
SAP WebFlow Made Configurable:
Unifying Workflow Templates into a

Configurable Model

F. Gottschalk, W.M.P. van der Aalst and M.H. Jansen-Vullers

Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

{f.gottschalk,w.m.p.v.d.aalst,m.h.jansen-vullers}@tue.nl

Abstract. To facilitate the implementation of workflows, enterprise and
workflow system vendors typically provide sets of workflow templates for
their software. Each of these templates depicts a variant of how a par-
ticular business process can be supported by the software. The user of
such a system can save the effort of creating the models and the links
to system components from scratch by selecting and activating the best
fitting template. A combination of the strengths from different templates
is however only achievable by manually adapting one of the templates
which is cumbersome. We therefore suggest in this paper to combine the
different workflow templates into a single configurable workflow tem-
plate. Using the workflow modeling language of SAP’s WebFlow engine,
we depict how such a configurable workflow modeling language can be
created by identifying the configurable elements in the original language.
Requirements imposed on configurations inhibit invalid configurations.
Based on a default configuration such configurable templates can be used
as easy as the traditional templates. The suggested general approach is
also applicable to other workflow modeling languages.

Keywords: Process Configuration, Business Process Reference Model, Process-
aware Information System, Workflow Template, SAP WebFlow

1 Introduction

Workflow engines facilitate the execution of business processes by guiding and
monitoring cases of the business process while “running through the company”.
That means, a workflow engine executes processes as automatically as possible.
Whenever needed it provides all required information for the execution of tasks
to the responsible individuals, notifies them when new work items arrive, and
takes action in case tasks are not performed in time [24].

To execute a workflow in a workflow engine, it must first be specified in
the engine’s workflow modeling language. The workflow modeling language can
be seen as an extended business process modeling language (like Event-driven
Process Chains (EPCs) [21], BPMN [34], UML-activity diagrams [14] etc.). Be-
sides depicting the process, it allows for the integration of activities specified in

the process model with other systems like enterprise systems, groupware, office
software, or intranet portals.

The effort to establish this integration is typically high. When modeling a
workflow, it is not only required to ensure the correct control flow, but also the
data flow between the different steps and components must be “programmed”
and assignment rules for resources must be set up. Thus, the re-use of workflow
models promises huge costs savings when implementing workflows in similar
system environments. This holds especially for enterprise systems, which due to
the system structure already imply the set-up of processes in quite specific ways.

The biggest enterprise system vendor worldwide is with more than 100,000
installations SAP [29]. The workflow engine that is delivered by SAP together
with every installation of its enterprise system since the R/3 Release 3.0 is called
WebFlow1. Together with the engine, SAP also delivers hundreds of simple,
predefined workflow templates for all areas of the system – from logistics and
material management to personal time management, sales and distribution, or
compensation management [24]. Thus, the template repository can be regarded
as a reference model of common workflows in SAP’s enterprise system. The
templates, which typically fit comfortably on one A4 page, can easily be activated
in the SAP system. Without a workflow designer having ever spent a significant
amount of time on the workflow definition, they are then triggered automatically
whenever their execution is required. Often SAP users are therefore working on
the predefined workflows without even knowing it.

For many business processes the repository includes several workflow tem-
plates, each suggesting a different implementation of the particular process. For
example, there is a dedicated workflow template not only for the approval of a
travel request, but also for the automatic approval of a travel request. In addi-
tion, there are workflow templates for the approval of a travel plan, the approval
of a trip, and the automatic approval of a trip.

All these templates are in their structure of course similar. To decide on
the appropriate template, each template is documented in SAP’s online help
system, typically also combined with an EPC of the process. As an example
figures 1 and 2 show two EPCs from the online documentation of SAP [28].
These two EPCs refer to the templates for supporting the approval of a travel
request and the automatic approval of a travel request. However, there is no
information available that highlights the differences between the two templates.
Instead, the workflow designer has to familiarize herself with the details of each
workflow template, compare them manually on her own, and find the small
differences. If, as in the example from figures 1 and 2, there is a certain degree
of inconsistency in the documentation of the templates because it is unclear if
“Create travel request” and “Enter travel request” actually depict the same task,
this comparison requires even further efforts. In the worst case, the workflow
designer might even come up with the conclusion that a combination of two

1 In early releases the WebFlow engine was known as SAP Business Workflow. The
ideas presented in this paper are basically also applicable to these versions of the
engine.

2

Fig. 1. The documentation of the SAP
WebFlow template for approvals of
travel requests [28]

Fig. 2. ... and the documentation of
the template for the automatic ap-
proval of travel requests [28].

templates would be the optimal solution as each template has its strength at a
different point in the model. As such a template is not available she can then
only manually adapt one of the templates at its weak point to match the not
selected one here as close as possible.

