
Beyond Process Mining: From the Past to

Present and Future

Wil M.P. van der Aalst1, Maja Pesic1, and Minseok Song2

1 Department of Mathematics and Computer Science,
Eindhoven University of Technology,

P.O. Box 513, NL-5600 MB, The Netherlands
w.m.p.v.d.aalst,m.pesic@tue.nl

2 School of Technology Management
Ulsan National University of Science and Technology,

100 Banyeon-ri, Ulju-gun, Ulsan Metropolitan City, 689-798, South Korea
minseok.song@gmail.com

Abstract. Traditionally, process mining has been used to extract mod-
els from event logs and to check or extend existing models. This has
shown to be useful for improving processes and their IT support. Pro-
cess mining based on historic information hidden in event logs often pro-
vides surprising insights for managers, system developers, auditors, and
end users. However, thus far, process mining is mainly used in an offline
fashion and not for operational decision support. While existing process
mining techniques focus on the process as a whole, this paper focuses
on individual process instances (cases) that have not yet completed. For
these running cases, process mining can used to check conformance, pre-
dict the future, and recommend appropriate actions. This paper presents
a framework for operational support using process mining and details a
coherent set of approaches that focuses on time information. Time-based
operational support can be used to detect deadline violations, predict the
remaining processing time, and recommend activities that minimize flow
times. All of this has been implemented in ProM and initial experiences
using this toolset are reported in this paper.

1 Introduction

Processes are everywhere. Organizations have business processes to manufacture
products, provide services, purchase goods, handle applications, etc. Also in our
daily lives we are involved in a variety of processes, for example when we use our
car or when we book a trip via the Internet. More and more information about
these processes is captured in the form of event logs. Contemporary systems,
ranging from copiers and medical devices to enterprise information systems and
cloud infrastructures, record events. These events can be used to make processes
visible. Using process mining techniques it is possible to discover processes [2,
5]. Moreover, event logs can be checked to assess conformance/compliance with
respect to defined processes and process models can be modified and extended
using process mining techniques. This provides the insights necessary to manage,

control, and improve processes. Process mining has been successfully applied in a
variety of domains ranging from healthcare and e-business to high-tech systems
and auditing.

Despite the success of process mining, a limitation is that existing techniques
are rarely used in an operational setting. Process mining is mainly used in an
offline setting where historical information is analyzed without considering the
running cases, i.e., instances of the process that have not completed yet. The goal
of this paper is to demonstrate that process mining techniques can be used for
operational decision support. Based on process models, either discovered through
process mining or (partly) made by hand, we can (a) check, (b) predict, and (c)
recommend. We can “replay” a running case on the process model and check
whether the observed behavior fits. The moment the case deviates, an appropri-
ate actor can be alerted. The process model based on historic data can also be
used to make predictions for running cases, e.g., it is possible to estimate the
remaining processing time and the probability of a particular outcome. Similarly,
this information can be used to provide recommendations, e.g., proposing the
activity that will minimize the expected costs and time.

This paper presents a general framework for operational decision support.
It shows that process mining is not limited to the “Past” but can also be used
for the “Present” and “Future”. To make this concrete, we present a new set
of approaches for time-based operational support implemented in our process
mining tool ProM [1]. These approaches center around an annotated transition
system that contains time information extracted from event logs. The annotated

transition system can be used to check (time) conformance while cases are be-
ing executed, predict the remaining processing time of incomplete cases, and
recommend appropriate activities to end users working on these cases.

In the remainder, we first present our framework for operational decision
support. Then we describe a concrete application of the framework aiming at
time-based operational support, the implementation in ProM, and some initial
experiences. Finally, we mention related work and conclude the paper.

