
Towards a Taxonomy of Process Flexibility
(Extended Version)

M.H. Schonenberg, R.S. Mans, N.C. Russell, N.A. Mulyar and W.M.P. van der
Aalst

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

{m.h.schonenberg,r.s.mans,n.c.russell,nmulyar,w.m.p.v.d.aalst}@tue.nl

Abstract. Effective business processes must be able to accommodate
changes to the environment in which they operate, e.g., new laws, changes
in business strategy. The ability to encompass such changes is termed
process flexibility. In this paper, we take a deeper look into the various
ways in which flexibility can be achieved and propose a comprehensive
taxonomy of these methods which identifies both the manner in which
each of them is facilitated, and also the various configuration options and
alternatives that exist in each case. This taxonomy is subsequently used
to evaluate a selection of process-aware information systems and identify
their potential to deploy flexible business processes.

Keywords: taxonomy, flexibility, design, change, deviation, underspec-
ification.

1 Introduction

Business Process Management (BPM) has become an area of intense focus in
recent years as it is increasingly recognised that the notion of the business process
is a key concept underpinning organisational activities and that these processes
need managing in the same way as other more tangible corporate assets.

Typically the enactment of business processes is facilitated using some form of
process technology. There is a broad range of potential offerings on which these
processes can be based, ranging from workflow systems which rigidly enforce
adherence to the underlying process definition to groupware systems which are
guided by an implied process definition but do nothing to ensure that it is actu-
ally adhered to. The broad range of technologies that are founded on some form
of underlying process definition are termed Process-Aware Information Systems

or PAISs.
A key consideration of effective processes is their ability to deal with both

foreseen and unforeseen changes in the context or environment in which they
operate. This quality of a process – termed flexibility – reflects its ability to deal
with such changes, by varying or adapting those parts of the business process
that are affected by them, whilst retaining the essential format of those parts that
are not impacted by the variations. Indeed, as has been noted [50], flexibility is

as much about what should stay the same in a process as what should be allowed
to change.

Whilst the notion of flexibility is relatively simple at a conceptual level, it
is somewhat more difficult to achieve in practice. PAISs can only capture an
abstraction of the business process that they facilitate, and recognition that
there is a deviation between this process definition and the “real-life” process
that they are intended to support requires external (typically human) input.
Moreover, once a variation is identified between the expected and actual process
enactment some means of minimising this “gap” is required in order to ensure
that the process proceeds in accordance with expectations.

In this paper, we identify a range of approaches for achieving process flexi-
bility. We describe these approaches in the form of a taxonomy, with which we
intend to provide a comprehensive catalogue for the control-flow perspective of

process flexibility. As each of these approaches can be implemented in a number
of distinct ways, a series of realisation options are identified that allow individual
flexibility approaches to be tailored to specific needs.

The remainder of this paper proceeds as follows. Section 2 presents a detailed
description of the taxonomy for process flexibility. Section 3 uses this taxonomy
to evaluate the capabilities of a number of contemporary PAIS and discusses the
evaluation results. Section 4 discusses related work. The conclusion and future
work are presented in Section 5.

2 Taxonomy of Flexibility

In this section, we present a comprehensive description of the various approaches
that can be taken to facilitate flexibility within a process. All of these strategies
improve the ability of business processes to respond to changes in their operating
environment without necessitating the complete redesign of the underlying pro-
cess specification, however they differ in the timing and manner in which they
are effected.

2.1 Overview of Flexibility Types

Four distinct approaches to process flexibility are delineated in the taxonomy,
each having its own application area. We distinguish flexibility by

design: for handling anticipated changes in the operating environment, where
supporting strategies can be defined at design-time.

deviation: for handling occasional unforeseen behaviour, where differences with
the expected behaviour are minimal.

underspecification: for handling anticipated changes in the operating environ-
ment, where strategies cannot be defined at design-time, because the final
strategy is not known in advance or is not generally applicable.

change: either for handling occasional unforeseen behaviour, where differences
require process adaptations, or for handling permanent unforeseen behaviour.

Flexibility

Flexibility
by definition

Flexibility
by deviation

Flexibility
by underspecification

Flexibility
by change

Fig. 1. Flexibility types

Precise definitions of each flexibility type can be found in the remainder
of this section. The flexibility types are presented in the form of a taxonomy
(see Figure 1) which aims to define each of them in detail, providing a precise
description of the manner in which they operate, the concepts relevant to each of
them and details of the various configuration options (termed variation points)
which vary the manner in which they function.

2.2 Illustrating Flexible Behaviour

Throughout this paper, we illustrate the operational effects of each flexibility
type using the concept of traces. A trace is simply a possible execution sequence
in a process instance, e.g., [A,B,C]. Typically what is of interest when illustrat-
ing specific flexibility types is the range of possible execution sequences. This is
usually denoted in terms of a set of traces (e.g., {[A,B,D], [A,C,D]}). Generally
the set of traces depends on the structure of a process as well as the specification
approach used to describe control-flow within the process.

2.3 Specification Approaches

Generally, process behaviour depends on the structure of a process, which can
be defined in an imperative or a declarative way.

Imperative approach An imperative approach focuses on the precise defi-
nition of how a given set of tasks has to be performed (i.e. the task order is
explicitly defined). In imperative languages, constraints on the execution order
are described either via links (or connectors) between tasks and/or data condi-
tions associated with them.

Declarative approach A declarative approach focuses on what should be done
instead of how. It uses constraints to restrict possible task execution options. By
default all execution paths are allowed, i.e., allowing all executions that do not
violate the constraints. In general, as more constraints are defined for a process,
less execution paths are possible, i.e., constraints limit the flexibility. In declar-
ative languages, constraints are defined as relations between tasks. Mandatory
constraints have to be strictly enforced, while optional constraints can be vio-
lated, if needed.

Fig. 2. Specification types.

Figure 2 provides an example of both approaches. For both of them, a set of
possible execution paths are illustrated. Note that these approaches really differ
with respect to flexibility. To increase flexibility in an imperative process, more
execution paths have to be modelled explicitly, whereas increasing the flexibility
in declarative processes is accomplished by reducing the number of constraints,
or weakening the existing constraints. A declarative model is most flexible when
it does not have any constraints. In this case, all its tasks can be executed in
any order, any number of times.

2.4 Flexibility Types in Detail

We now move on to a detailed discussion of each of the individual flexibility types.
Each of these is described in detail using a standard format which includes the
following items:

– motivation – the rationale for the flexibility type;
– definition – a concise description of the flexibility type;
– scope – the situations and domains to which the flexibility type applies;
– realisation options – a set of attributes and/or operational criteria which

characterise the manner in which the flexibility type can be effected;
– example – an illustrative example of its usage; and
– discussion – problems that could be encountered when implementing the

flexibility type and recommendations on how these problems might be ad-
dressed.

Flexibility by Design .

Motivation Where a process operates in a varying operational environment it
is desirable to incorporate support for the various known execution alternatives
within the process definition. At runtime, the most appropriate execution path
can be selected from those encoded in the design time process definition.

Definition Flexibility by Design is the ability to incorporate alternative exe-
cution paths within a process definition at design time such that selection of
the most appropriate execution path can be made at runtime for each process
instance.

Scope Flexibility by design applies to any process which may have more than
one distinct execution trace.

A B C

Fig. 3. Example of flexibility by design.

Realisation options The most common options for realisation of flexibility by
design are listed below. It is not the intention of the authors to give a complete
overview of all options.

– parallelism – the ability to execute a set of tasks in parallel;
– choice – the ability to select one or more tasks for subsequent execution from

a set of available tasks;
– iteration – the ability to repeatedly execute a task1;
– interleaving – the ability to execute each of a set of tasks in any order such

that no tasks execute concurrently;
– multiple instances – the ability to execute multiple concurrent instances of

a task; and
– cancellation – the ability to withdraw a task from execution now or at any

time in the future.