To help the workflow designers in getting the optimal workflow template we
propose in this paper to combine the different workflow template variants into a
single template using an extension to the workflow specification language making
it a configurable workflow specification language. This configuration extension
allows the workflow designer to just select or eliminate the relevant or irrelevant
template parts. Thus, the designer can focus on the requirements on the workflow
instead of searching for the possibilities in the different templates.

For this we will in the following first depict, how configuration can be per-
formed on a workflow model and how a workflow modeling language can be
extended with such configuration options. Afterwards we will apply these con-
cepts to SAP’s workflow modeling language and depict the integrated workflow
template for the example shown above. The paper concludes with a short sum-
mary and an outlook on open issues.

2 Making workflow models configurable

As depicted in the introduction, configurable workflow modeling languages are
useful whenever an individual workflow variant should be derived from a more
general model. For this, configurable workflow modeling languages enable the

3

restriction of the behavior of workflow models in a controlled manner. This
section outlines a general approach for the development of such configurable
workflow modeling languages.

By using the term “workflow models”, we explicitly focus on executable
business process models, although the approach might be applicable to non-
executable, conceptual modeling languages as well. We assume that every work-
flow modeling language that explicitly depicts the flow of cases, i.e. executed
workflow instances, through a system with steps, tasks, activities, functions or
similar concepts of performed actions can be made configurable. Before defining
such a configurable workflow modeling language, it is however first required to
identify what a configuration of a model in a particular language is.

In our previous research on configurable process models [2,17], we identi-
fied two general applicable methodologies to configure, i.e. restrict, a workflow
model, namely blocking and hiding. The insight that these are the two basic con-
figuration operations was obtained by a systematic study of inheritance notions
in the context of business processes [1,5]. If an action in a workflow is blocked,
it cannot be executed. The process will never continue after the action and thus
never reach a subsequent state or any subsequent action. If an action is hidden,
its performance is not observable, i.e. it is skipped and consumes neither time
nor resources. But the process flow continues afterwards and subsequent actions
will be performed. For that reason we also talk about a silent action2 or simply
about skipping the action. If an action in a workflow model is neither blocked
nor hidden, then we say it is enabled, which refers to its normal execution. The
enabled action is performed as it would be in a classic, un-configurable workflow.

As a rule of thumb this means that if the performance of an action is not
desired and the action is not mandatory for subsequent steps, than hiding is
the preferred configuration method. If a whole sequence or line of actions is not
desired or if the non-desired action is mandatory for subsequent actions, blocking
is typically the preferred configuration method. But note that there might be a
lot of exceptions to this rule.

To develop configurations for a particular language, it is required to identify
those element types of the language which represent actions that can be per-
formed. These are usually elements like activities, functions, steps, etc. For an
action to be executed, it must be triggered. Triggers are typically represented
by arcs pointing into an action. However, the meaning of these arcs leading into
the action vary not only among different workflow modeling languages but also
within a single workflow modeling language because of different joining patterns
for preceding paths leading into the action. For example, some actions require
that all preceding paths are completed for the action to be triggered (AND-
join), whereas other actions can be triggered via each arc pointing into the
action (XOR-join). We call each combination of incoming paths through which
an action can be triggered an inflow port of the action (see the left side of Figure
3). Thus, an action with an AND-joining behavior for the incoming paths has

2 The term silent action comes from concurrency theory where silent actions are de-
noted as τ and form the basis for equivalence notions such as branching bisimulation.

4

just a single inflow port whereas a task with an XOR-joining behavior has an
inflow port for each incoming path.

After an action has completed, it releases the particular case via the arcs
leaving the action. Also here the number of triggered paths depends on the
semantics specified for the particular action. An action with an AND-splitting
behavior triggers all outgoing paths, whereas an action with an XOR-splitting
behavior only triggers one subsequent path. Of course there can also be semantics
allowing the triggering of a specific number of paths (OR-split). Aligned with
the specification of inflow ports, we say that each case can leave the action only
through one distinct outflow port, but then triggers all paths connected to this
outflow port (see the right side of Figure 3).

���������	
�

��
�������	
�

��� ���

������

Fig. 3. The number of ports of an ac-
tion depends on its joining and split-
ting behavior

������

���	
��

��� ���

������

�������

�������

Fig. 4. Ports can be enabled or
blocked, and in case of an inflow also
be hidden

The different ports of an action thus represent runtime alternatives in a
process modelling language. By making ports the configurable elements of the
net, i.e. by making them the elements which can be enabled, blocked, or hidden,
we provide the opportunity to select desired variants among the alternatives and
eliminate undesired variants on a distinct configuration level. Every port can be
enabled or blocked while inflow ports can also be hidden.

