
Variability Modeling for Questionnaire-based
System Configuration

Marcello La Rosa1, Wil M.P. van der Aalst2,1, Marlon Dumas1,
Arthur H.M. ter Hofstede1

1 BPM Group, Queensland University of Technology, Australia
{m.larosa, m.dumas, a.terhofstede}@qut.edu.au

2 Eindhoven University of Technology, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl

Abstract. Variability management, be it at the level of models or at the
level of code, is a recurrent issue in systems engineering. It arises for ex-
ample in enterprise systems, where modules are configured and composed
to meet the requirements of individual customers based on modifications
to a reference model. It also manifests itself in the context of software
product families, where variants of a system are built from a common
code base. This paper presents a formal foundation for representing sys-
tem variability for the purpose of generating questionnaires that guide
users during system configuration. The generated questionnaires are in-
teractive, in the sense that questions are only posed if and when they
can be answered, and the space of allowed answers to a question is de-
termined by previous answers. The approach has been implemented and
tested against a reference model from the logistics domain.

Key words: variability modeling, system configuration, questionnaire,
software product family, reference model

1 Introduction

Variability is inherent to many information and software systems. Explicitly
modeling the variability of such systems in order to enable their configuration,
is a well-known approach to achieve reuse [21]. For example, enterprise systems
packages such as SAP provide modules and business objects covering a range
of common functions such as invoicing, financial reporting and controlling [9].
Analysts and developers configure and compose these modules to meet the re-
quirements of individual customers. To guide this individualization, SAP pro-
vides a comprehensive collection of reference models encompassing more than
4000 entity types and 1000 business process models and inter-organizational
business scenarios [27]. These reference models are configured to meet specific
needs, and the resulting configured models in turn, drive the individualization of
the system [26]. Similarly, software product families are an approach to package
related functionality into generic software assets, from which system variants are
generated [11]. Configuration is an integral part of the lifecycle of these systems.

2 M. La Rosa et al.

Configuration may involve setting a collection of parameters that capture the
system’s variability, selecting a set of features, or more generally, making choices
by answering a set of questions. These choices determine the actions (e.g. model
or code transformations) to be performed to derive an individualized model or
system from a generic one. Referring specifically to the configuration of business
process models, which is the motivating scenario used in this paper, such actions
may correspond to removing a fragment of a process model. For example, the
configuration of a procurement process model may involve a choice between
“evaluated receipt settlement” versus “payment against invoice”. In the first
case a purchaser pays for goods based on data contained in the delivery receipts;
in the second case the purchaser waits for an invoice and pays it only after
reconciling it against purchase orders and delivery receipts.

The set of questions to be answered during system configuration are often
interdependent. For example, once an evaluated receipt mode has been chosen,
questions regarding the configuration of the invoice reconciliation sub-process
become irrelevant. Instead, other questions become mandatory. Also, answering a
question in a given way may restrict the allowed answers to subsequent questions.
Indeed, not all combinations of answers may lead to valid configurations.

This paper proposes a formal framework for modeling variability for the pur-
pose of system configuration. Variability is captured by means of configuration
models composed of questions. The space of possible answers to a question is rep-
resented as a set of facts, each of which can be set to true or false. These facts
encode the variability of the system, e.g. optional features, values of configura-
tion parameters, etc. The individualization of the model or system is captured
as configuration actions. As the questionnaire is answered, values are assigned
to facts, and the resulting facts valuation determines which configuration ac-
tions should be performed to derive the individualized model or system. Since
some combinations of answers may lead to invalid configurations, the framework
supports the definition of propositional logic constraints over facts. Questions
and facts can be connected through precedence/order dependencies in arbitrary
ways so long as these dependencies satisfy some syntactic criteria. These criteria
prevent contradictory dependencies that lead to deadlocks during configuration.

The paper also proposes a technique to generate interactive questionnaires
from configuration models: these questionnaires guide the configuration process
by posing relevant questions in an order consistent with the dependencies be-
tween questions and facts, and also, in a way that prevents the violation of the
propositional constraints defined over facts. The only major assumption is that
questions have a finite or discretized domain of possible answers, which essen-
tially means that the space of possible system variants is finite. This assumption
allows configuration models to be efficiently analyzed so as to prevent the user
from entering conflicting responses to successive questions.

The remainder of the paper is organized as follows. Section 2 outlines the
approach by means of a working example. Next, Section 3 presents the formal
framework, while Section 4 presents the generation of interactive questionnaires,
represented as labeled transition systems, from configuration models. This gen-

Variability Modeling for Questionnaire-based System Configuration 3

eration technique has been implemented as a tool outlined in Section 5. This
section also shows an example of a configuration process. Finally, Section 6 dis-
cusses related work and Section 7 draws conclusions.

2 Variability Modeling Approach

We propose to depict variability independently of specific notations or languages,
by means of a set of facts that represent the space of possible answers to a set
of questions. At runtime questions are answered via an interactive questionnaire
that guides the configuration by posing only the relevant questions in an order
consistent with the precedences between questions and facts.

Making a choice corresponds to setting a fact within a question. Facts are
simply statements such as “Shipping via DHL” or features such as “Return
Merchandise Claim”. Initially, each fact is unset while at runtime it can be
configured by setting its value to true or false. For example, setting “Shipping
via DHL” to false, would mean that we are not interested in using DHL for
shipping, whilst “Return Merchandise Claim”= true would mean that we want
to support that type of claim. Each fact has a default value (true or false) and
can be marked as ‘mandatory’ if it needs to be set explicitly by users. Under
certain restrictions, a non-mandatory fact can be left unset at runtime. In this
case its default value is used instead.

Facts are grouped into questions according to their content, so that all the
facts of the same group can be set at once by answering the associated question.
For example, facts “Return Merchandise Claim” and “Loss or Damage Claim”
can be grouped under the question “Which Claims have to be handled?”. Ques-
tions are thus interfaces that present facts to users in a structured manner.
Although the same fact can appear in more than one question, its value can be
set only the first time, and must be preserved in all the subsequent questions
that contain it. An implementation of the questionnaire should keep track of
the facts previously set, and support the ability of changing the value of a fact
already set by rolling back the question that contains it.

A facts valuation is any combination of facts values where all the facts have
been set, either explicitly by answering questions or by using their defaults.

In order to illustrate these concepts, we consider an order fulfillment collabo-
rative process model in the area of supply chain management featuring a number
of variability points. This process, based on the Voluntary Inter-industry Com-
merce Standard (VICS) EDI Framework,3 involves three roles, Supplier, Buyer
and Carrier, and may support one or more business functions among Product
Merchandising, Ordering, Logistics and Payment. In particular, Logistics may
comprise one or more sub-phases among Freight Tender, Carrier Appointment,
Freight in Transit and Freight Delivered. These phases range over the whole lo-
gistics sub-process, from making an offer to a Carrier (Freight Tender), through
agreeing on the freight pick-up and delivery details (Carrier Appointment) and

3 http://www.uc-council.org/ean_ucc_system/stnds_and_tech/vics_edi.html

4 M. La Rosa et al.

on the messages to be exchanged during the shipment (Freight in Transit), to
the types of claims to be supported after the delivery (Freight Delivered). The
planned usage of a Carrier’s supplied trailer can also be decided upon, and thus
configured, based on the size of the freight being shipped. It can be “Truckload”
(TL) for full usage, “Less-than Truckload” (LTL) for partial usage, or “Small
Package” (SP) when just single packages are to be shipped. This choice has a
strong influence on subsequent decisions. For TL or LTL shipments, the roles
responsible for fixing the Pickup and the Delivery appointments can be decided,
provided Carrier Appointment is included in Logistics. For the pickup, this role
can be played by either the Supplier or the Carrier; for the delivery, by either the
Buyer or the Carrier. The appointment negotiation is not allowed in case of SP
shipments, as the dates of pickup and delivery are imposed by the Carrier. The
Carrier’s usage also affects the type of notifications to be sent during the tran-
sit, if Freight in Transit is included in Logistics. For TL or LTL, a Supplier’s or
Buyer’s inquiry to the Carrier is followed by a shipment-status message for each
parcel of the freight, whilst for SP the inquiry is followed only by one package-
status message. Also, only in case of TL or LTL, and if Payment is selected, the
Carrier can support a module for charging incidental costs that may be incurred
during the transit. Finally, in Freight Delivered, Claims support can be config-
ured, in order to handle a Merchandise Return and/or cases of Freight Lost or
Damaged. If the latter type of claim has been selected, then the Claim Manager
is to be chosen between the Supplier and the Buyer.