2 Framework for Operational Support

To position the results presented in this paper, we first introduce the classical
form of process mining typically done offline. Starting point for process mining
is the so-called event log. An event log consists of a set of traces. Each trace is a
sequence of events corresponding to a particular case. Note that a case represents
one process instance, i.e., one run of the process/system. Each event refers to
a task and typically also has a timestamp. Moreover, additional data elements,
information about resources, event types, etc. may be attached to events. For
example the trace 〈A10

John , B15

Mary , C25

Mary , D33

Pete〉 could represent a case for which
four tasks are executed A, B, C, and D. Each event also has a timestamp
and a reference to a resource. For example A10

John refers to the execution of A

by John at time 10. An example of a log consisting of three cases would be:

2

ABCD
ACBD
AED

ACBD
AED

ABCD

discover

check

modify/extendevent log model

A

B

C

DE

endstart

Fig. 1. Overview of classical forms of process mining: discover, check, modify, and
extend.

L = {〈A10

John , B15

Mary , C25

Mary , D33

Pete〉, 〈A
12

Ivan , C16

Joe , C
24

Mary , B31

John〉, 〈A
14

John , E18

Chris ,

D44

Joe〉}.

As Figure 1 shows there are three types of process mining. First of all, there
are various techniques for process discovery [2, 5]. These techniques aim at ex-
tracting models (for example Petri nets, EPCs, UML ADs, BPMN models) from
event logs.3 Secondly, there are techniques for conformance checking [15]. These
techniques compare the log and the model, measure the “fit”, and highlight devi-
ations in the models. Finally, there are techniques to modify or extend the model.
Based on an analysis of the event log there could be suggestions to change the
model, e.g., to make it better fitting. Moreover, an existing model just describ-
ing the control-flow could be extended with temporal aspects extracted from the
event log. This way bottlenecks are highlighted and the extended model can be
used for simulation purposes [16].

The techniques just mentioned have in common that they focus on offline
analysis. This means that only full traces are being considered, i.e., completed
cases that were handled in the past are used. Moreover, process mining is used
only in a passive manner not directly influencing the running cases. As Figure 2
shows, one can also use process mining in an online setting. Now the focus is
on partial traces, i.e., cases that are still running and did not yet complete. For
these cases, the active use of process mining is interesting, e.g., to check the last
step executed, to predict the future of a case, and to recommend the next task to
be executed. The right-hand side of Figure 2 shows the classical forms of process
mining (discover, check, modify, and extend) already mentioned in Figure 1. The
left-hand side of Figure 2 shows types of analysis focusing on the traces in the
log rather than the model. A third dimension shown in Figure 2 is the aspect
the analysis is focusing on, e.g., time, costs, logic (routing), quality, etc.

The most likely combinations are highlighted using a ✔. Note that the active
use of process mining does not focus on the model but on partial cases. Con-
versely, most of the passive forms of process mining focus on the model rather
than traces. There is one exception (see the ✔in the bottom-left cell). When do-
ing conformance checking one compares a model and an event log. The deviations

3 Note that the Petri net model shown in Figure 1 was obtained by applying the α-
algorithm [5] to the event log shown on the left-hand side of the figure. This is for
illustration purposes only; in this paper we do not favor a particular representation
or discovery technique.

3

check predict recommend discover check

traces/log modelfocus

action

active (“now”)
online, partial traces

passive (“history”)
offline, full traces

time
costs

…

extendmodify

Fig. 2. Overview of the process mining spectrum distinguishing between the active use
of partial traces and passive use of completed traces.

A B C D

known
past

unknown
future

current
state

A B A B ? ? A B C ?

check: B does not fit the
model (not allowed, too

late, etc.)

predict: some prediction is
made about the future (e.g.

completion date or outcome)

T=10

recommend: based on past
experiences C is recommended

(e.g., to minimize costs)

Fig. 3. Overview of operational support.

can be highlighted in the model as discussed before. However, the deviations can
also be shown in the event log, i.e., parts of completed traces that do not fit into
the model are highlighted in the log.

In this paper, we focus on the active use of process mining involving partial
traces corresponding to cases that did not complete yet. As shown in Figure 2,
we identify three types of actions related to such running cases: (a) check, (b)
predict, and (c) recommend. We refer to these actions as operational support as
they aim at influencing the process while it is running.