An enabled inflow port allows the triggering of the action through this port.
If an inflow port is however blocked, no cases can flow into the action through
this port. The triggering of the action via the inflow port is inhibited. If an action
is triggered via a hidden inflow port, the action itself is skipped and the case
is directly forwarded to one of the outflow ports (usually but not necessarily a
default output port; see Figure 4).

If an outflow port is enabled, the action can select this port as the port
through which the case is released. If an outflow port is however blocked, the
port cannot be selected as the used outflow port. Instead another enabled out-

5

flow port must be selected. Thus, the blocking of an outflow port inhibits the
performance of actions subsequent to the port. However, as cases should always
be able to leave a triggered action, at least one outflow port must always be
enabled. The hiding of an outflow port is impossible because outflow ports trig-
ger paths instead of actions. A path just forwards the case to the next action
without containing any action itself. Thus, a path contains nothing that can be
skipped (and any subsequent action should be hidden via its own input ports).

By deriving ports from the definition of a workflow modeling language instead
of defining them as elements which have to be added to the workflow models
of the language, each model can serve as the basis for a configurable model
without any change. Such a model represents the “Least Common Multiple” of
all possible model variants. It contains the maximal possible behavior which can
be achieved by enabling all variants, i.e. configuring all ports as enabled. We call
this initial model therefore the basic model whose behavior can be restricted by
hiding or blocking of selected ports.

To transform such configuration decisions into a model executable in the
traditional workflow engine, blocked elements and all their dead successors must
be removed from the model and hidden elements must be replaced by shortcuts.

Obviously, not all models created by such a transformation conform to the
definition of the used modeling language or to behavior executable by the con-
nected systems. For example, blocking of too many ports or of a “wrong” port
might result in a deadlock during the execution of the process. In a similar way
also hiding essential actions might result in semantically incorrect and thus non-
executable models. To avoid the occurrence of such situations, a configurable
model must not only consist of the basic model, but also of a set of requirements
restricting the set of permitted configurations and therefore ensuring both syn-
tactical and semantic validity of models. An example for a syntactical motivated
requirement would be “Each action must have at least one enabled outflow port
to allow the outflow of cases”; an example for a semantically motivated require-
ment would be “If a manager can decide on the approval of a travel request, she
must at least be able to accept or refuse it.” (but might also be able to, e.g., del-
egate the decision), or better “If a port is enabled that allows cases to flow into
the action Check travel request, then the ports allowing for cases flowing into the
actions Travel request approved and Travel request rejected must be enabled”.
That means, although the requirement is semantically motivated, it still should
be formulated in terms of the model’s port configuration.

For a better understanding, we presented the example requirements in a
rather informal way. However, to detect and prevent invalid configurations auto-
matically, a formal specification of requirements is indispensable. We therefore
suggest either the use of a subset of a programming language, or to formulate
logical expressions (similar to, e.g., the validity constraints suggested in [23], or
the formulas suggested in [10]).

As mentioned above, the basic model uses the traditional, i.e. non-configurable,
version of the particular modeling language. Assuming that all ports are enabled,
the model should therefore satisfy all of the language’s syntactical requirements.

6

It might however contain semantically conflicting elements whenever two vari-
ants of the workflow exclude each other. To be able to use such a basic model
in a workflow engine, it is thus required to explicitly set up a configuration that
satisfies all requirements. By requiring that every valid configurable workflow
model contains at least one valid configuration as a default configuration, we
ensure the existence of such a configuration.

The default configuration also serves as a “starting point” for any individual
configuration. In this way, configuring a configurable workflow model to individ-
ual requirements just means to modify those port configurations that need to
deviate from the default configuration – usually a limited effort even if there are
many configurable ports.

3 Configurable workflow models in SAP

Workflows that should be executed in SAP’s WebFlow engine must first be
specified in the engine’s workflow modeling language which for simplification
we just call SAP workflow in the following. SAP workflow is mainly based on
so-called steps and events which are organized in a block structure3. Steps are
depicted by boxes with different symbols, representing either routing constructs
or functionalities offered by the system. Figure 5 depicts the SAP workflow
template for the travel approval process from Figure 1. We will use this example
to explain the different modeling elements.

– The most basic step type is the activity () which is in the example used
for the Set trip status to approved, Change trip, Enter and send message, and
Send mail: Request approved activities. An activity step is always connected
to a task maintained in the SAP system which is executed when the step is
triggered. After completion of the task, the step is completed and the next
task is triggered.

– User decisions () such as the Approve travel request step shown in Figure 5
are providing the user with a list of answers from which she can chose one.
Based on this answer the corresponding subsequent path is selected.