The notions above are thoroughly described in the workflow patterns [57]
and have been widely observed in a variety of imperative languages. We argue
that these concepts are equally applicable in a declarative setting which has a
much broader repertoire of constraints that allow for flexibility by design. Fur-
thermore, in declarative approaches the design of flexible processes is stimulated.
In contrast to imperative approaches, the designer does not have to explicitly
include the concepts in the model, i.e., putting effort to include flexibility to the
design. A declarative model without constraints captures all these concepts and
designers include constraints to limit its flexibility.

Example Figure 3 exemplifies a choice construct in an imperative model. The
figure depicts that after executing A, it is possible to either execute B, followed
by C, or to execute C directly. Using the choice construct, the notion of skipping
tasks can be predefined in the process definition.

Discussion Realisation options can be implemented differently in various avail-
able tools. For example there are different variants of choice construct, such as
exclusive choice and deferred choice, which can be realised in different ways.
Interested readers are referred to the workflow patterns [57].

Describing all possible execution paths in a process definition completely at
design-time may be either undesirable from the standpoint of model complexity
or impossible due to unknown or unlimited number of possible execution paths.
The following three flexibility types provide alternative mechanisms for process
flexibility.

1 Note that iteration can be seen as a particular type of choice, where the join precedes
the split

Flexibility by Deviation .

Motivation Some process instances need to temporarily deviate from the ex-
ecution sequence described by the associated process definition in order to ac-
commodate changes in the operating environment encountered at runtime. For
example, it may be appropriate to swap the ordering of the register patient and
perform triage tasks in an emergency situation. The overall process model and
its constituent tasks remain unchanged.

Definition Flexibility by deviation is the ability for a process instance to deviate
at runtime from the execution path prescribed by the original process without
altering its process definition. The deviation can only encompass changes to the
execution sequence of tasks in the process model for a specific process instance, it
does not allow for changes in the process definition or the tasks that it comprises.

Scope The concept of deviation is particularly suited to the specification of
process definitions which are intended to guide possible sequences of execution
rather than restrict the options that are available (i.e. they are descriptive rather
than prescriptive). These specifications contain the preferred execution of the
process, but other scenarios are also possible.

Realisation options The manner in which deviation is achieved depends on
the specification approach utilised. Deviation can be seen as varying the actual
tasks that will be executed next, from those that are implied by the current
set of enabled tasks in the process instance. In imperative languages this can
be achieved by applying deviation operations. For declarative approaches, devi-
ation basically occurs by violation of optional constraints. The following set of
operations characterise the support of deviation by imperative languages:

– Undo task A: Shifting control to the moment before the execution of task

A. One point to consider with this operation is that it does not imply that
the actions of the task are undone or reversed. This may be an issue if the
task uses and changes data elements during the course of its execution. In
such situations, it may also be desirable to roll-back or compensate for the
consequences of executing the task in some way, although it is not always
possible to do so, e.g., it is not possible to reverse the effects of sending a
letter.

– Redo task A: Executing disabled, but previously executed task A again, with-
out shifting control. This operation provides the ability to repeat a preceding
task. One possible use for the operation is to allow incorrectly entered data
during task execution to be entered again. For example after registering a
patient in a hospital and undertaking some examinations, the registration
task can be repeated to adjust outdated or incorrect data. Note that up-
dating of registration data should not require medical examinations to be
performed again.

– Skip task A: Passing the point of control to a task subsequent to an en-
abled task A. There is no mechanism to compensate for the skipped task
by executing it at a later stage of the execution. This operation is useful
for situations, where a (knowledgeable) user decides that it is necessary to

b) after "skip B"

A C

a) before "skip B"

A C

trace = [A] trace = [A, "skip B"]

B B

Fig. 4. Example of flexibility by deviation.

continue execution, even though some preceding actions have not been per-
formed. For example, in life threatening situations it should be possible to
start surgery immediately, whereas normally the patient’s health status is
evaluated before commencing surgery.

– Create additional instance of task A: Creating an additional instance of a
task that will run in parallel with process instances created on the moment
of task instantiation. To control the flexibility, it should be possible to limit
the maximal number of task instances running in parallel. For example, a
travel agency making trip arrangements for a group of people has to do
the same arrangements if the number of people travelling increases (i.e. a
separate reservation has to be done for each person).

– Invoke task A: Allows a task in the process definition that is not currently
enabled, and has not yet been executed, to be initiated. This task is initiated
immediately. For example, when reviewing an insurance claim, it is suspected
that the information given may be fraudulent. In order to determine how to
proceed, the next task to be executed is deferred and a detailed investigation
task (which normally occurs later in the process) is invoked. The execution
of the investigation task does not affect the thread of control in the process
instance and upon completion of the invoked task, execution continues from
this point. Should the thread of control reach a previously invoked task at
a later time in a process instance, it may be executed again or skipped on a
discretionary basis.

Note that although we define deviation operations for imperative approaches
only, this does not mean that there is no notion of these deviations in declarative
approaches. Consider for example constraint “A precedes B”, which is defined
as optional constraint. By executing B before any occurrence of A, A is actually
skipped by violating the optional precedence constraint. In this paper we clearly
make a distinction between deviation for imperative and declarative approaches,
due to the subtle difference in the act of deviating. Providing a full mapping of
deviation operations to declarative constraints is beyond the scope of this paper.

Example Figure 4 exemplifies flexibility by deviation by applying a skip oper-
ation. In Figure 4(a) task B is enabled. After applying skip B (Figure 4(b)), it
is possible to execute a (currently not enabled) successor of an enabled task B.

Discussion Deviation operations can be implemented in different ways, but
nevertheless it should be possible to identify which deviations have been made
during process execution. Furthermore additional requirements for the operators

can be given, e.g., the “undo A” operation only has effect when task A has been
executed previously. When undoing task A, it may be recorded in one of two
possible ways in the execution trace: either the undo task is explicitly marked as
an execution action or the occurrence of task A being undone is removed from
the trace.

Flexibility by Underspecification .

Motivation When specifying a process definition, it might be foreseen that
in the future, during run-time execution, more execution paths will be needed
which have to be handled in accordance with the existing process definition.
Furthermore, often only during the execution of a process instance it becomes
clear what needs to be done at some specific point in the process. Where all
execution paths cannot be defined in advance, it is useful to be able to execute an
incomplete process definition and dynamically add process fragments expressing
missing scenarios to it.

Definition Flexibility by underspecification is the ability to execute an incom-
plete process specification at run-time, i.e. one which does not contain sufficient
information to allow it to be executed to completion. Note that this type of flex-
ibility does not require the model to be changed at run-time, instead the model
needs to be completed by providing a concrete realisation for the undefined parts.

Scope The concept of underspecification is mostly suitable for processes where
it is clearly known in advance that the process definition will have to be adjusted
at specific points, although the exact content at this point is not yet known (and
may not be known until the time that an instance of the process is executed).
This approach to process design and enactment is particularly useful where dis-
tinct parts of an overall process are designed and controlled by different work
groups, but the overall structure of the process is fixed. In this situation, it al-
lows each of them to retain some degree of autonomy in regard to the tasks that
are actually executed at runtime in their respective parts of the process, whilst
still complying with the overall process definition.

Realisation options An incomplete process definition is deemed to be one
which is well-formed but does not have a detailed definition of the ultimate real-
ization of every task. An incomplete process specification contains one or more
so-called placeholders. Placeholders are nodes which are marked as underspec-

ified (i.e. their content is unknown) and whose content is specified during the
execution of these placeholders. We distinguish two types of placeholder enact-

ment :

• Late binding : where the realisation of a placeholder is selected from a set of
available process fragments. Note that to realise a placeholder one process
fragment has to be selected from an existing set of fully predefined process
fragments. This approach is limited to selection, and does not allow a new
process fragment to be constructed.

• Late modelling : where a new process fragment is constructed in order to re-
alise a given placeholder. Not only can a more complex process fragment be

a) before realisation

CA A X n CX1

b) after realisation

Fig. 5. Example of flexibility by underspecification.

constructed from a set of currently available process fragments, but also a
new process fragment can be developed from scratch2. Therefore late binding
is encompassed by late modelling. Some approaches [60] limit the construc-
tion of new models by (declarative) constraints.

