
Configurable Process Models:
Experiences from a Municipality Case Study

Florian Gottschalk1, Teun A.C. Wagemakers1, Monique H. Jansen-Vullers1,
Wil M.P. van der Aalst1,2, Marcello La Rosa2

1 Eindhoven University of Technology, The Netherlands.
{f.gottschalk, m.h.jansen-vullers, w.m.p.v.d.aalst}@tue.nl,

teun.wagemakers@pallas-athena.com
2 Queensland University of Technology, Brisbane, Australia.

m.larosa@qut.edu.au

Abstract. Configurable process models integrate different variants of
a business process into a single model. Through configuration users of
such models can then combine the variants to derive a process model op-
timally fitting their individual needs. While techniques for such models
were suggested in previous research, this paper presents a case study in
which these techniques were extensively tested on a real-world scenario.
We gathered information from four Dutch municipalities on registra-
tion processes executed on a daily basis. For each process we identified
variations among municipalities and integrated them into a single, con-
figurable process model, which can be executed in the YAWL workflow
environment. We then evaluated the approach through interviews with
organizations that support municipalities in organizing and executing
their processes. The paper reports on both the feedback of the inter-
viewed partners and our own observations during the model creation.

Keywords: Business Process Models, Configuration, YAWL, Registra-
tion Process, Questionnaires, Case Study

1 Introduction

Many processes in public administration are driven by legislation, e.g. the process
of renewing a drivers licence is constrained by law. Therefore, the processes exe-
cuted in the administration of municipalities are extensively regulated. Although
legislation is establishing the important steps, some freedom is left regarding the
concrete implementation of such processes. Hence, municipalities can still adapt
their processes to local needs and preferences, e.g. depending on the size of the
municipality, or on the services provided along with these processes.

Configurable process models were developed to align the variation options of
widely standardized processes with small variations like the ones executed by
municipalities. Further, they enable software providers to support the execu-
tion of these process variations through their service-oriented software. For this,
configurable process models integrate several process variants into a single pro-
cess model. To adapt this integrated model to individual needs, a configurable

process model can be configured allowing an organization to disable all the un-
necessary process parts. In this way, an organization can derive a process model
that fits its individual needs without actually performing any process modeling
activities. If the configurable model is defined as a workflow specification, the
resulting models can then be executed through a workflow engine [5].

As disabling unnecessary process parts of the workflow definitions still re-
quires insights into the process modeling notation, this can be steered through a
questionnaire with domain-related questions. In this way, domain experts with-
out such skills can configure and derive executable workflow specifications fitting
their particular needs [7,8].

To evaluate the concept of configurable process models in practice, we per-
formed a case study with four municipalities of different sizes in the Nether-
lands. Using the YAWL workflow notation and its configuration extension [5],
we created configurable process models for four registration processes that are
executed within each of the selected municipalities on a daily basis. The four
configurable models incorporate all the variations in the execution of these pro-
cesses among the municipalities as well as the suggestions of a reference model
for these processes, i.e. 5x4=20 processes were used as input for creating these
models. Afterwards, we evaluated the practical usefulness of the resulting mod-
els through focus group interviews with software providers, consultants, and the
municipalities themselves. During these interviews the stakeholders could derive
individual process models for these four processes. To test whether the resulting
models conform to what they intended by answering the questionnaires, they
could execute the resulting process definitions using the YAWL system3.

The results of the case study are presented in this paper which is structured
as follows. Section 2 will provide some background information on configurable
process models and configurable YAWL, as well as on how these models can be
configured through questionnaires. Next, Section 3 first depicts how we created
the configurable models for the municipality processes before summarizing our
practical experiences during the model creation phase. Section 4 provides details
on the interviews we performed with the stakeholders, as well as the conclusions
from these interviews. The paper ends with a brief overview on similar case
studies in Section 5, and draws overall conclusions in Section 6.

2 Background

Configurable extensions have been suggested for several process modeling nota-
tions. In this case study we used configurable YAWL, i.e. an extension of the
YAWL notation aiming at configuration [5,7]. Using a workflow notation for
implementing the configurable model comes with the advantage that we can ex-
ecute the configured process models in the corresponding workflow engine and
thus test and demonstrate the practical feasibility of the suggested methodol-
ogy even to users unfamiliar with process modeling. In addition, the steering

3 http://www.yawlfoundation.org

2

http://www.yawlfoundation.org

Port
configurations

Blocked

Hidden

Fig. 1. A YAWL process model for acknowledging an unborn child. The input
port of check permission is configured as hidden and one output port is blocked.

of the configuration through a questionnaire aims at providing such domain ex-
perts with the ability to derive configurations for process models. In this way,
the adaptation of a business process model for later execution can be achieved
without extensive modeling skills.