– Conditions () such as the Travel request approved? step evaluate a Boolean
condition. Based on the outcome of this evaluation they follow one of the two
paths. Similar, multiple conditions (, not depicted in the example) contain
a set of subsequent paths, of which one is selected based, e.g., on the value
of a (non-Boolean) data element of the workflow. If no path is connected to
the value of the data element, an “other values” branch is selected.

– Forks (,) allow parallel processing of paths. All paths leaving the split-
ting fork are triggered by this step. The joining fork allows the specification
of a condition when it is completed. This condition can be the number of
preceding paths that have to have completed. The condition can also be
based on data elements of the workflow.

3 SAP also provides an EPC translation for workflows specified in SAP workflow. The
usage of EPCs is however restricted to constructs realizable in SAP workflow. For
this reason we stick to the original SAP workflow notation.

7

– As soon as a Wait for event step () is triggered, it waits for a linked event
to occur and the workflow is only continued after the event has occurred.

Events () can be raised by business applications to communicate with work-
flows. The trigger to raise an event can be manifold. For example, it can be the
creation or the change of a document, a general status message, an exception
occurring in an information system, or a business transaction event which oc-
curred in the financial system. Even a workflow can raise events on its own by

Fig. 5. The workflow template of the travel approval process depicted in Figure 1
in the SAP workflow notation (accessible in SAP as workflow WS20000050)

8

Event creator steps (). Events can be linked to workflows (and tasks which
then are handled as if they are workflows on their own) as triggering events to
start the workflow (e.g., as the Travel Request Created event in the example), or
as terminating events to stop a workflow or a wait for event step inside a work-
flow. Note, that the same event can be linked for different purposes to different
workflows at the same time, e.g. to terminate one workflow and instead trigger
another workflow.

The linkage between steps or events and workflows includes also the linkage
of the data in the data containers of the step or event and the workflow. This
linkage enables the start of a workflow or a step with the right parameters, e.g. to
select responsible resources or correct documents. We will skip further implemen-
tation details about this here, but not without repeating that this modeling and
customizing effort is far more time-consuming than the pure creation of a pro-
cess model. These efforts therefore motivate the development of a configurable
SAP workflow.

What are the actions and their ports in SAP workflow?

SAP workflow models are block structured. In the simplest case a single step
as, e.g., an activity represents a block. However, whenever a step causes the
branching of the control-flow (as a fork, a condition, a user-decision, or any
other step that contains different outcomes) the branching of the control flow is
matched by exactly one corresponding join and all elements until (and including)
the matching join belong to the block of the branching step. The elements in
each of the branches represent then sub-blocks of the branching block. This is
also highlighted in Figure 5. The block of the fork is highlighted in light grey.
This block contains two sub-blocks, one for each of the two branches. The block
of the user-decision step Approve travel request branches again in three branches,
each containing a block for the particular activity.

Thus, each block can be seen as an action. Bigger blocks are actions on a
higher level of abstraction; smaller blocks are typically actions on a lower level
of abstraction. Each block contains basically just one unique input path and one
unique output path which are the ports of the action.

The biggest block is the block of the complete workflow itself. It is the only
block which can be triggered in multiple ways as it cannot only be triggered by
a manual start of the workflow but also by (various) events which are linked to
the workflow block. In addition, events can also be linked to a workflow block
to terminate it or to re-start it. Thus, each of these links connecting events
to the workflow block can also be seen as a port. As they have some different
characteristics from the input and output ports of a block, let us call them event
ports. In the same way, we also call the linkage between events and wait for event
steps and between event creator steps and events event ports.

9

How to configure the ports?

As explained in the previous section, inflow ports of actions can be enabled,
hidden, or blocked. This concept can be applied to the input ports of blocks
in SAP workflow in a straightforward manner. If the input port of a block is
enabled, cases can normally enter and be executed in the block. If the input
port is hidden, a case entering the block is directly forwarded to the unique exit
port of the block, quasi bypassing all the content of the block. If the input port
is blocked, the case cannot enter the block at all and needs to continue via other
alternative branches.

Common soundness criteria for workflow models require that cases must al-
ways have a chance to complete a workflow. That means they should never get
stuck within a workflow. Thus, a block can only be blocked if an alternatively
executable branch exists. This is no problem in case of the Change trip step’s
block because alternatively the Set trip status to approved or the Enter and send
message steps’ blocks can be executed. It is however impossible to block the in-
put port of the Travel request approved? step’s block as the workflow does not
contain any alternative to it. In the case of this particular fork step, it is possible
to block one of the two sub-blocks, but only because the join requires just one
of the two branches to complete. If the condition at the join would have been
“2 From 2” a blocking of one of the sub-blocks would have made it impossible to
later satisfy this condition and thus caused a deadlock. Therefore, when config-
uring the sub-blocks of a fork, the condition at the joining fork determines the
maximal amount of sub-blocks that can be blocked.