Figure 3 illustrates the three types of operational support. Starting point is
some model and a partial trace. Note that the model is typically learned using
classical process mining techniques. The partial trace refers to a case that is
running. The left-hand side of Figure 3 shows a partial trace 〈A, B〉. Note that
we abstract from timestamps, resources, data, etc. For this case, we know that
A and B occurred, but we do not know its future. Suppose now that the partial
trace 〈A, B〉 is not possible according to the model. In this case, the operational
support system would generate an alert. Another possibility would be that B

took place three weeks after A while this should happen within 10 days. In
such a case another notification could be sent to the responsible case manager.
Such scenarios correspond to the check action mentioned before. Figure 3 also
illustrates the goal of predictions. Given the current state of a case, the model
is used to make some kind of prediction. For example, given the 〈A, B〉 trace
it could be predicted that the remaining processing time is two weeks. This
prediction would be based on historic information both in the partial trace and in
the event log used to learn the model. Predictions are not restricted to time, but
can also refer to costs, probability of a particular outcome, resource availability,

4

etc. Closely related to predictions are recommendations. The main difference is
that recommendations suggest the next action based on possible continuations
of the case. Based on the model, one can try all possible actions and see which
one would lead to the best (predicted) performance. Note that recommendations
are not only used for determining the next task, but also for allocating resources
to work-items or for timing a particular action.

The process mining framework ProM aims to support the whole spectrum
shown in Figure 2. Earlier versions of ProM focused mainly on passive forms of
process mining [1]. In the new version of ProM, we aim to also support operational

decision making in a generic manner. The basic idea is that some operational
system, e.g., a workflow management system, business process management sys-
tem, or other Process-Aware Information System (PAIS), sends partial traces to
ProM as shown in Figure 3. ProM then does the appropriate checks, generates
predictions, or sends recommendations while using models derived from event
logs (or manually created models).

3 Application of the Framework to Time-based

Operational Support

In this section we present how one process mining approach can be applied to
the process mining spectrum. We will use a small event log of a process for
handling requests of citizens for building permits. This process contains five
tasks: (1) check for checking whether the requested building permit is compliant
to the regulations, (2) advertise for advertising the requested permit in the local
newspaper for a period of 30 days, (3) inspect for inspecting the construction
site, (4) process for handling requests that are not compliant with the regulations
internally and (5) decide for deciding whether to issue or decline the permit.
Table 1 shows a fragment of the log. Each line in the event log of this process
corresponds to an event related to one of the five mentioned tasks. For each
event, information about the task name, event type, resource that triggered the
event and the timestamp is available. Moreover, each event is associated to one
case, i.e., to one handled request. For example, Table 1 shows events of two
cases containing four and three events, respectively. Note that, for the purpose
of simplicity, in the remainder of this paper we will use only the task name to
refer to one event.

In the remainder of this section we will use this log to show how process
mining techniques can be used for discovering, extending, checking, predicting
and recommending in the context of execution times of processes. Figure 4 shows
this example and the functionalities of the ProM tool that we will use in this
paper. We start with describing existing procedures (i.e., ProM plugins) for dis-

covering a transition system from an event log [3] and for extending a transition
system with time information from an event log (i.e., time annotations) [4] in
sections 3.1 and 3.2, respectively. Generated transition system and time anno-
tations can be used to provide useful information about active processes. For
this purpose, we have implemented the Time-based Operational Support (TOS)

5

Table 1. A fragment of an event log.

case id task trans. resource timestamp

1 check complete admin 2009-01-01 11:55:25
advertise complete admin 2009-01-15 14:03:18
inspect complete admin 2009-01-28 16:56:53
decide complete admin 2009-02-02 09:08:03

2 check complete admin 2009-01-01 09:36:21
process complete admin 2009-01-15 14:19:59
decide complete admin 2009-01-20 17:47:13

.

Client, which can be used by a Process-Aware Information System to request
temporal information about active processes and the Time-based Operational
Support (TOS) Service, which uses the transition system and its time anno-
tations to generate information about active processes and sends them to the
client. The TOS Client sends the partial trace (i.e., all events executed until
the moment of request) and currently enabled tasks of the running case when
requesting the information from the TOS Service. The TOS Service generates
three types of information about the current case. First, the TOS Service checks

if the elapsed time of the current case is within certain boundaries of elapsed
time that past cases had in the same state, as Section 3.3 describes. Second,
Section 3.4 describes how the TOS Service can predict the remaining execution
time based on the past processes. Finally, in Section 3.5 the possibility to rec-

ommend the enabled events that, in the past, lead to minimal execution times
is described.