A possible structure of questions-facts for the above process is depicted in
Fig. 1 and will be used throughout the paper as a working example. Here ques-
tions and facts are assigned a unique id and a description. For example, facts
f1 to f4 refer to the four business functions the process can implement. These
facts are grouped in question q1 that asks for the business functions to be im-
plemented. Question q2 groups the facts relating to the expected Carrier’s us-
age. Since this choice is rather important as it affects the process overall, these
facts are mandatory (labeled with a M© in the picture), so that they have to
be explicitly set to true or false when answering q2. Other questions would al-
low users to choose the roles responsible for Pickup and Delivery (q6, q7), the
Claims to be handled (q4) and the Manager for Loss or Damage Claims (q5).
Default values have been assigned to the facts of Fig. 1 (where with a T© we in-
dicate a fact whose default=true, while no symbol is used to mean a fact whose
default=false). They have been set in order to capture a VICS process that im-
plements all the business functions (f1, f2, f3, f4 = true) and all the Logistics’s
sub-phases (f8, f9, f10, f11 = true), and that supports TL shipments (f5 = true,
f6, f7 = false). In this type of shipment, the Supplier is usually in charge of
fixing the Pickup appointment (so f16 = true and f17 = false) while the Buyer
is responsible for Delivery (f18 = true, f19 = false). The process handles only
Loss or Damage Claims (thus f12 = false and f13 = true), managed by the Sup-
plier which acts as intermediary between the Buyer and the Carrier (f14 = true,
f15 = false).

Variability Modeling for Questionnaire-based System Configuration 5

x y
x y

q1: Which Business
Functions have to
be implemented?

q2: What is the
expected
Carrier’s Usage?

q6: Which role has to be
responsible for Pickup?

f1: Product Merchandising

f2: Ordering

f4: Payment

f17: Carrier f19: Carrier

f15: Buyer

T

T

T T

f5: Truckload (TL)

f6: Less-Than-Truckload (LTL)

f7: Single Package (SP)

T

f3: Logistics T

f9: Carrier Appointment

f8: Freight Tender

T

f13: Loss or Damage Claim

f12: Return Merchandise Claim

f16: Supplier f18: Buyer

M

M

M

T M

T M

T

M

f11: Freight Delivered

f10: Freight in Transit

f14: Supplier

mandatory fact
fact true by default

x simply depends on y
x strictly depends on y

mapping question-fact
fact
question

T

T

T

T

q3: Which Logistics sub-phases
have to be implemented?

q7: Which role has to be
responsible for Delivery?

q5: Which role has to act as Manager
for Loss or Damage Claims?

q4: Which Claims have
to be handled?

T

T M

Fig. 1. A possible structure of questions-facts drawn from the VICS EDI Framework.

2.1 Order Dependencies and Constraints

Order dependencies (“dependencies” for short) can be introduced to establish
an order among deciding on facts. For example, we use dependencies to impose
that the role responsible for Pickup (either f16 or f17) is to be chosen only after
deciding on the Carrier Appointment (f9), as the latter includes the pickup
details. We express such dependencies by associating a set of preconditions with
a fact x, where a precondition is a group of facts that need to be set before x.
Therefore, fact x can be set only if at least all the facts in one of its preconditions
have already been set. We say a fact “simply depends” on another fact if the
latter belongs at least to one of its preconditions. Also, a fact “strictly depends”
on another one if the latter occurs in all its preconditions. A simple dependency
is represented in Fig. 1 by a dashed arrow connecting a fact to its dependent
fact, while a strict dependency is depicted by a plain arrow following the same
rule. Accordingly, f16 and f17 strictly depend on f9, i.e. they can be set only
after f9, as they have one precondition containing only f9.

Dependencies over facts affect the order in which questions are posed to users,
as questions inherit the dependencies defined on their facts. In our example, since
f16 in q6 depends on f9 in q3, then q6 automatically depends on q3, although
this dependency is not explicitly shown in Fig. 1. Analogously, q7 depends on q3

and q5 on q4.
Sometimes, though, it may be more natural to express those dependencies

directly at the level of questions, provided the dependencies inherited from facts
(if they exist) are not violated. In Fig. 1, q4 strictly depends (directly) on question
q3 and its facts have no dependencies on other facts, whilst q2 has a (direct)

6 M. La Rosa et al.

simple dependency on q1 and q3, so it can be answered after at least one of
q1 and q3 has been answered. Fig. 2 shows the final structure that defines the
partial order in which the questions of Fig. 1 will be be posed to users. From the
diagram we can see that q5, q6 and q7 have inherited their facts’ dependencies.

q1: Which Business Functions
have to be implemented?

q2: What is the expected
Carrier’s Usage?

q6: Which role has to be
responsible for Pickup?

q3: Which Logistics phases
have to be implemented?

q7: Which role has to be
responsible for Delivery?

q5: Which role has to act as Manager
for Loss or Damage Claims?

q4: Which Claims have
to be handled?

Fig. 2. The partial order over the questions of Fig 1.

Dependencies provide a means for ordering questions but do not affect facts val-
ues. For example, with a dependency we cannot capture the restriction on the
Carrier’s Usage, which implies that only one type of shipments is to be supported
in a configured system. This latter restriction corresponds to asserting that ex-
actly one fact among f5, f6 and f7 in q2. Moreover, answering a question may
restrict the allowed answers to subsequent questions, and not all combinations
of answers may lead to valid facts valuations. Indeed, if SP (f7) is asserted in q2,
then no appointment negotiation is allowed for Pickup and Delivery, i.e. f16, f17

have to be negated in q6 and f18, f19 have to be negated in q7.
We capture these restrictions as a set of propositional logic constraints over

facts. The following constraints capture the requirements of the VICS EDI
Framework and refer to the facts of Fig. 1:4

C1: f1 ∨ f2 ∨ f3 ∨ f4 C2: f3 ⇔ (f8 ∨ f9 ∨ f10 ∨ f11)
C3: (f5 � f6 � f7) ⇔ (f4 ∨ f9 ∨ f10) C4: (f12 ∨ f13) ⇒ f11

C5: ¬(f5 ∨ f6 ∨ f7) ⇔ ¬(f4 ∨ f9 ∨ f10) C6: f13 ⇔ (f14 � f15)
C7: (f9 ∧ ¬f7) ⇔ ((f16 � f17) ∧ (f18 � f19)) C8: ¬f13 ⇔ ¬(f14 ∨ f15)
C9: ¬(f9 ∧ ¬f7) ⇔ ¬(f16 ∨ f17 ∨ f18 ∨ f19).

C1 ensures that at least one business function is chosen in q1. C3 and C5 state
that exactly one type of shipment is to be selected as Carrier’s usage in q2, if
and only if at least one phase among Payment, Carrier Appointment and Freight
in Transit is selected in q3, otherwise no shipment type can be chosen. Indeed,
as mentioned before, TL, LTL and SP have an influence on the above process
phases, so it makes no sense to decide on the shipment type unless a phase that
is affected by the Carrier’s Usage is selected. Likewise, as per C7 and C9, exactly

4 � indicates the exclusive disjunction (XOR).

Variability Modeling for Questionnaire-based System Configuration 7

one role between Supplier and Carrier is to be responsible for Pickup (q6), and
exactly one role between Buyer and Carrier is to be responsible for Delivery (q7),
if and only if Carrier Appointment is selected and one of TL and LTL is true.
This is because the Pickup and Delivery appointments are handled during the
Carrier Appointment phase of the VICS process and only in case of TL or LTL
shipments.

Constraints can also be defined over questions (e.g., an OR question is a
question whose facts are all in OR relation). However in the end they need to
be traced back to the level of facts. From the above list of constraints it is easy
to derive that q1 is always an OR question, while q3 and q4 are OR questions
and q2, q5, q6 and q7 are XOR questions, provided some conditions are met. For
example, q5 is an XOR question as exactly one Manager is to be chosen for Loss
or Damage Claim, provided Loss or Damage Claim has been set to true in q4.

Dependencies and constraints are not overlapping concepts. Rather, they
complement each other. An example is shown by C4: (f12 ∨ f13) ⇒ f11 and the
strict dependency that q4 has on q3. Here the behavior we want to capture is
that Claims can be handled only if Freight Delivered ‘has been’ selected, viz.,
f12 and f13 can be set to true only if f11 has been asserted before. Similarly,
due to C6: f13 ⇔ (f14 � f15) and q5 that indirectly depends on q4, exactly one
Manager for Loss of Damage Claim is to be selected in q5, but only after Loss
or Damage Claim (f13) ‘has been’ asserted in q4. In both examples, constraints
alone do not provide enough information to get the desired behavior.

In some cases, instead, the sole usage of constraints is required to achieve the
desired semantics, as shown by C2: f3 ⇔ (f8 ∨ f9 ∨ f10 ∨ f11). This constraint
states that at least one Logistics sub-phase is to be chosen in q3 if and only if
this business function ‘is’ selected in q1. Since these two questions are not bound
by any order dependency, one can answer q1 or q3 for first. However, the answer
given to one of the two questions will affect the facts values of the other question.

As dependencies are not bound to constraints, they can rely on the context
so as to facilitate the configuration process. For example, they can vary based
on the usage or on the organization role that is meant to configure the system.
To cater for this, multiple sets of dependencies can be associated to the same
structure questions-facts. This would not be possible if we automatically derived
dependencies from constraints, e.g. by means of a symbolic analysis of boolean
expressions. Besides, as shown before, there are situations where dependencies
are not needed in order to capture the desired behavior.