As the output port of a block is unique, each case entering a block must be
able to leave the block via this output port. Thus, a blocking of this port is not
practicable as long as cases are able to enter the block. Only if the input port
is blocked, the output port can be blocked as well. Such a blocking is however
just of a theoretic nature because if no tokens can arrive at an output port, its
configuration has no influence on the process execution anyway. In addition, we
already showed in Section 2 that hiding of an output port is not really feasible
either because the path to the next block does not contain any action. If any
subsequent block should be hidden, this should rather be done on the subsequent
block’s input port4. We can therefore assume that all output ports in an SAP
workflow model are always enabled and consider the configuration of output
ports in SAP workflow as practically irrelevant.

In SAP workflow an event only triggers a workflow if the link between the
event and the workflow is activated. The SAP workflow system already sup-
ports the deactivation of such a link, quasi corresponding to the blocking of
the particular event port. Although a triggering event port is an inflow port,
hiding of such a port is quite useless because it would basically mean skipping
the whole workflow block without performing any step. Terminating event ports
for wait-for-event steps and the event ports of event creator steps are outflow
4 If it is desired to hide a series of blocks, SAP workflow even provides a block step

into which a sequence of blocks can be encapsulated such that only one input port
needs to be hidden.

10

ports. Even though terminating events are externally triggered, they basically
enforce the removal of the case from the particular block. Thus, the functional-
ity of SAP to activate or deactivate such linkages already provides exactly the
required functionality to enable or block event ports.

In Figure 6 we combined the SAP workflow template from Figure 5 with
the template for the automatic approval described by the EPC of Figure 2. By
blocking the change trip step the corresponding block is quasi removed from the
workflow. By hiding of the Travel request approved? step, also the sub-block of
mailing the request’s approval is skipped. All other blocks are enabled. The re-
sult of this configuration then corresponds exactly to the SAP workflow template
WS12500021 for the automatic approval of a travel request whose EPC docu-
mentation was depicted in Figure 2. By blocking the sub-block of the Criteria
for Automatic Approval step’s Automatically Approve Travel Request outcome
and instead enabling the Change trip and the Travel request approved? blocks,
we would end up with the traditional approval workflow from Figure 5. Of course

��������

������

��	
���

������

������

��	��� �������

������

��	
���

������

������

����	���	�������������	����������� �	�	���������	��������	����������������� ������

!��"

Fig. 6. The combined workflow template of SAP’s travel approval workflow tem-
plate (WS20000050) and the automatic approval template (WS12500021), con-
figured as the automatic approval workflow.

11

this workflow would still contain the Criteria for Automatic Approval step, but
its only possible outcome is the manual approval sub-block.

Restricting the configuration opportunities

As indicated before, not all such combinations are feasible in practice. We already
mentioned the requirement that a workflow always has to have the opportunity
to complete. In addition, there are typically a lot of semantic requirements. For
example, it is well possible to block or enable the Wait for event ‘Changed’ step’s
block. However, hiding it would prevent the workflow from working correctly as
it would cause a direct forwarding of cases to the joining fork whose condition
would immediately be satisfied. Thus, the other branch would get superfluous
and cancelled before any decision on the approval can be made. As another
example, blocks such as the accept and reject sub-blocks of the Approve travel
request step might be mandatory for the particular workflow. Then these two
blocks must always be enabled.

Applying the idea of using logical expression to denote these requirements, we
could for example write configuration("Enter and send short message")
=ENABLED to depict that the particular block must be enabled or
configuration("Wait for event ’changed’")!=HIDDEN for the requirement
that the block cannot be hidden (of course we would rather use unique block
IDs than the step names as steps can occur more than once in a single work-
flow). Such atomic logical expressions can then be combined, e.g., to formu-
late a requirement that if the Change trip block is blocked then the Travel
request approved? must be hidden (configuration("Change trip")=BLOCKED
=> configuration("Travel request approved?")=HIDDEN).

To test if a configuration fulfills all requirements, the requirements can be
combined using AND operators. By determining the blocks which can change
their configuration values without breaking the requirements, it is even possible
to identify those blocks of the workflow which are not bound to their current
value and thus really configurable. But note that this calculation is complex and
with changing the configuration value of one element, the configurability of other
elements can change. Still, a tool that is able to regularly re-evaluate the con-
figuration opportunities for reasonable sized models might use this information
to provide configuration opportunities only to currently configurable blocks.

