
Visual Support for Work Assignment in
Process-aware Information Systems:

Framework, Formalisation, Operationalisation

Massimiliano de Leoni1, W.M.P. van der Aalst2,3, and A.H.M. ter Hofstede3

1 SAPIENZA - Università di Roma, Rome, Italy
deleoni@dis.uniroma1.it

2 Eindhoven University of Technology, Eindhoven, The Netherlands
w.m.p.v.d.aalst@tue.nl

3 Queensland University of Technology, Brisbane, Australia
a.terhofstede@qut.edu.au

Abstract. Process-aware information systems ranging from generic
workflow systems to dedicated enterprise information systems use work
lists to offer so-called work items to users. The work list handlers typi-
cally show a sorted list of work items comparable to the way that e-mails
are presented in most e-mail programs. Since the work list handler is the
dominant interface between the system and its users, it is worthwhile to
provide a more advanced graphical interface that uses context informa-
tion about work items and users. This paper uses the “map metaphor” to
visualise work items and resources (e.g., users) in a sophisticated man-
ner. Moreover, based on “distance notions” work items are visualised
differently. For example, urgent work items of a type that suits the user
are highlighted. The underlying map and distance notions may be of
a geographical nature (e.g., a map of a city of office building), but may
also be based on the process design, organisational structures, social net-
works, due dates, calenders, etc. The approach presented in this paper
is supported by a visualisation framework implemented in the context
of YAWL. The framework is set up in such a way that it can easily be
combined with other workflow systems.
Keywords: Process-aware Information Systems, work list visualisation,
YAWL

1 Introduction

Originally, Process-Aware Information Systems (PAISs) [1] were mainly applied
in the context of administrative processes. Later their application was extended
to cross-organisational processes. Currently, PAISs are starting to be used for
more flexible and/or pervasive processes, e.g., disaster management scenarios [2].

Independent of the application domain and underlying technology, a PAIS is
driven by some process model. The model may be implicit or hidden, but the
system supports the handling of cases in some (semi-)structured form. PAISs
have also in common that they offer work to resources (typically people). The

elementary pieces of work are called work items, e.g., “Approve travel request
XYZ1234”. These work items are offered to the users by the so-called work
list handler. This component takes care of work distribution and authorisation
issues. Typically, PAISs use a so-called “pull mechanism”, i.e., work is offered
to all resources that qualify and the first resource to select the work item will
be the only one executing it. To allow users to “pull the right work items in
the right order”, basic information is provided, e.g., task name, due date, etc.
However, given the fact that the work list is the main interface of the PAIS with
its users it seems important to provide support that goes beyond a sorted list of
items. If work items are selected by less qualified users than necessary or if users
select items in a non-optimal order, then the performance of the overall process
is hampered.

Assume the situation where multiple resources have overlapping roles and
authorisations and that there are times where work is piling up (i.e., any normal
business). In such a situation the questions listed below are relevant.

– “What is the most urgent work item I can perform?”
– “What work item is, geographically speaking, closest to me?”
– “Is there another resource that can perform this work item that is closer to

it than me?”
– “Is it critical that I handle this work item or are there others that can also

do this?”
– “How are the work items divided over the different departments?”

To our knowledge, commercial as well as open source PAISs present work lists
simply as a list of work items each with a short textual description. Some prod-
ucts sort the work items in a work list using a certain priority scheme specified
at design time and not updated at run time. To support the user in a better
way and assist her in answering the above questions, we use maps. A map can
be a geographical map (e.g., the map of a university’s campus). But other maps
can be used, e.g., process schema’s, organisational diagrams, Gantt charts, etc.
Work items can be visualised by dots on the map. By not fixing the type of
map, but allowing this choice to be configurable, different types of relationships
can be shown thus providing a deeper insight into the context of the work to be
performed.

Work items are shown on maps. Moreover, for some maps also resources can
be shown, e.g., the geographical position of a user. Besides the “map metaphor”
we also use the “distance metaphor”. Seen from the viewpoint of the user some
work items are close while others are far away. This distance may be geographic,
e.g., a field service engineer may be far away from a malfunctioning printer at
the other side of the campus. However, many other distance metrics are possible.
For example, one can support metrics capturing familiarity with certain types
of work, levels of urgency, and organisational distance. It should be noted that
the choice of metric is orthogonal to the choice of map thus providing a high
degree of flexibility in context visualisation. Resources could for example opt to
see a geographical map where work items, whose position is calculated based on
a function supplied at design time, display their level of urgency.

This paper proposes different types of maps and distance metrics. Moreover,
the framework has been implemented and integrated in YAWL.4 YAWL is an
open source workflow system based on the so-called workflow patterns. However,
the framework and its implementation are set-up in such a way that it can easily
be combined with other PAISs.

The paper is structured as follows. Section 2 discusses the state of the art in
work list visualisation in PAISs, whereas Section 3 provides a detailed overview
of the general framework. Section 4 focusses on the implementation of the frame-
work and highlights some design choices in relation to user and system interfaces.
In Section 5 the framework is illustrated through a case study. Section 6 sum-
marises the contributions of the paper and outlines avenues of future work aimed
at improving the operationalisation of the framework.

2 Related Work

Little work has been conducted in the field of work list visualisation. Visualisa-
tion techniques in the area of PAIS have predominantly been used to aid in the
understanding of process schemas and their run time behaviour, e.g. through
simulation [3] or process mining [4]. Although the value of business process visu-
alisation is acknowledged, both in the literature [5–8] and in the industry, little
work has been done in the context of visualising work items.

The aforementioned body of work does not provide specific support for
context-dependent work item selection. This is addressed though in the work
by Brown and Paik [9], whose basic idea is close to the proposal of this paper.
Images can be defined as maps and mappings can be specified between work
items and these maps. Work items are visualized through the use of intuitive
icons and the colour of work items changes according to their state. However,
the approach chosen does not work so well in real-life scenarios where many work
items may have the same position (especially in course-grained maps) as icons
with the same position are placed alongside each other. This may lead to a sit-
uation where a map is completely obscured by its work items. In our approach,
these items are coalesced in a single dot of which the size is proportionate to
their number. By gradually zooming in on such a dot, the individual work items
cam become visible again. In addition, in [9] there is no concept similar to our
distance notion, which is an ingredient that can provide significant assistance
with work item selection to resources. Finally, the work of Brown and Paik does
not take the visualisation of the positions of resources into account.

Also related is the work presented in [10], where proximity of work items is
considered without discussing their visualization.

Most PAISs present work lists as a simple enumeration of their work items,
their textual descriptions, and possibly information about their priority and/or
their deadlines. This holds both for open source products, as e.g. jBPM5 and

4 www.yawlfoundation.org
5 jBPM web site - http://www.jboss.com/products/jbpm

Fig. 1. TIBCO’s iProcess Client

Together Workflow6, as for commercial systems, such as SAP Netweaver7 and
Flower8. An exception is TIBCO’s iProcess Suite9 which provides a richer type
of work list handler that partially addresses the problem of supporting resources
with work item selection. Figure 1 depicts a screen shot of the work list handler.
In the bottom left corner a resource’s work list is shown, and above this the
lengths of the work lists of other resources is shown. By clicking on a work
item, a resource can see it on a Google Map positioned where it should be
executed. The iProcess Suite also supports a kind of look-head in the form of a
list of “predicted” work items and their start times. One can also learn about
projected deadline expirations and exception flows. This is achieved through
the use of expected durations specified at design time for the various tasks.
Our visualisation framework is more accurate as it can take actual execution
times of work items of a task into account through the use of log files when
considering predictions for new work items of that task. Basically, the iProcess
Suite provides support for some specific views (geographical position, deadline
expiration) but these are isolated from each other. Our approach allows these
views (and others) to be combined (e.g. a geographical view where deadlines are
also visualised) thus enabling the use of views that may prove useful in certain
contexts. Our approach also generalises over the type of map and goes beyond
support for a single map as in the iProcess Suite (a geographical map).

6 Together Workflow web site - http://www.together.at/together/prod/tws/
7 Netweaver web site - http://www.sap.com/usa/platform/netweaver
8 Flower web site - http://global.pallas-athena.com/products/bpmflower product/
9 iProcess Suite web site - http://www.tibco.com/software/business process management/

Table 1. Examples of maps and mappings.

Process context view Possible map and mapping
The physical environment
where tasks are going to be
performed.

A real geographical map (e.g., Google maps). Work items are placed
where they should be performed and resource are placed where they
are located.

The process schema of the
case that work items belong
to.

The process schema is the map and work items are placed on top of
tasks that they are an instance of.

Deadline expiration of work
items.

The map is a time-line where the origin is the current time. Work
items are placed on the time-line at the latest moment when they can
start without their deadline expiring.

The organisation that is in
charge of carrying out the pro-
cess.

The map is an organizational chart. Work items are associated with
the role required for their execution. Resources are also shown based
on their organizational position.

The materials that are needed
for carrying out work items.

The map is a multidimensional graph where the axes are the materials
that are needed for work item execution. Let us assume that materials
A and B are associated with axes x and y respectively. In this case, a
work item is placed on coordinates (x, y) if it needs a quantity of x of
material A and a quantity y of material B.

Costs versus benefits in exe-
cuting work items.

In this case, the axes represent “Revenue” (the amount of money re-
ceived for the performance of work items) and “Cost” (the expense
of their execution). A work item is placed on coordinates (x, y) if the
revenue of its execution is x and its cost is y. In this case one is best
off executing work items close to the x axis and far from the origin.

3 The General Framework

The proposed visualisation framework is based on a two-layer approach: (1) maps
and (2) the visualisation of work items based on a distance notion. A work item
is represented as a dot positioned along certain coordinates on a background
map. A map is meant to capture a particular perspective of the context of the
process. Since a work item can be associated with several perspectives, it can
be visualised in several maps (at different positions). Maps can be designed as
needed. When the use of a certain map is envisaged, the relationship between
work items and their position on the map should be specified through a function
determined at design time. Table 1 gives some examples of context views and
the corresponding work item mapping.

Several active “views” can be supported whereby users can switch from one
view to another. Resources can (optionally) see their own position on the map
and work items are coloured according to the value of the applicable distance
metric. Additionally, it may be helpful to show executing work items as well as
the position of other resources. Naturally, these visualisations are governed by
the authorisations that are in place.

Our framework assumes a generic lifecycle model as described in [11]. First, a
work item is created indicating that it is ready for distribution. The item is then
offered to appropriate resources. A resource can commit to the execution of the
item, after which it moves to the allocated state. The start of its execution leads
it to the next state, started, after which it can successfully complete, it can be
suspended (and subsequently resumed) or it can fail altogether. During run-time
a workflow engine (in our case the YAWL engine) informs the framework about
the lifecyle states of work items.

3.1 Fundamentals

In this section the various notions used in our framework, e.g. work item and
resource, are defined formally.

Definition 1 (Work item). A work item w is a tuple (c, t, i, y, e, l), where:

– c is the identifier of the case that w belongs to.
– t is the identifier of the task of which w is an instance.
– i is a unique instance number.
– y is the timestamp capturing when w moved to the “offered” state.
– e is the (optional) deadline of w.
– l represents the (optional) GPS coordinates where w should be executed.

Dimensions y and l may be undefined in case the work item w is not yet offered
or no specific execution location exists respectively. The e value concerns timers
which may be defined in YAWL processes. A process region may be associated
with a timer. When the timer expires, the work items part of the region are
cancelled. Note that a work item can potentially be a part of more than one
cancellation region and that this has implications for the definition of y. In such
a case the latest possible completion time with respect to these cancellation
regions is assumed.

Definition 2 (Resource). A resource r is a pair (j, l), where:

– j is the identifier of the resource.
– l represents the (optional) GPS coordinates where the resource is currently

located.

The notation wx is used to denote the projection on dimension x of work item w,
while the notation ry is used to denote the projection on dimension y of resource
r. For example, wt yields the task of which work item w is an instance.

Work items w′ and w′′ are considered to be siblings iff w′t = w′′t . The set
Coordinates consists of all possible coordinates. Elements of this set will be used
to identify various positions on a given map.

Definition 3 (Position function). Let W and R be the set of work items and
resources. Let M be the set of available maps. For each available map m ∈ M ,
there exists a function positionm : W ∪ R 6→ Coordinates which returns the
current coordinates for work items and available resources on map m.

For a map m ∈ M , the function positionm may be partial, since some elements
of W and/or R may not have an associated position. Consider for example the
case where a work item can be performed at any geographical location or where
it does not really make sense to associate a resource with a position on a certain
map. As the various attributes of work items and resources may vary over time
it is important to see the class of functions positionm as time dependent.

To formalise the notion of distance metric, a distance function is defined
for each metric that yields the distance between a work item and a resource
according to that metric.

Table 2. Distance Metrics currently provided by the implementation

Metric Returned Value
distanceF amiliarity(w, r) How familiar is resource r with performing work item w. This can be

measured through the number of sibling work items the resource has
already performed.

distanceGeo Distance(w, r) How close is resource r to work item w compared to the closest resource
that was offered w. For the closest resource this distance is 1. In case
w does not have a specific GPS location where it should be executed,
this metric returns 1 for all resources.

distanceP opularity(w, r) The ratio of logged-in resources having been offered w to all logged-
in resources. This metric is independent from resource r making the
request.

distanceUrgency(w, r) The ratio between the current timestamp and the latest timestamp
when work item w can start but is not likely to expire. The latter
timestamp is obtained as the difference between we, the latest times-
tamp when w has to be finished without expiring, and w’s estimated
duration. This estimation is based on past execution of sibling work
items of w by r.

distanceP ast Execution(w,r) How familiar is resource r with work item w compared to the familiar-
ity of all other resources that w has been offered to. More information
about this metric is provided in the text.

Definition 4 (Distance function). Let W and R be the set of work items and
resources. Let D be the set of available distance metrics. For each distance metric
d ∈ D, there exists a function distanced : W ×R → [0, 1] that returns a number
in the range [0,1] capturing the distance between work-item w ∈ W and resource
r ∈ R with respect to metric d.10

Given a certain metric d and a resource r, the next work item r should perform
is a work item w for which the value distanced(w, r) is the closest to 1 among
all offered work items.

3.2 Available Metrics

In Table 2 a number of general-purpose distance metrics are informally explained.
These are all provided with the current implementation. Later in this section, we
formalise the notion of metrics. Let us denote R as the set of resources currently
logged in. In order to make explanations easier, some auxiliary functions are
introduced.

past execution(w,r) yields the weighted mean of the past execution times
of the last h work items performed by r among all work item siblings of
w. In this context, the past execution time of work item w′ is defined as
the duration that elapsed between its assignment to r and its successful
completion. Let timei(w, r) be the execution time of the i-th last work item
among w’s siblings performed by r, then:

past execution(w, r) =
∑h

i=1 αi−1 · timei(w, r)∑h
i=1 αi−1

(1)

10 Please note the value 1 represents the minimum distance while 0 is the maximum.

where α ∈ [0, 1]. Both h and α have to be tuned through testing. The intu-
ition behind this definition stems from the fact that more recent executions
should be given more consideration and hence weighted more as they better
reflect resources gaining experience in the execution of instances of a certain
task.

Res(w) returns all currently logged-in resources that have been offered w:

Res(w) = {r ∈ R | w is offered to r}.
best past execution(w) denotes the smallest value for past execution(w, r)

computed among all logged-in resources r qualified for w. Specifically:

best past execution(w) = min
r′∈Res(w)

past execution(w, r′)

bestDistance(w) returns the minimum geographic distance between a given
work-item w and all qualified resources:

best Distance(w) = min
r′∈Res(w)

‖wl − r′l‖

where ‖wl − r′l‖ stands for the Euclidian distance between the GPS coor-
dinates where w should be executed and the GPS location of resource r.
Function best Distance(w) is not total since wl may be undefined for cer-
tain work items w.

Using these auxiliary functions the following metrics can be defined:

1. Familiarity. How familiar is resource r with performing work item w. This
can be measured through the number of sibling work items the resource has
already performed:

distanceFamiliarity(w, r) =
{

0 best past execution(w) →∞
best past execution(w)

past execution(w,r)
otherwise

The best past execution(w) value can tend to infinite, if nobody has ever ex-
ecuted work items for task wt. Otherwise, if someone executed work item
siblings of wt but r did not, then past execution(w, r) →∞ and, hence,
distanceFamiliarity(w, r) → 0.

2. Popularity. The ratio of logged-in resources having been offered w to all
logged-in resources. This metric is independent from resource r making the re-
quest. The intuition is that if many resources can perform w then it is quite
distant from every resource. Indeed, even if a resource doesn’t pick w for perfor-
mance, it is likely someone else may execute w. Therefore:

distancePopularity(w, r) = 1− |Res(w)|
|R|

If every resource can perform w, then the distance is 0. If many resources can
perform w, then the value is near to 1.

3. Urgency. The ratio between the current timestamp and the latest timestamp
when work item w can start but is not likely to expire. This second timestamp
is obtained from we, the latest timestamp when w has to be finished without
expiring, and w’s estimated duration. This estimation relies on the past execution
by r of w’s sibling work items. Specifically:

distanceUrgency(w, r) =
{

1− tnow

we−pastExecution(w,r) we is defined

0 we is undefined

where tnow stands for the current timestamp. If r has never performed
work-items for the same task wt, pastExecution(w, r) → ∞ and, hence,
distanceUrgency(w, r) → 0.

4. Relative Geographic Distance. How close is resource r to work item w com-
pared to the closest resource that was offered w. For the closest resource this
distance is 1. In case w does not have a specific GPS location where it should
be executed, this metric returns 1 for all resources. Its definition is:

distanceRelative Geo(w, r) =





1− ‖wl−rl‖
bestDistance(w) bestDistancet(w) > 0

0 bestDistancet(w) = 0
1 bestDistancet(w) is undef

5. Relative Past Execution. The metric chosen combines the familiarity of a
resource with a certain work item and the familiarity of other resources that are
able to execute that work item:

distanceRelative Past Execution(w, r) =
1
/
past execution(w, r)∑

r′∈Res(w)

1
/
past execution(w, r)

(2)

Let us give an informal explanation. First observe that if exactly one re-
source r exists capable of performing work item w, then the equation yields one.
If n resources are available and they roughly have the same familiarity with
performing work item w, then for each of them the distance will be about 1/n.
It is clear then that as n increases in value, the value of the distance metric
approaches zero. If on the other hand many resources exist that are significantly
more effective in performing w than a certain resource r, then the value of the
denominator increases even more and the value of the metric for w and r will be
closer to zero.

For instance, let us suppose that at time t̂ there are n resources capable of
performing w. Let us assume that, on average, one of them, namely r1 is such
that past execution(w, r1) = d̃. Moreover, let us also assume that the other
resources required twice this amount of time on average in the past, i.e. for each
resource ri (with i > 1) past execution(w, ri) = 2d̃.

In such a situation, the distance metric value for r1 is as follows:

distance(w, r1, Relative Past Execution) =

=
1

past execution(w,r1)

1
past execution(w,r1)

+
∑n

i=2
1

past execution(w,ri)

=
1
d̃

1
d̃

+
∑n

i=2
1
2d̃

=
1

1 + n−1
2

=
2

1 + n

This value is greater than 1/n, if n > 1 (i.e., there are al least two resources that
may perform w). If n = 1, then it is easy to see that the obtained value is 1 for
both.

Conversely, the value for any other resource ri (with i > 1) is as follows:

distance(w, ri, Relative Past Execution) =

=
1

past execution(w,ri)

1
past execution(w,r1)

+
∑n

i=2
1

past execution(w,ri)

=
1
2d̃

1
d̃

+
∑n

i=2
1
2d̃

=
1/2

1 + n−1
2

=
1

1 + n

For all n > 0, this value is smaller than 2
n+1 , that is the metric value for r1.

Work-item ageing. Some of the metrics above suffer from the fact that their
values do not change over time. Therefore, if some work-items have a small
value with respect to those metrics, it is likely that there are always other work
items that have a greater value for those metrics. If resources behave “fairly”,
picking always work items that provide more benefit for the organizations, some
work-items could remain on a work list for a very long time or even indefinitely.

Therefore, we devised a technique of ageing work-items that occur on work
lists in such a way that they eventually become the least distant work item. Let d
be any metric and χten = distanced(w, r) be the distance value when w becomes
enabled, where w, r are, respectively, a metric and resource. The distance value
with respect to metric d at time ten + t ages as follows:

χten+t = 1− (1− χten) · exp−α·t (3)

If t = 0, then χten+t = χten and if t →∞ (i.e., time t increases indefinitely),
then χten+t → 1. Please note that if α = 0, then work-items do not age. The
greater value α, the more quickly Equation 3 approaches 1 when t increases.
Vice versa, smaller values of α make the growth of Equation 3 with t slower.

4 Implementation

The general framework described in the previous section has been operationalised
through the development of a component that can be plugged into the YAWL
system. The YAWL environment is an open source PAIS, based on the workflow
patterns11, using a service-oriented architecture. The YAWL engine and all other
services (work list handler, web-service broker, exception handler, etc.) commu-
nicate through XML messages. The YAWL work list handler was developed as
a web application. In its graphical interface different tabs are used to show the
various queues (e.g. offered work items). The visualisation framework can be
accessed through a newly introduced tab and is implemented as a Java Applet.

Section 4.1 illustrates some of the visualisation features provided by the im-
plementation, whereas Section 4.2 focusses on how the component fits within
the YAWL architecture.

4.1 The User Interface

The position and distance functions represent orthogonal concepts that require
joint visualisation for every map. The position function for a map determines
where work items and resources will be placed as dots, while the distance function
will determine the colour of work items. Conceptually, work item information
and resource information is split and represented in different layers. Users can
choose which layers they wish to see and in case they choose both layers which
of them should overlay the other.

Work-item Layer. Distances can be mapped to colours for work items through
a function colour : [0, 1] → C which associates every metric value with a different
colour in the set C. In our implementation colours range from white to red, with
intermediate shades of yellow and orange. When a resource sees a red work item
this could for example indicate that the item is very urgent, that it is one of
those most familiar to this resource, or that it is the closest work item in terms
of its geographical position. While the colour of a work item can depend on the
resource viewing it, it can also depend on which state of the lifecycle it is in.
Special colours are used to represent the various states of the work item lifecycle
and Table 3 provides an overview. The various rows correspond to the various
states and their visualisation. Resources can filter work items depending on the
state of items. This is achieved through the provision of a checkbox for each of
the states of Table 3. Several checkboxes can be ticked. There is an additional
checkbox which allows resources to see work items that they cannot execute, but
they are authorised to see.

Resources may be offered work items whose positions are the same or very
close. In such cases their visualisations may overlap and they are grouped into a
so-called “joint dot”. The diameter of a joint dot is proportional to the number of
work items involved. More precisely, the diameter D of a joint dot is determined
11 www.workflowpatterns.com

Table 3. Visualisation of a work item depending on its state in the life cycle.

Work item state Colour scheme used in the work-list handler
Created Work item is not shown.

Offered to single/multiple resource(s) The colour is determined by the distance to the
resource with respect to the chosen metric. The
colour ranges from white through various shades
of yellow and orange to red.

Allocated to a single resource Purple.
Started Black.

Suspended The same as for offered.
Failed Grey.

Completed Work item is not shown.

by D = d(1 + lg n), where d is the standard diameter of a normal dot and n is
the number of work items involved. Note that we use a logarithmic (lg) scaling
for the relative size of a composite dot.

Combining several work items int a single dot raises the question of how
the distance of this dot is determined. Four options are offered for defining the
distance of a joint dot, one can take a) the maximum of all the distances of the
work items involved, b) their minimum, c) their median, or d) their mean. When
a resource clicks on a joint dot, all work items involved are enumerated in a list
and they are coloured according to their value in terms of the distance metric
chosen.

Resource Layer. When a resource clicks on a work item the positions of the
other resources to whom this work item is offered are shown. Naturally this is
governed by authorisation privileges and by the availability of location informa-
tion for resources for the map involved.

Resource visualisation can be customised so that a resource can choose to
see a) only herself, b) all resources, or c) all resources that can perform a certain
work item. The latter option supports the case where a resource clicks on a work
item and wishes to see the locations of the other resources that can do this work
item.

4.2 Architectural Considerations

Figure 2 shows the overall architecture of the visualisation framework and the
connections with other YAWL components. Specifically, the visualisation frame-
work comprises:

The Visualisation Applet is the client-side applet that allows resources to
access the visualisation framework and it resides as a separate tab in the
work-list handler.

The Visualisation Designer is used by special administrators in order to de-
fine and update maps as well as to specify the position of work items on
defined maps. Designers can define positions as fixed or as variable through
the use of XQuery. In the latter case, an XQuery expression is defined that

Fig. 2. Position of the visualisation components in the YAWL architecture.

refers to case variables. This expression is evaluated at run time when re-
quired.

Services is the collective name for modules providing information used to depict
maps and to place work items (e.g. URLs to locate map images, work item
positions on various maps).

The YAWL engine is at the heart of the YAWL environment. It determines which
work items are enabled and can thus be offered for execution and it handles the
data that is involved. While the YAWL engine offers a number of external inter-
faces, for the visualisation component interfaces B and E are relevant. Interface
B is used, for example, by the work list handler to learn about work items that
need to be offered for execution. This interface can also be used for starting new
cases. Interface E provides an abstraction mechanism to access log information,
and can thus e.g. be used to learn about past executions of siblings of a work
item. In particular one can learn how long a certain work item remained in a
certain state.

The work list handler is used by resources to access their “to-do” list. The
standard version of the work list handler provides queues containing work items
in a specific state. This component provides interface G which allows other com-
ponents to access information about the relationships between work items and
resources. For example, which resources have been offered a certain work item
or which work items are in a certain state. Naturally this component is vital to
the Visualisation Applet.

In addition to interface G, the Visualisation Applet also connects to the
Services modules through the following interfaces:

The Position Interface provides information about maps and the positioning
of work items on these maps. Specifically, it returns an XQuery over the

Fig. 3. Details of the interfaces provided.

YAWL net variables that the Visualisation Applet has to compute. The
work list handler needs to be consulted to retrieve the current values of
these variables.

The Metric Interface provides information about available metrics and their
values for specific work item - resource combinations.

The Resource Interface is used to update and retrieve information concern-
ing positions of active resources on maps.

The visualisation framework was integrated into the standard work list handler
of YAWL through the addition of a JSP (Java Server Page).

All of the services of the visualisation framework share a repository, referred
to as Visualisation Repository in Figure 2, which stores, among others, XQueries
to compute positioning information, resource locations in various maps, and
names and URLs of maps. Services periodically retrieve log data through Inter-
face E in order to compute distance metric values for offered work items. For
instance, to compute the metric Relative Past Execution (Equation 2) for a cer-
tain resource, one can see from Equation 1 that information is required about
the h past executions of sibling work items performed by that resource.

To conclude this section, we would like to stress that the approach and imple-
mentation are highly generic, i.e., it is relatively easy to embed the visualisation
framework in another PAIS.

Interface Details. The modules which are collectively named Service are
implemented as Tomcat web applications. Specifically, each interface is imple-

mented as a web application and methods are provided as servlets, which take
inputs and return outputs as XML documents.

Figure 3 summarizes the methods offered by all implemented interfaces. Al-
though they are actually servlets and parameters XML documents, we concep-
tualise them as methods of classes of an object-oriented programming language.

Interface Metric provides two methods to get: 1) all available metrics (specifi-
cally getMetrics()), which returns the list of metric names and 2) the distance
metric value for single work items (i.e., getDistance()), which takes a work
item identifier and a metric name as input and returns the value for that metric
for that work item.

Interface Resource provides two methods basically to get and set the resource
position with respect to a specified map.

Finally, interface Position allows one to request information about all avail-
able maps through method getMaps(). In particular, it returns an array of
objects Map. Each object defines two properties: 1) the map name and 2) the
URL where the map can be found. Method getResourcePosition() takes a
resource identifier and a given map as input, and returns the coordinates of
such a resource on the map specified. This information is mostly what resources
themselves provide through method setResourceCoordinate() of interface Re-
source. Method getWorkitemPosition() of interface Position is very similar
but operates on work items instead of resources.

None of the interfaces accesses the Visualisation Repository database directly
for modularity questions. In fact, the Visualisation Repository Interface exists
solely for the purpose of masking interaction with database, namely Visualisation
Repository Interface. As the various methods are sufficiently self-explanatory we
are not providing more details.

The only thing worth mentioning is that getLastPastExecutions returns
the duration of the last h sibling work items offered within the last limitDays
days. This method is required for computing function pastExecution. In order to
return the h more recent executions, the method needs to obtain all work items
and, then, to sort them in descending order by timestamp when they moved to
the offered state (i.e., work item dimension y). Finally, the method considers
the first h work items in such a sorted listed. We foresee an initial filtering,
discarding all work items that were offered more than limitDays days ago. If
this filtering was not performed, the sorting operation could be computationally
hard, as it could involve thousands of work items. Therefore, filtering is meant
to reduce the size of the set to be sorted.

5 Example: Emergency Management

In this section we are going to illustrate a number of features of the visualisation
framework by considering a potential scenario from emergency management.
This scenario stems from a user requirement analysis conducted in the context of
a European-funded project [2]. Teams are sent to an area to make an assessment

of the aftermath of an earthquake. Team members are equipped with a laptop
and their work is coordinated through the use of a PAIS.

The main process of workflow for assessing buildings is named Disaster Man-
agement. The first task Assess the affected area represents a quick on-the-spot
inspection to determine damage to buildings, monuments and objects. For each
object identified as worthy of further examination an instance of the sub-process
Assess every sensible object (of which we do not show the actual decomposition
for space reasons) is started as part of which a questionnaire is filled in and pho-
tos are taken. This can be an iterative process as an evaluation is conducted to
determine whether the questionnaire requires further refinement or more photos
need to be taken. After these assessments have finished, the task Send data to
the headquarters can start which involves the collection of all questionnaires and
photos and their subsequent dispatch to headquarters. This information is used
to determine whether these objects are in imminent danger of collapsing and if
so, whether this can be prevented and how that can be achieved. Depending on
this outcome a decision is made to destroy the object or to try and restore it.

For the purposes of illustrating our framework we assume that an earthquake
has occurred in the city of Brisbane. Hence a number of cases are started by
instantiating the Disaster Management workflow described above.

Each case deals with the activities of an inspection teams in a specific zone.
Figure 4 shows three maps. In each map, the dots refer to work items. Figure 4(a)
shows the main process of the Disaster Management workflow, including eight
work items. Dots for work items which are instances of the tasks Assess the
affected area and Send data to the headquarter are placed on top of these tasks
in this figure. Figure 4(b) shows the decomposition of Assess every sensible
object. Here also eight work items are shown. No resources are shown in these
diagrams. Note that on the left-hand side is shown a list of work items that
are not on the map. For example, the eight work items shown in the map in
Figure 4(a) appear in the list of “other work items” in Figure 4(b).

Figure 4(a) uses the urgency distance metric to highlight urgent cases while
Figure 4(b) uses the familiarity metric to highlight cases closer to the user in
terms of earlier experiences.

As another illustration consider Figure 4(c) where work items are positioned
according to their deadlines. This can be an important view in the context of
disaster management where saving minutes may save lives. In the map shown,
the x-axis represents the time remaining before a work item expires, while the
y-axis represents the case number of the case the work item belongs to. A work
item is placed at location (100 + 2 ∗ x̃, 10 + 4 ∗ ỹ) on that map, if x̃ minutes
are remaining to the deadline of the work item and its case number is ỹ. In this
example, work items are coloured in accordance with the popularity distance
metric.

Figures 5 and 6 show some screenshots of a geographical map of the city
of Brisbane. On these maps, work items are placed at the location where they
should be executed. If their locations are so close that their corresponding dots
overlap, a larger dot (i.e., a joint-dot) is used to represent the work items in-

(a) Disaster Management process map showing 4+4=8 work items

(b) Assess the affected area sub-net also showing 8 work items

(c) Example of a timeline map for showing 11 work items

Fig. 4. Examples of Process and Timeline Maps for Disaster Management

(a) Map showing the geographic locations of work items and resources:
the triangle represents the resource and most work items are shown as
single dots except for the two work items that are clustered into a single
dot labeled “2”

(b) Information about the selected dot (blue dot) is shown and also other
resources are shown

Fig. 5. Examples of Geographic Maps for Disaster Management.

(a) When a triangle is selected, the corresponding resources and offered
work items are shown

(b) When zooming in, clustered work items and resources are separated

Fig. 6. Further examples of Geographic Maps for Disaster Management.

volved and the number inside corresponds to the number of these items. The
green triangle is a representation of the resource whose work list is visualised
here. Work items for tasks Assess the affected area and Send data to the head-
quarters are not shown on the map as they can be performed anywhere. In this
example, dots are coloured according to the familiarity distance metric. A dot
that is selected as focus obtains a blue colour and further information about the
corresponding work item is shown at the bottom of the screen (as is the case for
work item Take Photos 4 in Figure 5(b)).

One can click on a dot and see the positions of other resources that have
been offered the corresponding work item. For example, by clicking on the dot
representing the work item Take photo 4, other resources, represented by tri-
angles, are shown (see Figure 5(b)). As for work items, overlapping triangles
representing resources are combined. For examples, the larger triangle shown in
Figure 5(b) represents two resources.

Figure 6(a) shows the screen shot after clicking on the joint triangle. A re-
source can thus see the list of resources associated with this triangle. By selecting
one of the resources shown in the list, the work items offered to that resource
can be seen. The colour of these work items is determined by their value for the
chosen distance metric. A zooming feature is also provided. Figure 6(b) shows
the result of zooming in a bit further on the map of Figure 6(a). As can be seen,
no dots nor any triangles are overlapping anymore.

6 Conclusions

In this paper a general visualisation framework is proposed that can aid users
in selecting the “right” work item among a potentially large number of work
items offered to them. The framework uses the “map metaphor” to show the
locations of work items and resources. The “distance metaphor” is used to show
which work items are “close” (e.g., urgent, similar to earlier work items, or geo-
graphically close). Both concepts are orthogonal and this provides a great deal
of flexibility when it comes to presenting work to people. For example, one can
choose a geographical map to display work items and resources and use a dis-
tance metric capturing urgency. The proposed framework was operationalised
as a component of the YAWL environment. By using well-defined interfaces the
component is generic so that in principle it could be exploited by other PAISs
as well under the provision that they are sufficiently “open” and provide the
required interface methods. The component is also highly configurable, e.g., it
allows resources to choose how distances should be computed for dots represent-
ing a number of work items and provides customizable support for determining
which resources should be visible.

Finally, it should be pointed out that the implementation for the Visualisa-
tion Designer is still lacking. In the current evaluation, we manually updated
the information stored in the Visualisation Repository by accessing tables in the
DBMS. All other parts are fully operational.

Further research aims at connecting the current framework to geographical
information systems and process mining tools like ProM [4]. Geographical infor-
mation systems store data based on locations and process mining can be used
to extract data from event logs and visualise this on maps, e.g., it is possible to
make a “movie” showing the evolution of work items based on historic data.

Acknowledgements. The work was primarily conducted during a visit of Mas-
similiano de Leoni to the Business Process Management Group at Queensland
University of Technology. His internship has been partly supported by the Eu-
ropean Commission through the project FP6-2005-IST-5-034749 WORKPAD.
The authors would like to thank Michael Adams for implementing certain re-
quired YAWL interfaces and for answering numerous questions. We also grate-
fully acknowledge Guy Redding for providing some code to connect to the YAWL
interfaces.

References

1. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Informa-
tion Systems: Bridging People and Software Through Process Technology. Wiley
(2005)

2. Catarci, T., de Leoni, M., Marrella, A., Mecella, M., Vetere, G., Salvatore, B.,
Dustdar, S., Juszczyk, L., Manzoor, A., Truong, H.L.: Pervasive Software Envi-
ronments for Supporting Disaster Responses. IEEE Internet Computing 12 (2008)
26–37

3. Hansen, G.: Automated Business Process Reengineering: Using the Power of Visual
Simulation Strategies to Improve Performance and Profit. Prentice-Hall, Engle-
wood Cliffs (1997)

4. van der Aalst, W.M.P., van Dongen, B., Christian, G., Mans, R.S., Alva de
Medeiros, A., Rozinat, A., Rubin, V., Song, M., Verbeek, H.M.W., Weijters,
A.J.M.M.: Prom 4.0: Comprehensive support for real process analysis. In: Pro-
ceedings of the 28th International Conference on Applications and Theory of Petri
Nets and Other Models of Concurrency ICATPN 2007. Volume 4546 of LNCS.,
Springer (2007) 484–494

5. Bobrik, R., Reichert, M., Bauer, T.: View-based process visualization. In: Proceed-
ings of the 5th International Conference on Business Process Management BPM
2007. Volume 4714 of LNCS., Springer (2007) 88–95

6. Luttighuis, P., Lankhorst, M., Wetering, R., Bal, R., Berg, H.: Visualising business
processes. Computer Languages 27 (2001) 39–59

7. Streit, A., Pham, B., Brown, R.: Visualization support for managing large business
process specifications. In: Proceedings of the 3rd International Conference on
Business Process Management BPM 2005. Volume 3649 of LNCS., Springer (2005)
205–219

8. Wright, W.: Business Visualization Adds Value. IEEE Computer Graphics and
Applications 18 (1998) 39

9. Brown, R., Paik, H.Y.: Resource-centric worklist visualisation. In: Proceedings of
OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2005.
Volume 3760 of LNCS., Springer (2005) 94–111

10. Kumar, A., Aalst, W., Verbeek, H.: Dynamic Work Distribution in Workflow Man-
agement Systems: How to Balance Quality and Performance? Journal of Manage-
ment Information Systems 18 (2002) 157–193

11. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow
resource patterns: Identification, representation and tool support. In: Proceedings
of 17th International Conference CAiSE 2005. Volume 3520 of LNCS., Springer
(2005) 216–232

