
Conceptual Model for On Line Auditing

Wil van der Aalst, Kees van Hee, Jan Martijn van der Werf

Department of Mathematics and Computer Science, Technische Universiteit Eindhoven,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Akhil Kumar

Smeal College of Business, Penn State University, University Park, State College PA

16802.

Marc Verdonk

Deloitte, Netherlands

Abstract

The independent verification of the right applications of business rules in

an information system is a task for auditors. The increasing complexity of

information systems, and the high risks associated with violations of business

rules, have created the need for on line auditing tools. In this paper we

sketch a conceptual design for such a tool. The components of the tool are

described briefly. The focus is on the database and the conformance checker,

which are described in detail. The approach is illustrated with an example

and some preliminary case studies from industry.

Key words: information assurance, auditing, architecture, conceptual

model, constraints, business rules, conformance checking

Email addresses: w.m.p.v.d.aalst@tue.nl (Wil van der Aalst), k.m.v.hee@tue.nl
(Kees van Hee), j.m.e.m.v.d.werf@tue.nl (Jan Martijn van der Werf),
AkhilKumar@psu.edu (Akhil Kumar), mverdonk@deloitte.nl (Marc Verdonk)

Preprint submitted to Elsevier July 11, 2009

1. Introduction

Organizations are executing business processes to reach their goals. These

business processes need to be executed within certain boundaries. These

boundaries are defined by business rules coming from different sources. Some

rules are enforced by law and the authorities, others by the shareholders.

But contracts with business partners like customers and suppliers also create

boundaries. Moreover, the board of an organization itself defines boundaries,

e.g. in a code of conduct. Note that “staying within the boundaries” involves

much more beyond avoiding fraud. So we consider fraud as an example of

rule violation and therefore we do not treat it separately.

Information systems play a major role in executing the business pro-

cesses, either in cooperation with employees or autonomously. This results

in the need to implement business rules in both the information system and

working instructions for employees. As information systems become more

and more complex, in many situations it becomes very hard to manage the

whole system. Since the management of an organization is responsible for

the execution of the business processes and accountable for staying within

the boundaries, there is a need for checking whether the business rules are

being followed on a continuous basis. Management has the prime respon-

sibility to assess the operating effectiveness of “their” business rules, and

must monitor the execution of the business processes closely. Independent

verification is also needed. This is typically the job for auditors who provide

assurance to stake holders. Auditors can be either internal or external. An

internal audit verifies adherence to both the internal and external bound-

aries (and can focus on both effectiveness and efficiency of the processes

and the business rules), whereas an external audit typically only focusses

2

on the adherence to external boundaries and the effectiveness of processes

and business rules. All auditors should be independent in their research

approach and in their judgement.

For financial statements we have the financial audit performed by the

CPAs (Certified Public Accountants). They verify if financial statements

of organizations are in accordance with external boundaries like the Gen-

erally Accepted Accounting Principles (GAAP) and Sarbanes Oxley (SOX)

legislation. But business rules concern much more than the financial report-

ing process and, therefore, there are numerous types of audits, e.g. ISO

audits, food safety audits, Basel2 audits, information security audits, and

operational audits. One thing that all audits have in common is that they

often are very laborious and expensive. Moreover an audit always looks at

a period in the past to conclude if the business rules were adhered to in

the period under review, while the management’s main interest lies in the

future.

In the ideal situation we would have a continuous auditing process that

gives us realtime insights into violations of business rules. Clearly this is not

feasible if done manually. Therefore, there is an urgent need for better tech-

niques and software tools that make it possible to check arbitrary business

rules automatically and in realtime. One of the approaches used today is to

embed controls in the information system. A control is an automated task

in the information system aiming at the prevention of violations of certain

business rules. These controls are strongly related to the functions of the

information system. Often business rules are generic, i.e. not bound to a

specific business context. An example is the four-eyes principle that says

that “two tasks for the same case should be handled by different agents”.

Since the information systems become too complex to oversee them, it

3

may seem paradoxical that another information system is needed to check

the first one. However, that is what we propose. Our solution is not a type of

theorem prover that verifies if the code of the information system correctly

implements the business rules. Since people and organizations cannot be

formally specified and may deviate at runtime, we envision a separate system

that monitors the relevant activities of the information system and which

independently checks if these events conform to business rules. We call

such a system an On Line Auditing Tool or OLAT for short. Consequently,

the information system should be equipped with a logging mechanism and

the OLAT should be connected to the information system. The envisioned

OLAT can work in two modes: it can report violations of business rules in

the form of a report to the management of the organization, or it can send

a message to the information system that can be used to exercise a control.

Thus, the OLAT can also be considered as an external control mechanism

for the information system. In the latter mode we have to be careful since it

looks as if the OLAT becomes part of the information system and therefore

it could lose its independent status. However, the OLAT tool is only used

to detect a (potential) violation and this information can be used in the

information system to prevent the violation or to enact a compensation

action.

In this paper we sketch a “full blown” OLAT. Our description gives insight

into the architecture and functionality of such a system. However, some

components are ill-defined or even speculative. We present them here to

give an impression of the ideal tool in the future and to sketch the context

of the components we are concentrating on in this paper. These components

are: the database and the conformance checker.

The organization of this paper is as follows. In Section 2 we give some

4

preliminaries, i.e., techniques for data modeling, process modeling and the

language to express business rules. Note that we need these frameworks

in order to express and check the business rules. We are not modeling the

complete business processes of the organization, but only those aspects that

are relevant for the business rules to be monitored. In Section 3 we define

the concepts that are related to auditing in an informal way. In Section 4 we

give a high-level architecture of an OLAT. There we also describe software

components for which we do not have a concrete solution yet. In Section 5

we describe a conceptual data model for the OLAT. This model can be con-

sidered as an abstract design for the database of the OLAT. This database

will record all data facts from the information system that are relevant to

verify the business rules: both the relevant details of the business objects

and the business processes. In Section 6 we study the business rules in detail.

We have chosen to be as language independent as possible. Therefore we use

more or less standard predicate calculus to express the rules. Here we also

give templates of business rules, among which are several well-known rules,

and we show how they can be expressed in the constraint language for the

conceptual data model. Section 7 gives a concrete example to illustrate our

approach. In Section 8 we describe practical experience with the business

rule evaluation in some real life cases. Full validation of the approach is out

of scope. Section 9 discusses related work and finally, the last section gives

a conclusion and our plan for future work.

2. Preliminaries

Here we explain the techniques for data modeling, for process model-

ing and the predicate language to express rules. Since we prefer to be as

5

Figure 1: A simple Petri net

language independent as possible, we use plain predicate calculus for the

business rules. They are expressed in terms of the data model. To facilitate

that, we use a restricted form of the ER-model with some shorthand nota-

tions. For process models there are many options, but we have chosen Petri

nets as a formalism that is well-understood, meaning it has clear behav-

ioral semantics and it is very concise compared to more industrial process

languages, like BPMN or UML-activity diagrams, which are very close to

Petri nets. Note that we do not intend to present a new modeling approach,

rather we need a consistent combination of different modeling frameworks.

To be self-contained we present a more formal treatment of these modeling

frameworks in Appendix B.

2.1. Petri Nets

For modeling of business processes we use Petri nets [26]. A Petri net

consists of transitions (drawn as squares) which represent tasks that can

be performed in a process, and places (drawn as circles), which define the

conditions when a transition can be executed. Places and transitions are

connected by arcs. Places that have an arc to (from) a transition t are called

the input (output) places of t. The state of a Petri net, also called a marking

6

Figure 2: A simple Data model

is a distribution of objects, called tokens, over the places. A transition is

enabled if in each of its input places there is at least one token. In that

case it can fire which means that it consumes a token from each of its input

places and produces a token in each of its output places. The behavior

of a Petri net is characterized by the set (in fact graph) of markings that

are reachable by transitions from an initial marking. Consider the example

of Figure 1. Transition A is enabled, since i has a token. After firing of

transition A, places p and q both have a token. Transitions B and C are

enabled since place p and place q respectively have a token. After firing

transition B, place r has a token, but as place s has no token, transition E

is not enabled. Only after firing transition C, s has a token, thus enabling

transition E. Transitions E and D are in conflict, as they share a marked

input place. Firing of transition D removes the token from place r, and

therefore, transition E is not enabled anymore.

2.2. Data Models

A database consists of entities, elements or records, stored in tables.

The fields of the table are called the attributes of the entity. Between these

entities, associations exist. Entities belong to an entity type, associations

belong to a relationship. The entity type defines also the type of attributes

of an entity. An Entity-Relationship diagram (ERD) [13] describes the type

7

of the entities and the relationships between them. Entity types are drawn

as rectangles. Inside the rectangle, the entity type is given, together with its

attributes. Relationships are traditionally drawn as diamonds and they are

connected to entity types with arcs. We consider only binary relationships

and most of them are functional relations. A functional relationship can be

represented as a (possibly partial) function from one entity type to another.

For functional relationships we drop the diamond notation and we represent

them directly by an arc from the source entity type to the target entity type.

If at the arrow head a vertical bar is drawn, the function is total. A non-

functional relation is a many-to-many relation, or a set-valued function. For

non-functional relationships we use the standard diamond notation where

the arrow indicates the direction of the relation. Note that the names for

the relationships are only unique for the source entity; from the context it

is always clear which relation is meant. Consider the data model of Fig-

ure 2. In this data model, there are three entity types: ‘Task’, ‘Process’ and

‘Transition’, two functional relationships: ‘h’ and ‘f’, and a non-functional

relationship ‘tp’. The entity type ‘Task’ has a single attribute ‘name’. The

arrow on relation ‘tp’ indicates that tp ⊆ Task×Process, i.e., ‘tp’ is a many-

to-may relation from ‘Task’ to ‘Process’. The relationship indicates that an

entity of type ‘Task’ can have many associations to entities of type ‘Process’,

and entities of type ‘Process’ can have many associations to entities of type

‘Task’. Now consider the functional relation ‘h’. It points from ‘Transition’

to ‘Task’, indicating that each entity of ‘Transition’ is connected to at most

one entity of ‘Task’. The functional relation ‘f’ has source ‘Transition’ and

target ‘Process’. The vertical bar at the arrow head indicates that ‘f’ is a

total function.

On data models we use predicate calculus with logical and set operations

8

and quantifiers over domains of entity types, relations and sets. For exam-

ple, we can formalize the constraint that states that if two entities of type

‘Transition’ have an association to the same entity of type ‘Task’ and to the

same entity of type ‘Process’, these entities are identical, to the following

formula:

∀t1, t2 ∈ Transition : (h(t1) = h(t2) ∧ f(t1) = f(t2)) ⇒ t1 = t2

Note that h(t1) indicates the unique entity that is related to t1 by functional

relation h. So h(t1) is a term that can be used to for a predicate, for instance

h(t1) = h(t2).

Most predicates can be translated into standard SQL (cf. [25]), all pred-

icates can be checked using SQL augmented with stored procedures. This

constraint can be checked by translating it into a standard SQL query and

checking whether the result is empty. In this case, the query would look

like: SELECT * FROM Transition t1, Transition t2 WHERE t1.Task =

t2.Task AND t1.Process = t2.Process AND t1.Id <> t2.Id;. If the re-

sult of this query is empty, then the constraint holds. This provides a

practical approach to implement a conformance checker for business rules;

translate the rules into SQL queries and if they evaluate to the empty set,

the rule holds.

3. Concepts

An auditor will look for assurance that the business processes have per-

formed within the boundaries determined by the business rules, by either

auditing the design, i.e., the implementation and effectiveness of controls, or,

alternatively, by looking substantively at the data generated by the system.

The last approach is considered as very costly if done in the traditional way.

9

We propose in fact a new and efficient way for substantive data checking.

Our proposal is to do it for specific business rules only, in an automated way

and in real-time.

Since the audit applies to a business process, we briefly review the basic

process terminology (cf. [3]). A business process is a collection of tasks

with (potentially complex) coordination requirements among them. A task

represents a set of activities in the real world that is considered as one

atomic action performed by an agent, or it is automated. A task is uniquely

associated to a form which is a collection of entities 1. An instance of a

business process is called a case. A case has its own case data associated

with it and is stored in a database. When a task is executed for a specific

case, the case data of that case is shown. In the business process a task

can be any kind of activity, however in the information system the execution

of a task boils down to reading, writing or updating these entities. As a

task finishes, the coordination requirements determine the set of tasks that

can be executed. Eventually, when no tasks are executable for a case, the

case is closed. The modeling of business processes as Petri nets is very well

understood and supported by tools (cf. [3]). Remember that we only model

those aspects of business processes that are relevant for the business rules

we are interested in.

Agents usually work in a certain role. A role is a generic identifier for

a category of agents in an organization, e.g., a manager, director, vice-

president, etc. are all generic roles. Thus, agents Joe and Mike might be

managers, Sue a vice-president, and so on. We further assume that roles are

1Note that we only use the term “form” as a metaphor, we do not assume a particular

form-based implementation

10

organized in a hierarchy (i.e. a tree) in which, the CEO is the top node and

each link between nodes represents a boss-employee relation. In general,

every organization has a different hierarchy. There are different ways in

which agents can be assigned to roles, but for now we will assume that

an initial assignment of agents to roles is given. An agent a1 can grant a

permission to agent a2 to perform (a) a specific task, (b) all tasks belonging

to a process, (c) all tasks belong to a case, or (d) a specific task belonging to

a specific case. The agent is only allowed to grant a permission if it possess

this permission itself, either by its role, or through a permission obtained

from another agent.

Certain tasks are used to detect or prevent violations of business rules.

These tasks are called controls. There are different types of controls and

many different ways of classifying them. For the purpose of this research we

will classify them in the way they are used to respond to an exception that

occurs on a business rule.

1. Detective: this type of control is only able to detect that a violation

to the business rule has occurred. An example: an employee has just

transferred 1 million dollars to his account.

2. Corrective: this type of control is like the detective control, but has

the added functionality to (attempt to) correct the violation to the

business rule directly. An example: an employee has just transferred 1

million dollars to his account and the control is preparing to transfer

it back.

3. Preventive: this type of control prevents business rules from being

violated. An example: In the current payment run there is 1 million

dollars going to be transferred to the bank account of an employee, but

11

the payment run will not be processed for this reason. A special case of

preventive controls is a prospective control, which gives a warning if it

is possible to break a business rule based on other actions performed.

We consider only two kinds of events: a task event and a permission

event. The first is the execution of a task, the second is the granting of a

permission.

4. Top-level Architecture

In Figure 3 the top-level architecture of the OLAT is presented. We

distinguish data sets (displayed by drums) and program modules (displayed

by rectangles). Note that we have more modules in the architecture than

we actually will describe in detail. In this paper we only focus on the

conformance checker and the risk interpreter. For the other modules we

only give a high-level specification.

The data sets form the database of the OLAT. The conceptual model

of the database is presented in the next section. The database consists

of three types of data: Runtime data, Dejure models, and Defacto models.

The Runtime data collects the data from the monitored information system.

The Dejure models are the official models of the desired organization. In

fact, the Runtime data should conform to the Dejure models. If not, there

is a violation. The Defacto models are models derived from the Runtime

data by discovery techniques and can differ from the Dejure models.

4.1. Runtime Data

The Runtime data contains the data from the information system. It is

in fact the system log in which all (relevant) events of the information sys-

tem are recorded. So the Runtime data concerns the events in the business

12

W
or

ld
Dejure - models

Defacto - models

Inconsistencies

Deviations /
Exceptions

Risk Interrupter

Discovery
Programs

Conformance
Checker

Rule Promoter

In
fo

rm
at

io
n

S
ys

te
m

data
Difference
Analyzer

interrupt

Potential RisksPotential Risk
Detector

improve

Business
Data

Process
Models

Organization
 Structure

Business
 Rules

Business
Data

Process
Models

Organization
 Structure

Business
 Rules

Runtime data

Figure 3: A top level architecture of an Online Auditing Tool

processes such as activities or tasks, and events in the authorization pro-

cesses such as the granting of permissions. This data is needed to perform

analysis by the conformance checker, difference analyzer and potential risk

detector.