Plug & Play

The current SAP workflow templates allow for an easy integration of the pre-
defined workflow templates into a running SAP system by just assigning the
relevant resources to the steps and activating the triggering events. To enable
such an easy activation also for configurable workflow templates, each workflow
template has to have a default configuration. A default configuration can be any
configuration satisfying the requirements specified for the workflow. For exam-
ple, the configuration of Figure 6 representing the automatic approval template
could be the default configuration for the combined travel approval workflow

12

template. When activating the triggering event, the workflow corresponding to
this configuration would automatically be enabled. However, if it is for example
desired, that the manager is also able to ask for a change of the travel request,
it is sufficient to assign the responsible resource to the Change step and enable
the currently blocked port. Without any modeling effort the new configuration
of the workflow template can be used.

As configured templates can easily be transformed into executable workflow
models according to today’s SAP WebFlow notation, it is not necessary to change
SAP’s current workflow engine to run workflows derived from the suggested con-
figurable language. Instead, the implementation of the suggested approach in the
context of SAP’s enterprise system would solely require an extension of the user
interface that depicts the configuration options, a tool that checks the fulfill-
ment of the requirements by the configuration to prevent invalid configurations,
and an implementation of the transformation algorithm to derive the configured
workflow model from the configuration.

4 Related work

The workflow templates of SAP’s WebFlow engine depict suggestions how to
execute the particular processes in SAP. Thus, they can be regarded as a ref-
erence model for processes executable in SAP. Motivated by the “Design by
Reuse” paradigm, reference models simplify the process model design by provid-
ing repositories of generally valid and potentially relevant models which can be
used to accelerate the modeling process [9,15,16,22,33].

One of the most cited reference models in the context of business process
modeling is the SAP reference model [12,30], which was developed in the nineties
in cooperation between SAP and the IDS Scheer AG and covers more than 1000
business processes as EPCs. However, different from the executable workflow
templates of SAP workflow which we address in this paper, the SAP reference
model was designed just on a conceptual level.

To be applicable in a particular context (e.g., a specific enterprise), a gener-
ally valid reference model must typically be adjusted to individual requirements
(of the enterprise). This can be done by adding additional content to the model
or by configuring the existing content of the model [6,7]. To enable the adapta-
tion of reference models by means of configuration, several variants of the process
must be integrated within the model. Extensions to conceptual process modeling
languages that allow for defining such an integration are suggested by Becker
et al. [6], Rosemann and van der Aalst [27], and Soffer et al. [31]. Although the
potential efficiency benefits of using configurable process models during the im-
plementation of enterprise systems are highlighted by all the authors [8,13,31],
the suggested usage of the three approaches remains on the conceptual level.
Only in [13] a potential applicability of configurations to executable workflow
models such that the configuration can be enacted using a workflow engine is
indicated.

13

We followed up on this in our previous research [2,17] where we derived
the general applicable methodologies of blocking and hiding for configuring a
workflow model from a systematic study of inheritance notions in the context of
business processes [1,5], and compared these ideas with the ideas of Rosemann
and van der Aalst. In this paper, we now added an approach for using these
previously derived methodologies to form concrete modelling languages.

The idea of providing configurable workflow models as suggested here implies
to have different variants of the process in different contexts. Of course, a context
and thus also the required workflow configuration can change over time which
then requires the transfer of running workflow instances from one configuration
to another. Systems tackling these problems are also called configurable, re-
configurable or adaptive workflow systems [11,18,19,20,25,32], but they typically
neglect the preceding aspect of how the change of the workflow model can be
supported. For our approach, we just rely on the mechanics provided by the
version management of SAP’s WebFlow engine and therefore neglect this aspect.

5 Summary & Outlook

In this paper we demonstrated the advantages of the integration of several work-
flow templates into a single workflow template from which then workflow variants
can be derived by means of configuration. To make a workflow modeling language
configurable the elements representing actions and the ports through which cases
are routed through these actions must be identified. These ports which are rep-
resenting runtime alternatives can then be configured as either enabled to allow
the normal execution of the action, be hidden to skip the particular action, or be
blocked to prevent any flow of cases in the direction of the action. Requirements
on the configuration ensure the configuration’s applicability on the workflow.
A default configuration enables the usage of a configurable workflow template
even without any configuration effort and serves as the starting point for any
configuration.

To show how easily these ideas can be used in existing workflow modeling
languages, we applied the concepts to the block-structured workflow definition
language of SAP’s workflow engine WebFlow which is part of every SAP enter-
prise system installation since the mid nineties. SAP’s WebFlow engine comes
with a huge set of pre-defined workflow templates. We used this set to demon-
strate that the merging of similar workflow templates into configurable workflow
models allows to individually combine the strengths of different templates during
the workflow implementation.