2.1 Configurable YAWL

YAWL is a process modeling notation and workflow environment based on Petri
nets but extended with powerful features for cancelation, OR-joins, etc. It has
been developed with the aim to provide a notation with formal semantics that
supports all desired workflow patterns [1]. The YAWL system is open-source
and supports the execution and work distribution of workflows depicted in such
models even in production environments. Thus, although originally developed
as a proof of concept, the YAWL system can be used for practical applications.

Figure 1 depicts a simple YAWL model for the process executed by munic-
ipalities when a man registers that he will become the father of a not-yet-born
child although he is not married to the mother.4 In this model tasks are de-
picted as rectangles while circles represent conditions like the initial and final
condition in this example. Conditions mark the states between tasks but can be
omitted for simplicity (like in the example). Composite tasks enable the hier-
archical specification of sub-processes while split and join types of tasks allow
the specification of how the process should proceed in case a task splits or joins
the process’s control flow. For this, YAWL distinguishes an XOR-split (as in the
example in Figure 1) allowing the triggering of only one of the subsequent paths,
an AND-split requiring the triggering of all subsequent paths, and an OR-split
requiring the triggering of at least one subsequent path but allowing also for
path combinations. Similarly, a task with an XOR-join can be executed as soon
as one of its incoming paths is triggered, an AND-join requires that all incoming
arcs are triggered, and a task with an OR-join allows for the execution of the
task as soon as no further incoming paths can potentially be triggered at any
future point in time (see [1] for further details).
4 Note that this process is specific for the Netherlands and constrained by Dutch law.

3

This routing behavior can be restricted by process configuration. For this
purpose, input ports are assigned to each task depicting how the task can be
triggered and output ports are assigned to depict which paths can be triggered
after the completion of the task. A task with an XOR-join can be triggered via
each of its incoming paths. Thus, it has a dedicated input port for each of these
paths. Tasks with AND-joins and OR-joins can only be executed if all paths
(that can potentially be triggered) are triggered, i.e. there is only one way these
tasks can be triggered and thus only one input port. A task with an XOR-split
has an output port for each subsequent path as each of these paths can be
triggered individually while a task with an AND-split has only one output port
as all subsequent tasks must always be triggered. A task with an OR-split can
trigger a subset of the outgoing paths, i.e. in this case a separate output port
exists for each of these combinations.

The process flow can be restricted at these ports. A blocked port prevents
the process flows through it, i.e. a blocked input port prevents the triggering of
the task through the port while a blocked output port prevents that the corre-
sponding output paths can be triggered. In the model in Figure 1, we blocked
the output port from Check for permission to No acknowledgement. Thus, the
task Check for permission must always be followed by the task Decide choice of
name (under Dutch law) as the path to the task No acknowledgement can no
longer be triggered. Input ports can not only be blocked but also be configured
as hidden. Similarly, the subsequent task can then not be triggered through this
port anymore. However, in this case the process flow is not completely blocked,
but only the execution of the corresponding task is skipped. The process exe-
cution continues afterwards. In Figure 1 the input port of the task Check for
permission is hidden. Thus, the execution of this task is skipped which also ex-
plains why we blocked one of the task’s output ports: the configuration results
in skipping the check. Hence, it can no longer fail and the process must continue
normally. Further details on configurable YAWL can be found in [5].

As we can observe from this example, the configurations of ports are often not
independent from each other but rather driven by more general domain-related
aspects. It is therefore suggested to steer the configuration through questions on
these domain-related aspects as is discussed next.

2.2 Steering Process Configuration through Questionnaires

In principle, the variability of the domain can be depicted independently of the
process flow by means of a set of domain facts that form the space of possible
answers to a set of questions. A domain fact is a boolean variable representing a
feature of the domain, e.g. Perform a check of the nationality, that can be enabled
or disabled. Questions can group domain facts according to their content, so that
all the facts of the same question can be set at once by answering the question.
Interdependencies between questions can specify a partial order in which the
questions should be posed to the user. Figure 2 depicts such a questionnaire
model for the various options in the process of acknowledging an unborn child.

4

q1: Do you want to check if the informer and the mother both are not married?

f1: Yes f2: No

q2: In which order do you want to execute the process?

f3: Name choice -> Permission f4: Permission -> Name Choice

f5: Yes

f6: The order does not matterr

q3: Do you want to perform a nationality check?

f7: Yes f8: No

q5: Do you want to inform the parents about who is getting the authority?

f11: Yes f12: No

q6: Do you want to have name choice as one task?

f13: No

q7: Do you want to check in a seperate task if this is the first child out of the relation?

f14: Yes f15: No

Fig. 2. The questionnaire model addressing the various options in performing
the process of acknowledging an unborn child.

Each configuration of a port in the process model can then depend on such
domain facts. For example, the input ports of the task in which the nationality
check is performed must be set to allowed when the corresponding domain fact
is set to true while it must be hidden or blocked when the domain fact is set
to false. Such a port configuration might also be dependent on a combination of
answers, i.e. domain facts. For this, the facts can be combined in propositional
logic expressions that capture their interplay. It is then important to make sure
that a single port will never have two configuration values at the same time
(e.g. blocked and hidden) which can be achieved through corresponding, addi-
tional constraints. These can then also imply that certain answers given in the
questionnaire automatically define the answers to further questions.

Figure 3 depicts and summarizes the steering of process configuration through
questionnaires. Further details on the approach can be found in [7,8].

3 Creating Configurable Process Models

In the first project phase we created configurable process models for four regis-
tration processes. These processes are executed on a daily basis in each of the
municipalities. In this way, we evaluated the feasibility of configurable process
models in public administration. The steps taken during the creation of the mod-
els are explained in the first part of this section. Afterwards, we summarize the
challenges we were confronted with during the creation of such models and how
we addressed them.

5

Incoming ports Determine Nationality BLOCKED

f8

Determine
Nationality

Fig. 3. The setting of a domain fact through answering a question leads to the
selection of a particular port configuration via the so-called mapping table.

3.1 Building the Models

In total we created configurable process models for the following four registration
processes:

– Acknowledging an unborn child: This process is executed when a man wants
to register that he will be the father of a child still to be born while he is
not married to his pregnant partner.

– Registering a newborn: This process is executed by the municipality to reg-
ister a newborn child and handing out a birth certificate.

– Marriage: This process includes all steps necessary before a couple can get
married in a Dutch municipality.

– Decease: This process is executed when a person deceases to provide the
relatives with the documentation necessary to bury the deceased.

Reference process models for these processes are available from the Neder-
landse Vereniging Voor Burgerzaken (NVVB5), i.e. the Dutch association for
services to the public. These models describe a single “best-practice” version of
how the particular process should be executed. While these models are avail-
able in several notations, we used the notation of the business process modeling
tool Protos. Protos is very popular among Dutch municipalities: these reference
models are used by over 100 Dutch municipalities (mainly for auditing purposes).

To detect the variations of the processes in the daily practice we visited four
municipalities in the Netherlands. We selected the municipalities such that they
5 http://www.nvvb.nl

6

http://www.nvvb.nl

vary in the size of their population (between 26.000 and 201.000 inhabitants)
and such that they use software from different providers to support the process
execution. Without confronting the process owners of the selected municipalities
with the reference models, we asked them to explain how they execute the various
processes. We then used again Protos to create a separate process model for
each process in each municipality. During this phase, some of the municipalities
provided us with process models which they created to document their processes.
In these cases, we based our models on the models which were provided by
them. We only made modifications where it became clear from our visits to the
particular municipality that a process model did not reflect what was actually
happening. To make sure that we correctly depicted the processes, we asked the
process owners at the end of this phase to validate the models. Figure 4 shows
the four Protos models we derived from the four municipalities for the process
of acknowledging an unborn child. While the control flow of these four processes
is similar, the number of steps taken as well as the concrete order of executing
tasks varies among municipalities.

For each of the four selected business processes we then identified all the
differences among the five process variants (the reference model plus the models
of the four municipalities) by comparing them with each other. Based on this
information, we created for each business process a single Protos model that
incorporates all the variations from the five input models as ordinary runtime
choices. The integrated model derived from the reference model and the four
process variants for acknowledging an unborn child shown in Figure 4 is shown
in Figure 5. Note that out of the four business processes we analyzed in this
case study, the process of acknowledging an unborn child is the simplest, i.e. the
three other combined process models include both more tasks and more arcs.

To be able to configure and execute these models, we then switched to a work-
flow environment that supports both the configuration and execution of Protos
models. In particular we chose YAWL here as our ideas on process configura-
tion [5,8] are implemented in this environment. The translation from Protos to
YAWL was done manually as we not only translated the pure control flow from
the Protos models, but also implemented the data upon which the process relies
and which is only available in a descriptive way in the Protos models. In this
way, we created the basis to route cases through the process model according
to the data collected during the process execution. That means, the resulting
YAWL models are fully executable in the YAWL workflow engine. The YAWL
model for the acknowledgement of an unborn child is shown in Figure 6a.

The resulting four YAWL models integrating all the variations of the pro-
cesses were of course far too complex to be used and configured by the stake-
holders of the municipalities. Thus, we also created a questionnaire for each of
the four business processes as explained in Section 2.2. In the questionnaires we
addressed each variation possibility at a particular stage of the process by at
least one question. The questionnaire model for the process of acknowledging an
unborn child was already shown in Figure 2. The answers to the questions were
then mapped to allowing, hiding, or blocking the process flow through various

7

OK

Not OK

Not OK

Citizen

Confirm identi fy

Determine i f
authorisation

Check for
permiss ion

Draw up ackn.
document

Hand over copy

Archive
documents

Dec ide choice
of name

Request
Acknowledgement

Archive

No
acknowledgement

niet akkoord

akkoord

niet akkoord

akkoord

Decide choice
of name (Dutch

Citizen

Determine
nationality

Hand over copy

Archive
documents

Draw up ackn.
certificate

Check for
permission

Request
Acknowledgement

Confirm identify

Determine if
authorisation

Decide choice
of name

No
acknowledgement

Archive

Yes

No

Yes

No

No

Yes

Yes

No

Yes

No

Unmarried

Not OK

OK

Not OK

Last name
mother

Citizen

Firs t child of the
relation

Decide choice
of name (under

Reques t
Acknowledgement

Both live in the
munic ipality

Identify

Unmarried

Both parents
present

min. 1 person
present

Contact liv ing
munic ipality

No
acknowledgement

Archive

Determine if
authorisation

Draw up ackn.
document

Hand over copy

Process ackn.
at birth

Dec laration
unmarried

Check for
permiss ion

Yes

No

Yes

No

No

Yes

Yes

No

No

Yes

Unmarried

Not OK

OK

Not OK

Citizen

Decide choice
of name (for

Unmarried

Request
Acknowledgement

Both live in the
municipality

Last name
mother

Confirm identify

Draw up ackn.
document

Inform of
authority over

Process ackn.
at birth

Hand over copy

Both parents
present

Firs t child of the
relation

Decide choice
of name (under

Determine
nationality

No
acknowledgement

Contac t liv ing
municipality

Check for
permission

Determine if
authorisation

Dec laration
unmarried

Archive

min. 1 person
present

Fig. 4. The different process variants of how municipalities perform the acknowl-
edgement of an unborn child.

8

2/11/2009 10:55:00 AM TM 1 / 1

Yes

No

Yes

No

Yes

No

No

Yes

Yes

No

Unmarried

Not OK

OK

Not OK

OK

Not OK

Last name

mother

Citizen

Confirm

identify

Request

Acknowledgement

Firs t child of

the relation

Both live in the

munic ipality

Decide choice

of name

Unmarried

Both parents

present

Determine

nationality

Decide choice

of name (for

No

acknowledgement

Contact liv ing

munic ipality

Archive

min. 1 person

present

Process ackn.

at birth

Draw up ackn.

document

Hand over

copy

Inform of

authority over

Check

permiss ion

Declaration

unmarried

Determine if

authorisation

Fig. 5. All variants for acknowledging an unborn child integrated into a single
Protos model.

ports. In this way, the configuration of the process model integrating the five
process variants can be done by the stakeholders through simply answering the
questionnaire (see Figure 6b). There is no need for the stakeholders to under-
stand the implications of blocking or hiding certain ports. In fact, they do not
even need to be confronted with the integrated process models as the configu-
ration decisions resulting from the answers to the questionnaire can be applied
automatically to this model. For example, the process model we showed in Fig-
ure 1 is in fact derived from the integrated model in Figure 6a using the answers
given by one of the involved municipalities. In our approach, the stakeholders
only receive these individually relevant models which are also directly executable

9

a)

b)

Fig. 6. The model from Figure 5 translated into YAWL (a) and the correspond-
ing questionnaire in the Questio tool (b) which allows user to configure the model
through the given answers.

using the YAWL workflow engine. Then, the users of the model will be filling
out forms generated based on the information of the configured process model.
Thus, these users do not see but benefit from the configured model.

10

3.2 Observations

First of all, it should be noted that for all four business processes we were
able to create integrated process models and questionnaires that allow users to
derive an individual model. For each process and each municipality we were able
to generate a model equivalent to the original Protos model by answering the
questionnaire and applying the resulting configuration to the YAWL model. This
illustrates that it is possible to integrate several process variants such that all
desired individual variants can be derived from it.

Still, we had to master several challenges during the creation of the con-
figurable models. While deriving the individual process variants was straight
forward, the first challenges arose when integrating the different variants into a
single process model as matching identical tasks among the variants was often
only possible after comparing the exact task descriptions. Moreover, during the
manual compilation of the integrated model some paths, i.e. process flows, of
the individual models were easily overlooked, and thus not incorporated into the
integrated model. Only by carefully “re-playing” the processes of the individual
models in the combined models these forgotten arcs were discovered.

Due to the extensive support of control flow patterns, translating the control
flow from the Protos models to YAWL models was easy. Tricky was however the
implementation of the data perspective for determining the precise runtime rout-
ing of cases through the integrated process model. This was especially the case
when a choice between various options was introduced in the integrated model
while in fact there is no such run-time decision in any of the municipalities. The
variation is thus a pure configuration decision based on the difference between
the municipalities. For example, this applies for the task Confirm identity in Fig-
ure 6 which uses an OR-split to branch into four outgoing paths. The decision,
which combination of paths should be triggered after the completion, is partly
a run-time decision and partly a configuration decision. During run-time it is
decided if the identification was successful or not. If not, the process completes
immediately. However, the decision which combinations of the remaining three
arcs are triggered in case the identification was successful is already a configura-
tion decision (it might be desired to transform this into a run-time decision, but
this was not the case in any of the involved municipalities). A correct definition
of the process flow details in such situations requires the implementation of a
“default” decision as well as a very good anticipation of the implications when
this default decision has to change due to a configuration decision.

Questions in the questionnaire abstract from the control flow of the process
and usually address larger process parts. Thus, the interdependencies between
the answers that can be given in the questionnaire are not always obvious or im-
mediately derivable from the process’s control flow. Hence, ordering of questions
and the definition of constraints between the answers turned out to be challeng-
ing and required a good anticipation of the desired impact of the configuration
decisions which becomes more difficult the more complex the model is.

This phase was mainly performed by one core project member and took,
including his familiarization with the used techniques, approximately six months.

11

4 Evaluation of the Approach

To get insights into the practical applicability of the models we derived, we
performed an additional analysis using three approximately two-hour-long focus
group interviews with one to three employees of the following three organizations:

– Pallas Athena as the supplier of Protos which is actively used by over 250 of
the in total 441 Dutch municipalities,

– PinkRoccade Local Government who provides a software to execute munic-
ipality processes used by more than 50% of the Dutch municipalities, and

– a world-wide operating consultancy firm who adapts their own reference
process models during process implementations for their clients.

All interview partners were first given a presentation on the techniques we
used during this project as well as on details of how we created the four con-
figurable models and their questionnaires. Afterwards, the interview partners
had the opportunity to derive their own executable process models through an-
swering the questionnaires. The models resulting from the answers given in the
questionnaire during the interview were immediately presented to them. Not all
the interview partners were domain experts for the given processes. Thus, it was
possible for them to ask questions on the implications of the various possible
configuration decisions in the questionnaire.

Subsequently, we triggered a discussion with the interview partners focussing
on potential practical needs for adaptable process models, on the feasibility of
creating such configurable models in real-life environments, and on the prac-
tical usefulness of applying such configurable models. Key results from these
interviews are summarized in Figure 7. In general, we can summarize that all
interview partners immediately saw a potential value of the technique of con-
figurable process models for past or current projects. The steering of the actual
process configuration is seen as a useful tool to assist end users, but even without
this support, direct process configuration might prove to be beneficial in various
projects where process adaptation is necessary. The main concerns raised by the
interview partners were the efforts necessary to create questionnaires and estab-
lishing the links between the potential answers and all the ports as well as the
incorporation of resource assignments to tasks during the configuration process.

5 Related work

The case study reported on in this paper uses our earlier work on process con-
figuration [5,7,8]. Similar techniques for adapting process models were suggested
by Becker et al. [3,4]. Their approach links adaptation parameters and their
possible values to model elements to indicate which sections of the model are
relevant or not to a specific application scenario. Thus, a user can configure a
process model by setting parameters, i.e. the process model does not need to be
consulted. Compared to the approach used here, the approach of Becker et al.
is applied to Event-driven Process Chains instead of YAWL, i.e. to a notation

12

Interview
partner

Potential applications and advantages (+) as well as concerns (-)

Pallas Athena (+) Configurable Process models would have been useful for the de-
velopment of a “one point of contact” workflow product for munici-
palities developed based on a new law that requires municipalities to
re-structure the customer interaction of their business processes
(+) Potential applications in highly regulated, publicly documented
and accessible, or non-core business processes like HR processes.
(-) The integrated model must be complete. Is this possible and how
can this information be derived from existing processes?

PinkRoccade
Local
Government

(+) Questionnaire answers can be linked to other configurable ele-
ments, like the configuration of software screens and windows as well
as data fields.
(+) Configuration through questionnaires enables software providers
to create applications that prevent that users can fail during the pro-
cess configuration.
(+) A user sees in the questionnaire the configuration freedom she
has rather than the limitations the configuration is subject to.
(+) Clients often ask for software adaptation and modifications for a
better support of their desired business processes which is currently
expensive due to the need for external consultants. Currently, this
often results into workarounds.
(-) A configuration of the resources that are involved in a process is
not possible.

Consultancy
Firm

(+) Best-practice reference models are often not sufficient: there is no
single best-practice.
(+) It would have been useful in a world-wide role-out of new business
processes where it was a headquarter policy that 80 % of the processes
needed to remain conform to the global process while it was allowed
to deviate by 20 % to make the process compliant to local regulations.
(+)In some industries production processes are so standardized that
the technique might here even be applicable to core processes.
(-) The creation of such models seems to require big efforts, sponsoring
for this might be difficult to find.
(-) The identification of variations between processes is difficult, i.e.
tools are necessary for this.

Fig. 7. The main comments of the interviewed stakeholders

that is mostly used for process visualization (like the Protos models we created)
and not for the enactment of these processes. Moreover, it lacks steering of the
parameter setting through an interactive questionnaire.

The use of questionnaires to guide the configuration of process models is in-
spired by similar configuration processes for software applications. For example,
the CML2 language, designed to capture configuration processes for the Linux
kernel, guides the configuration process through a structured set of questions
that lead to a given symbol being given a value [10]. Also, in CML2 the valid-
ity of these values can be ensured by constraints. More generally, variability of

13

large software systems has been studied in the field of Software Product Line
Engineering (SPLE) [9].

Algermissen et al. performed a case study with municipalities to identify
best-practice in public administration [2]. Similar to our approach, they initially
visited a number of municipalities to observe and depict their business processes.
Different from our approach, they do not focus on providing a model with various
configuration options, but rather aim at deriving a single, “ideal” process model
from these variants. Thus, their approach is similar to the one taken by the
NVVB, whose best-practice recommendation we incorporated in our models.

Karow et al. provide guidelines specifically for the construction of reference
models in public administration [6]. While our goal here was to test the feasibility
and identify the opportunities of using configurable process models in a reference
modeling context, we would need to address such guidelines more rigorous if we
want to extend our work to providing a complete reference model in the future.

Best-practice reference models have been investigated in several other case
studies. For example, Thomas et al. developed a reference model for event man-
agement [13], and Scheer designed a reference model for industrial enterprizes
[11]. A case study on developing a business process reference model for the
screen business was performed by Seidel et al. [12]. Also template repositories
as provided by vendors of BPM solutions like the ones of SAP and IBM can be
considered as such best-practice reference models.

6 Conclusions

In this case study, we developed configurable process models for four business
processes of municipalities based on information from four different municipal-
ities and a corresponding reference model. Afterwards, we performed expert
interviews with various stakeholders about the potential use of these models and
the underlying techniques.

During the case study, the suggested techniques proved to be suitable for
the intended purposes: we achieved our goal to be able to derive all the initial,
individual models of the various municipalities as well as further model variants
from the integrated models by answering simple questionnaires. Despite that,
the creation of the configurable models required significant efforts, modeling
experience, and domain knowledge. Thus, the simplified adaptation of process
models is at the expense of a complex creation of the configurable model.

It was obvious during the case study that many issues that arose during the
model creation could be improved or even avoided by further tool support, e.g.
ensuring consistent identifiers or automatically identifying and integrating pro-
cess variations. Thus, all interview partners were also interested in techniques
that can help here. In general, they all saw potential value for themselves in
the technique, which they stressed by mentioning current or past projects where
configurable process models could have provided additional benefits. But the
interviewees also made clear that process configuration should not be restricted
to the control flow perspective of business processes, but should also be inte-

14

grated with the resource and data perspectives to provide a strong and universal
configuration tool.

Acknowledgements. We would like to thank the NVVB, Pallas Athena, and
PinkRoccade Local Government as well as the municipalities, consultants, and
software developers involved in this project for their input and feedback.

References

1. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.

2. L. Algermissen, P. Delfmann, and B. Niehaves. Experiences in Process-oriented
Reorganisation through Reference Modelling in Public Administrations — The
Case Study Regio@KomM. In Proceedings of the 13th European Conference on
Information Systems (ECIS), Regensburg, 2005.

3. J. Becker, P. Delfmann, A. Dreiling, R. Knackstedt, and D. Kuropka. Configurative
Process Modeling – Outlining an Approach to increased Business Process Model
Usability. In Proceedings of the 15th IRMA International Conference, New Orleans,
2004. Gabler.

4. J. Becker, P. Delfmann, and R. Knackstedt. Adaptive Reference Modelling: Inte-
grating Configurative and Generic Adaptation Techniques for Information Models.
In J. Becker and P. Delfmann, editors, Reference Modeling. Efficient Information
Systems Design Through Reuse of Information Models, pages 27–58. Springer, 2007.

5. F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa. Con-
figurable Workflow Models. International Journal of Cooperative Information Sys-
tems (IJCIS), 17(2):177–221, June 2008.

6. M. Karow, D. Pfeiffer, and M. Räckers. Empirical-Based Construction of Ref-
erence Models in Public Administrations. In Proceedings of the Multikonferenz
Wirtschaftsinformatik 2008. Referenzmodellierung, pages 1613–1624, 2008.

7. M. La Rosa, F. Gottschalk, M. Dumas, and W.M.P. van der Aalst. Linking Domain
Models and Process Models for Reference Model Configuration. In Proceedings of
the BPM 2007 Workshops, volume 4928 of Lecture Notes in Computer Science,
pages 417–430, 2008.

8. M. La Rosa, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede.
Questionnaire-based Variability Modeling for System Configuration. Software and
Systems Modeling, 2008. (forthcoming).

9. K. Pohl, G. Böckle, and F. van der Linden. Software Product-line Engineering –
Foundations, Principles and Techniques. Springer, Berlin, 2005.

10. E. S. Raymond. The CML2 Language, 2000. http://catb.org/esr/cml2/

cml2-paper.html.
11. A.-W. Scheer. Business Process Engineering, Reference Models for Industrial En-

terprises. Springer-Verlag, Berlin, 1994.
12. S. Seidel, M. Rosemann, A.H.M. ter Hofstede, and L. Bradford. Developing a Busi-

ness Process Reference Model for the Screen Business - A Design Science Research
Case Study. In Proceedings of the 17th Australasian Conference on Information
Systems (ACIS 2006), Adelaide, Australia, 2006.

13. O. Thomas, B. Hermes, and P. Loos. Towards a Reference Process Model for
Event Management. In Business Process Management Workshops, volume 4928 of
Lecture Notes in Computer Science, pages 443–454, 2008.

15

http://catb.org/esr/cml2/cml2-paper.html
http://catb.org/esr/cml2/cml2-paper.html

	Configurable Process Models: Experiences from a Municipality Case Study
	Florian Gottschalk, Teun A.C. Wagemakers, Monique H. Jansen-Vullers, Wil M.P. van der Aalst, Marcello La Rosa