ProM

event log

Transition
System

Time
Annotation

extending

discovering

checking

predicting

recommending

PAIS

process
analyst

T
im

e-
ba

se
d

P
ro

ce
ss

 S
up

po
rt

S

er
vi

ce

T
im

e-
ba

se
d

P
ro

ce
ss

 S
up

po
rt

C

lie
ntelapsed time interval

remaining time

minimal remaining time

user

user

request
 (partial trace, enabled events)

Fig. 4. Architecture of our system to support users based on time information in logs.

6

1. check,adv,insp,dec
2. check,insp,adv,dec
3. check,proc,dec
4. check,adv,insp,dec
5. check,adv,insp,dec
6. check,proc,dec
7. check,insp,adv,dec

{}
1,2,3,4,5,6,7

{check}
1,2,3,4,5,6,7

{check,adv,insp}
1,2,4,5,7

{check,adv,insp,dec}
1,2,4,5,7

{check,insp}
2,7

{check,adv}
1,4,5

{check,proc}
3,6

{check,proc,dec}
3,6

Fig. 5. A transition system constructed from an event log with seven traces.

3.1 Discovering a Transition System from History

An approach that uses various abstractions for discovering a transition system
from an event log is described in [3]. The advantage of this process mining
technique is that it is very flexible as it allows for a wide range of abstrac-
tions, i.e., the discovered model is tailored towards the needs of the analysis.
A transition system is a triplet (S, E, T) where S is the set of states, E is the
set of event (transition) labels, and T ⊆ S × E × S is the transition relation
describing how the system can move from one state to another. For example,
Figure 5 shows a ProM screen of a transition system mined from our event log
with seven traces containing events referring to tasks check, advertise, inspect,
process and decide. The transition system has eight states (S = {s1, s2, . . . , s8}),
five event labels (E = {check, advertise, inspect, decide, process}) and eight tran-
sitions (T = {(s1, check, s2), (s2, advertise, s3), (s2, inspect, s6), (s2, process, s7),
(s3, inspect, s4), (s6, advertise, s4), (s7, decide, s8), (s4, decide, s5)}).

The transition system in Figure 5 is mined from the event log using two
types of abstractions [3]. First, an event abstraction is used when considering
which event information is relevant. For example, the transition system shown in
Figure 5 is mined using the event abstraction that considers only the task name
and ignores the event type, resource and timestamp. Second, a state abstraction
is used when it comes to how a sequence of events is ‘replayed’ on the transition
system. For example, the transition system shown in Figure 5 is mined using the
set state abstraction that considers only which tasks were executed and ignores
the execution order. Special tags connected to states in Figure 5 show two types
of state-related information. First, the set abstraction for the state is shown in
the upper line. For example, state s4 refers to a trace prefix that contains tasks
check, advertise and inspect in any order. Second, the bottom line shows which
traces are replayed in which state. For example, traces 1, 2, 4, 5 and 7 all visit
state s4: traces 1, 4 and 5 after executing sequence 〈check, advertise, inspect〉 and
traces 2 and 7 after executing sequence 〈check, inspect, advertise〉. It is important
to note that this state considers all traces where these three tasks were executed,
regardless of the order.

7

3.2 Extending Transition System with Information from History

Besides for discovering models, event logs can be used to enrich models with
information about past executions. An approach for annotating a transition sys-
tem with time information from an event log is described in [4]. This procedure
starts by replaying each trace of the event log on the transition system, and
collecting three types of time information extracted from the trace for each vis-
ited state. First, the time elapsed from the beginning of the trace is assigned to
the state as the difference between the timestamp of the current event and the
timestamp of the first event in the trace. Second, the remaining time until the
end of the trace is assigned to the state as the difference between the timestamp
of the last event in the trace and the timestamp of the current event. Finally,
the sojourn time, the time that the trace spent in this state is assigned to the
state as the difference between the timestamp of the next event in the trace and
the timestamp of the current event.