In future research, we have to show that our ideas are also applicable to non-
block-structured workflow modeling languages. For this purpose, we are currently
applying these ideas onto YAWL, an open-source workflow system supporting
much more patterns than SAP workflow [3,4,35]. Given the openness of YAWL
also the implementation of configuration functionalities as a software tool will
be easier in the YAWL environment than in SAP.

14

To provide further assistance for the configuration of workflow models, we
aim at integrating the idea of configurable workflow modeling languages into a
configuration framework, allowing on the one hand to use advanced decision-
making tools for performing the configuration [26], and on the other hand a
synchronized configuration between the workflows and other system components
as e.g. software applications.

Acknowledgements

The authors would like to thank Marcello La Rosa for his feedback on the general
methodology presented in this paper.

References

1. W.M.P. van der Aalst and T. Basten. Inheritance of workflows: an approach to
tackling problems related to change. Theoretical Computer Science, 270(1-2):125–
203, January 2002.

2. W.M.P. van der Aalst, A. Dreiling, F. Gottschalk, M. Rosemann, and M.H. Jansen-
Vullers. Configurable Process Models as a Basis for Reference Modeling. In C. Bus-
sler and A. Haller, editors, Business Process Management Workshops, volume 3812
of Lecture Notes in Computer Science, pages 512–518. Springer Verlag, February
2006.

3. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.

4. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

5. T. Basten and W.M.P. van der Aalst. Inheritance of behavior. Journal of Logic
and Algebraic Programming, 47(2):47–145, 2001.

6. J. Becker, P. Delfmann, A. Dreiling, R. Knackstedt, and D. Kuropka. Configurative
Process Modeling – Outlining an Approach to increased Business Process Model
Usability. In Proceedings of the 15th IRMA International Conference, New Orleans,
2004. Gabler.

7. J. Becker, P. Delfmann, and R. Knackstedt. Adaptive Reference Modeling: Inte-
grating Configurative and Generic Adaptation Techniques for Information Models.
In Proceedings of the Reference Modeling Conference 2006, Passau, 2006. to appear.

8. J. Becker, P. Delfmann, T. Rieke, and C. Seel. Supporting Enterprise Systems
Introduction through Controlling-enabled Configurative Reference Modeling. In
Proceedings of the Reference Modeling Conference 2006, Passau, 2006. to appear.

9. P. Bernus. Geram: Generalised enterprise reference architecture and methodol-
ogy version 1.6.3. Technical report, IFIPIFAC Task Force on Architectures for
Enterprise Integration, March 1999.

10. T. Calders, S. Dekeyser, J. Hidders, and J. Paredaens. Analyzing Workflows Im-
plied by Instance-dependent Access Rules. In Proceedings of the 25th ACM SIG-
MOD (PODS), pages 100–109, Chicago IL, USA, 2006. ACM.

11. I. Classen, H. Weber, and Y. Han. Towards Evolutionary and Adaptive Workflow
Systems-infrastructure Support Based on Higher-Order Object Nets and CORBA.
In Proceedings of the 1st International Enterprise Distributed Object Computing
Conference (EDOC ’97), pages 300–308, Los Alamitos, CA, USA, 1997. IEEE
Computer Society.

15

12. T. Curran, G. Keller, and A. Ladd. SAP R/3 Business Blueprint: Understanding
the Business Process Reference Model. Prentice Hall, Upper Saddle River, NJ,
USA, 1998.

13. A. Dreiling, M. Rosemann, and W.M.P. van der Aalst. From Conceptual Process
Models to Running Workflows: A Holistic Approach for the Configuration of En-
terprise Systems. In Proceedings of the 9th Pacific Asia Conference on Information
Systems, pages 363–376, Bangkok, Thailand, 2005.

14. M. Dumas and A.H.M. ter Hofstede. UML activity diagrams as a workflow spec-
ification language. In M. Gogolla and C. Kobryn, editors, Proc. of the 4th Int.
Conference on the Unified Modeling Language (UML01), volume 2185 of LNCS,
pages 76–90, Toronto, Canada, October 2001. Springer Verlag.

15. P. Fettke and P. Loos. Classification of Reference Models – a Methodology and its
Application. Information Systems and e-Business Management, 1(1):35–53, 2003.

16. P. Fettke, P. Loos, and J. Zwicker. Business Process Reference Models: Survey and
Classification. In C. Bussler and A. Haller, editors, Business Process Management
Workshops, volume 3812 of Lecture Notes in Computer Science, pages 469–483,
Berlin Heidelberg, February 2006. Springer Verlag.