A facts valuation is a configuration if and only if it complies with the con-
straints over the facts values. A configuration is thus the result of answering
an interactive questionnaire, where questions are posed to users according to
the order dependencies, and constraints are dynamically checked so as to pre-
vent users from entering conflicting responses. Although a configuration solely
relies on facts values, questions and dependencies are used to provide a seman-
tically consistent yet simple interface to users, who are only required to fill in a
questionnaire, instead of configuring a set of ‘unordered’ facts.

8 M. La Rosa et al.

2.2 Actions

Facts can be associated to sets of actions, i.e. modifications to be performed on
the domain model to reflect the effects of a configuration. For example, in the
field of software product families, such an action could correspond to removing
some code fragment from a software asset, as a result of answering a set of
questions. In business process model configuration, an action could be associated
to adding/removing a process fragment, whenever the corresponding fact is set
to true, resp. false.

Fig. 3 shows an overview of the order fulfillment process model.5 For read-
ability purposes, the model has been divided into a set of configurable process
fragments, where fragments are delimited by dotted boxes and identified by the
facts of Fig. 1.
The four main process fragments refer to the Business Functions – Product Mer-
chandise, Ordering, Logistics and Payment – that the process can implement. As
such, their boxes encompass all the other configurable fragments. For example,
Logistics (box “f3”) contains the fragments for its sub-phases, i.e. Freight Ten-
der (“f8”), Carrier Appointment (“f9”), Freight in Transit (“f10”) and Freight
Delivered (“f11”). If we associated an action to each of these facts, that corre-
sponds to the removal of the affected process fragments, then setting f3 to false
would imply to remove Logistics as well as all the fragments therein. This com-
plies with C2, which has been built right to reflect this relation ‘parent-child’
that Logistics holds with its sub-phases.

Carrier Appointment, in turn, includes a fragment for handling each type
of shipment (“f5”,“f6”,“f7”) and each role that can be responsible for Pickup
(boxes “f16” and “f17”) and for Delivery (boxes “f18” and “f19”). The last four
fragments occur only within the boxes for “f5” and “f6”, as only for TL or LTL
shipments the Pickup and Delivery details can be decided. Since all the above
facts are mapped to fragments within Logistics, if at least one of them is chosen
in the configuration process, then Logistics cannot be removed anymore (i.e. f3

must be set to true). At the level of facts, these interactions are described by
constraints C3, C5, C7 and C9.

Similar considerations hold for the remaining process fragments and con-
straints. Constraints can be defined over actions as well (e.g. two actions that
are in XOR relation), provided in the end they are traced back to the level of
facts.

In the next section we will rigorously define the above concepts. The formal
definition is used to describe with accuracy the variations that can be identified
in a configurable domain (e.g. the VICS EDI Framework represented by its
process model). We will then show how to generate an interactive questionnaire
from this definition, that can be used to configure such variations.

5 A full representation of this process using the YAWL notation [1] can be found at
http://www.fit.qut.edu.au/~dumas/ConfigurationTool.zip

Variability Modeling for Questionnaire-based System Configuration 9

Freight in Transit

Freight Delivered

Product Merchandising

Freight Tender

Payment

Ordering

cb.214

Carrier Appointment

f1

f2

f8

f9

f4
f10

f11

Logistics

f3

f5

f16 f17 f18 f19

f16 f17 f18 f19

f6

f7

TL LTL

SP

f15 f12

f13

f14

f7 f5, f6

f7 f5, f6

Fig. 3. The order fulfillment collaborative process model, with the facts of Fig. 1.

3 Formal Definition of Configuration Models

We use the concept of configuration model (CM) to directly capture variations
in terms of facts, questions and their relations. A CM does not incorporate
elements of commonalities, such as those aspects of a configurable domain that
do not vary. The only difference with the informal description of the approach
is that in a CM constraints over facts values are described by means of a true
table of their conjunction.

Definition 1 (Configuration Model). A configuration model is a ten-tuple
CM = (F, FD, FM , Q,Act ,mapQF ,mapFA, preF , preQ,CS) where:

10 M. La Rosa et al.

– F is a finite, non-empty set of facts,
– FD ⊆ F is the default valuation, i.e. the set of facts whose default is true,
– FM ⊆ F is the set of mandatory facts,
– Q is a finite (non-empty) set of questions,
– Act is a finite set of actions,
– mapQF ∈ Q → P(F) \ {∅} is a function mapping a question onto a set of

facts, such that
⋃

q∈Q mapQF (q) = F ,6

– mapFA ∈ F → P(Act) is a function mapping a fact onto a set of actions,
such that

⋃
f∈F mapFA(f) = Act,

– preF ∈ F → P(P(F))\{∅} is a function mapping a fact onto a set of sets of
facts, where for any f ∈ F , preF (f) ⊆ P(F \{f}) is the set of preconditions
of f , satisfying the following requirements:
1. ∀r,p∈preF (f) (r ⊆ p ⇒ r = p), i.e. no redundancies,
2. �G∈P(F)\{∅} ∀f∈G ∀F ′∈preF (f) F ′ ∩ G �= ∅, i.e. no undesired circular

dependencies,
– preQ ∈ Q → P(P(Q)) \ {∅} is a function mapping a question onto a set of

sets of questions, where for any q ∈ Q, preQ(q) ⊆ P(Q \ {q}) is the set of
preconditions of q, satisfying the following requirements:
1. ∀r,p∈preQ(q) (r ⊆ p ⇒ r = p), i.e. no redundancies,
2. �G∈P(Q)\{∅} ∀q∈G ∀Q′∈preQ(q) Q′ ∩ G �= ∅, i.e. no undesired circular

dependencies,
3. ∀Q′∈preQ(q) ∀f∈mapQF (q) ∀F ′∈preF (f) F ′ ⊆ ⋃

q′∈Q′ mapQF (q′), i.e. facts
dependencies must be preserved at the level of questions,

– CS ⊆ P(F) is the set of the allowed valuations of the facts in F , such that
FD ∈ CS, i.e. the default valuation is always allowed.

Elements of CS are those facts valuations that satisfy all the constraints, where
only the facts asserted are present in each element. Hence, if a fact is not con-
tained in a clause of CS , it follows that the fact is negated in that valuation. For
example, if F = {f1, f2, f3, f4} and {f1, f2, f4} ∈ CS is a facts valuation, then
in the latter all the facts but f3 are set to true.

As the default valuation must always be allowed, set CS is non-empty. If no
constraints are defined, CS = P(F). A situation where CS = {F}, means that
all the facts must be asserted (upper-bound case), while CS = {∅} corresponds
to negating all the facts (lower-bound case).

We say a fact is meaningful if it can be freely set before starting the config-
uration process, i.e. if ∃F ′

1,F ′
2∈CS (f ∈ F ′

1 ∧ f �∈ F ′
2). Such a fact represents a

variation in the model. Thus, if a fact is not meaningful it should not be included
in the model, as it would represent a commonality.

Actions depend on the type of the domain model and the language used
for its description. For example, if they refer to the configuration of software
code trunks/features, then the programming language needs also to be taken
into account. Likewise, if actions refer to process/data models, the modeling
notation used for the representation of such models needs also to be considered.

6 P indicates the power set.

Variability Modeling for Questionnaire-based System Configuration 11

This is important as actions (and their relations) must not violate the syntactic
rules of the description language. Since here we aim at providing a language-
independent formalization of variability, a detail description of actions is left out.
In separate work [17] we have explored the use of actions for business process
models configuration (further details can be found in Section 6).

The set of preconditions for facts and questions are used to specify the order
dependencies as follows.

Definition 2 (Order Dependencies). Let CM = (F, FD, FM , Q,Act ,mapQF ,
mapFA, preF , preQ,CS) be a configuration model and f, f ′ and q, q′ pairs of
facts, resp. questions:

– f simply depends on f ′ iff ∃F ′∈preF (f) f ′ ∈ F ′,
– f strictly depends on f ′ iff ∀F ′∈preF (f) f ′ ∈ F ′,
– q simply depends on q′ iff ∃Q′∈preQ(q) q′ ∈ Q′,
– q strictly depends on q′ iff ∀Q′∈preQ(q) q′ ∈ Q′.

For a fact or question, its set of preconditions represents the disjunction of
preconditions being conjunctions of the dependencies. In other words, a fact can
be set (to true or false), or a question can be answered, only if at least all the
facts in one of its preconditions have already been set (to true or false), or all
the questions in one of its preconditions have already been answered. Thus facts
(questions) in the same precondition are in AND relation, while preconditions
are in OR relation.

Example 1. Let preF (f1) = {{f2, f3}, {f2, f4}} be the set of preconditions of
fact f1. Then either f2 and f3 or f2 and f4 have to be set before f1 can be set.
We can observe that f2 must be set in any case before f1, since it appears in
all the clauses of preF (f1). This is a strict dependency. On the other hand, f1

can depend either on f3 or f4, as these facts do not belong to each clause of
preF (f1). These are simple dependencies. A strict dependency always implies a
simple one.

As per the definition, for any fact f and question q, both preF (f) and preQ(q)
are not the empty set. Thus, if we want to model a situation where no depen-
dencies are defined for a fact f or question q, then preF (f) or preQ(q) should
contain only the empty set.

The first requirement of preF and preQ is used to avoid redundancies among
preconditions. Accordingly, if a precondition contains the empty set it cannot
contain other sets, since all the sets would include the empty one.

Example 2. A situation where preF (f1) = {{f2}, {f2, f3}} is not allowed since
the first clause is a subset of the second. Since all the preconditions are in OR
relation, it does not make sense for f1 to depend on f2 OR on (f2 AND f3), as
the latter set of dependencies implies the former. In such cases only one clause
should be selected.

12 M. La Rosa et al.

The second requirement on preconditions avoids ‘undesirable circular dependen-
cies’. These occur whenever, for each fact (or question) of a given set, all its
preconditions contain at least one element of the set itself.

Example 3. A case where preF (f1) = {{f2}}, preF (f2) = {{f3}} and preF (f3) =
{{f1}} (Fig. 4 - a), or a case where preF (f1) = {{f2}}, preF (f2) = {{f3}} and
preF (f3) = {{f1}, {f2}} (Fig. 4 - b) are denied since all the preconditions share
the same set of facts. By applying the second requirement to both the above
cases, we see there exists a G = {f1, f2, f3} ⊆ F such that for all f ∈ G, all the
clauses in preF (f) contain at least a fact in G. Such undesirable circles can be
caused by simple and strict dependencies, as in the last case.

f1 f3

f2

f4

denied alloweddenied

a) b) c)

allowed

d)

f1 f3

f2

f1 f3
q1 q2

f2 f4

q1

q3

q1 q1 q2

allowed denieddenied

q1
q2

q3

q2

q3

q2

q3

mapping question-fact

f1 f3

f2

x y
x y

x simply depends on y
x strictly depends on y

Fig. 4. Examples of circular dependencies over facts and questions.

Not all circular dependencies are undesirable, though. For example, a loop cre-
ated by a set of facts (questions) can be allowed if there exists an entry point
to the loop, i.e. an element of the given set which progressively satisfies all the
preconditions. This entry point is a fact (question) with at least one precondition
that does not contain any element of the given set.

Example 4. A combination where preF (f1) = {{f2}, {f3}, {f4}}, preF (f2) =
{{f1}, {f3}}, preF (f3) = {{f1}, {f2}}, preF (f4) = {∅} (Fig. 4 - c) is allowed as
f4 does not have dependencies on the set {f1, f2, f3} and thus it first enables f1,
and then f2 and f3 in any order. We cannot find a G ⊆ F such that the second
requirement on preconditions does not hold.

The only difference between the definitions of preF and preQ is the addition of a
third requirement to the latter, in order to move dependencies over facts to the
level of questions without violating them. Given a question q, the requirement
checks for the existence of preconditions F ′ on the facts of q. If these exist, it
forces each precondition Q′ of q to contain a set of questions whose facts cover at
least all the facts in all the preconditions F ′. These dependencies that q inherits
from its facts, can be extended by adding further dependencies directly at the
granularity of questions, provided they comply with the first two requirements.
This is possible since

⋃
q′∈Q′ mapQF (q′) is defined as a superset of all the F ′.

Variability Modeling for Questionnaire-based System Configuration 13

Example 5. Consider a situation where mapQF (q1) = {f1, f2}, mapQF (q2) =
{f3, f4}, mapQF (q3) = {f3}, preF (f1) = {{f3}} and preF (f4) = {{f2}} (Fig. 4
- d). Here f3 is a shared fact between q2 and q3. If we lift facts dependencies
to the level of questions, we see that q3 does not inherit any dependencies as
it is mapped to f3 only, q2 strictly depends on q1 by means of f4, while there
are four possible sets of preconditions for q1, i.e. preQ(q1) = {{q2}, {q3}} or
{{q3}} or {{q2, q3}} or {{q2}}. All these sets meet the third requirement as f3

– the only fact f1 depends on – is contained in at least one question q′ ∈ Q′

for each Q′ ∈ preQ(q1). However for the second requirement only the first two
alternatives are valid, as they do not create undesirable circular dependencies
between q1 and q2.

4 Generation of Interactive Questionnaires

This section completes the formal description of the approach presented so far
by defining the “runtime behavior”, i.e. the configuration process for a CM . In
a configuration process questions are dynamically posed to users according to
the order dependencies, and answers can be given only if they comply with the
constraints.

We first define some concepts to work with facts valuations, such as set of
facts valuations, answer, state and state space. These concepts are needed to
specify when a question can be posed to users. In particular, an answer is any
facts valuation where only a subset of facts (the ones that relate to a question)
are set, while a state of CM is identified by a facts valuation and a set of answered
questions.

Definition 3 (Set of fact valuations, Answer, State, State space). Let
CM = (F, FD, FM , Q,Act ,mapQF ,mapFA, preF , preQ,CS) be a configuration
model:

– V = F → {true, false, unset} is the set of facts valuations,
– a ∈ V is an answer, i.e. a facts valuation where all f ∈ F for which a(f) �=

unset are set,
– s = (vs, qs) is a state of CM if and only if vs ∈ V and qs ⊆ Q, where qs is

the set of questions answered and vs is the valuation of the facts thus far,
– SCM = V × P(Q) is the state space of CM .

Elements of V are thus “parts of state” (vs) as well as “answers” (a). Hereafter
SCM is shortened to S whenever the configuration context is clear.

In order to perform operations on facts valuations, we define the following
notation.

Definition 4 (Facts Valuation Notation). Let CM = (F, FD, FM , Q,Act ,
mapQF ,mapFA, preF , preQ,CS) be a configuration model and let s = (vs, qs) ∈
S be a state of CM and a ∈ V an answer:

– t(s) = t(vs) = {f ∈ F | vs(f) = true} is the set of facts that are true in
state s,

14 M. La Rosa et al.

– f(s) = f(vs) = {f ∈ F | vs(f) = false} is the set of facts that are false in
state s,

– u(s) = u(vs) = {f ∈ F | vs(f) = unset} = F \ (t(s)∪f(s)) is the set of facts
that are unset in state s. Note that t(vs), f(vs) and u(vs) can be applied to
any valuation vs ∈ V , thus to any answer a ∈ V :

– t(a) = {f ∈ F | a(f) = true}, is the set of facts set to true by answer a,
– f(a) = {f ∈ F | a(f) = false}, is the set of facts set to false by answer a,
– u(a) = F \ (t(a) ∪ f(a)), is the set of facts left unset by answer a,
– compl(s) = compl(vs) = {f ∈ F | vs(f) = true ∨ (f ∈ FD ∧vs(f) �= false)}

is the set of facts set to true through answers, merged with those facts left
unset which were true by default,7

– for x, y ∈ V and f ∈ F :

x ⊕ y(f)

⎧⎨
⎩

true, if y(f) = true ∨ (x(f) = true ∧ y(f) = unset),
false, if y(f) = false ∨ (x(f) = false ∧ y(f) = unset),
unset, otherwise.

For each state a set of valid questions is presented to users. For a question to be
valid in a state (valid(q, s)), two conditions must hold: i) the question has not
been answered yet, and ii) at least one of its preconditions is satisfied.

Users can answer one valid question at a time. An answer to a question in a
certain state is valid (valid(a, q, s)) if and only if all the facts within that question
are set and the outcome of the answer (outcome(a, q, s)) results in a valid state
(valid(s)), i.e. a state whose facts valuation complies with the constraints on
facts. Also, since facts can appear in more than one question, those of them
already set in previous questions (if they exist) must keep their values in the
answer, i.e. it is possible to reconfirm answers.

Definition 5 (Valid answer). Let CM = (F, FD, Q,Act ,mapQF ,mapFA, preF ,
preQ, FM ,CS) be a configuration model and let s = (vs, qs) ∈ S be a state of
CM , q ∈ Q a question, and a ∈ V an answer:

– valid(q, s) = q �∈ qs ∧ ∃Q′∈preQ(q) Q′ ⊆ qs, i.e., question q may be asked if
it has not been answered yet and at least a group of preceding questions has
been answered,

– outcome(a, q, s) = (vs ⊕ a, qs ∪ {q}), i.e. the state resulting after answering
a to question q in state s,

– valid(s) = ∃F ′∈CS (t(s) ⊆ F ′ ∧ f(s) ∩ F ′ = ∅), i.e. the facts valuation of
the state has to comply with the constraints on facts,

– valid(a, q, s) = valid(q, s) ∧ t(a) ∪ f(a) = mapQF (q) ∧ ∀f∈mapQF (q)\u(s)

a(f) = vs(f) ∧ valid(outcome(a, q, s)), i.e. a valid answer to a valid question
has to set all the facts of the question without changing the value of the facts
already set, and the given valuation must result in a valid state.

The valuation resulting from an answer has to be checked against set CS , so as
to verify if it complies with the constraints defined on facts values. In this way
7 This function sets to true those facts left unset whose default was true.

Variability Modeling for Questionnaire-based System Configuration 15

we ensure it is always possible to complete the current facts valuation by setting
any remaining fact still unset.

By joining the possible states of a configuration process, we can now build a
labeled transition system (LTS) on top of CM . This is used later on to formally
define the concept of configuration.

Definition 6 (Labeled Transition System of CM). Let CM = (F, FD, FM ,
Q,Act ,mapQF ,mapFA, preF , preQ,CS) be a configuration model and let S be
the state space of CM and V the set of facts valuations. The labeled transition
system of CM is a five-tuple LTS = (Sv, L, T, sinit, SF) where:

– Sv = {s ∈ S | valid(s)} is the set of states of LTS, corresponding to the
valid states of CM ,

– L = {(a, q) ∈ V × Q | t(a) ∪ f(a) = mapQF (q)} is the set of transition
labels of LTS, where each element of L is a pair composed of an answer and
a question of CM ,

– T = {(s, (a, q), s′) ∈ Sv×L×Sv | valid(a, q, s) ∧ s′ = outcome(a, q, s)} is the
set of transitions of LTS, where for each t = (s, (a, q), s′) ∈ T source(t) = s
and target(t) = s′,

– sinit = ({(f, unset) | f ∈ F}, ∅) ∈ Sv is the initial state of LTS, i.e. the
state in which all the facts are unset and all the questions are unanswered,8

– SF = {(vs, qs) ∈ Sv | (f ∈ FM ⇒ vs(f) �= unset) ∧ valid(s∗)} is the set of
final states of LTS, where s∗ = (vs∗, qs) ∈ S with t(vs∗) = compl(vs) and
f(vs∗) = F \ t(vs∗). A final state is a state where all the mandatory facts
have been set, and the facts still unset, if these exist, can take their default
value without violating the constraints on facts.

A configuration process always starts from an initial state where no questions
are answered and all the facts are unset, and terminates in a final state where
all the questions have been answered, or all the mandatory facts have been set
and the remaining unset facts can take their defaults. As shown in the definition
of final state of the labeled transition system, this is possible only if the facts
valuation that results after applying the defaults complies with the constraints
on facts values, i.e. if it does not violate the configuration process so far.

Example 6. Consider a configuration model where mapQF (q1) = {f1}, mapQF

(q2) = {f2, f3, f4, f5}, FD = {f2, f3}, FM = {f1}, and the constraint f1 ⇒
((f2∧f4)�(f3∧f5)). It follows that CS = {{f1, f2, f4}, {f1, f3, f5}, ...}, where the
remaining elements of CS are the elements of P({f2, f3, f4, f5}), thus including
FD. If f1 is set to true by answering q1, although all the mandatory facts have
been set, the default valuation cannot be applied for the remaining unset facts
in q2, since only either f2 and f4 or f3 and f5 can assume value true. Hence we
cannot find an F ′ ∈ CS such that {f1, f2, f3} ⊆ F ′. On the other hand, if we set
f1 to false we get straightaway to a final state, where all the mandatory facts
have been set and the remaining ones can take their default.
8 sinit is valid by definition, since t(sinit) = f(sinit) = ∅.

16 M. La Rosa et al.

A configuration trace of CM is a sequence of transitions of LTS , linking the
initial state to a final state.

Definition 7 (Configuration Trace of CM). Let CM = (F, FD, FM , Q,Act ,
mapQF ,mapFA, preF , preQ,CS) be a configuration model, V the set of facts val-
uations, S the state space of CM and let LTSCM = (Sv, L, T, sinit, SF) be its
labeled transition system:

– σ = (t1, ..., tn) ∈ T+ is a trace of LTS iff target(ti) = source(ti+1) for each
1 � i � n − 1, where firsts(σ) = source(t1) and lasts(σ) = target(tn),

– valid(σ) = (firsts(σ) = sinit ∧ lasts(σ) ∈ SF), i.e. a trace is valid iff it
joins the initial state with a final state. Each valid trace is a configuration
trace of CM .

A configuration of CM is the result of any configuration trace of CM , i.e. the facts
valuation reached with the last state of a configuration trace, completed with
default values. Therefore, a configuration always complies with the constraints.

Definition 8 (Configuration of CM , Configuration Space of CM). Let
CM = (F, FD, FM , Q,Act ,mapQF ,mapFA, preF , preQ,CS) be a configuration
model, V the set of facts valuations, S the state space of CM , LTSCM =
(Sv, L, T, sinit, SF) its labeled transition system, and let σ ∈ T+ be a config-
uration trace of CM :

– cf (σ) ∈ V is a configuration of CM resulting from σ, iff t(cf (σ)) = compl
(lasts(σ)) and f(cf (σ)) = F \ t(cf (σ)),

– Cf CM = {cf (σ) ∈ V | valid(σ)} is the configuration space of CM , i.e. the
set of all the possible configurations of CM .

We now show that a configuration process can always terminate in a final state,
since for all the valid non-final states, there always exists at least one valid
question whose answer leads to another valid state, taking the process closer to
a final state.

In particular, the following theorem is used to prove that the definition of
preQ and CS are sufficient to avoid any deadlock during the configuration pro-
cess. This is because undesirable circular dependencies are excluded a priori
in preQ, and only those facts valuations that comply with the constraints are
represented in CS .

The theorem is followed by a corollary that shows the results.

Definition 9 (Trace Notation). Let CM = (F, FD, FM , Q, Act , mapQF ,
mapFA, preF , preQ,CS) be a configuration model, V the set of facts valuations,
S the state space of CM and let LTSCM = (Sv, L, T, sinit, SF) be its labeled
transition system. Given two valid states of LTS s and s′, we write s σ−→ s′ iff
σ ∈ T+ is a trace of LTS such that firsts(σ) = s and lasts(σ) = s′.

Theorem 1. Let CM = (F, FD, FM , Q,Act ,mapQF ,mapFA, preF , preQ,CS) be
a configuration model, V the set of facts valuations, S the state space of CM
and let LTSCM = (Sv, L, T, sinit, SF) be its labeled transition system. For any
s ∈ Sv, either s ∈ SF or ∃q∈Q ∃a∈V ∃s′∈Sv

s
(s,(a,q),s′)−−−−−−→ s′, (s, (a, q), s′) ∈ T .

Variability Modeling for Questionnaire-based System Configuration 17

Proof. We prove the theorem in two steps: i) we show that for all valid non-final
states there always exists at least one valid question; ii) we show that for all valid
questions in a valid state there always exists at least one valid answer.

Valid question [∀s∈Sv\SF
∃q∈Q valid(q, s)]. Let s = (vs, qs) ∈ Sv \ SF . Let

G = Q \ qs, then G �= ∅ as s �∈ SF . According to the 2nd requirement of preQ,
there is a q ∈ G and a Q′ ∈ preQ(q) such that G ∩ Q′ = ∅.

◦ [q �∈ qs]. True by definition of G and preQ.
◦ [Q′ ⊆ qs]. G ∩ Q′ = ∅, that is (Q \ qs) ∩ Q′ = ∅, thus (Q ∩ Q′) \ qs = ∅,

(Q′ ⊆ Q) Q′ \ qs = ∅, hence Q′ ⊆ qs.

Hence valid(q, s).

Valid answer [∀s∈Sv\SF
∀q∈Q,valid(q,s) ∃a∈V valid(a, q, s)]. Let s = (vs, qs) ∈ Sv \

SF . Since s ∈ Sv, we can find F ′ ∈ CS such that t(s) ⊆ F ′ and f(s)∩F ′ = ∅. Let
q ∈ Q such that valid(q, s). We define ts(q) = {f ∈ mapQF (q) | vs(f) = true},
fs(q) = {f ∈ mapQF (q) | vs(f) = false}, tu(q) = (F ′ ∩ mapQF (q)) \ ts(q) and
fu(q) = mapQF (q)\ (F ′∪ ts(q)). We choose a = {(f, true) | f ∈ ts(q)∪ tu(q)} ∪
{(f, false) | f ∈ fs(q) ∪ fu(q)} ∪ {(f, unset) | f ∈ F \mapQF (q)}, then a ∈ V .

◦ [valid(q, s)]. True by assumption.
◦ [t(a) ∪ f(a) = mapQF (q)]. t(a) ∪ f(a) = ts(q) ∪ tu(q) ∪ fs(q) ∪ fu(q).

− [⊆] Let f ∈ mapQF (q),
1) if vs(f) = true, then f ∈ ts(q),
2) if vs(f) = false, then f ∈ fs(q),
3) if vs(f) = unset,

a) if f ∈ F ′, then f ∈ tu(q) as f �∈ ts(q),
b) if f �∈ F ′, then f ∈ fu(q) as f �∈ ts(q),

hence f ∈ ts(q) ∪ tu(q) ∪ fs(q) ∪ fu(q).
− [⊇] Follows from the definitions of ts(q), tu(q), fs(q) and fu(q).

◦ [∀f∈mapQF (q)\u(s) a(f) = vs(f)]. Let f ∈ mapQF (q) and f �∈ u(s), then
f ∈ ts(q) or f ∈ fs(q), hence (definition of a) a(f) = true and f ∈ ts(q) or
a(f) = false and f ∈ fs(q), hence (definitions of ts(q) and fs(q)) a(f) = true
and vs(f) = true or a(f) = false and vs(f) = false, hence a(f) = vs(f).

◦ [valid(outcome(a, q, s))]. Let s′ = outcome(a, q, s) = (vs ⊕ a, qs ∪ {q}).
− [t(s′) ⊆ F ′]. t(s′) = {f ∈ F | a(f) = true ∨ (vs(f) = true ∧ a(f) =

unset)} (definition of x ⊕ y(f)). Let f ∈ t(s′),
1) if a(f) = true, then f ∈ ts(q) ∪ tu(q), hence f ∈ F ′ given that

ts(q) ⊆ F ′ and tu(q) ⊆ F ′.
2) if vs(f) = true and a(f) = unset, then f ∈ t(s) and f ∈ F \

mapQF (q), hence f ∈ F ′ as t(s) ⊆ F ′.
− [f(s′) ∩ F ′ = ∅]. f(s′) = {f ∈ F | a(f) = false ∨ (vs(f) = false ∧

a(f) = unset)} (definition of x ⊕ y(f)). Let f ∈ f(s′),
1) if a(f) = false, then f ∈ fs(q) ∪ fu(q), hence f �∈ F ′ = ∅ given that

fs(q) ∩ F ′ = ∅ and fu(q) ∩ F ′ = ∅.

18 M. La Rosa et al.

2) if vs(f) = false and a(f) = unset, then f ∈ f(s) and f ∈ F \
mapQF (q), hence f �∈ F ′ as f(s) ∩ F ′ = ∅.

Hence valid(outcome(a, q, s)).

Hence valid(a, q, s).

Corollary 1 (Configuration processes always terminate). For any config-
uration model CM = (F, FD, FM , Q,Act ,mapQF ,mapFA, preF , preQ,CS) and
its LTSCM = (Sv, L, T, sinit, SF), and for any state s ∈ Sv \SF for which there
exists a trace σ ∈ T+ such that sinit

σ−→ s, there exists a τ ∈ T+ and an s′ ∈ SF

such that s τ−→ s′, i.e. each configuration process can reach a final state.

In general, before starting the configuration process, a fact can assume both
the values true and false. However once the configuration process has begun, at
a certain state it may turn out from the constraints that a fact can take only
one value of the two. In this case users do not have the freedom to choose, as
the value to be given is imposed by the constraints. We call this type of fact
forceable.

When this situation occurs for all the facts of a question, the question can
have only one answer. Moreover, since facts can appear in more than one ques-
tion, it may happen at a certain state that all the facts of a valid question have
already been answered. Again, such a question can take only one possible an-
swer. We call these questions skippable, as they can be automatically answered
and thus skipped by a supporting implementation (e.g. a questionnaire tool).

Definition 10 (Skippable Question). Let CM = (F, FD, FM , Q,Act ,mapQF ,
mapFA, preF , preQ,CS) be a configuration model, and let s ∈ S be a valid state
of CM , f ∈ F a fact and q ∈ Q a question:

– forceable(f, s) = f ∈ u(s) ∧ ∀F1,F2∈CS [(t(s) ⊆ F1 ∩ F2 ∧ f(s) ∩ (F1 ∪
F2) = ∅) ⇒ F1(f) = F2(f)], i.e. f assumes the same value in all the facts
valuations still possible,

– skippable(q, s) = valid(q, s) ∧ ∀f∈mapQF (q) [forceable(f, s) ∨ f �∈ u(s)], i.e.
a question can be skipped iff none of its facts is mandatory, and all its unset
facts can have exactly one value or all its facts have been previously set.

If a question is skippable the only possible answer is valid, since this valuation
always complies with the constraints. Precisely, the forceability of a fact is deter-
mined by set CS , while if all the facts have been previously set, then the answer
is already included in the last state s, which is valid by assumption.

5 Tool Support

In order to establish the practical feasibility of our approach, we have imple-
mented a tool for the dynamic generation of interactive questionnaires. The fea-
tures of this tool,9 called Quaestio, are introduced in the first part of this section.
The second part shows how the tool is used to configure the order fulfillment
example of Section 2.
9 Downloadable from http://sky.fit.qut.edu.au/~dumas/ConfigurationTool.zip

Variability Modeling for Questionnaire-based System Configuration 19

5.1 Prototype Implementation

Quaestio is a Java GUI which produces a set of ordered questions given a con-
figuration model as input.

The interface is made up of a main window showing a list of Valid Ques-
tions, a list of Answered Questions and a Question Inspector. When a question
is picked from one of these lists, the Question Inspector shows the question’s de-
tails: the list of facts for the question, the dependencies on other questions, and
guidelines in natural language to configure the question. In a separate window,
a Fact Inspector shows detailed information for each facts: its default value, if
mandatory, the constraints that binds the fact in natural language (derived from
facts’ descriptions), the dependencies on other facts, the level of impact on the
domain model, and specific guidelines to configure the fact.

The input format for a configuration model is described by an XML schema,
which captures the structural requirements defined in Definition 1. In this way
non-well-formed models are avoided a priori, e.g. those models where a fact is
not associated to any question or where the questions do not cover all the facts.

Once a model is loaded, Quaestio shows the set of initial valid questions.
Next, for each answer given, the tool dynamically calculates the next valid state
so as to update the lists of valid and answered questions. The configuration
process completes when all the questions have been answered, or at least all the
mandatory facts have been set and the remaining ones can take their defaults
without violating the constraints.

A (partial) configuration can be exported to XML as a list of facts, keeping
track of the values that have been set and whether they deviate from the defaults.

The implementation adheres to the formalization presented in Section 3 and
4. The only differences are in the internal representation of the constraints and
of the state space.

Checking constraints based on CS – a representation of all the valid facts
valuations – would be an NP-complete problem [14]. To overcome this issue, we
opted to embody an existing calculator10 based on Shared Binary Decision Dia-
grams (SBDDs) [7, 19]. SBDDs are a concise representation of boolean formulas
for which there are efficient constraint-checking algorithms. They are based on
the classical Binary Decision Diagrams(BDDs) [2] with the advantage of being
always cheaper in size and time computation than classical BDDs. Regarding
scalability, algorithms based on SBDDs can efficiently deal with systems made
up of around one million of possibilities [19]. We use SBDDs to check the satis-
fiability of the constraints and the meaningfulness of the facts. In this way the
tool can signal potential issues before starting a configuration. SBDDs are also
used during the configuration process, to evaluate the type of relations among
the facts of a question (e.g. an XOR question), and to verify the forceability of
facts and the validity of answers.

As a result, we decided not to preemptively build the state space with an
LTS , as the complexity of this operation would heavily depend on the size of

10 Downloadable from http://www-verimag.imag.fr/~raymond/tools/bddc-manual

20 M. La Rosa et al.

CS . Besides, the efficiency of the algorithm required to search for the next state
would be affected by the size of the graph itself. Therefore, we opted for a dy-
namic generation of the state space, composed of the traversed states only. For
each answer given, the next state is calculated by scanning only those questions
that are neither answered nor valid. For each of these questions, the algorithm
checks if at least one precondition can be satisfied (i.e. if all the questions in a
precondition have been answered). If so, a question is put in the Valid Ques-
tions list only if it is not skippable, otherwise it goes straight to the Answered
Questions list. These lists are kept in memory by means of hash sets.

The main features of the tool are:

– decision support: by means of guidelines, constraints and impact-level;
– dynamic checking of answers: answers can be given only if they comply with

the constraints;
– default answer: default values can be given to all the facts of a question, if:

• the value of facts set or forceable do not deviate from their default,
• the resulting valuation is valid given the current state;

– fact value preservation: facts that occur in more than one question are set
the first time and then preserve their value in subsequent questions they
appear in;

– forceable facts: such facts are disabled and show their forced value;
– skippable questions: such questions are automatically answered;
– automatic completion: upon request the system can automatically complete

the configuration process whenever all the mandatory facts have been an-
swered and default values can be used for the remaining ones.

– question rollback: each answered question can be rolled back to the state
before the answer.11

5.2 Sample Configuration Process

This section shows a sample configuration process for the order fulfillment pro-
cess model of Fig. 3. Assume, for example, that we want to configure the model
to handle SP shipments and to support only Loss or Damage Claims managed by
the Supplier, and that we are not interested in the Payment phase of the process
as it will be outsourced. These can be common choices among the stakeholders
of a supply-chain management company interested in supporting the VICS EDI
Framework.

Once the corresponding configuration model has been loaded into Quaestio,
the valid questions are shown in the Valid Questions list. These are q1 and q3,
since they have no dependencies (Fig. 5). The initial state is s1 where no answers
have been given, i.e. qs(s1) = ∅. We decide, for example, to answer q3 – Which
Logistics phases have to be implemented? with its default answer. This corre-
sponds to give answer a1(q3) = {(f8, T), (f9, T), (f10, T), (f11, T)}, since all the
facts of q3 are true by default (shown by a green T© next to the fact description).
11 In this case all the questions answered thereafter are also rolled back. Alternatively,

a selective roll back can be easily implemented.

Variability Modeling for Questionnaire-based System Configuration 21

Fig. 5. State s1: the only valid questions are q1 and q3.

With a1 we reach state s2 with qs(s2) = {q3}. q2 is added to the valid questions
due to its simple dependency on q1 or q3. Assume we choose q1 from the Valid
Questions. From the Question Inspector we can see that f3 has been forced to
true and grayed out (Fig. 6). The system has reacted to a1 by setting f3 in order
to comply with C2. We answer q1 with a2(q1) = {(f1, T), (f2, T), (f3, T), (f4, F)}
so as to exclude Payment.

After a2, we get to s3 with qs(s3) = {q3, q1}. Questions q4, q6 and q7 are
added to the valid ones as they depend on q3. Assume we pick q2 – What is
the expected Carrier’s Usage?. Due to C3 and to the answers given so far, this
question can only be answered if exactly one of its facts is set to true (the answer
button is disabled). Also, this question needs to be explicitly answered as all its
facts are mandatory (indicated by a red M© next to the fact description). We
select Single Package and a3(q2) = {(f5, F), (f6, F), (f7, T)} is given.

The next state is s4 with qs(s4) = {q3, q1, q2}. Although no questions depend
on q2, after answering a3 both q6 and q7 become skippable, since all their facts can
take only value false due to C9. Thus a4(q6) = {(f16, F), (f17, F)} and a5(q7) =
{(f18, F), (f19, F)} are automatically given by the system, which moves from s4 to
s5 with a5, and from s5 to s6 with a6. q6 and q7 are added to the set of answered
ones (shown in blue in Fig. 7) and qs(s6) = {q3, q1, q2, q6, q7}. Next we answer the
only valid question remaining, q4 – Which claims have to be handled?, with its
default answer a6(q4) = {(f12, F), (f13, T)} as it complies with our requirements.

After a6 we reach s7 with qs(s7) = {q3, q1, q2, q6, q7, q4}. q5 – Which role has
to act as Manager for Loss or Damage Claims? is now valid as it depends on

22 M. La Rosa et al.

Fig. 6. State s2: f3 has been forced to true in q1 in order not to violate C2.

Fig. 7. State s6: q6 and q7 have been skipped as their facts can only be negated.

Variability Modeling for Questionnaire-based System Configuration 23

q4. s7 is a final state as all the mandatory facts have already been set and the
remaining ones still unset (f14 and f15) can take their defaults without violating
the constraints. q4 can thus be answered automatically with defaults. At this
point users can decide whether to continue or to complete the configuration
automatically. We decide to use the automatic completion and answer a7(q5) =
{(f14, T), (f15, F)} is given.

State s8 is the next state with qs(s8) = {q3, q1, q2, q6, q7, q4, q5}. Assume
that now we want to change q4 in order to support only Return Merchandise
Claims. In this case we can rollback q4 and re-answer it. The system restores the
current state to s6, i.e. the state before answering q4. We then answer a6(q4) =
{(f12, T), (f13, F)} and reach s7 again. This time, though, q5 is skippable since a
Manager can be chosen only for Loss or Damage Claims. The only valid answer
is a7(q5) = {(f14, F), (f15, F)}. With this we reach s8 and complete.
The corresponding configuration trace is σ = {(s1, (a1, q3), s2), (s2, (a2, q1), s3),
(s3, (a3, q2), s4), (s4, (a4, q6), s5), (s5, (a5, q7), s6), (s6, (a6, q4), s7), (s7, (a7, q5), s8)},
and the configuration is cf (σ) = {(f1, T), (f2, T), (f3, T), (f4, F), (f5, F), (f6, F),
(f7, T), (f8, T), (f9, T), (f10, T), (f11, T), (f12, T), (f13, F), (f14, F), (f15, F), (f16, F),
(f17, F), (f18, F), (f19, F)}.

The above configuration leads to the order fulfillment process model pictured
in Fig. 8.

6 Related Work

Variability modeling has been widely studied in the field of Software Prod-
uct Line Engineering (SPLE) [21, 8]. Among others, two research streams have
emerged in SPLE, namely Software Configuration Management (SCM) [23] and
Feature-Oriented Domain Analysis (FODA) [16].

Work on SCM has led to models and languages to capture how a set of
available options impact upon the way a software system is built from a set of
components. For example, the Adele Configuration Manager [13] supports the
definition of constraints among artifacts composing a software family (e.g. “only
one realization of an interface should be included in any instance of the family”).
Such constraints are expressed as first-order logic expressions over attributes
defined on objects that represent software artifacts. Building a configuration in
Adele involves selecting a collection of objects that satisfy all constraints.

Similarly, in the Proteus Configuration Language (PCL) [28], software enti-
ties are annotated with information attributes and variability control attributes.
The former provide stable information about an entity, i.e. commonalities, while
the latter capture variability in the structure and in the process of building the
entities. Variability attributes determine which actions are performed to build
a variant of an entity. For example, one can capture that a sub-system maps to
different sets of program files depending on the value of a variability attribute.
However, only simple rules of the form “if-then-else” can be specified.

Another example is the Options Configuration Modeling Language (OCML)
of the CoSMIC configurable middleware [29]. OCML allows developers to cap-

24 M. La Rosa et al.

Freight in Transit

Freight Delivered

Product Merchandising

Freight Tender

Ordering

Carrier Appointment

1

2

8

9

10

11

Logistics

3

7

12

7

Fig. 8. The configured order fulfillment process model.

ture hierarchical options that affect the way middleware services are configured.
Options are similar to variability attributes in PCL, but OCML goes beyond
PCL by allowing constraints to be defined over individual options or groups
thereof. OCML expressions are fed to an interpreter that prompts users to enter
values for each option and raises error messages when the entered values violate
a constraint. But unlike our proposal, the OCML interpreter does not preemp-
tively flag incompatible values to remaining options based on values previously
given to other options, nor is it able to skip options that are no longer relevant.

More generally, none of these approaches deals with guiding the configura-
tion process through interactive questionnaires. Moreover, constraints are usually
expressed in first-order logic, making their analysis computationally impractical
(e.g. in Adele and OCML). This contrasts with our approach based on propo-
sitional logic, for which we can apply efficient analysis techniques to discard
invalid answers to questions based on answers to previous questions.

FODA is a set of techniques for describing software product families in
terms of their features. A number of feature modeling languages have been
proposed [16, 11, 12]. In these proposals, feature models are represented as tree

Variability Modeling for Questionnaire-based System Configuration 25

structures called feature diagrams, with high-level features being decomposed
into sub-features. A feature represents a system property that is relevant to a
stakeholder and it is used to capture commonalities or to discriminate among
systems in a family [11]. Constraints are expressed as expressions over features,
specified by means of a proper grammar [18, 6] (e.g. a limit in the number of
sub-features a feature can have).

Feature modeling languages have been embodied in a number of tools [5, 4].
These tools rely on SAT solvers to determine a valid configuration. But unlike our
proposal, these tools do not guide the configuration process through interactive
questionnaires. An exception is FeaturePlugin [4], which provides a wizard to
traverse a feature model in a predetermined order only (depth-first).

Another approach related to FODA is presented in [15]. Here, the authors
introduce the concept of feature variability patterns as collections of roles and
associations that need to be bound to artifacts (e.g. component implementations)
to produce a configured system. Constraints are defined over feature variation
patterns using a scripting language. A configuration tool guides the developer
through a number of tasks corresponding to the binding of a role to an artifact.
Still, the tool does not support the definition of order dependencies between
tasks. Moreover, constraints are only evaluated after a task is completed, and if
the constraint is violated the developer is left with the burden of repairing it. In
contrast, our tool preemptively avoids constraint violations.

The major difference between our approach and the above research work is
related to the representation of domain variability (e.g. in a software artifact
or in a conceptual model). We propose to capture variability separately from
commonality, while SCM and FODA combine these two in a single model. For
example, in a feature diagram, there is no clear separation between a variation
and a stable software asset, since both are represented by features. This lack of
separation hinders the communication of variability [22].

In this respect, our approach is closer to the principles of the Orthogonal
Variability Models (OVMs) [21, 22]. An OVM represents only the variable fea-
tures, called variation points. Variations are then linked to a separate domain
model, where both variability and commonalities are captured. In our approach
we explicitly model this relation by means of actions, that are used to reflect
the effects of a configuration on the domain model. Our facts can be compared
to variations, and questions to variation points. Having said that, our proposal
offers more flexibility than OVMs, as we can express non-hierarchical dependen-
cies among features. Also, a question can refer to more than a single variation
point and facts can appear in more than one question. The relations between
our approach (CM), SCM, FODA and OVM are depicted in Fig. 9.

As shown in the picture, configuration models can also be seen as decision
models [3], since context-based order dependencies are exploited to offer decision
support through an interactive configuration process. Besides, our tool supports
the evaluation and comparison of alternative answers to questions by means
of guidelines, constraints and by providing information on the impact of facts
on the domain model. In this respect, our proposal shares commonalities with

26 M. La Rosa et al.

commonality
model

variability
model

decision
model

SCM, FODA OVM CM

Fig. 9. Comparison among SCM, FODA, OVM and CM.

the CML2 language which was designed to capture configuration processes for
the Linux kernel [25]. Like Quaestio, CML2 supports the definition of validity
constraints based on propositional formulas over so-called symbols (which may be
three-valued in CML2). A configuration model in CML2 is composed of questions
which lead to a given symbol being given a value. Questions can be grouped into
menus which are arranged in a hierarchy. In CML2, questions within a menu
are arranged sequentially while menus are visited from top to bottom. This is in
contrast with our approach where questions (and facts) can be arranged in any
partial order. Also, questions in CML2 only lead to one symbol being set, while
our questions can be used to set multiple inter-related facts at once.

Our tool is also related to questionnaire systems. A range of commercial
products, such as Vanguard Software’s Vista,12 support the definition of online
questionnaires and the collection and analysis of responses. Such systems rely on
the notion of question flows as defined in [20], wherein questions are related by
a fixed precedence order, while branching operators are used to capture condi-
tional questions. This paradigm is procedural: the developer of the questionnaire
needs to determine the points in time at which branching occurs. Additionally,
constraints are expressed at the granularity of questions and only used to skip
questions. This makes it difficult to capture scenarios where questions can be
(partially) answered on the basis of previous answers (e.g. f3 in q1 that has been
forced to true by answering q3).

The idea of capturing variability in process models by annotating model
fragments with boolean conditions and removing fragments whose conditions
evaluate to false, has been explored in previous work [10, 24]. In [24] the authors
extend UML Activity Diagrams (ADs) and BPMN diagrams with stereotypes
to accommodate variability points. A variability point is linked to a feature and
is evaluated with respect to a feature configuration (e.g. to activate/deactivate
model elements). The approach, however, lacks a formalization, leaving room for
ambiguities. In [10] UML ADs are annotated using presence conditions (PCs)
and meta-expressions (MEs), that are then linked to elements of a feature di-
agram. PCs indicate if the model element they refer to should be present in
the model. MEs are used to compute attributes of model elements (e.g. name,

12 http://www.vanguardsw.com/vista/online-questionnaires.htm

Variability Modeling for Questionnaire-based System Configuration 27

return type). However, the approach only supports simple mapping of features
to standard variability mechanisms provided by UML (e.g. decision nodes).

In separate work [17], we applied a similar approach to a notation for con-
figurable process modeling, namely Configurable Event-driven Process Chains
(C-EPCs) [27]. The idea is that each variability point and its alternatives (varia-
tions) captured in a C-EPC, can be associated with boolean expressions over the
facts of a configuration model. Thus, a variation is selected whenever the cor-
responding boolean expression evaluates to true, triggering the execution of an
action to configure the variation point. As a result of configuring all the variation
points, the process model is transformed into a lawful EPC.

7 Conclusion

This paper has put forward a formal framework for representing system vari-
ability for the purpose of supporting configuration through interactive question-
naires. The framework has been embodied as a tool that guides the user through
a set of questions, in an order consistent with the established order dependen-
cies between questions and facts, and in such a way that violations of constraints
over facts are preemptively avoided. Also, the tool is able to automatically skip
questions whose answers are fully determined by previous ones, and it allows
users to seamlessly rollback previous answers.

The proposed framework is independent of the notation(s) used to represent
the system itself. It can be applied to support the configuration of data models,
process models, or software artifact’s in general, so long as appropriate types
of configuration actions are defined for the corresponding notation. In separate
work, we have shown how to apply the proposed framework to a process modeling
notation, namely C-EPC.

In future work, we plan to empirically test the proposal in the field of process
modeling for screen post-production. The goal is to show that domain experts
with little to no knowledge of the notation in which the system is represented,
are able to drive the configuration of a reference model for post-production. Also,
we would like to measure the perceived usefulness and ease of use of the various
features of the framework and of the tool.

References

1. W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.

2. S. B. Akers. Binary Decision Diagrams. IEEE Trans. Computers, 27(6):509–516,
1978.

3. S. L. Alter. Decision support systems: current practice and continuing challenges.
Addison-Wesley, 1980.

4. M. Antkiewicz and K. Czarnecki. Featureplugin: Feature modeling plug-in for
eclipse. In OOPSLA’04, Eclipse technology eXchange (ETX) Workshop, 2004.

5. D. S. Batory. Feature-Oriented Programming and the AHEAD Tool Suite. In
ICSE, pages 702–703. IEEE Computer Society, 2004.

28 M. La Rosa et al.

6. D. S. Batory. Feature Models, Grammars, and Propositional Formulas. In J. H.
Obbink and K. Pohl, editors, SPLC, volume 3714 of Lecture Notes in Computer
Science, pages 7–20. Springer, 2005.

7. R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Computers, 35(8):677–691, 1986.

8. P. C. Clements. Managing Variability for Software Product Lines: Working with
Variability Mechanisms. In Software Product Lines, 10th International Conference,
SPLC 2006, Baltimore, Maryland, USA, August 21-24, 2006, Proceedings, pages
207–208. IEEE Computer Society, 2006.

9. T. Curran and G. Keller. SAP R/3 Business Blueprint: Understanding the Busi-
ness Process Reference Model. Upper Saddle River, 1997.

10. K. Czarnecki and M. Antkiewicz. Mapping Features to Models: A Template Ap-
proach Based on Superimposed Variants. In R. Glück and M. R. Lowry, edi-
tors, GPCE, volume 3676 of Lecture Notes in Computer Science, pages 422–437.
Springer, 2005.

11. K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, 2000.

12. K. Czarnecki, S. Helsen, and U. W. Eisenecker. Formalizing cardinality-based fea-
ture models and their specialization. Software Process: Improvement and Practice,
10(1):7–29, 2005.

13. J. Estublier and R. Casallas. The Adele Software Configuration Manager. In
Configuration Management, pages 99–139. John Wiley & Sons, 1994.

14. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1983.

15. I. Hammouda, J. Hautamäki, M. Pussinen, and K. Koskimies. Managing Vari-
ability Using Heterogeneous Feature Variation Patterns. In FASE, pages 145–159,
2005.

16. K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-Oriented Do-
main Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh PA, USA,
1990.

17. M. La Rosa, J. Lux, S. Seidel, M. Dumas, and A. H. M. ter Hofstede. Questionnaire-
driven Configuration of Reference Process Models. In Proceedings of the 19th
Conference on Advanced Information Systems Engineering (CAiSE 2007), Trond-
heim, Norway, 11-15 June 2007. To appear. Preprint available at QUT ePrints,
http://eprints.qut.edu.au/archive/00005786.

18. M. Mannion. Using first-order logic for product line model validation. In Software
Product Lines, Second International Conference, volume 2379 of Lecture Notes in
Computer Science, pages 176–187. Springer, 2002.

19. S. Minato, N. Ishiura, and S. Yajima. Shared Binary Decision Diagram with
Attributed Edges for Efficient Boolean function Manipulation. In DAC, pages
52–57, 1990.

20. K. Morton, C. Carey-Smith, and K. Carey-Smith. The QUEST Questionnaire
System. In Proceedings of the 2nd ANNES, pages 214–217. IEEE Computer Society,
1995.

21. K. Pohl, G. Bckle, and F. van der Linden. Software Product-line Engineering –
Foundations, Principles and Techniques. Springer, Berlin, 2005.

22. K. Pohl and A. Metzger. Variability management in software product line engi-
neering. In 28th International Conference on Software Engineering (ICSE 2006),
Shanghai, China, May 20-28, 2006, pages 1049–1050, 2006.

Variability Modeling for Questionnaire-based System Configuration 29

23. R. S. Pressman. Software Engineering: A Practitioner’s Approach. Higher Educa-
tion. Mc Graw Hill, New York, 6th edition, 2005.

24. F. Puhlmann, A. Schnieders, J. Weiland, and M. Weske. Variability Mechanisms
for Process Models. PESOA-Report TR 17/2005, Process Family Engineering in
Service-Oriented Applications (PESOA). BMBF-Project, 30 June 2005.

25. E. S. Raymond. The CML2 Language. http://catb.org/esr/cml2/cml2-paper.
html, 2000.

26. J. Recker, J. Mendling, W.M.P. van der Aalst, and M. Rosemann. Model-Driven
Enterprise Systems Configuration. In Proceedings of the 18th International Confer-
ence on Advanced Information Systems Engineering (CAiSE’06), pages 369–383,
Luxembourg, 2006. Springer.

27. M. Rosemann and W. M. P van der Aalst. A Configurable Reference Modelling
Language. Information Systems, 32(1):1–23, 2007.

28. E. Tryggeseth, B. Gulla, and R. Conradi. Modelling Systems with Variability using
the PROTEUS Configuration Language. In Software Configuration Management,
ICSE SCM-4 and SCM-5 Workshops, pages 216–240. Springer, 1995.

29. E. Turkay, A.S. Gokhale, and B. Natarajan. Addressing the Middleware Configu-
ration Challenges using Model-based Techniques. In Proceedings of the 42nd ACM
Southeast Regional Conference, pages 166–170, Huntsville AL, USA, 2004. ACM.