Figure 6 shows how elapsed, remaining and sojourn times are collected from
building permits event log in the the transition system from Figure 5. Note that
the actual time data extracted from the event log refers to milliseconds, but for
the reasons of simplicity displayed time data is rounded to days. Because s1 is the
initial state, elapsed and sojourn times for all traces are zero and remaining times
are equal to the totaal execution times at s1. The elapsed and remaining times
in the initial state s1 correspond to remaining and elapsed times, respectively, in
two final states s5 and s8. This is expected, because the remaining time in the
initial state must be equal to the elapsed time in the final state for each trace. For
example, trace 1 has a total duration time of 68 days. The elapsed, remaining
and sojourn times for this trace is shown as the first elements for states that
this trace visits: s1, s2, s3, s4 and s5. While the remaining time value decreases
from 68 in state s1 to zero in state s5, the elapsed time increases from zero in
s1 to 68 in state s5. Note that, in each of these states, the sum of elapsed and
remaining time is equal to the trace’s total execution time. For example, the
sum of elapsed and remaining times for trace 1 in each of the visited states is
68 days. The sum of sojourn times in all states one trace visits is equal to the
total duration of that trace. For example, the sum of sojourn times for trace 1

in visited states is 68 days.

The collected time information can be used to annotate each state with statis-
tical data for elapsed, remaining and sojourn times: average, standard deviation,
etc. In this paper we focus on elapsed and remaining time annotations. We have
used time information in our example event log to annotate the transition system
mined from this log (cf. Figure 5). Figure 7 shows the ProM screen with elapsed
and remaining times in days and hours. For example, the average elapsed time
in state s3 is 9 days and 15 hours and average remaining time in state s2 is 39
days and 1 hour.

8

1. check,adv,insp,dec
2. check,insp,adv,dec
3. check,proc,dec
4. check,adv,insp,dec
5. check,adv,insp,dec
6. check,proc,dec
7. check,insp,adv,dec

e:[0,0,0,0,0,0,0]
r:[68,32,50,19,14,55,21]
s:[0,0,0,0,0,0,0]

e:[0,0,0,0,0,0,0]
r:[68,32,50,19,14,55,35]
s:[6,14,11,14,9,9,9]

e:[45,27,29,17,21]
r:[23,5,21,38,14]
s:[23,5,21,38,14]

e:[68,32,50,55,35]
r:[0,0,0,0,0]
s:[0,0,0,0,0]

e:[6,14,9]
r:[62,18,26]
s:[39,13,12]

e:[11,9]
r:[39,47]
s:[18,8]

e:[14,9]
r:[5,5]
s:[5,5]

e:[19,14]
r:[0,0]
s:[0,0]

Fig. 6. Collecting elapsed (e), remaining (r) and sojourn (s) times for the transition
system from Figure 5.

3.3 Checking Running Cases

The elapsed time annotations can be used to check how fast running cases are
being executed when compared to past cases. The procedure for checking one
running case is as follows:

1. Replay the partial trace of the case under consideration on the transition
system and identify the current state of the case under consideration.

2. Calculate the confidence interval for the elapsed time in the current state.
Although there can be many ways to define the confidence interval, three
simple approaches are considered:

– all elapsed times seen in the past: [min, max],
– a pre-defined deviation from the average elapsed time: [µ − C, µ + C],

where µ is the average elapsed time and C is a constant, and
– standard deviation from the average elapsed time: [µ−C ∗ σ, µ + C ∗ σ],

where µ is the average elapsed time, C is a constant and σ is the standard
deviation.

3. Calculate the elapsed time of the case under consideration as the difference
between timestamps of the first and the last event in its partial trace.

4. Check the execution speed of the running case: if the elapsed time of the
case is under, within or above the confidence interval, then the case is con-
sidered to be slower, as fast as, or faster than processes executed in the past,
respectively.

5. Alert interested parties (e.g., employees who work on the running case, the
manager, etc) if the case is too fast or too slow.

Consider, for example, a situation where inspectors working on one building
permit requests want to be alerted by their TOS Clients if it takes them too
long to process a request. Further, assume that the inspectors are working on a
request (i.e, running case) with the partial trace 〈check, advertise〉 where tasks

9

(a) elapsed times

(b) remaining times

Fig. 7. Time annotations the transition system from Figure 5 in
ProM.

check and advertise were executed on 26/10/2009 and 26/11/2009, respectively.
The procedure for checking the elapsed time based on the transition system an-
notation shown in Figure 6(a) and confidence interval depending on the standard
deviation [µ − 2 ∗ σ, µ + 2 ∗ σ] is as follows:

1. Replaying this partial trace on the transition system leads to state s3.
2. The confidence interval [µ−2∗σ, µ+2∗σ] is calculated for the elapsed time in

state s3. As Figure 6(a) shows, average elapsed time in this state is µ= 9 days
and 15 hours and standard deviation is σ= 4 days and 3 hours. Therefore,
the confidence interval for elapsed times in this state is [1d9h,17d21h].

3. The elapsed time of the current case is 31 days (time between execution of
tasks check and advertise).

4. The elapsed time of the active process is above the confidence interval.
5. Figure 8 shows how the alert in our TOS Client (cf. Figure 4 on page 6): the

considered case is slower than cases from the past. In addition to the check

10

Fig. 8. Checking the elapsed time of a running case with partial trace 〈check, advertise〉.

result, additional information about the running case and the used statistics
are included in order to indicate the quality of the result.

3.4 Predicting the Future of Running Cases

The remaining time annotations created from past cases can be used to predict
the remaining execution time of the running cases. The prediction procedure for
one running case is simple:

1. Replay the partial trace of the case under consideration on the transition
system and identify the current state of the case under consideration.

2. Take the average value of the remaining time annotations in the current
state as the prediction for the remaining execution time of the case under
consideration.

3. Notify interested parties about the predicted remaining time.

Assume, for example, that inspectors working on one building permit requests
want to be informed by their TOS Clients how soon it will take them to complete
processing building permit requests. Consider, for example, a situation where a
client who submitted a building permit request (for which the partial trace is
〈check〉) is interested how much longer it will take to get the final decision. When
using remaining time annotations shown in Figure 6(b), the prediction for this
running case is generated in the following way:

1. Replaying this partial trace on the transition system leads to state s2.

2. Predicted remaining execution time is the average of the remaining time in
state s2: 39 days and 1 hour.

3. Figure 9 shows how the result is shown to inspectors in their TOS Clients.

11

Fig. 9. Predicting the remaining time of a running case with partial trace 〈check〉.

3.5 Recommending the Future of Running Cases

The remaining time annotations of a transition system can also be used to rec-
ommend the next steps that lead to shortest execution times in past cases. In
addition to the partial trace of the running case, this procedure also uses the
set of enabled events in the case to recommend which one of them should be
executed:

1. For each enabled event, identify the state in which the transition system
would be if this enabled event would indeed be executed in the running case
using the following two steps: (a) Create a new trace by extending the partial
trace of the running case with the enabled event under consideration; and
(b) Replay the new trace in the transition system to identify the state to be
assigned to this event.

2. Create the ordered list of recommendations by sorting enabled events in the
increasing order of average remaining times annotated to assigned states:
the state assigned to the first recommended event has shorter predicted
remaining time than the state assigned to the second recommended event,
etc.

3. Inform interested parties about the recommendations.

Consider, for example, a situation when inspectors working on a building
permit request (i.e., running case) with partial trace 〈check〉 would like to get the
recommendation whether to execute events advertise.start or inspect.start next
(i.e., enabled tasks) in order to process this request as quickly as possible. Based
on the remaining time annotations shown in Figure 6(b), the recommendation
is generated in the following way:

1. Transition system states are assigned to enabled events advertise.start and
inspect.start by extending the partial trace of the running case: (a) State
s3 is assigned to advertise.start because replaying trace 〈check, advertise〉
on the transition system leads to state s3; and (b) State s6 is assigned to
inspect.start because replaying trace 〈check, inspect〉 on the transition system
leads to state s6.

2. The list of recommended events contains advertise.start or inspect.start,
where advertise.start has higher priority than advertise.start or inspect.start.

12

Fig. 10. Recommending the next step for a running case with partial trace 〈check〉.

This is because the state s3 has a shorter predicted remaining time (i.e., 35
days and 6 hours) than the state s6 (i.e., 42 days and 16 hours). This is ex-
pected, because the building permit request must be advertised in the local
newspaper for 30 days, hence it is important to start advertising as soon as
possible.

3. Figure 10 shows how the recommendations are shown to inspectors in their
TOS Clients.

4 Related Work

Lion’s share of process mining research has been focusing on passive forms of
process mining such as process discovery [2, 5, 3, 6, 8, 9, 11]. These serve as a
basis for learning good models, but are not the focus of this paper. Conformance
checking is typically also done in an off-line fashion [15]. The extension of models
into full-fledged simulation or workflow models is done by merging perspectives
and logs and is also not used in an operational sense [16]. It is impossible to give
a complete review of process mining techniques here, see www.processmining.org
for more pointers to literature.

There have been some initial attempts to support operational decision mak-
ing using process mining techniques or simulation. In [17] both techniques are
combined in the context of YAWL and in [10] non-parametric regression is used
to predict completion times. A recommendation service that uses historic infor-
mation for guiding the user to select the next work item has been implemented
in ProM [18] and it is related to case-based reasoning [20]. A recommender for
execution of business processes based on the Product Data Model (PDM) is
presented in [19].

The framework has been tested using a set of plug-ins related to time-based
operational support. This approach is most related to the flexible mining ap-
proach in [3] and the prediction approach in [4]. However, these ideas are re-
implemented using the generic framework and now do not just support predic-
tion, but also time-based conformance checking, and time-based recommenda-
tions.

13

There are various approaches to run time support in the context of world
wide web. Some examples are monitoring based on business rules [12], BPEL
[7], event calculus [13], etc. Another example are various types of recommender
systems that support users in their decision-making [14]. These systems generate
recommendations based on the user’s preferences and are becoming an essential
part of e-commerce and information seeking activities.

The main contribution of this paper is that it provides a framework for posi-
tioning the various types of process mining (cf. Figure 2 on page 4) and details
the aspect of operational support for running processes in a generic manner.
This view is supported in the new version of ProM.

5 Conclusions

In this paper, we focus on the application of process mining to operational de-
cision making. We presented a generic framework and described a set of ProM
plug-ins for time-based operational support. The approaches are based on tran-
sition systems annotated with time information. These are used to check the
timely execution of cases, predict the completion time of cases, and to recom-
mend the best steps to minimize the overall flow time. This serves as an example
for a much larger set of possible techniques for operational support. In the future,
we would like to add more techniques (not only related to time, but also costs,
quality, compliance, etc.) and apply them actively in selected domains (most
likely hospitals and municipalities). Note that the application of new techniques
requires a tight integration with existing information systems.

References

1. W.M.P. van der Aalst, B.F. van Dongen, C.W. Günther, R.S. Mans, A.K. Alves
de Medeiros, A. Rozinat, V. Rubin, M. Song, H.M.W. Verbeek, and A.J.M.M.
Weijters. ProM 4.0: Comprehensive Support for Real Process Analysis. In J. Kleijn
and A. Yakovlev, editors, Application and Theory of Petri Nets and Other Models of
Concurrency (ICATPN 2007), volume 4546 of Lecture Notes in Computer Science,
pages 484–494. Springer-Verlag, Berlin, 2007.

2. W.M.P. van der Aalst, H.A. Reijers, A.J.M.M. Weijters, B.F. van Dongen, A.K.
Alves de Medeiros, M. Song, and H.M.W. Verbeek. Business Process Mining: An
Industrial Application. Information Systems, 32(5):713–732, 2007.

3. W.M.P. van der Aalst, V. Rubin, B.F. van Dongen, E. Kindler, and C.W. Günther.
Process Mining: A Two-Step Approach to Balance Between Underfitting and Over-
fitting. Software and Systems Modeling, 2009.