17. F. Gottschalk, W.M.P. van der Aalst, and M.H. Jansen-Vullers. Configurable Pro-
cess Models – A Foundational Approach. In Proceedings of the Reference Modelling
Conference 2006, pages 51–66, Passau, Germany, 2006.

18. Y. Han, T. Schaaf, and H. Pang. A Framework for Configurable Workflow Sys-
tems. In Proceedings of the 31st International Conference on Technology of Object-
Oriented Language and Systems, pages 218–224, Los Alamitos, CA, USA, 1999.
IEEE Computer Society.

19. Y. Han, A. Sheth, and C. Bussler. A Taxonomy of Adaptive Workflow Manage-
ment. In Workshop of the 1998 ACM Conference on Computer Supported Cooper-
ative Work, Seattle, Washington, USA, November 1998.

20. P. J. Kammer, G. A. Bolcer, R. N. Taylor, A. S. Hitomi, and M. Bergman. Tech-
niques for Supporting Dynamic and Adaptive Workflow. Computer Supported Co-
operative Work (CSCW), V9(3):269–292, November 2000.

21. G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Prozeßmodellierung auf
der Grundlage Ereignisgesteuerter Prozeßketten (EPK). Veröffentlichungen des
Instituts für Wirtschaftsinformatik, Heft 89 (in German), University of Saarland,
Saarbrücken, 1992.

22. V. B. Misic and J. L. Zhao. Evaluating the Quality of Reference Models. In A.H.F.
Laender, S.W. Liddle, and V.C. Storey, editors, 19th International Conference on
Conceptual Modeling, volume 1920 of Lecture Notes in Computer Science, pages
484 – 498, Salt Lake City, Utah, October 2000.

23. E. S. Raymond. The CML2 Language, 2000. http://catb.org/esr/cml2/

cml2-paper.html.
24. A. Rickayzen, J. Dart, C. Brennecke, and M. Schneider. Practical Workflow for

SAP – Effective Business Processes using SAP’s WebFlow Engine. Galileo Press,
2002.

25. S. Rinderle, M. Reichert, and P. Dadam. Disjoint and Overlapping Process
Changes: Challenges, Solutions, Applications. In R. Meersman and Z. Tari, editors,
On the Move to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE:
OTM Confederated International Conferences, CoopIS, DOA, and ODBASE, vol-
ume 3290, pages 101–120, January 2004.

26. M. La Rosa, J. Lux, S. Seidel, M. Dumas, and A.H.M. ter Hofstede. Questionnaire-
driven Configuration of Reference Process Models. In Proceedings of the 19th

16

http://catb.org/esr/cml2/cml2-paper.html�
http://catb.org/esr/cml2/cml2-paper.html�

Conference on Advanced Information Systems Engineering (CAiSE 2007), pages
424–438, Trondheim, Norway, 2007.

27. M. Rosemann and W.M.P. van der Aalst. A Configurable Reference Modelling
Language. Information Systems, 32(1):1–23, March 2007.

28. SAP AG. SAP Library – Workflow Scenarios in Travel Management
(FI-TV), 2006. http://help.sap.com/saphelp_erp2005vp/helpdata/en/d5/

202038541ec006e10000009b38f8cf/frameset.htm.
29. SAP AG. SAP History: From Start-Up Software Vendor to Global Market Leader,

April 2007. http://www.sap.com/company/history.epx.
30. S. Seidler. From Business Process to SAP Configuration - Deployment of ARIS for

SAP Netweaver and SAP Solution Manager in Projects. ARIS Platform Expert
Paper, IDS Scheer AG, September 2006.

31. P. Soffer, B. Golany, and D. Dori. ERP modeling: a comprehensive approach.
Information Systems, 28(6):673–690, September 2003.

32. S. Tam, W.B. Lee, W.W.C. Chung, and E.L.Y. Nam. Design of a re-configurable
workflow system for rapid product development. Business Process Management
Journal, 9(1):33–45, February 2003.

33. O. Thomas. Understanding the Term Reference Model in Information Systems Re-
search: History, Literature Analysis and Explanation. In C. Bussler and A. Haller,
editors, Business Process Management Workshops, volume 3812 of Lecture Notes
in Computer Science, pages 484–496. Springer Verlag, 2006.

34. S.A. White et al. Business Process Modeling Notation (BPMN), Version 1.0, 2004.
35. YAWL Home Page. http://www.yawlfoundation.org/.

17

http://help.sap.com/saphelp_erp2005vp/helpdata/en/d5/202038541ec006e10000009b38f8cf/frameset.htm�
http://help.sap.com/saphelp_erp2005vp/helpdata/en/d5/202038541ec006e10000009b38f8cf/frameset.htm�
http://www.sap.com/company/history.epx�
http://www.yawlfoundation.org/�

