F,v11),copy(v5))),((J,v12),copy(v6))}
OutPar = {((A,v1),copy(v8)),((E,v7),addc(v10)),((F,v5),copy(v11)),((J,v6),copy(v12))}
OptInPar = {(F,v5),(J,v6)}
OptOutPar = {(J,v12)}
InNet = {((C,v6),copy(v3))}
OutNet = {((C,v3),copy(v6))}
OptInPar = {}
OptOutPar = {}
MIInPar = {((B,{v13,v14,v15}),copy(v2))}
MIOutPar = {(B,v2),copy(v13,v14,v15))}
InProc = {}
OutProc = {(v1,inc(v4))}

127

UserID = {user1,user2,user3,user4,user5,user6}
RoleID = {role1,role2,role3}
CapabilityID = {cap1,cap2,cap3}
OrgGroupID = {og1,og2,og3}
JobID = {j1,j2,j3,j4,j5}
CapVal = {val1,val2,val3,val4,val5}
GroupType = {(og1,team),(og2,team),(og3,department)}
JobGroup = {(j1,og1),(j2,og1),(j3,og2),(j4,og3),(j5,og3)}
OrgStruct = {(og1,og2),(og2,og3)}
Superior = {(j1,j2),(j2,j4),(j3,j4),(j4,j5)}
RoleUser = {(role1,{user1,user2,user3,user4}),(role2,{user2,user4,user6}),
(role3,{user5,user6})}
UserPriv = {(user1,{choose}), (user2,{choose,concurrent,reorder}),
(user3,{choose,viewoffers,viewallocs,viewexecs}), (user4,{choose}),
(user5,{choose,concurrent,reorder,viewoffers,viewallocs,viewexecs,chainedexec}),
(user6,{choose,concurrent,reorder,viewoffers,viewallocs,viewexecs,chainedexec})}
UserTaskPriv = {((user1,A),{suspend,reallocate,reallocate_state,deallocate,
delegate,skip,piledexec}),
((user2,A),{piledexec}),((user3,J),{piledexec}),((user3,K),{piledexec}),
((user3,L),{piledexec}),
((user6,A),{suspend,reallocate,reallocate_state,deallocate,delegate,skip,piledexec}),
((user3,B),{suspend,reallocate,reallocate_state,deallocate,delegate,skip,piledexec})}
UserQual = {((user1,cap1),val1),((user1,cap2),val2),((user2,cap1),val3),
((user3,cap2),val4),((user4,cap1),val1),((user4,cap2),val2),((user5,cap1),val1),
((user5,cap2),val3),((user6,cap1),val1),((user6,cap2),val2)}
UserJob = {(user1,{j1}),(user2,{j2}),(user3,{j3}),(user4,{j3,j4}),(user5,{j4}),
(user6,{j5})}
HistExpr = {lastA}
OrgExpr = {org1}
CapExpr = {capval1}
Auto = {G}
Manual = {A,B,D,E,F,G,J,K,L}
Initiator = {(A,(system,system,system)),(B,(system,resource,resource)),
(D,(resource,system,resource)),(E,(system,system,resource)),
(F,(resource,resource,resource)),(G,(system,system,system)),
(J,(system,resource,system)),(K,(system,resource,resource)),
(L,(system,resource,resource)),}
DistUser = {(A,{user1,user2,user3,user4,user5,user6}),(D,{user1,user2,user3,user4}),
(F,{user1}),(J,{user1,user2,user3,user4}),(K,{user1,user2,user3,user4})}
DistRole = {(B,{role1,role3}),(E,{role1,role2,role3}),(L,{role2,role3})}
DistVar = {}
SameUser = {(K,J)}
FourEyes = {(L,K)}
HistDist = {(B,lastA())}
OrgDist = {(A,org1())}
CapDist = {(J,capval1())}
UserSel = {(E,sortestqueue),(B,random)}

128

C Unfolded newYAWL Specification for Working Exam-
ple

TaskID = {A,B,C,D,E,F,G,J,K,L,TSP1,TSP2,TEP1,TEP2,DT1,DT3,FJ1,FJ2,FR1,FR2,JL1,JL2,
JL3,JL4,JL3S1,JL3S2,JL3S3,LM1,LM2}
TriggerID = {}
STmap = {(s1,{B,D,DT3,E})}

nid = p1
C = {Cstart,Cstart2,Ci,CT,CBDT3,DD,CAB,CAC,CBD,CBE,CEFJ1,CFB1,CCFJ2,CFJ1FR1,CFJ2FR2,
CFJ2F,CFJ1F,CFG,Co,Cend,Cend2}
i = Cstart2
o = Cend2
T = {A,B,C,D,E,F,G,J,K,L,TSP1,TEP1,TSP2,TEP2,DT1,DT3,FJ1,FJ2,FR1,FR2}
F = {(Cstart2,TSP2),(TSP2,Cstart),(TSP2,CFB1),(Cstart,TSP1),(TSP1,CT),(TSP1,Ci),
(CT,DT1),(DT1,CT),(CT,TEP1),(TEP1,Cend),(Cend,TEP2),(CFB1,TEP2),(TEP2,Cend2),
(Ci,A),(A,CAB),(CAB,B),(B,CBDT3),(CBDT3,DT3),(DT3,DD),(B,CBE),(DD,D),
(D,CDE),(CDE,E),(CBE,E),(E,CEFJ1),(A,CAC),(CAC,C),(C,CCFJ2),(CCFJ2,FR1),
(CCFJ2,FJ2),(FJ2,CFJ2F),(FJ2,CFJ2FR2),(CFJ2FR2,FR2),(CEFJ1,FJ1),(FJ1,CFJ1F),
(CEFJ1,FR2),(FJ1,CFJ1FR1),(CFJ1FR1,FR1),(CFB1,FJ1),(CFB1,FJ2),(FR1,CFB1),
(FR2,CFB1),(CFJ1F,F),(CFJ2F,F),(F,CFG),(CFG,G),(G,Co),(Co,TEP1)}
split = {(A,AND),(B,XOR),(DT1,AND),(FJ1,AND),(FJ2,AND),(TSP1,AND),(TSP2,AND)}
join = {(E,XOR),(F,XOR),(FJ1,AND),(FJ2,AND),(FR1,AND),(FR2,AND),(TEP1,AND),
(TEP2,AND)}
<XOR = {(B,{(1,CBDT3),(2,CBE)}])}
ArcCond = {((B,CBDT3),undef(v9)),((B,CBE),def(v9))}
Thresh = {}

nid = p2
C={Ci2,CJL2JL1,CJL1J,CJJL4,CJL1JL3,CJL4JL1,CJL4JL3,CJL3S1,CJL3S2,CJL3S3,CJL3S,
CM1,CM2,Co2}
T = {J,JL1,JL2,JL3,JL4,JL3S1,JL3S2,JL3S3,K,L,LM1,LM2}
F = {(Ci2,JL2),(JL2,CJL2JL1),(CJL2JL1,JL1),(JL1,CJL1J),(JL1,CJL1JL3),(CJL1J,J),
(J,CJJL4),(CJJL4,JL4),(JL4,CJL4JL1),(CJL4JL1,JL1),(JL4,CJL4JL3),(CJL4JL3,JL3),
(CJL1JL3,JL3),(JL3,CJL3S1),(JL3,CJL3S2),(JL3,CJL3S3),(CJL3S1,JL3S1),
(CJL3S2,JL3S2),(CJL3S3,JL3S3),(JL3S1,CJL3S),(JL3S2,CJL3S),(JL3S3,CJL3S),(CJL3S,K),
(K,CM1),(CM1,L),(CM1,LM1),(LM1,CM2),(CM2,LM2),(LM2,CM1),(CM2,L),(L,Co2)}
split = {(JL1,XOR),(JL4,XOR),(JL3,AND)}
join = {(JL1,XOR),(JL3,XOR),(L,AND)}
<XOR = {(JL1,{(1,CJL1J),(2,CJL1JL3)}),(JL4,{(1,CJL4JL1),(2,CJL4JL3)})}
ThreadIn = {}
ThreadOut = {}
ArcCond = {((JL1,CJL1J),less3(v12)),((JL1,CJL1JL3),nless3(v12)),
((JL4,CJL4JL1),true),((JL4,CJL4JL3),false)}
PreTest = {}

InPar = {((A,v8),inc(v1)),((E,v10),copy(v7),((F,v11),copy(v5))),((FJ1,v11),copy(v5))),
((FJ2,v11),copy(v5))),((J,v12),copy(v6)),((JL1,v12),copy(v6)),((JL3,v12),copy(v6))}
OptInPar = {(F,v5),(FJ1,v5),(FJ2,v5),(J,v6),(JL1,v6),(JL3,v6)}

Auto = {G,TSP1,TSP2,TEP1,TEP2,DT1,DT3,FJ1,FJ2,FR1,FR2,JL1,JL2,JL3,JL4,JL3S1,JL3S2,JL3S3,
LM1,LM2}

129

D Initial Marking for Working Example

val iTMaps = [("p1","A", users ["user1","user2","user3","user4","user5","user6"],
system,resource,resource),
("p1","B", roles ["role1","role3"], system,resource,resource),
("p1","D", users ["user1","user2","user3","user4"], resource,system,resource),
("p1","E", roles ["role1","role2","role3"], system,system,resource),
("p1","F", users ["user1"], resource,resource,resource),
("p1","G", AUTO, system,system,system),
("p1","J", users ["user1","user2","user3","user4"], system,resource,system),
("p1","K", users ["user1","user2","user3","user4"], system,resource,resource),
("p1","L", roles ["role2","role3"], system,resource,system),
("p1","TSP1", AUTO, system,system,system),
("p1","TSP2", AUTO, system,system,system),
("p1","TEP1", AUTO, system,system,system),
("p1","TEP2", AUTO, system,system,system),
("p1","DT1", AUTO, system,system,system),
("p1","FJ1", AUTO, system,system,system),
("p1","FJ2", AUTO, system,system,system),
("p1","FR1", AUTO, system,system,system),
("p1","FR2", AUTO, system,system,system),
("p1","JL1", AUTO, system,system,system),
("p1","JL2", AUTO, system,system,system),
("p1","JL3", AUTO, system,system,system),
("p1","JL4", AUTO, system,system,system),
("p1","JL3S1", AUTO, system,system,system),
("p1","JL3S2", AUTO, system,system,system),
("p1","JL3S3", AUTO, system,system,system),
("p1","LM1", AUTO, system,system,system),
("p1","LM2", AUTO, system,system,system)];

val iTasks = ["A","B","C","D","E","F","G","J","K","L","DT1","DT3","TSP1","TSP2",
"TEP1","TEP2","FJ1","FJ2","FR1","FR2","JL1","JL2","JL3","JL4","JL3S1","JL3S2",
"JL3S3","LM1","LM2"];

val iRUmaps = [("role1",{"user1","user2","user3","user4"}),
("role2",{"user2","user4","user6"}),
("role3",["user5","user6"])];

val iUser = ["user1","user2","user3","user4","user5","user6"];

val iUP = [("user1",[choose]), ("user2",[choose,concurrent,reorder]),
("user3",[choose,viewoffers,viewallocs,viewexecs]), ("user4",[choose]),
("user5",[choose,concurrent,reorder,viewoffers,viewallocs,viewexecs,chainedexec]),
("user6",[choose,concurrent,reorder,viewoffers,viewallocs,viewexecs,chainedexec])]

val iUTP = [("user1","A",[suspend,reallocate,reallocate_state,deallocate,
delegate,skip,piledexec]),
("user2","A",[piledexec]),("user3","J",[piledexec]),("user3","K",[piledexec]),
("user3","L",[piledexec]),
("user6","A",[suspend,reallocate,reallocate_state,deallocate,delegate,skip,
piledexec]),("user3","B",[suspend,reallocate,reallocate_state,deallocate,delegate,
skip,piledexec])];

130

val iTUS = [("p1","E",shortestqueue),("p1","B",random)];

val iRL = [("p1","A",[gdef(("p1","wv2"))])];

val iSplits = [asplit(("p1","A")),
xsplit(("p1","B",[("undef",[tdef("p1","B","tv2")],"CBDT3"),
("isdef",[tdef("p1","B","tv2")],"CBE")],"CBDT3")),
asplit(("p1","DT1")),asplit(("p1","FJ1")),asplit(("p1","FJ2")),
asplit(("p1","TSP1")),asplit(("p1","TSP2")),
xsplit(("p1","JL1",[("less3",[tdef("p1","JL1","tv5")],"CJL1J"),
("nless3",[tdef("p1","JL1","tv5")],"CJL1JL3")],"CJL1J")),
xsplit(("p1","JL4",[("true",[],"CJL4JL1"),("false",[],"CJL4JL3")],"CJL4JL1")),
asplit(("p1","JL3"))];

val iJoins = 1‘[xjoin(("p1","E")),xjoin(("p1","F")),ajoin(("p1","FJ1")),
ajoin(("p1","FJ2")),ajoin(("p1","FR1")),ajoin(("p1","FR2")),ajoin(("p1","TEP1")),
ajoin(("p1","TEP2")),xjoin(("p1","JL1")),xjoin(("p1","JL3")),ajoin(("p1","L"))];

val iSM = 1‘[("p1","s1",["B","D","E"])];

val iUC = [("user1",[("cap1",sval("val1")),("cap2",sval("val2"))]),
("user2",[("cap1",sval("val3"))]),("user3",[("cap2",sval("val4"))]),
("user4",[("cap1",sval("val1")),("cap2",sval("val2"))]),
("user5",[("cap1",sval("val1")),("cap2",sval("val3"))]),
("user6",[("cap1",sval("val1")),("cap2",sval("val2"))])];

val iUJ = [("user1","j1"),("user2","j2"),("user3","j3"),("user4","j3"),
("user4","j4"),("user5,"j4"),("user6","j5")];

val iFR = [([("p1","Cstart2","TSP2"),("p1","Cstart","TSP1"),("p1","CT","DT1"),
("p1","CT","TEP1"),("p1","Co","TEP1"),("p1","Cend","TEP2"),("p1","CFB1","TEP2"),
("p1","Ci","A"),("p1","CAB","B"),("p1","CAC","C"),("p1","CD","D"),("p1","DD","D"),
("p1","CBDT3","DT3"),("p1","CBE","E"),("p1","CDE","E"),("p1","CEFJ1","FJ1"),
("p1","CEFJ1","FR2"),("p1","CCFJ2","FR1"),("p1","CCFJ2","FJ2"),
("p1","CFJ1FR1","FR1"),("p1","CFJ2FR2","FR2"),("p1","CFJ1F","F"),("p1","CFJ2F","F"),
("p1","CFG","G"),("p1","Ci2","JL2"),("p1","CJL2JL1","JL1"),("p1","CJL4JL1","JL1"),
("p1","CJL1J","J"),("p1","CJJL4","JL4"),("p1","CJL1L3","JL3"),("p1","CJL4JL3","JL3"),
("p1","CJL3S1","JL3S1"),("p1","CJL3S2","JL3S2"),("p1","CJL3S3","JL3S3"),
("p1","CJL3S","K"),("p1","CM1","L"),("p1","CM2","L"),("p1","CM1","LM1"),
("p1","CM2","LM2")],[("p1","TSP2","Cstart"),("p1","TSP2","CFB1"),("p1","TSP1","CT"),
("p1","TSP1","Ci"),("p1","TEP1","Cend"),("p1","TEP2","Cend2"),("p1","DT1","CT"),
("p1","DT1","CD"),("p1","A","CAB"),("p1","A","CAC"),("p1","B","CBDT3"),("p1","DT3","DD")
("p1","B","CBE"),("p1","C","CCFJ2"),("p1","D","CDE"),("p1","E","CEFJ1"),
("p1","F","CFG"),("p1","G","Co"),("p1","FJ1","CFJ1F"),("p1","FJ1","CFJ1FR1"),
("p1","FJ2","CFJ2F"),("p1","FJ2","CFJ2FR2"),("p1","FR1","CFB1"),("p1","FR2","CFB1"),
("p1","CFB1","FJ1"),("p1","CFB1","FJ2"),("p1","JL2","CJL2JL1"),("p1","JL1","CJL1J"),
("p1","JL1","CJL1JL3"),("p1","J","CJJL4"),("p1","JL4","CJL4JL1"),("p1","JL4","CJL4JL3"),
("p1","JL3","CJL3S1"),("p1","JL3","CJL3S2"),("p1","JL3","CJL3S3"),("p1","JL3S1","CJL3S"),
("p1","JL3S2","CJL3S"),("p1","JL3S3","CJL3S"),("p1","K","CM1"),("p1","LM1","CM2"),
("p1","LM2","CM1"),("p1","L","Co2")])];

val iVD = [(gdef("p1","wv1"),true,true,"int"),
(gdef("p1","wv2"),true,true,"emprecs"),

131

(fdef("p1","fn1","fv1"),true,true,"string"),
(fdef("p1","fn2","fv2"),true,true,"int"),
(cdef("p1","cv1"),true,true,"string"),
(bdef("p1","p2","bv1"),true,true,"string"),
(sdef("p1","s1","sv1"),true,true,"string"),
(tdef("p1","A","tv1"),true,true,"int"),
(tdef("p1","B","tv2"),true,true,"string"),
(tdef("p1","E","tv3"),true,true,"string"),
(tdef("p1","F","tv4"),true,true,"int"),
(tdef("p1","J","tv5"),true,true,"string"),
(mdef("p1","B","mv1"),false,false,"string"),
(mdef("p1","B","mv2"),false,false,"int"),
(mdef("p1","B","mv3"),false,false,"string")];

val iWH = [("p1","p1","Cstart2","Cend2",["A","B","C","D","E","F","G",
"DT1","DT3","FJ1","FJ2","FR1","FR2","TSP1","TSP2","TEP1","TEP2"],["s1"]),
("p1","p2","Ci2","Co2",["J","JL1","JL2","JL3","JL4","JL3S1","JL3S2","JL3S3","K","LM1",
"LM2","L"],[])];

val iPM = [("p1","A",[gdef("p1","wv1")],"inc",[tdef("p1","A","tv1")],invar,mand,single),
("p1","E",[bdef("p1","p1","bv1")],"copy",[tdef("p1","E","tv3")],invar,mand,single),
("p1","F",[cdef("p1","cv1")],"copy",[tdef("p1","F","tv4")],invar,opt,single),
("p1","FJ1",[cdef("p1","cv1")],"copy",[tdef("p1","F","tv4")],invar,opt,single),
("p1","FJ2",[cdef("p1","cv1")],"copy",[tdef("p1","F","tv4")],invar,opt,single),
("p1","J",[bdef("p1","p2","bv1")],"copy",[tdef("p1","J","tv5")],invar,opt,single),
("p1","JL1",[bdef("p1","p2","bv1")],"copy",[tdef("p1","JL1","tv5")],invar,opt,single),
("p1","JL3",[bdef("p1","p2","bv1")],"copy",[tdef("p1","JL1","tv5")],invar,opt,single),
("p1","A",[tdef("p1","A","tv1")],"copy",[gdef("p1","wv1")],outvar,mand,single),
("p1","E",[tdef("p1","E","tv3")],"addc",[sdef("p1","s1","sv1")],outvar,mand,single),
("p1","F",[tdef("p1","F","tv4")],"copy",[cdef("p1","cv1")],outvar,opt,single),
("p1","J",[tdef("p1","J","tv5")],"copy",[bdef("p1","p2","bv1")],outvar,opt,single),
("p1","C",[fdef("p1","fn1","fv1")],"copy",[bdef("p1","p2","bv1")],invar,mand,single),
("p1","C",[bdef("p1","p2","bv1")],"copy",[fdef("p1","fn1","fv1")],outvar,mand,single),
("p1","B",[gdef("p1","wv2")],"copy",[mdef("p1","B","mv1"),mdef("p1","B","mv2"),
mdef("p1","B","mv3")],invar,mand,multiple),
("p1","B",[mdef("p1","B","mv1"),mdef("p1","B","mv2"),mdef("p1","B","mv3")],
"copy",[gdef("p1","wv2")],outvar,mand,multiple)];

val iVarDet = [atask("p1","A"),mitask("p1","B",1,5,2,dynamic,cancelling),
ctask("p1","C","p2"),atask("p1","D"),atask("p1","DT1"),atask("p1","DT3"),
atask("p1","E"),atask("p1","F"),atask("p1","FJ1"),atask("p1","FJ2"),
atask("p1","FR1"),atask("p1","FR2"),atask("p1","G"),atask("p1","J"),
atask("p1","JL1"),atask("p1","JL2"),atask("p1","JL3"),atask("p1","JL4"),
atask("p1","JL3S1"),atask("p1","JL3S2"),atask("p1","JL3S3"),atask("p1","K"),
atask("p1","L"),atask("p1","LM1"),atask("p1","LM2"),atask("p1","TSP1"),
atask("p1","TSP2"),atask("p1","TEP1"),atask("p1","TEP2")];

val iPre = [("p1","A","isdef",[gdef("p1","wv1")]),
("p1","","isdef",[gdef("p1","wv2")])];

val iPost = [("p1","G","def",[fdef("p1","fn2","fv2")])];

val iRems = [("p1","F",[],[],["B"])];

132

val iDis = [("p1","C",["B"])];

val iSU = [("p1","K","J")];

val iDU = [("p1","L","K")];

val iOG = [("og1",team,"og3"),("og2",team,"og3"),("og3",department,"og3")];

val iJM = [("j1","og1","j2"),("j2","og1","j4"),("j3","og2","j4"),("j4","og3","j5"),
("j5","og3","j5")];

val iHTD = [("p1","A","lastA")];

val iOTD = [("p1","B","org1")];

val iCTD = [("p1","J","capval1")];

133

References

[AH02] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet another
workflow language. Technical Report QUT Technical Report, FIT-TR-
2002-06, Queensland University of Technology, 2002.

[AH05] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet another
workflow language. Information Systems, 30(4):245–275, 2005.

[Jen97] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Volume 1, Basic Concepts. Monographs in Theoretical
Computer Science. Springer-Verlag, Berlin, Germany, 1997.

[Kas06] P.S. Kastner. The business process management benchmark report. Tech-
nical report, Aberdeen Group, 2006.

[Kie03] B. Kiepuszewski. Expressiveness and Suitability of Languages for Control
Flow Modelling in Workflows. PhD thesis, Queensland University of
Technology, Brisbane, Australia, 2003.

[MAHR06] N. Mulyar, W.M.P. van der Aalst, A.H.M. ter Hofstede, and N. Rus-
sell. A critical analysis of the 20 classical workflow control-flow patterns.
Technical report, BPM Center Report BPM-06-18, 2006.

[OADH06] C. Ouyang, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede.
Translating BPMN to BPEL. Technical Report BPM-06-02, 2006. www.
BPMcenter.org.

[PA05] M. Pesic and W.M.P van der Aalst. Toward a reference model for work
distribution in workflow management. In E. Kindler and M. Nüttgens, ed-
itors, Proceedings of the First International Workshop on Business Pro-
cess Reference Models (BPRM’05), Nancy, France, 2005.

[RAHE05] N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond.
Workflow resource patterns: Identification, representation and tool sup-
port. In O. Pastor and J. Falcão e Cunha, editors, Proceedings of the 17th
Conference on Advanced Information Systems Engineering (CAiSE’05),
volume 3520 of Lecture Notes in Computer Science, pages 216–232, Porto,
Portugal, 2005. Springer.

[RAHW06] N. Russell, W.M.P van der Aalst, A.H.M. ter Hofstede, and P. Wohed.
On the suitability of UML 2.0 activity diagrams for business process
modelling. In M. Stumptner, S. Hartmann, and Y. Kiyoki, editors, Pro-
ceedings of the Third Asia-Pacific Conference on Conceptual Modelling
(APCCM2006), volume 53 of CRPIT, pages 95–104, Hobart, Australia,
2006. ACS.

[RHAM06] N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst, and N. Mulyar.
Workflow control-flow patterns: A revised view. Technical Report BPM-
06-22, 2006. http://www.BPMcenter.org.

134

[RHEA05] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst.
Workflow data patterns: Identification, representation and tool support.
In L. Delcambre, C. Kop, H.C. Mayr, J. Mylopoulos, and O. Pastor,
editors, Proceedings of the 24th International Conference on Conceptual
Modeling (ER 2005), volume 3716 of Lecture Notes in Computer Science,
pages 353–368, Klagenfurt, Austria, 2005. Springer.

[WEAH05] M.T. Wynn, D. Edmond, W.M.P. van der Aalst, and A.H.M. ter Hofst-
ede. Achieving a general, formal and decidable approach to the OR-join in
workflow using Reset nets. In G. Ciardo and P. Darondeau, editors, Pro-
ceedings of the 26th International Conference on Application and Theory
of Petri nets and Other Models of Concurrency (Petri Nets 2005), vol-
ume 3536 of Lecture Notes in Computer Science, pages 423–443, Miami,
USA, 2005. Springer-Verlag.

[WH06] C. Wolf and P. Harmon. The state of business process management. Tech-
nical report, BPTrends, 2006. http://www.bptrends.com/surveys_
landing.cfm.

135