For both approaches, the realisation of a placeholder can occur at a num-
ber of distinct times during process execution. Here, two distinct moments for

realisation are recognised:

• before placeholder execution: the placeholder is realised at commencement
of a process instance or during execution before the placeholder has been
executed for the first time.

• at placeholder execution: the placeholder is realised when the placeholder is
executed.

Placeholders can be either realised once, or be realised for every subsequent
execution of the placeholder. We distinguish two distinct realisation types:

• static realisation, where the process fragment chosen to realise the place-
holder during the first execution is used to realise the placeholder for every
subsequent execution.

• dynamic realisation, where the realisation of a placeholder can be chosen
again for every subsequent execution of this placeholder.

Example Figure 5(a) shows an incomplete process definition with a placeholder
task between A and C. Figure 5(b) illustrates the realisation of the placeholder,
by a process fragment from a linked repository of process fragments. In this
figure the realisation is done by a sequence of self-looping tasks, but it can be
realised by any well-formed process fragment.

Discussion The process fragments available for placeholder realisation can be
stored in a so called repository. A repository can be available for one or more
processes, just for a particular task or for a set of tasks.

Flexibility by Change .

Motivation In some cases, events may occur during process execution that were
not foreseen during process design. Sometimes these events cannot be addressed

2 However, this should only be done highly by skilled persons

d) Relink

A B A B C DC

A C

c) Reduce

a) Initial model b) Extend

A B

C

C

Fig. 6. Process definition changes.

by temporary deviations from the existing process definition, but require the
addition or removal of tasks or links from the process definition on a permanent
basis. This may necessitate changes to the process model for one or several
process instances; or where the extent of the change is more significant, it may be
necessary to change the process model for all currently executing instances and
also those that will execute in the future. The process definition can be changed
by extending or by reducing the activities in the definition, or by relinking the
activities, as depicted in Figure 6.

Definition Flexibility by Change is the ability to modify a process definition at
run-time such that one or all of the currently executing process instances are
migrated to a new process definition. Unlike the previous three flexibility types
the model constructed at design time is modified and one or more instances need
to be transferred from the old to the new model.

Scope Flexibility by change allows processes to adapt to changes that are iden-
tified in the operating environment. Changes may be introduced both at process
instance and process type levels.

Realisation options For flexibility by change we distinguish the following vari-
ation points, which are partly based on [6].

Effect of change defines whether changes are performed on the level of a process
instance or on the level of the process definition, and what is the impact of the
change on the new process instances.

• Momentary change (also known as change at instance level): a change af-
fecting the execution of one or more selected process instances. The change
performed on a given process instance does not affect any future instances.

• Evolutionary change (also known as change at type level): a change caused
by modification of the process definition, affecting all new process instances.

Moment of allowed change specifies the moment at which changes can be intro-
duced in a given process instance or a process definition.

b) after "delete B"

A C A

a) before "delete B"

B C

Fig. 7. Example of flexibility by change.

• Entry time: changes can be performed only at the moment the process in-
stance is created. After the process instance has been created, no changes can
be introduced to the given process instance any more. Momentary changes
performed at entry time affect only a given process instance. The result of
evolutionary changes performed at entry time is that all new process in-
stances have to be started after the change of the process definition has been
performed, and no existing process instances are affected (they continue ex-
ecution according to the associated process definition).

• On-the-fly : changes can be performed at any point in time during process ex-
ecution. Momentary changes performed on-the-fly correspond to customiza-
tion of a given process instance during its execution. Evolutionary changes
performed on-the-fly impact both existing and new process instances. The
new process instances are created according to the new process description,
while the existing process instances may need to migrate from the existing
process definition to the new process definition.

Migration strategy defines what to do with running process instances that are
impacted by an evolutionary change.

• Forward recovery : affected process instances are aborted.

• Backward recovery : affected process instances are aborted (compensated if
necessary) and restarted.

• Proceed : changes introduced are ignored by the existing process instances.
Existing process instances are handled the old way, and new process instances
are handled the new way.

• Transfer : the existing process instances are transferred to a corresponding
state in the new process definition.

Example In Figure 7(a) we show a process definition that at some moment is
changed into the process definition depicted in Figure 7(b) by removing task
B. The effect of this change is that instances of the new process definition are
skipping task B permanently.

Discussion A very detailed description on change operations can be found in
[69]. The authors propose using high level change patterns rather than low level
change primitives and give full descriptions for the identified patterns. Based
on these change patterns and features, they provide a detailed analysis and
evaluation of selected systems from both academia and industry.

2.5 Summary of Flexibility Types

Each of the flexibility types operates in different ways. Figure 8 provides an
illustration of the distinction between each of the flexibility types in isolation, in
terms of the time at which the specific flexibility options need to be configured
– at design time, as part of the process definition or at runtime via facilities in
the process execution environment. It also shows the anticipated completeness
of the process definition for each flexibility type.

(Late modelling)

Underspecification

Change

P
ar

tia
l

F
ul

l

P
ro

ce
ss

 D
ef

in
iti

on
 C

om
pl

et
en

es
s

Design−time Run−time

Design
Deviation

Underspecification

(Late binding)

Flexibility Configuration

Fig. 8. Flexibility type spectrum

Flexibility by underspecification works on the basis of an incomplete process
definition. Combined with late binding only, it just offers design-time configura-
tion options, i.e., only the fragments that have been defined during design-time
can be selected at run-time. Whereas, combined with late modelling, also run-
time configuration options are offered by providing means to define and select
fragments at run-time.

In the spectrum of options, flexibility by design distinguishes itself by be-
ing the flexibility type that works for full process definitions, whilst only being
configurable at design-time. At run-time only predefined paths can be chosen.

Both flexibility by deviation and change work with complete process defini-
tions. For both types, the configuration options are only available at run-time.
Although very similar, only flexibility by change affects the process definition
both at instance and type level, whereas flexibility by deviation does not affect
the process definition at all.

3 Evaluation of Contemporary Offerings

Table 1. Product evaluations

ADEPT1 YAWL FLOWer Declare

Flexibility by design

Parallelism + + + +

Choice + + + +

Iteration + + + +

Interleaving – + +/– +

Multiple instances – + + +

Cancellation – + – +

Flexibility by deviation

Deviation operations (imperative languages)

Undo – – +

Redo – – +

Skip – – +

Create additional instance – – –

Invoke task – – +

Deviation operations (declarative languages)

Violation of optional constraints +

Flexibility by underspecification

Late binding – + – –

Late modelling – + – –

Static, before placeholder – – – –

Dynamic, before placeholder – – – –

Static, at placeholder – – – –

Dynamic, at placeholder – + – –

Flexibility by change

Effect of change

Momentary change + – – +

Evolutionary change – – – +

Moment of allowed change

Entry time + – – +

On–the–fly + – – +

Migration strategies

Forward recovery – – – –

Backward recovery – – – –

Proceed – – – +

Transfer – – – +

In this section, we apply the taxonomy presented in Section 2 to evaluate
a selection of PAISs. Respectively, ADEPT1 [53], YAWL3 (version 8.2b) [5, 12,
10], FLOWer (version 3.0) [7] and Declare (version 1.0) [46, 47] will be evaluated.

3 The evaluation of YAWL includes the so-called Worklet Service.

These systems have been chosen as they allow for more flexibility than classical
workflow systems and, in this way, they are interesting to evaluate. Moreover,
they cover distinct areas of the PAIS technology spectrum, like adaptive workflow
(ADEPT1), case handling (FLOWer) and declarative workflow (Declare). The
detailed evaluations for each of the systems mentioned can be found in the
appendix of this report, whereas Table 1 only shows whether a system receives
full (+), partial (+/-) or no support (-) for an evaluation criterion.

Flexibility by design is provided in several ways. Parallelism, choice and it-
eration are fully supported by all systems. Interleaving, multiple instances and
cancellation are not supported by all systems, but they are all supported by
YAWL and Declare. Although, not reflected in Table 1, Declare offers more flex-
ibility by design than the other systems. Due to the declarative nature of the
language, the designer is enabled and stimulated to leave choices to users at
run-time. Flexibility by deviation is mostly supported by FLOWer and Declare
despite their distinct conceptual foundations. FLOWer achieves this by support-
ing almost all of the deviation operations, whereas Declare allows for violation
of optional constraints. Flexibility by underspecification is only supported by
YAWL (through its worklet service). Flexibility by change is only supported by
ADEPT1 and Declare. Although it is possible to upload new process definitions
at run-time in YAWL and FLOWer, there is no system support and in the case
of FLOWer, it is even highly dissuaded in the user guide [67], since it may lead
to unforeseen events and even deadlocks. Declare is the only offering supporting
both momentary and evolutionary change. The migration strategy for evolu-
tionary change in Declare is to either transfer an instance to the new process
definition, if possible, or otherwise, to proceed.

Although not reflected by Table 1, ADEPT1 is far superior to the other ap-
proaches in offering flexibility by change. Since the beginning the designers of
ADEPT [52] have been focussing on supporting various forms of change [52,
56, 69]. The next version (ADEPT2) will provide full support for changes, in-
cluding transfer. Compared to Declare, ADEPT1 is more mature and has been
successfully applied in different areas, like health care [53]. Interestingly, Declare
supports transfer of existing process instances to the new process model. In the
declarative setting, transfer is easily supported because in this setting it is not
necessary to find a matching state in the new process for each instance [47].

None of the evaluated systems provides the full range of flexibility. YAWL
focusses on providing flexibility by design and underspecification (worklets),
ADEPT1 on flexibility by change (adaptive workflow), FLOWer on flexibility
by deviation (case handling) and Declare provides flexibility in different areas:
design and deviation, and change.

4 Related work

The need for process flexibility has long been recognised [35, 54] in the workflow
and process technology communities as a critical quality of effective business
processes in order for organisations to adapt to changing business circumstances.

It ensures that the “fit” between actual business processes and the technologies
that support them are maintained in changing environments [50]. The notion of
flexibility is often viewed in terms of the ability of an organisation’s processes
and supporting technologies to adapt to these changes [62, 22]. An alternate view
advanced by Regev and Wegmann [48] is that flexibility should be considered
from the opposite perspective i.e. in terms of what stays the same not what
changes. Indeed, a process can only be considered to be flexible if it is possible
to change it without needing to replace it completely [49]. Hence flexibility is
effectively a balance between change and stability that ensures that the identity
of the process is retained [48, 51].

There have been a series of proposals for classifying flexibility, both in terms
of the factors which motivate it and the ways in which it can be achieved within
business processes. Snowdon et al. [62] identify three causal factors: type flexibil-
ity (arising from the diversity of information being handled), volume flexibility
(arising from the amount of information types) and structural flexibility (aris-
ing from the need to operate in different ways. Soffer [63] differentiates between
short-term flexibility, which involves a temporary deviation from the standard
way of working, and long-term flexibility, which involves changes to the usual
way of working. Kumar and Narasipuram [41] distinguish pre-designed flexibil-
ity which is anticipated by the designer and forms part of the process definition
and just-in-time responsive flexibility which requires an “intelligent process man-
ager” to deal with the variation as it arises at runtime. Carlsen et al. [16] identify
a series of desirable flexibility features for workflow systems based on an exam-
ination of five workflow offerings using a quality evaluation framework. Heinl
et al. [35] propose a classification scheme with distinct approaches – flexibility
by selection, where a variety of alternative execution paths are designed into a
process, and flexibility by adaption, where a workflow is “adapted” (i.e. modi-
fied) to meet with the new requirements. Two distinct approaches to achieving
each of these approaches are recognised: flexibility by selection can be imple-
mented either by advance modelling (before execution time) or late modelling
(during execution time) where as flexibility by adaption can be handled either
by type adaption (where the process definition is changed but individual process
instances currently running are unaffected) or instance adaption where selected
(or all) process instances are changed to meet with new operational require-
ments. Van der Aalst and Jablonski [6] adopt a similar strategy for supporting
flexibility. Moreover they propose a scheme for classifying workflow changes in
detail based on six criteria: (1) reason for change, (2) effect of change, (3) per-
spectives affected, (4) kind of change, (5) when are changes allowed and (6) what
to do with existing process instances. Regev et al. [49] provide an initial attempt
at defining a taxonomy of the concepts relevant to business process flexibility.
This taxonomy has three orthogonal dimensions: the abstraction level of the
change, the subject of the change and the properties of the change. Whilst it
incorporates elements of the research initiatives describe above, it is not com-
prehensive in form and does not describes the relationships that exist between
these concepts or link them to possible realisation approaches.

There are a variety of approaches to incorporating flexibility within a design-
time process definition. Traditional process design methods [54, 42, 15] have cen-
tered on the separation of business logic from the actual application processing
and utilising constructs such as hierarchy, conditional elements and business rules
within the process definition to explicitly cater for various execution scenarios
that might be encountered. Whilst effective, these strategies require that all pos-
sible situations be captured a priori at design-time, an assumption that proves
to be unrealistic in practice [35]. The use of exceptions [58, 65, 25] provides one
means of handling expected but infrequently occurring processing errors without
requiring their explicit inclusion in the process definition. Various techniques
to implementing exception handling strategies in workflow systems have been
demonstrated by offerings including WAMO [24], ConTracts [55], Exotica [14],
OPERA [31, 32], TREX [64] and WIDE [17].

Another approach that has been investigated for embedding flexible con-
structs in business processes involve the augmentation of control-flow routing
constructs operators based on fuzzy logic [9]. Indeed one area that offers sig-
nificant opportunity for increasing the potential flexibility of a business process
is the replacement of the strict graph-based structures that are generally used
to describe control-flow dependencies between the tasks in a process with other
means of describing these dependencies. ConDec [46, 47] is a declarative language
that specifies control-flow dependencies using linear temporal logic expressions.
CIGDec [44] proposes a similar strategy for enhancing flexibility when modelling
and enacting clinical guidelines. Other research initiatives in this area have in-
vestigated a variety of other means of defining control-flow including the use of
process grammars to specify dependencies between tasks and documents (i.e.
data elements) in a process [28], the introduction of the notion of “anticipation”
[29] which allows the execution of sequential tasks to overlap at the discretion
of workflow users where there are not specific data dependencies between them,
the inclusion of flexible elements in process definitions that describe alternate
execution options, alternate task orderings and optional tasks [40] and basing
control-flow on rule-based invariants that must hold during process execution [48]
or constraints based on task pre and postconditions [66] that determine when
individual tasks can start and complete. In [23], Dustdar examines the issue from
another perspective and investigates the fundamental aspects of process-aware
collaboration and the capabilities that are required from a technological solu-
tion for supporting team-based business processes. These are illustrated in the
context of the Caramba system.

The potential for increasing process flexibility by allowing deviations from
the specified process definition at runtime is supported in PROSYT [21] which
allows a deviation policy to be specified for a process, identifying which forms of
deviation are tolerated, together with a consistency handling policy, which en-
sures any allowed deviations do not impact the overall correctness of the system.
In the context of the WASA system, Weske [21] nominates three user-initiated
operations – SkipActivity, StopActivity and RepeatActivity – that allow for de-
viations from normal workflow execution.

Several approaches have been proposed that support the underspecification
of processes thus allowing for greater flexibility in the actual tasks initiated at
runtime. Noll [45] advocates the use of low fidelity models which specify the
major tasks and main sequence in a process, but leave the actual sequence of
execution at the discretion of the user. This essentially corresponds to a more
general notion of the case handling paradigm [8] as it allows distinct tasks in a
given process instance to be undertaken by differing users. In a similar vein, Her-
rmann and Loser [36] advocate the inclusion of “vagueness” in socio-technical
process definitions allowing concepts such as arc conditions and task ordering to
be deliberately omitted from models and also supporting the inclusion of specific
modelling constructs to identify aspects of the model that are incomplete or un-
specified. Van der Aalst advances the notion of generic process definitions [1, 2]
which allow placeholders elements (termed generic processes) to be specified in
models which correspond to fragments of the overall process whose actual com-
position is determined at runtime. Mangan and Sadiq [43] propose an analogous
scheme where a process is partially specified as a set of fragments and the actual
format of the process definition undertaken for a given instance of the process is
deferred to runtime at the discretion of individual users. In a subsequent paper
Sadiq et al. [60] describe a flexible workflow modelling language which incor-
porates “pockets of flexibility” which denote regions of the process who actual
content is determined at runtime based on workflow fragments (tasks or sub-
processes) and composition rules that are associated with them. The OPENflow
system [33] is an example of an actual system that supports this approach to
process flexibility. Adams et al [12] propose the notion of worklets which allow
the implementation of tasks to be dynamically evolved by associating a distinct
subworkflow implementation with each of them depending in the actual con-
text that is encountered at runtime. A similar notion is advanced for exception
handling in the form of exlets [10].

The issue of managing dynamic change to executing processes has been
widely researched in the fields of adaptive and evolutionary workflow [38, 26, 18,
37, 71, 20, 61, 4, 59, 39]. A number of significant research prototypes have been de-
veloped in this area including ADEPTflex [52], ADOME [19], CBRFlow [70], DY-
NAMITE [34], MILANO [13], WASA2 [71] and YAWL worklets [11]. A compre-
hensive evaluation of various approaches (both conceptual and implementation-
based) to managing dynamic changes to workflow processes is presented by
Rinderle et al. in [56]. As a means of comparing various approaches to pro-
cess change, Weber et al [68] have proposed a set of 17 change patterns and
six change support features. In [27], Ellis and Keddara propose ML-DEWS, a
modelling language for specifying changes in workflow systems.

One difficulty associated with managing dynamic change is avoiding the “dy-
namic change bug” [26] where the migration of individual process instances from
the old process model introduces errors. Van der Aalst [3] proposes an approach
for managing this issue by calculating the safe change region which a case must
be in if a workflow change is to be successfully facilitated. Günter et al [30]
have developed a framework for integrating adaptive process management and

process mining techniques which enables the exploitation of change information
extracted from process change logs.

5 Conclusion

In this paper we have presented a taxonomy that integrates a broad spectrum of
alternative approaches aimed at promoting process flexibility. Furthermore we
evaluated offerings from four distinct areas of the PAIS technology spectrum.
The result of these evaluations clearly identifies that different technologies adopt
different approaches to promoting process flexibility.

Interestingly, none of the offerings examined provides support across all flex-
ibility types. This suggests that each of these individual flexibility types seem
to be particularly suited to different technological foundations. We hope that
the insights provided in this paper are a first step towards a universal flexibility
model (in a suitable format e.g., ontology, meta-model).

In the future we plan to extend the taxonomy to incorporate other per-
spectives. Note that although we have defined flexibility types in terms of the
control-flow aspects of a given process, other perspectives of a process are also a
subject to change. In particular, changes can be applied to the organizational per-

spective that is related to the organizational structure, resources and their roles;
information perspective that is related to control and production data used in a
process; and application perspective that is related to the applications used dur-
ing execution of a given process. Additionaly, there are some interesting process
mining challenges presented by systems that support deviation or change opera-
tions, as in these offerings there is the potential for individual process instances
to execute distinct process models.

References

1. W.M.P. van der Aalst. Flexible workflow management systems: An approach based
on generic process models. In DEXA ’99: Proceedings of the 10th International
Conference on Database and Expert Systems Applications, pages 186–195, London,
UK, 1999. Springer-Verlag.

2. W.M.P. van der Aalst. Generic workflow models: How to handle dynamic change
and capture management information? In COOPIS ’99: Proceedings of the Fourth
IECIS International Conference on Cooperative Information Systems, pages 115–
126, Washington, DC, USA, 1999. IEEE Computer Society.

3. W.M.P. van der Aalst. Exterminating the Dynamic Change Bug: A Concrete
Approach to Support Workflow Change. Information Systems Frontiers, 3(3):297–
317, 2001.

4. W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An Approach
to Tackling Problems Related to Change. Theoretical Computer Science, 270(1-
2):125–203, 2002.

5. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.

6. W.M.P. van der Aalst and S. Jablonski. Dealing with workflow change: Identifica-
tion of issues and solutions. International Journal of Computer Systems, Science,
and Engineering, 15(5):267–276, 2000.

7. W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case Handling: A New
Paradigm for Business Process Support. Data and Knowledge Engineering,
53(2):129–162, 2005.

8. W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case handling: A
new paradigm for business process support. Data and Knowledge Engineering,
53(2):129–162, 2005.

9. O. Adam and O. Thomas. A fuzzy based approach to the improvement of business
processes. In C. Bussler and A. Haller, editors, Proceedings of the 1st International
Workshop on Business Process Intelligence (BPI 2005), volume 3812 of Lecture
Notes in Computer Science, pages 183–189, Nancy, France, 2005. Springer.

10. M. Adams, A.H.M. ter Hofstede, W.M.P. van der Aalst, and D. Edmond. Dynamic,
Extensible and Context-Aware Exception Handling for Workflows. In F. Curbera,
F. Leymann, and M. Weske, editors, Proceedings of the OTM Conference on Co-
operative information Systems (CoopIS 2007), volume 4803 of Lecture Notes in
Computer Science, pages 95–112. Springer-Verlag, Berlin, 2007.

11. M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Facili-
tating flexibility and dynamic exception handling in workflows through worklets.
In O. Belo, J. Eder, O. Pastor, and J. Falcão e Cunha, editors, Proceedings of
the CAiSE’05 Forum, volume 161 of CEUR Workshop Proceedings, pages 45–50,
Porto, Portugal, 2005. FEUP.

12. M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Worklets:
A Service-Oriented Implementation of Dynamic Flexibility in Workflows. In
R. Meersman and Z. Tari et al., editors, On the Move to Meaningful Internet
Systems 2006, OTM Confederated International Conferences, 14th International
Conference on Cooperative Information Systems (CoopIS 2006), volume 4275 of
Lecture Notes in Computer Science, pages 291–308. Springer-Verlag, Berlin, 2006.

13. A. Agostini and G. De Michelis. Improving Flexibility of Workflow Management
Systems. 1806:218–234, 2000.

14. G. Alonso, D. Agrawal, A. El Abbadi, M. Kamath, G. Gunthor, and C. Mohan.
Advanced transaction models in workflow contexts. In S.Y.W. Su, editor, Proceed-
ings of the 12th International Conference on Data Engineering, pages 574–581,
New Orleans, USA, 1996.

15. J.M. Bhat and N. Deshmukh. Methods for modeling flexibility in business pro-
cesses. In Workshop on Business Process Modeling, Design and Support (BP-
MDS05), Proceedings of CAiSE05 Workshops, 2005. http://lamswww.epfl.ch/

conference/bpmds05/program/Bhat_12.pdf.

16. S. Carlsen, J. Krogstie, A. Slvberg, and O.I. Lindland. Evaluating flexible work-
flow systems. In Proceedings of the Thirtieth Hawaii International Conference on
System Sciences (HICSS-30), Maui, Hawaii, 1997. IEEE Computer Society Press.

17. F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi. Specification and implementation
of exceptions in workflow management systems. ACM Transactions on Database
Systems, 24(3):405–451, 1999.

18. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow evolution. In B. Thalheim,
editor, Conceptual Modeling - ER’96, 15th International Conference on Concep-
tual Modeling, volume 1157 of Lecture Notes in Computer Science, pages 438–455.
Springer, Cottbus, Germany, 1996.

19. D.K.W. Chiu, Q. Li, and K. Karlapalem. ADOME-WFMS: Towards cooperative
handling of workflow exceptions. In Advances in Exception Handling Techniques,
pages 271–288. Springer-Verlag, New York, NY, USA, 2001.

20. V. Christophides, R. Hull, A. Kumar, and J. Simeon. Workflow mediation using
vortexml. IEEE Data Engineering Bulletin, 24(1):40–45, 2001.

21. G. Cugola. Tolerating deviations in process support systems via flexible enactment
of process models. IEEE Trans. Softw. Eng., 24(11):982–1001, 1998.

22. F. Daoudi and S. Nurcan. A benchmarking framework for methods to design
flexible business processes. Software Process Improvement and Practice, 12:51–63,
2007.

23. S. Dustdar. Caramba - A Process-Aware Collaboration System Supporting Ad Hoc
and Collaborative Processes in Virtual Teams. Distributed and Parallel Databases,
15(1):45–66, 2004.

24. J. Eder and W. Liebhart. The workflow activity model (WAMO). In S. Laufmann,
S. Spaccapietra, and T. Yokoi, editors, Proceedings of the Third International Con-
ference on Cooperative Information Systems (CoopIS-95), pages 87–98, Vienna,
Austria, 1995. University of Toronto Press.

25. J. Eder and W. Liebhart. Workflow recovery. In Proceedings of the First IFCIS
International Conference on Cooperative Information Systems (CoopIS’96), pages
124–134, Brussels, Belgium, 1996. IEEE Computer Society.

26. C. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow sys-
tems. In COCS ’95: Proceedings of conference on Organizational computing sys-
tems, pages 10–21, New York, NY, USA, 1995. ACM.

27. C.A. Ellis and K. Keddara. A Workflow Change Is a Workflow. 1806:201–217,
2000.

28. N.S. Glance, D.S. Pagani, and R. Pareschi. Generalized process structure grammars
gpsg for flexible representations of work. In CSCW ’96: Proceedings of the 1996
ACM conference on Computer supported cooperative work, pages 180–189, New
York, NY, USA, 1996. ACM.

29. Daniela Grigori, François Charoy, and Claude Godart. Anticipation to enhance
flexibility of workflow execution. In Heinrich C. Mayr, Jiŕı Lazanský, Gerald
Quirchmayr, and Pavel Vogel, editors, Database and Expert Systems Applications,
12th International Conference, DEXA 2001 Munich, Germany, September 3-5,
2001, Proceedings, volume 2113 of Lecture Notes in Computer Science, pages 264–
273. Springer, 2001.

30. C.W. Günther, S. Rinderle, M. Reichert, and W.M.P. van der Aalst. Change
Mining in Adaptive Process Management Systems. 4275:309–326, 2006.

31. C. Hagen and G. Alonso. Flexible exception handling in the OPERA process
support system. In Proceedings of the 18th International Conference on Distributed
Computing Systems (ICDCS’98), pages 526–533, Amsterdam, The Netherlands,
1998. IEEE Computer Society.

32. C. Hagen and G. Alonso. Exception handling in workflow management systems.
IEEE Transactions on Software Engineering, 26(10):943–958, 2000.

33. J.J. Halliday, S.K. Shrivastava, and S.M. Wheater. Flexible workflow management
in the OPENflow system. In EDOC ’01: Proceedings of the 5th IEEE International
Conference on Enterprise Distributed Object Computing, pages 82–98, Washington,
DC, USA, 2001. IEEE Computer Society.

34. P. Heimann, G. Joeris, C. Krapp, and B. Westfechtel. Dynamite: Dynamic task nets
for software process management. In Proceedings of the 18th International Con-
ference on Software Engineering (ICSE 18), Berlin, Germany, 1996. IEEE Press.

35. P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, and M. Teschke. A compre-
hensive approach to flexibility in workflow management systems. In WACC ’99:
Proceedings of the international joint conference on Work activities coordination
and collaboration, pages 79–88, New York, NY, USA, 1999. ACM.

36. T. Herrmann and K.U. Loser. Vagueness in models of socio-technical systems.
Behaviour & Information Technology, 18(5):313–323, 1999.

37. G. Joeris. Defining flexible workflow execution behaviors. In P. Dadam and M. Re-
ichert, editors, Workshop Informatik ’99: Enterprise-wide and Cross-enterprise
Workflow Management: Concepts, Systems, Applications, volume 24 of CEUR
Workshop Proceedings, pages 49–55, Paderborn, Germany, 1999. CEUR-WS.org.

38. P.J. Kammer, G.A. Bolcer, R.N. Taylor, A.S. Hitomi, and M. Bergman. Techniques
for supporting dynamic and adaptive workflow. Computer Supported Cooperative
Work, 9(3/4):269–292, 2000.

39. M. Klein, C. Dellarocas, and A. Bernstein, editors. Adaptive Workflow Systems,
volume 9 of Special issue of Computer Supported Cooperative Work, 2000.

40. J. Klingemann. Controlled flexibility in workflow management. In B. Wangler and
L. Bergman, editors, Proceedings of the 12th International Conference on Advanced
Information Systems Engineering (CAiSE’00), volume 1789 of Lecture Notes in
Computer Science, Stockholm, Sweden, 2000. Springer.

41. K. Kumar and M. M. Narasipuram. Defining requirements for business process
flexibility. In Workshop on Business Process Modeling, Design and Support (BP-
MDS06), Proceedings of CAiSE06 Workshops, pages 137–148, 2006.

42. F. Leymann and D. Roller. Workflow-based applications. IBM Systems Journal,
36(1):102–123, 1997.

43. P. Mangan and S. Sadiq. On building workflow models for flexible processes. In
ADC ’02: Proceedings of the 13th Australasian database conference, pages 103–109,
Darlinghurst, NSW, Australia, 2002. Australian Computer Society, Inc.

44. N. Mulyar, M. Pesic, W.M.P. van der Aalst, and M. Peleg. Declarative and Proce-
dural Approaches for Modelling Clinical Guidelines: Addressing Flexibility Issues.
pages 17–28, 2007.

45. J. Noll. Flexible process enactment using low-fidelity models. In Proceedings of
the International Conference on Software Engineering and Applications (SEA 03),
2003.

46. M. Pesic and W.M.P. van der Aalst. A Declarative Approach for Flexible Business
Processes. In J. Eder and S. Dustdar, editors, Business Process Management Work-
shops, Workshop on Dynamic Process Management (DPM 2006), volume 4103 of
Lecture Notes in Computer Science, pages 169–180. Springer-Verlag, Berlin, 2006.

47. M. Pesic, M. H. Schonenberg, N. Sidorova, and W.M.P. van der Aalst. Constraint-
Based Workflow Models: Change Made Easy. In F. Curbera, F. Leymann, and
M. Weske, editors, Proceedings of the OTM Conference on Cooperative information
Systems (CoopIS 2007), volume 4803 of Lecture Notes in Computer Science, pages
77–94. Springer-Verlag, Berlin, 2007.

48. G. Regev, I. Bider, and A. Wegmann. Defining business process flexibility with the
help of invariants. Software Process Improvement and Practice, 12:65–79, 2007.

49. G. Regev, P. Soffer, and R. Schmidt. Taxonomy of flexibility in business processes.
In Proceedings of the 7th Workshop on Business Process Modelling, Development
and Support(BPMDS’06), 2006. http://lamswww.epfl.ch/conference/bpmds06/
taxbpflex.

50. G. Regev and A. Wegmann. A regulation-based view on business process and
supporting system flexibility. In Workshop on Business Process Modeling, Design

and Support (BPMDS05), Proceedings of CAiSE05 Workshops, pages 35–42, 2005.
http://lamswww.epfl.ch/conference/bpmds05/program/Regev_11.pdf.

51. G. Regev and A. Wegmann. Business process flexibility: Weick’s organizational
theory to the rescue. In Proceedings of the 7th Workshop on Business Process
Modelling, Development and Support(BPMDS’06), 2006. http://lamswww.epfl.

ch/conference/bpmds06/taxbpflex.

52. M. Reichert and P. Dadam. ADEPTflex: Supporting Dynamic Changes of
Workflow without Loosing Control. Journal of Intelligent Information Systems,
10(2):93–129, 1998.

53. Manfred Reichert, Stefanie Rinderle, and Peter Dadam. Adept workflow man-
agement system. In Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and
Mathias Weske, editors, Business Process Management, International Conference,
BPM 2003, Eindhoven, The Netherlands, June 26-27, 2003, Proceedings, volume
2678 of Lecture Notes in Computer Science, pages 370–379. Springer, 2003.

54. H.A. Reijers. Workflow flexibility: The forlorn promise. In 15th IEEE International
Workshops on Enabling Technologies: Infrastructures for Collaborative Enterprises
(WETICE 2006), 26-28 June 2006, Manchester, United Kingdom, pages 271–272.
IEEE Computer Society, 2006.

55. A. Reuter and F. Schwenkreis. ConTracts – a low-level mechanism for build-
ing general-purpose workflow management-systems. Data Engineering Bulletin,
18(1):4–10, 1995.

56. Stefanie Rinderle, Manfred Reichert, and Peter Dadam. Correctness Criteria For
Dynamic Changes in Workflow Systems: A Survey. Data and Knowledge Engineer-
ing, 50(1):9–34, 2004.

57. N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst, and N. Mulyar. Workflow
control-flow patterns: A revised view. Technical Report BPM-06-22, 2006. http:

//www.BPMcenter.org.

58. H. Saastamoinen and G.M. White. On handling exceptions. In N. Comstock and
C. Ellis, editors, Proceedings of the ACM Conference on Organizational Computing
Systems (COCS’95), pages 302–310, Milpitas, CA, USA, 1995. ACM Press.

59. S. Sadiq, O. Marjanovic, and M.E. Orlowska. Managing Change and Time in
Dynamic Workflow Processes. International Journal of Cooperative Information
Systems, 9(1-2):93–116, 2000.

60. S.W. Sadiq, W. Sadiq, and M.E. Orlowska. Pockets of flexibility in workflow specifi-
cation. In ER ’01: Proceedings of the 20th International Conference on Conceptual
Modeling, pages 513–526, London, UK, 2001. Springer-Verlag.

61. A. Sheth. From contemporary workflow process automation to adaptive and dy-
namic work activity coordination and collaboration. In DEXA ’97: Proceedings
of the 8th International Workshop on Database and Expert Systems Applications,
page 24, Washington, DC, USA, 1997. IEEE Computer Society.

62. R.A. Snowdon, B.C. Warboys, R.M. Greenwood, C.P. Holland, P.J. Kawalek, and
D.R. Shaw. On the architecture and form of flexible process support. Software
Process Improvement and Practice, 12:21–34, 2007.

63. P. Soffer. On the notion of flexibility in business processes. In Workshop
on Business Process Modeling, Design and Support (BPMDS05), Proceedings of
CAiSE05 Workshops, pages 35–42, 2005. http://mis.haifa.ac.il/~spnina/

publications/flexibility%20Soffer.pdf.

64. R. van Stiphout, T.D. Meijler, A. Aerts, D. Hammer, and R. Le Comte. TREX:
Workflow transaction by means of exceptions. In H.-J. Schek, F. Saltor, I. Ramos,

and G. Alonso, editors, Proceedings of the Sixth International Conference on Ex-
tending Database Technology (EDBT’98), pages 21–26, Valencia, Spain, 1998.
http://citeseer.ist.psu.edu/487690.html.

65. D.M. Strong and S.M. Miller. Exceptions and exception handling in computerized
information processes. ACM Transactions on Information Systems, 13(2):206–233,
1995.

66. J. Wainer and F. de Lima Bezerra. Constraint-based flexible workflows. In J. Favela
and D. Decouchant, editors, Groupware: Design, Implementation, and Use, 9th
International Workshop, CRIWG 2003, Autrans, France, September 28 - October
2, 2003, Proceedings, volume 2806 of Lecture Notes in Computer Science, pages
151–158. Springer, 2003.

67. Wave-Front. FLOWer 3 Designers Guide. Wave-Front BV, Apeldoorn, Nether-
lands, 2004.

68. B. Weber, S. Rinderle, and M. Reichert. Change patterns and change support
features in process-aware information systems. In J. Krogstie, A.L. Opdahl, and
G. Sindre, editors, Advanced Information Systems Engineering, 19th International
Conference, CAiSE 2007, Trondheim, Norway, June 11-15, 2007, Proceedings, vol-
ume 4495 of Lecture Notes in Computer Science, pages 574–588. Springer, 2007.

69. B. Weber, S.B. Rinderle, and M.U. Reichert. Change support in process-aware in-
formation systems - a pattern-based analysis. Technical Report Technical Report
TR-CTIT-07-76, ISSN 1381-3625, Centre for Telematics and Information Technol-
ogy, University of Twente, Enschede, 2007. http://eprints.eemcs.utwente.nl/

11331/.
70. B. Weber, W. Wild, and R. Breu. CBRFlow: Enabling adaptive workflow manage-

ment through conversational case-based reasoning. In P. Funk and P.A. González-
Calero, editors, Advances in Case-Based Reasoning, 7th European Conference, EC-
CBR 2004, Madrid, Spain, August 30 - September 2, 2004, Proceedings, volume
3155 of Lecture Notes in Computer Science, pages 434–448. Springer, 2004.

71. M. Weske. Formal Foundation and Conceptual Design of Dynamic Adaptations in
a Workflow Management System. In R. Sprague, editor, Proceedings of the Thirty-
Fourth Annual Hawaii International Conference on System Science (HICSS-34).
IEEE Computer Society Press, Los Alamitos, California, 2001.

A Evaluation Criteria

Table 2: Evaluation criteria

Flexibility type Full support Partial support

Flexibility by design

Parallelism There is a means (either implicit or ex-
plicit) allowing for the thread of control,
at a given point in the model, to be split
into two or more concurrent branches.

Not applicable.

Choice There is a means allowing for the thread
of control to be diverged into one or more
branches.

Not applicable.

Iteration There is a means allowing for repeatedly
executing an activity or sub-process.

Not applicable.

Interleaving There is a means of executing each mem-
ber of a set of activities only once and in
sequential order and it is not possible to
suspend one task during its execution to
work on another.

Partial support is given if it
has limitations on the set of
tasks that can be interleaved
or if tasks can be suspended
during execution.

Multiple instances There is a means allowing for multiple con-
current instances of a task to be created.

Cancellation There is a means providing the ability to
disable a set of tasks.

The process model must be
changed in any way (e.g. use
of subprocesses, inclusion of
bypass tasks) to accommo-
date the ability to disable a
set of tasks.

Flexibility by deviation

Deviation operations (imperative languages)

Undo There is a means allowing for shifting con-
trol to the state before execution of a task.

Redo There is a means allowing for a previously
executed, but now disabled task, to be ex-
ecuted again without shifting control.

Skip There is a means passing the point of con-
trol over to a state subsequent to a cur-
rently enabled task. There is no mechanism
to compensate for the skipped task by ex-
ecuting it at a later stage of the execution.

Create additional in-
stance

There is a means allowing for initiating ad-
ditional instances of a task that will run in
parallel with process instances created on
the moment of task instantiation.

Invoke task There is a means allowing for a task in the
process definition, that is not currently en-
abled and has not yet been executed, to be
initiated. After initiation, the task is un-
dertaken immediately and completed. Af-
ter completion of the task,the point of con-
trol is unaffected.

Deviation operations (declarative languages)

Violation of optional
constraints

There is mechanism allowing for perform-
ing tasks which are not allowed due to con-
straints.

Not applicable.

Flexibility by underspecification

Late binding The realisation of a placeholder is selected
from a set of available process fragments
which are fully predefined. It is not allowed
to construct a new process fragment.

Not applicable

Late modeling The implementation of a placeholder is se-
lected from a set of available process frag-
ments which are fully predefined but may
may also be constructed (either by compo-
sition or from scratch).

Static, before place-
holder

The process fragment chosen to complete
the placeholder in between process in-
stance commencement and before the first
execution of the placeholder, is used to re-
alise the placeholder for each subsequent
execution.

Not applicable.

Dynamic, before
placeholder

The realisation of the placeholder can be
defined in between process instance com-
mencement and the first execution of the
placeholder and can be redefined in be-
tween the last and next execution of the
placeholder.

Not supported.

Static, at placeholder The process fragment chosen to complete
the placeholder during its first execution
is used to realise the placeholder for each
subsequent execution.

Not applicable.

Dynamic, at place-
holder

The realisation of a placeholder can be cho-
sen again for every subsequent execution of
the placeholder.

Not supported.

Flexibility by change

Effect of change

Momentary change 1) The change is performed at instance
level. 2) The change only affects the execu-
tion of one or more selected running pro-
cess instances.

Not applicable.

Evolutionary change 1) The change is performed at type level. 2)
Only running and all new process instances
are affected by the change.

Not applicable.

Moment of allowed change

Entry time It is only possible to perform changes
at the time a process instance is cre-
ated (either by momentary or evolutionary
change). After creation, no changes are al-
lowed anymore.

Not applicable.

On-the-fly It is only possible to perform changes
for one or more running process instances
(either via momentary or evolutionary
change). The changes can be performed at
any point in time during process execution.

Migration strategies

Forward recovery It is possible to abort a running process
instance which is impacted by evolutionary
change.

Not applicable.

Backward recovery It is possible to abort and restart (com-
pensate if necessary) a running process in-
stance which is impacted by evolutionary
change.

Not applicable.

Proceed Running process instances are handled ac-
cording to the old process definition and
new process instances are handled accord-
ing to the new process definition. Only ap-
plies for evolutionary change.

Not applicable.

Transfer It is possible to transfer a running process
instance, which is impacted by evolution-
ary change, to a corresponding state in the
new process definition.

Not applicable.

B Results for ADEPT1

Table 3: Flexibility types supported by ADEPT1

Flexibility type Support Motivation

Flexibility by design

Parallelism + A node can have AND–split/join semantics.
Choice + A node can have XOR–split/join semantics.
Iteration + Supported by the loop construct.
Interleaving – Not supported.
Multiple instances – Not supported.
Cancellation – Not supported.

Flexibility by deviation

Deviation operations (imperative languages)

Undo – Not supported.
Redo – Not supported.
Skip – Not supported.
Create additional instance – Not supported.
Invoke task – Not supported.

Deviation operations (declarative languages)

Violation of optional con-
straints

– Not supported.

Flexibility by underspecification

Late binding – Not supported.
Late modeling – Not supported.
Static, before placeholder – Not supported.
Dynamic, before placeholder – Not supported.
Static, at placeholder – Not supported.
Dynamic, at placeholder – Not supported.

Flexibility by change

Effect of change

Momentary change + The process of only one process instance can be adapted
and thereby guaranteeing model correctness.

Evolutionary change – Although ADEPT1 does not offer support for evolution-
ary change, it is possible to manually withdraw an old
process definition and upload a new one at run-time.

Moment of allowed change

Entry time – Changes at type level can be made at the moment a pro-
cess instance is created.

On–the–fly + Changes at type level can be made at any point in time
during process execution.

Migration Strategies

Forward recovery – Not supported.
Backward recovery – Not supported.
Proceed – Not supported.
Transfer – Not supported.

C Results for YAWL

Table 4: Flexibility types supported by YAWL

Flexibility type Support Motivation

Flexibility by design

Parallelism + A node can have AND–split/join semantics.
Choice + A node can have XOR/OR–split/join semantics.
Iteration + Supported by using XOR splits and joins.
Interleaving + Supported by using a semaphore.
Multiple instances + Supported by a multiple atomic task.
Cancellation + Supported by the cancellation region construct.

Flexibility by deviation

Deviation operations (imperative languages)

Undo – Not supported.
Redo – Not supported.
Skip – Not supported.
Create additional instance – Not supported.
Invoke task – Not supported.

Deviation operations (declarative languages)

Violation of optional con-
straints

– Not supported.

Flexibility by underspecification

Late binding + In YAWL, a placeholder is represented by a task which
connected to the worklet service. For each placeholder,
the right process fragment (called worklet in YAWL) will
be chosen from a global collection of process fragments.
The actual selection is based on a set of rules.

Late modeling + A new process fragment can be modeled from scratch.
Static, before placeholder – Not supported.
Dynamic, before placeholder – Not supported.
Static, at placeholder – Not supported.

Dynamic, at placeholder + The appropriate process fragment will be invoked each
time the task, which is connected to the worklet service,
is executed.

Flexibility by change

Effect of change

Momentary change – Not supported.
Evolutionary change – Although it is not supported, it is possible to upload new

models during execution.

Moment of allowed change

Entry time – Not supported
On–the–fly – Not supported

Migration strategies

Forward recovery – Not supported.
Backward recovery – Not supported.
Proceed – Not supported.
Transfer – Not supported.

D Results for FLOWer

Table 5: Flexibility types supported by FLOWer

Flexibility type Support Motivation

Flexibility by design

Parallelism + Nodes can have AND–split/join semantics.
Choice + Nodes can have XOR/OR–split/join semantics.
Iteration + Iteration can be achieved through the use of the

sequential plan construct.
Interleaving +/– Due to the case metaphor there is only one actor working

on the case. Therefore, there is no true concurrency and
any parallel routing is interleaved. Since true concurrency
is not possible, a partial support rating is given.

Multiple instances + Directly supported through dynamic subplans. One can
specify
whether a user is allowed to initiate additional instances
of the task.

Cancellation – Not supported.

Flexibility by deviation

Deviation operations (imperative languages)

Undo + Shifting control to the moment before execution of a task
can be done by applying the “redo” option on a task.
When a task has been undone all the succeeding tasks
that have already been completed are putted back on
the wavefront of the Case Guide which means that they
are enabled but have to be completed again. Complet-
ing again these tasks has as consequence that depending
conditions will be re–evaluated again as well.

Redo + Supported by filling in again a case form for a task. How-
ever, the positions of the nodes on the Case Guide stay
the same which means that the moment of control is not
changed. This has as effect that succeeding tasks need not
to be done again and that depending conditions before
the point of control are not re–evaluated again.

Skip + It is possible to skip tasks by applying the “skip” option
on a task. On the Case Guide, the task is put on the right
side of the wavefront which means that is completed.

Create additional instance – Not supported.
Invoke task + Not supported.

Deviation operations (declarative languages)

Violation of optional
constraints Not supported.

Flexibility by underspecification

Late binding – Not supported.
Late modeling – Not supported.
Static, before placeholder – Not supported.
Dynamic, before placeholder – Not supported.
Static, at placeholder – Not supported.
Dynamic, at placeholder – Not supported.

Flexibility by change

Effect of change

Momentary change – Not supported.
Evolutionary change – Although FLOWer does not support evolutionary

change, it offers the possibility to update process defi-
nitions during execution. The user guide [67] warns the
user for performing such updates, as this can lead to un-
foreseen events and even deadlocks.

Moment of allowed change

Entry time – Not supported.
On–the–fly – Not supported.

Migration Strategies

Forward recovery – Not supported.
Backward recovery – Not supported.
Proceed – Not supported.
Transfer – Not supported.

E Results for Declare

Table 6: Flexibility types supported by Declare

Flexibility type Support Motivation

Flexibility by design

Parallelism + A constraint can be defined which exhibits parallelism
semantics.

Choice + A constraint can be defined which exhibits choice seman-
tics.

Iteration + Supported by defining cardinality for tasks.
Interleaving + Supported.
Multiple instances + Supported by defining cardinality for tasks. Multiple in-

stances of a task can be initiated by starting a task mul-
tiple times without completing it.

Cancellation – Not supported.

Flexibility by deviation

Deviation operations (imperative languages)

Undo Not supported.
Redo Not supported.
Skip Not supported.
Create additional instance Not supported.
Invoke task Not supported.

Deviation operations (declarative languages)

Violation of optional
constraints + Supported.

Flexibility by underspecification

Late binding – Not supported.
Late modeling – Not supported.
Static, before placeholder – Not supported.
Dynamic, before placeholder – Not supported.
Static, at placeholder – Not supported.
Dynamic, at placeholder – Not supported.

Flexibility by change

Effect of change

Momentary change + The process of one process instance can be adapted.
Evolutionary change + Changes can be performed at type level.

Moment of allowed change

Entry time + Changes at type level can be made at the moment a pro-
cess instance is created.

On–the–fly + Changes at type level can be made at any point in time
during process execution.

Migration Strategies

Forward recovery – Not supported.
Backward recovery – Not supported.
Proceed + In case that a change is not allowed for a process instance,

the affected instance continues executing to the previous
process definition.

Transfer + In case that a change is allowed, the change is automat-
ically applied to each affected process instance.