4. W.M.P. van der Aalst, M.H. Schonenberg, and M. Song. Time Prediction Based
on Process Mining. BPM Center Report BPM-09-04, BPMcenter.org, 2009.

5. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

6. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Work-
flow Logs. In Sixth International Conference on Extending Database Technology,
pages 469–483, 1998.

14

7. L. Baresi, C. Ghezzi, and S. Guinea. Smart Monitors for Composed Services. In
ICSOC ’04: Proceedings of the 2nd International Conference on Service Oriented
Computing, pages 193–202, New York, NY, USA, 2004. ACM Press.

8. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215–249, 1998.

9. A. Datta. Automating the Discovery of As-Is Business Process Models: Proba-
bilistic and Algorithmic Approaches. Information Systems Research, 9(3):275–301,
1998.

10. B.F. van Dongen, R.A. Crooy, and W.M.P. van der Aalst. Cycle Time Prediction:
When Will This Case Finally Be Finished? In R. Meersman and Z. Tari, editors,
Proceedings of the 16th International Conference on Cooperative Information Sys-
tems, CoopIS 2008, OTM 2008, Part I, volume 5331 of Lecture Notes in Computer
Science, pages 319–336. Springer-Verlag, Berlin, 2008.

11. D.R. Ferreira and D. Gillblad. Discovering Process Models from Unlabelled Event
Logs. In U. Dayal, J. Eder, J. Koehler, and H. Reijers, editors, Business Process
Management (BPM 2009), volume 5701 of Lecture Notes in Computer Science,
pages 143–158. Springer-Verlag, Berlin, 2009.

12. A. Lazovik, M. Aiello, and M. Papazoglou. Associating Assertions with Business
Processes and Monitoring their Execution. In ICSOC ’04: Proceedings of the 2nd
International Conference on Service Oriented Computing, pages 94–104, New York,
NY, USA, 2004. ACM Press.

13. K. Mahbub and G. Spanoudakis. A Framework for Requirents Monitoring of Ser-
vice Based Systems. In ICSOC ’04: Proceedings of the 2nd International Con-
ference on Service Oriented Computing, pages 84–93, New York, NY, USA, 2004.
ACM Press.

14. P. Resnick and H.R. Varian. Recommender systems. Communications of the ACM,
40(3):56–58, 1997.

15. A. Rozinat and W.M.P. van der Aalst. Conformance Checking of Processes Based
on Monitoring Real Behavior. Information Systems, 33(1):64–95, 2008.

16. A. Rozinat, R.S. Mans, M. Song, and W.M.P. van der Aalst. Discovering Simulation
Models. Information Systems, 34(3):305–327, 2009.

17. A. Rozinat, M. Wynn, W.M.P. van der Aalst, A.H.M. ter Hofstede, and C. Fidge.
Workflow Simulation for Operational Decision Support. Data and Knowledge En-
gineering, 68(9):834–850, 2009.

18. H. Schonenberg, B. Weber, B.F. van Dongen, and W.M.P. van der Aalst. Support-
ing Flexible Processes Through Recommendations Based on History. In M. Dumas,
M. Reichert, and M.C. Shan, editors, International Conference on Business Pro-
cess Management (BPM 2008), volume 5240 of Lecture Notes in Computer Science,
pages 51–66. Springer-Verlag, Berlin, 2008.

19. I.T.P. Vanderfeesten, H.A. Reijers, and W.M.P. van der Aalst. Product
Based Workflow Support: Dynamic Workflow Execution. In Z. Bellahsene and
M. Léonard, editors, Proceedings of the 20th International Conference on Advanced
Information Systems Engineering (CAiSE’08), volume 5074 of Lecture Notes in
Computer Science, pages 571–574. Springer-Verlag, Berlin, 2008.

20. B. Weber, W. Wild, and R. Breu. CBRFlow: Enabling Adaptive Workflow Manage-
ment Through Conversational Case-Based Reasoning. In Advances in Case-Based
Reasoning, volume 3155 of Lecture Notes in Computer Science, pages 434–448.
Springer-Verlag, Berlin, 2004.

15

