
Controlled Flexibility and Lifecycle Management
of Business Processes through Extensibility

Sören Balko1, Arthur H.M. ter Hofstede2, and Alistair Barros3

1 SAP AG
Walldorf, Germany

Soeren.Balko@sap.com
2 Queensland University of Technology

Brisbane, Australia
a.terhofstede@qut.edu.au

3 SAP Research
Brisbane, Australia

Alistair.Barros@sap.com

Abstract. Companies employ business process management suites to
model, run, and maintain their processes. These processes are required
to comply with requirements originating from standards or policies and
follow industry best practices. At the same time, business processes must
be sufficiently flexible to incorporate company-specific customizations.

This paper introduces extensibility as a new process flexibility approach.
Extensibility addresses the issue of customizing reference processes. Ref-
erence processes are “shipped content” which is maintained by the BPMS
vendor, keeping the total cost of ownership (TCO) down at the customer
side. At the same time, customers may flexibly define process extensions
as “deltas” on top of reference processes. Extensibility is for the most part
motivated through shortcomings of other process flexibility techniques
with respect to a separation of (maintenance) concerns, and excessive
upgrade costs in large-scale software rollouts. With process extensibility,
we actually hope to establish a whole new area of future research. To
guide in there, we pinpoint some directions to explore in detail.

1 Introduction

Companies define business processes to analyze, document, execute, monitor,
and govern complex repetitive tasks that are part of a value chain. Business
process management suites (BPMS) provide an integrated tooling support for
these use-cases and add lifecycle management capabilities on top [20]. In many
industries, a company’s surroundings such as customer demand, technological
innovations, and regulatory conditions tend to change frequently and sometimes
rapidly. Take the current financial crisis and the resulting economic downturn
as an example. Suddenly, enterprises face a shift in customer focus towards
products and services that immediately generate revenue, banks must apply
more stringent accounting rules, and companies must break new grounds to



find financing for investments. By implication, core processes of the affected
businesses would be required to be adjusted to cope with these changes.

By being able to flexibly adapt their processes to changes, agile businesses
set themselves apart from their competition. Naturally, BPMS offerings need
to facilitate flexibility at low costs. At the same time, companies still wish to
benefit from standardized best practices, represented through vendor-provided
reference processes. The business process community has come up with numerous
flexibility techniques to dynamically incorporate change into business processes
[13, 3–5]. These approaches cover both design time and runtime changes and
provide formal frameworks for how to constrain changes.

However, many established process flexibility approaches suffer from short-
comings with respect to lifecycle management in general, and the costs that come
with changing business processes, specifically. Some existing techniques suggest
that BPMS customers alter reference processes [6] “in place” in order to cus-
tomize them to their needs (patching use-case). Alternatively, reference processes
act as templates [17] for newly developed processes (blueprinting use-case).

Neither of these approaches can realistically succeed in large-scale software
rollouts, involving hundreds of reference processes with an even higher number
of customer adaptations on top. This is because making changes to reference
processes goes along with substantial costs for (1) carrying out the changes
and (2) later maintaining the resulting processes. Any time the BPMS vendor
ships a new version (to incorporate corrections or to address new requirements),
existing customer adaptations have to be re-applied at great cost. Similarly,
multiple independently defined adaptations have to be consolidated within a
single process. For instance, two customer departments may wish to change a
cross-departemental reference process independently at different points in time.

Business process extensibility introduces a flexibility approach which specif-
ically aims at the parties which are involved with defining, using, and main-
taining business processes. As part of that, BPMS vendors own (i.e., define and
maintain) reference processes whereas BPMS customers own and run extensions
thereof. Process extensions constitute separate customer-defined “deltas” which
hook up to a reference process through late binding mechanisms. When adhering
to some plain compatibility rules, both reference processes and extensions can be
patched (i.e., maintained) by their owners without ever having to be “re-wired”.

It is a benefit of extensibility to designate the responsibilities for maintain-
ing processes and extensions. The vendor remains in the “driver seat” to update
reference content, letting customers easily benefit from state-of-the-art best prac-
tices. By automatically applying existing customer extensions to patched refer-
enced processes, the cost of rolling out new BPMS releases is greatly reduced.

In this paper, we introduce the concept of extensibility aiming at low-cost
customization and a clear separation of concerns. Section 2 outlines its benefits
over existing flexibility approaches. In Section 3, we provide a taxonomy to clas-
sify these approaches. Section 4 presents use-cases and proposes an extensibility
framework architecture. Section 5 formulates an agenda for potential follow-up
research in this area and Section 6 surveys related work.



2 Extensibility

The general concept of making processes more flexible to let them deviate from
their hard-wired business semantics has been around for some time. Require-
ments like customization, exception handling, re-use, etc. have led to different
technological approaches, namely From-Scratch Design, Patching, Blueprinting,
Ad-Hoc Changing, and Runtime Settings.

2.1 Proposal

Extensibility is a new approach to support process flexibility which specifically
addresses customization of reference content. Unlike existing approaches, exten-
sibility clearly designates responsibilities for the process and extensions thereof.
Reference processes may be patched (bugfixed, updated) by the vendor only.
Customers receive reference processes as read-only shipped content which is only
updated as part of a software release.

Customers customize reference processes to their needs by independently
defining and deploying extensions which solely constitute “deltas” (process frag-
ments). Extensions exist alongside the (reference) processes. Only when running
a process, an extensibility framework dynamically invokes its extension(s). Multi-
ple extensions to a single process can be independently defined (e.g., by different
customer departments) to be deployed in isolation (i.e., at different points in
time). As the extensibility framework automatically controls the interplay be-
tween multiple different extensions and their target (reference) process, there is
no need to statically integrate all extensions upfront.

Both reference processes and extensions can be “patched”, thereby spawning
new versions. Patches fix bugs or simply override outdated functionality which
makes patching a crucial means of maintaining processes. Patches to a reference
process must adhere to some compatibility rules which require the new version
to support any existing customer extension. The extensibility framework takes
care of automatically incorporating all customer extensions that were defined
atop any old version of the patched reference process. Just as well, extensions
need to follow some compatibility rules. These rules constrain to what extent
the business semantics of a reference process can be deviated from. Apart from
“safe” implicit compatibility rules, the BPMS vendor may define more relaxed
explicit constraints. Figure 1 illustrates a vendor-shipped reference process (left)
which is customized with extensions of the customer’s HR and Sales departments.
The initial reference process is a plain sequence of three activities: “HR Task”,
“Sales Task”, and “ERP Service”. The first extension replaces “HR Task” with
a subflow comprising the existing “HR Task” followed by some organizational
chart lookup (“OrgChart Service”).

As part of a new release, the vendor ships a patched reference process which
conditionally performs an automated “CRM Service” instead of the (manual)
“Sales Task”. The patched reference process is compatible with any extensions
defined on its predecessor version. The extension framework needs to automati-
cally route the patched reference process to existing extensions, where applicable



BPMS Vendor BPMS Customer

(initial reference process) (initial HR dept. extension)

(patched reference process) (customer-patched HR dept. extension) (initial sales dept. extension)

Fig. 1. Extensibility Example

(here: “HR Task” → “HR Extension”). Independently of the vendor shipment,
the customer may have replaced the manual “Sales Task” with an automated
“Sales Service”. The earlier defined “HR Extension” was also refined to intro-
duce a four-eyes principle. That said, patches may be applied to both the original
reference process and a customer extension.

Extensibility is a prerequisite for proper process lifecycle management where
the reference content vendor and the customer represent distinct parties having
different requirements and obligations:

Vendor The vendor is responsible for (1) delivering correct reference processes
(“shipped content”) that represent generalized best practices. He also needs
to (2) maintain that content, i.e. ship patches when bugs are detected or



requirements change. Finally, (3) the vendor should provide the means to
have its content “customized” to a customer’s needs. From his perspective,
it is vital to ensure that reference process change is controlled.

Customer Customers engage their IT team to customize a BPMS release (they
may also hire contractors to do so). In regard to reference processes, that
includes (1) changing settings which deviate from the customer’s landscape,
(2) reducing complexity by removing functionality that is not needed, and
(3) adding new functionality for requirements which are not yet covered.
End users essentially run processes (i.e. start new instances or are involved in
process activities). There are often multiple end user roles which (1) interact
with the same process but (2) have their distinct customization requirements.
For instance, a legal department could ask for fine-granular logging in audit-
sensitive processes, whereas the IT department may be interested in getting
notified of technical process failures.

Extensibility offers controlled flexibility for the different parties that design, cus-
tomize, and run processes and is motivated by the specific concerns these parties
typically have. For instance, the vendor must be able to easily patch shipped con-
tent without introducing extra, per-customer development costs or significantly
increasing the cost of ownership at the customer. Last but not least, the ven-
dor will want to disallow arbitrary changes to this content to avoid mistakes
on the customer side which are very difficult to support. In turn, customers
are essentially concerned with running their businesses while keeping IT costs
down. While flexibility does have its merits, customers also want to build their
business on best practices. Besides, customers have a vital interest in correct,
law-conforming processes where customizations are guaranteed to not distort the
basic functionality.

2.2 Benefits

Technically, the vendor ships reference processes that incorporate “extension
points” which are pre-planned artifacts where customers can incorporate their
extensions. Extension points apply to almost any dimension of modeling busi-
ness processes, including control flow, data flow, resources, rules, security, etc.
We will give extensibility examples for some perspectives further below. Exten-
sibility comes with a number of significant advantages over existing flexibility
approaches, notably:

Extensibility (1) offers a lifecycle model for controlled flexibility taking into
account obligations and concerns of different parties involved in designing, cus-
tomizing, and using business processes. It helps avoiding errors at the customer
side and reduces maintenance costs (Controlled Change). Customers automati-
cally (2) benefit from best practices within shipped reference processes. In par-
ticular, the vendor can set extension points in a way that the basic business
objective of the reference process cannot be tampered with by customer-defined
extensions (Best Practices Adoption). Reference processes may be (3) subject
to patching. Extensions defined on an old version of some process transparently



apply to any new version. Reference processes can thus be fixed without loosing
(or having to manually re-apply) their extensions (Supportability).

Instead of using reference processes as templates for newly created processes,
(4) extensions consume fewer resources at runtime. This is because an extension
solely constitutes a small “delta”. As a side effect, this model is ideally suited for
process outsourcing where reference processes are remotely run at SaaS providers
(Resource Consumption). Extensibility allows multiple people (at the customer
side) to (5) independently define “additive” extensions to the same reference
process. This greatly improves separation of concerns between different business
departments. As a result, multiple extensions can be independently defined at
different points in time (Multiple Extensions).

If desired, vendors may (6) ship their processes as “black boxes”, only ex-
posing interfaces and extension points. This may be desireable if details in the
reference content consitute significant intellectual property which is not to be
disclosed (Intellectual Property). Reference processes may also be purely docu-
mentary models that are not executed in a proper BPMS runtime but rather as a
coded application. The customer (7) may still want to extend these “application
processes” by proper process models. With some application instrumentation to
add extension points, extensibility may even help in bridging this sort of platform
and paradigm differences (Application Extension).

Finally, the (8) meta-process of defining extensions is of interest itself, as
it reveals how a customer deals with business change. Mining the logs of this
meta-process could help the customer optimizing its business by getting answers
to questions like: Which line of business is most often subject to change? Which
user roles require most change to reference processes? (Flexibility Mining)

3 Taxonomy

Common process flexibility approaches can be classified with respect to a number
of dimensions, the most important being (1) the primary use-case which outlines
the main purpose and most frequent usage, (2) the parties (vendor, customizer,
end user) that are affected, (3) the actual people’s functional role descriptions,
(4) the lifecycle stages (design time, runtime) it is used, (5) the constraints that
restrict what can be done, and (6) the scope (process type, instance, version) the
flexibility technique operates on. Existing flexibility techniques can be fit into
this classification which helps in understanding their differences. It also outlines
the contribution of extensibility to the overall picture. We specifically discuss
the differences between from-scratch modeling of new processes, patching exist-
ing processes, re-using a vendor-provided template to develop a new business
process (blueprinting), performing ad-hoc changes of process instances at run-
time, modifying (technical) runtime settings, and extending reference processes:

From-Scratch Modeling Modeling a business process “from scratch” is typ-
ically the result of analyzing and documenting existing processes. Most im-
portantly, there is no pre-existing reference process to build upon. Instead, a
new process is modelled and then successively refined, following a top-down



approach. Bottom-up approaches start with modeling detailed process frag-
ments which are later aggregated into larger end-to-end business processes.
Strictly speaking, this approach does not traditionally constitute a flexibility
use-case. However, modeling a (reference) process from scratch is a prereq-
uisite for any other flexibility technique. It is mostly business analysts start
modeling from scratch. Both the vendor and its customers may perform
this use-case (for reference processes and customer processes, respectively).
Newly modeled processes are not subject to any constraints, except for the
inherent restrictions of the chosen modeling standard.

Patching Occasionally, process models (which were deployed to a BPMS run-
time before) may need to be altered. The vendor may have to patch reference
processes to fix bugs or to simply address new requirements. Customers may
want to patch their processes to incorporate various changes in their busi-
ness. Patching is closely related to versioning where the affected process will
be labelled with a new version number.
Both IT (process developer) and business (domain expert) users may want
to patch a process. Patching is a design time operation but will only take
effect after deployment of the new (patched) process version into the BPMS
runtime. There are some constraints that limit what can be changed when
patching a process. At first, interface compatibility must be preserved such
that client (processes) do not have to be adapted to cope with the change.
Secondly, existing extensions points must be retained in the patched version
such that extensions transparently apply to the patch.

Blueprinting Vendor-delivered reference processes often constitute best prac-
tices rather than ready-to-run processes. Blueprinting uses reference pro-
cesses as a “master” for newly modeled processes. Technically, the reference
process is physically copied to a blank process model where it is further re-
fined. While being fully flexible in what changes can be done from there on,
BPMS vendors will not able to support those changes. That is, customers
will have to manually apply all changes in a new reference process version
in their derived processes (copies).
Altogether, blueprinting (configuration & individualization) is a design time
operation where customers adapt vendor-delivered reference processes to
their needs (as opposed to extensibility which relies on late binding mecha-
nisms). Unlike patching, customers perform modifications on physically sep-
arate copies of that template and rather create new variations that are in-
dependent from (do not overwrite) the original process.

Ad-hoc Changing Sometimes, end users have to deviate from the behavior of
the process instances they are involved in. Actually, human-driven processes
often run into exceptional situations. End users then need to (implicitly)
alter the process model for their specific instance, thus deviating from its
original business semantics.
There are some constraints around ad-hoc changes, mostly affected with role-
related restrictions and instance migration issues. That is, ad-hoc changes al-
ter models of running process instances. Consequently, ad-hoc changes must
allow for automatically migrating the instance state to the altered model.



Ad-hoc changes typically affect a single process instance, only. The altered
process model is kept temporarily for the life time of that instance.

Runtime Settings Some environmental settings globally hold for all processes
and, when changed, need to immediately apply to both all running processes
and newly started instances. Those settings include modifications to organi-
zational charts, security settings and other technical configuration. In most
cases, these settings are not even part of any process model such that there
is essentially no design time aspect here. Those changes are typically done
by system administrators.

Use-Case Party Role Lifecycle Constraints Scope

Designing Business Vendor, Business analyst Design – new
from process Customer Process Time process
Scratch analysis architect

Patching Changing Vendor, Process Design Extension/ new
requirements, Customer developer, Time interface version
Bugfixing Domain expert compatibility

Template Reuse Customer Process Design – new
Reuse (Vendor) developer, Time process

Domain expert

Ad-Hoc Handling of Customer Task owner, Runtime Instance single
Changing exceptional Process migration, instance

cases administrator Role

Runtime System-wide Customer System Runtime – all
Settings settings administrator running

instances

Extensi- Customization, Customer Domain Design Extension all
bility Adoption of expert, Time point future

best practices IT department (Runtime) versions

Table 1. Process Flexibility Taxonomy

Extensibility constitutes a separate flexibility approach where customers define
process extensions as deltas (process fragments) on top of reference processes.
The primary use-case behind extensibility is customization where the customer
adapts a given reference process to its business needs. Various customer roles may
define process extensions, each with different objectives. Domain experts from
specific line organization (e.g., Sales, Procurement, Manufacturing, etc.) may
independently define extensions to adjust a cross-organizational process to their
needs. A customer typically defines extensions in a design time environment,
even though that does not rule out the option of having a runtime user interface
to even let end users specify extensions in an ad-hoc fashion. Extensibility is
subject to some constraints, either originating from implicit compatibility rules
or explicitly from modelled extension points within reference processes. Table 1



classifies existing flexibility techniques according to the dimensions introduced
before and positions extensibility as a new approach.

4 Implementation

Conceptually, extensibility is open to different process perspectives. In this Sec-
tion, we identify some frequent extensibility patterns in the control flow and data
flow perspectives. Without loss of generality, we use BPMN-like notations to il-
lustrate these use-cases. We also propose a high-level BPMS server architecture,
incorporating an “Extensibility Framework” component.

4.1 Control Flow Perspective

Many extensibility use-cases do in some way alter the control flow by adding or
replacing process fragments by customer extensions. Extensions may also skip
or even re-arrange existing reference process branches. Multiple variants exist,
most notably for how to spawn (conditionally, (a)synchronously, etc.) and merge
back extension flow (with or without synchronization).

In this paper, we solely consider Usage Extensibility which is the most straight-
forward way of creating control flow extensions. Usage extensibility applies to
activities, denoting atomic tasks (either performed automatically or by a hu-
man actor) or referencing nested subflows (to hierarchically structure processes
and re-use existing functionality). The idea is to have an extension replacing an
activity A of the reference flow by another activity A′. Technically, the to-be-
replaced and replacing activities A and A′ need to expose compatible interfaces
(for the data flow) to have the extensibility framework seamlessly perform the
replacement without human intervention at runtime.

Figure 2 depicts a “Make to Order” reference process derived from a pub-
lic SAP Solution Composer4 business scenario map. Make to Order specifies a
vendor-side process in discrete industries where a good is manufactured upon an
incoming order from a customer. On the vendor side, activities are performed
by three different roles: (1) a sales department, (2) manufacturing, and (3) qual-
ity assurance. After negotiating delivery dates and completing the production
planning, manufacturing ultimately produces the good with interleaved quality
checks for the production process and final checks for the good itself.

At customization, this process is extended to optionally modify those quality
gates depending on the order volume. That is, for high-volume orders a four-eyes
quality check applies as part of the final checks. For this purpose, the extension
replaces the “Final Quality Checks” task by the subflow depicted in Figure 3
(left).

Usage Extensibility captures a wide range of customization use-cases and
can be applied in a straightforward way. In fact, by substituting atomic activities
through subflows, it even allows for incorporating structurally complex customer
extensions into reference flows.
4 http://www.sap.com/solutions/businessmaps/composer/index.epx



Fig. 2. “Make to Order” Reference Process

4.2 Data Flow Perspective

Unlike control flow, data flow is implicitly incorporated into process models. It
affects the process’ data context, activity interfaces, data mappings, decision
gateways, and message correlations. One frequently observed requirement re-
volves around Field Extensibility which deals with (compatibly) complementing
data interfaces both from a service provisioning and consumption perspective.
That is, customers may wish to customize the reference process in a way that it
receives (passes on) additional parameters from inbound (to outbound) messages
(services). New clients may interact with the process through the field-extended
interface. In turn, compatibility to existing clients (provisioning) and services
(consumption) must be preserved. Figure 3 (right) depicts a plain BPMN flow

Fig. 3. Usage Extensibility (left) and Field Extensibility (right) Examples

where the start/end events represent the inbound case, providing the process
as a service having a well-defined interface. A new process instance is spawned
upon receiving an inbound “request” message on that interface. In turn, the end



event terminates the instance and crafts the corresponding outbound “response”
message. When compatibly extending that interface to accomodate additional
fields, clients (including “parent” processes) may pass on extra data to the pro-
cess. The process may then make use of this data in usage-extended activities.
Existing clients remain unaffected, thus, passing (receiving) their inbound (out-
bound) messages to (from) an extensibility framework which adds (strips off)
the extra fields.

Vice versa, the subflow activity constitutes the consumption case where
the activity’s interface may be field extended in the same manner. Altogether,
Field Extensibility is concerned with preserving compatibility despite interface
changes. When used in isolation, it does not specify means to take advantage of
additional data fields.

4.3 Architecture

Extensions are incorporated into processes at runtime using late binding mecha-
nisms. A corresponding BPMS runtime needs provide an “Extensibility Frame-
work” to dynamically invoke extensions. Figure 4 illustrates a high-level BPMS
server architecture where the process execution engine interacts with an exten-
sibility framework execute all extensions defined atop a given process. When

Fig. 4. BPMS Server Architecture w/ Extensibility Support



executing a process instance that runs into an extension point, the process exe-
cution engine triggers the extensibility framework. The extensibility framework
merely acts as a lookup facility which initially retrieves the matching exten-
sion(s) (if any) from a process extension store. It then (2) makes use of the
process execution engine to actually execute the extension(s). Once completed,
the extensibility framework returns focus to the reference process.

This architecture sketch merely introduces the involved components with
their high-level interaction and not yet specify their detailed behavior. The latter
is obviously heavily dependent on the to-be-covered extensibility use-cases.

5 Open Research Challenges

In this paper, we introduce the idea of process extensibility but do not yet cover
the whole topic exhaustively. In fact, we believe extensibility constitutes a whole
new area of BPM research. In this section, we present a research agenda giving
indications for possibly future research on conceptual and technical follow-up
topics. We hope those issues to be taken up by the research community and rely
on their contributions to adequately cover this area.

Most topics revolve around (1) fully understanding the applicability and
limitations of process extensibility and (2) to lay its formal and technical foun-
dations:

Extensibility Patterns To set the scene for follow-up research, it is important
to gain a comprehensive overview on relevant extensibility use-cases. These
use-cases should preferably constitue real-world customization requirements
which need to be classified and mapped to extensibility patterns.

Reference Process Conformance Extensions alter the behavior of reference
processes which are, in turn, supposed to represent best practices. It is,
thus, necessary to preserve some core characteristics of an extended process.
Future work in that area could result in an explicit constraint model for
defining extensions at reference processes.

Reference Process Patchability After shipment, a reference process p is solely
maintained through patching (cf. Fig. 5, left). The vendor may ship a new
version p′ that all existing extensions transparently apply to. Hence, exist-
ing extensions (e1) implicitly impose compatibility rules which constrain to
what extent a patched reference process p′ can differ from the predecessor
version p. Future research should formulate compatibility rules for reference
process patching. That includes providing migration instructions to autmat-
ically handle “dangling extensions” that do not match a patched reference
process any longer.

Extension Mining Deviations from reference processes may initially not be
specified as proper extensions. Instead, end users may also make use of costly
ad-hoc changes to gain the required flexibility. To liberate end users from
tedious ad-hoc changes, and thus, essentially saving costs, process log mining
may be employed to (1) detect “manual” deviations from a reference process
original behavior and (2) automatically derive extension definitions.



vendor customer

p

p′

e1

e2

vendor ISV customer

e1

p e3

e2

e4

Fig. 5. Reference Process Patchability (left) and Stacked Extensions (right)

Extension Point Extension points are part of reference processes and expose
its extensible aspects. Future work should come up with a concept for spec-
ifying extension points, capturing all extension patterns. That may include
additional constraints on the extensions that are “plugged in”. Finally, ex-
tension points should be self sufficient such that reference processes could
also be shipped as “black box” content, omitting implementation details.

Stacked Extensions In large software rollouts, 3rd party contractors may be
involved. For instance, a contractor may be affected with customizing ref-
erence processes through some baseline extensions. The customer itself may
further refine these contractor-defined extensions by providing other exten-
sions on top of it. In this way, a transitive extension chain may emerge.
Figure 5 (right) depicts a scenario where both a contractor and the end cus-
tomer define extensions atop a reference process p. Customer extensions (e3

and e4) can both refer to a contractor extension (e1) or the reference process
directly. Future work needs to devise an extensibility framework architecture
which support these scenarios.

Business Process Outsourcing Both Software-as-a-Service and Cloud Com-
puting promise significant cost savings through scaling effects. In this regard,
Business Process Outsourcing has become the corresponding catchphrase for
the BPM realm. The idea is to externalize execution of processes to 3rd party
hosting providers. In terms of extensibility, one might host the reference pro-
cess at the vendor side, making invocations to extensions which run on the
customer side. Future work should yield an extensibility framework architec-
ture supporting distributed execution environments which tackles challenges
like performance, availability, transactionality, failover, authorization, etc.

Authorization Issues Role awareness is a key differentiator of extensibility as
opposed to other process flexibility approaches. Consequently, authorization
becomes an issue inasmuch as certain operations (like view, patch, extend,
run) may be constrained to certain roles. For instance, the reference process
may solely be patched by the vendor, but may be extended on the customer
side. More fine-granular authorization schemes may be in place to further
constrain the roles that may define extensions for specific extension points.
Altogether, future research should define a comprehensive authorization con-
cept, supporting the afore-mentioned use cases.



Design Time Usability The extensibility approach promises great cost sav-
ings over other flexibility approaches. As a prerequisite, BPMS need to in-
clude modelling tools to define extensions. These tools need to visualize
relevant aspects of the to-be-extended reference process and to define and
“wire up” extensions in an easy to comprehend fashion such that the impact
of those changes becomes umambiguously evident.

This agenda is by no means complete. Our focus in this agenda is to lay the
foundations for a practically oriented extensibility support as part of a BPMS.

6 Related Work

In this paper, business process extensibility is positioned as a new area of research
in the well-explored field of process flexibility. A recent taxonomy in process
flexibility [18] identified four approaches to achieving flexibility:

– flexibility by design – where a number of alternative pathways are explicitly
specified in the process model at design time.

– flexibility by deviation – where at run-time an alternative course of action
can be taken which differs from the course of action prescribed by the process
model.

– flexiblity by underspecification – where detailed specification of (parts of) the
process model is avoided. As mentioned in [18], this category covers both late
modelling and late binding.

– flexibility by change – where a process model can be modified after deploy-
ment.

BPM systems such as ADEPT1 [12], YAWL [2] (including the Worklet ser-
vice [4]), FLOWer [3] and DECLARE [10, 11] are classified in [18] according to
this taxonomy.

Patterns are a useful means to compare the capabilities of different lan-
guages/systems and there are two pattern collections in the area of process
flexibility that have recently been developed for this purpose. On the one hand,
so-called change patterns and change support features are documented in [19],
while on the other hand the flexibility taxonomy gave rise to a collection of flexi-
bility patterns [9]. In [9] it is claimed that the “majority of” the change patterns
can be “mapped on” the flexibility patterns. Neither pattern collection addresses
the issue of managing the evolution of (reference) process models by vendors and
of their counterparts by customers.

A well-researched problem in the area of dynamic/adaptive workflow is the
migation of process instances across different versions of a process model. Con-
sider e.g. early work by Ellis et al. [5] or Van der Aalst [1] dealing with changed
control-flow dependencies. A comparative overview of correctness criteria used
by various approaches is presented in [14]. More recently, Rinderle et al [15] in-
vestigated new, more relaxed, correctness criteria for process migration taking
not only the control-flow perspective but also the data perspective into account.



Work in this area could be exploited and extended to deal with (controlled)
changes by the vendor, the customer, or both. The last case in particular poses
a challenge.

Reference models are models for targetted application domains that incor-
porate “best practice” [8] methods in these domains. Reference process models
serve to capture the procedural aspects of best practices. In the SAP R/3 envi-
ronment many such models are made available using the Event-driven Process
Chain (EPC) notation. As a reference process model may be quite large in order
to capture all possible pathways in the various settings in which it may be used
the notion of a configurable reference process models was introduced [16]. Cus-
tomising a configurable reference process model to a particular setting may lead
to a model in which many of the pathways were eliminated as they are simply
not applicable. Process configuration typically is a one-off activity where there
is no provision for further adaptation of the configured model. Additionally, evo-
lution of configurable reference process models has not yet been investigated or
even identified as a topic worthy of research.

An approach to tackling challenges dealing with a collection of so-called “pro-
cess variants” is documented in [7]. It is proposed that for a process variant the
change operations that need to be applied to derive it from a base process model
are explicitly stored, rather than that only the result of the application of these
operations is kept. This is an idea that is valuable to the area of business process
extensibility as well.

The mixture of design-time and run-time considerations as well as the re-
quirement of supporting restricted changes and the propagation of such changes,
positions the field of business process extensibility uniquely with respect to pro-
cess flexibility and process configuration.

7 Summary

Extensibility establishes a new process flexibility technique which aims at cus-
tomization of reference processes. It differs from existing approaches by offering
a clear separation of Concerns between the reference process owner (vendor)
and the owner of extensions thereof (customer). At the same time, extensibility
enforces “controlled change” through the extension point concept and physical
separation between processes and their extensions. The latter caters for both
low-cost supportability of reference processes through the vendor and preserva-
tion of the reference process’ core “business intent”.

References

1. W.M.P. van der Aalst. Exterminating the dynamic change bug: A concrete ap-
proach to support workflow change. Inf. Systems Frontiers, 3(3):297–317, 2001.

2. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.



3. W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case handling: A new
paradigm for business process support. DKE, 53(2):129–162, 2005.

4. M. Adams, A. H. M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst.
Worklets: A service-oriented implementation of dynamic flexibility in workflows.
In Proc. of the 14th Int. Conf. on Cooperative Inf. Systems (CoopIS’06), volume
4275 of LNCS, pages 291–308. Springer, 2006.

5. C. A. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow
systems. In Proc. of the Conf. on Organizational Computing Systems, COOCS
1995, Milpitas, California, USA, August 13-16, 1995, pages 10–21. ACM, 1995.

6. P. Fettke, P. Loos, and J. Zwicker. Business process reference models: Survey and
classification. In BPM Workshops, volume 3812 of LNCS. Springer, 2006.

7. A. Hallerbach, T. Bauer, and M. Reichert. Managing process variants in the process
life cycle. In ICEIS 2008 - Proc. of the Tenth Int. Conf. on Enterprise Information
Systems, Volume ISAS-2, pages 154–161, 2008.

8. J. M. Küster, J. Koehler, and K. Ryndina. Improving business process models
with reference models in business-driven development. In BPM 2006 Workshops,
volume 4103 of LNCS, pages 35–44. Springer, 2006.

9. N. Mulyar, W. M. P. van der Aalst, and N. Russell. Process
flexibility patterns. BETA Working Paper Series, WP 251, Eind-
hoven University of Technology, the Netherlands, 2008. Available at
http://fp.tm.tue.nl/beta/publications/working%20papers/Beta wp251.pdf.

10. M. Pesic and W.M.P. van der Aalst. A declarative approach for flexible business
processes management. In Proc. of the First Int. Workshop on Dynamic Process
Management (DPM 2006), volume 4103 of LNCS, pages 169–180. Springer, 2006.

11. M. Pesic, M. H. Schonenberg, N. Sidorova, and W.M.P. van der Aalst. Constraint-
based workflow models: Change made easy. In CoopIS, DOA, ODBASE, GADA,
and IS, OTM Confederated Int. Conf. Proc., Part I, volume 4803 of LNCS, pages
77–94. Springer, 2007.

12. M. Reichert, S. Rinderle, and P. Dadam. Adept workflow management system:.
In BPM 2003, volume 2678 of LNCS, pages 370–379. Springer, 2003.

13. M. Reichert, S. Rinderle, U. Kreher, and P. Dadam. Adaptive process management
with ADEPT2. In ICDE 2005, volume 3716, pages 1113–1114. IEEE Computer
Society, 2005.

14. S. Rinderle, M. Reichert, and P. Dadam. Correctness criteria for dynamic changes
in workflow systems - a survey. DKE, 50(1):9–34, 2004.

15. S. Rinderle-Ma, M. Reichert, and B. Weber. Relaxed compliance notions in adap-
tive process management systems. In Conceptual Modeling - ER 2008, 27th Int.
Conf. on Conceptual Modeling, volume 5231 of LNCS, pages 232–247. Springer,
2008.

16. M. Rosemann and W.M.P. van der Aalst. A Configurable Reference Modelling
Language. Information Systems, 32(1):1–23, 2007.

17. A.-W. Scheer and M. Nüttgens. Business Process Management, volume 1806 of
LNCS, chapter ARIS Architecture and Reference Models for Business Process Man-
agement. Springer, 2000.

18. H. Schonenberg, R. Mans, N. Russell, N. Mulyar, and W. M. P. van der Aalst.
Towards a taxonomy of process flexibility. In CAiSE Forum, pages 81–84, 2008.

19. B. Weber, M. Reichert, and S. Rinderle-Ma. Change patterns and change sup-
port features - Enhancing flexibility in process-aware information systems. DKE,
66(3):438–466, 2008.

20. M. Weske. Business Process Management: Concepts, Languages, Architectures.
Springer, 2007.