4.2. Dejure and Defacto Models

The Dejure models describe the desired or official situation, whereas the

Defacto models are derived from the Runtime data, and thus describe the

actual observed situation / behavior. The Dejure models are made for the

design of the information system. In the ideal situation these models are

really implemented. Both the Dejure models and Defacto models concern

process models with tasks and their ordering, business data together with

the forms data of the tasks, and the organizational data with the agents and

their roles. Last but not least, business rules are also examples of Dejure

13

and Defacto models. Business rules are expressed in standard predicate

logic. Except for the business rules, these other data sets are collected in

one (relational) database. As the Dejure models describe the desired or

official behavior, business rules in the Dejure models should not be violated,

whereas business rules in the Defacto models are discovered (as will be

discussed later) in the Runtime data. The Dejure models are loaded from

the information system or directly from the organization, while the Defacto

models are obtained by discovery techniques. They may be less complete

than the Dejure models. The Defacto and Dejure models share the same

database schema as presented in the next section (see Figure 4).

4.3. Conformance Checker

The Conformance Checker checks whether the Runtime data conforms

to the Dejure models, in particular the Dejure business rules. This does not

only include the control flow behavior, but also data flow, authorizations and

business rules. Since the business rules are expressed in predicate logic, they

can be translated into queries (cf. [25]). The queries run on the database

(i.e. the Dejure models plus the Runtime data). If the result of the query

is the empty set, the rule is not violated. If a rule is violated, an excep-

tion report is generated based on the returned query containing the counter

examples. This exception report needs to be analyzed by management and

/ or auditors and can lead to either a remedial action or to the conclusion

that the situation should be allowed. In the latter case the Rule Promoter

can be used to add the newly discovered model to the de-jure models.

4.4. Discovery Programs

Different from the conformance checker, discovery programs try to de-

rive models out of the Runtime data. Many kinds of existing data mining

14

and process mining techniques and tools can be used to discover not only

control flow, but also authorization rules, business data models, organiza-

tional models and business rules [4, 27, 28]. In general, mining techniques

try to deduce patterns and rule from facts. In our case the facts are stored

as events in the Runtime data set. To discover a process model we look at

the actual execution order of tasks for the cases and from this we can infer

a process structure (for example a Petri net) (cf. [1]). For the structure

of business data we could look at data in the form of forms that are used

in the events to derive entities and relationships. For organizational mod-

els we could look at the permission events (in which an agent is granted a

permission by another agent). As these rules are derived from the Runtime

data, the models obtained by discovery are Defacto models. While detailed

discussion of these techniques is beyond the scope of the current work, the

kind of tools we have in mind are included in the well-known Process Mining

toolset ProM [2].

4.5. Rule Promoter

The Rule Promoter represents functionality to convert a discovered De-

facto model into a Dejure model, specifically if it concerns business rules.

For this, it needs to be able to abstract from the specific instance informa-

tion. In the first run, the module is used to tune the configuration of the

Dejure models to the actual situation. Later on it may be part of a process of

continuous improvement; e.g. when exceptions are discovered, analyzed and

accepted, these exceptions are added to the Dejure models thus eliminating

‘false positives’ in the conformance checker.

To the best of our knowledge, there are today no methods or software

for this task. Therefore, we assume this to be a human task.

15

4.6. Risk Interrupter

The Risk Interrupter takes input from the Dejure models and the Run-

time data in a way similar to the conformance checker. The difference is that

the Risk Interrupter interrupts the Information System to prevent further

processing of the case under consideration until issues are resolved and the

risk is mitigated. Hence, the Risk Interrupter serves as an external guard

for tasks in an information system. In fact the Risk Interrupter can be seen

as an external control based on the conformance checker.

4.7. Difference Analyzer

The Difference Analyzer compares the Dejure and Defacto models. It

also checks whether business rules, process models and organization struc-

ture are not conflicting between the Dejure and Defacto models. This check

can be seen as a quality check for the models and therefore a check for

the functioning of the whole concept. Prototypes of such a tool have been

designed.

4.8. Potential Risk Detector

This module is able to detect potential risks by analyzing the Runtime

data, the Defacto and the Dejure models. For instance, if a Dejure model

differs from a Defacto model, we could use it to see if a violation of a Dejure

business rule could occur. This information is considered as a warning. In

the ProM toolset ([2]) several tools are available that could be used to realize

this module.

4.9. Remarks on the Implementation of the OLAT

We do not consider the implementation of the OLAT in detail in this

paper. However we note that the heart of the OLAT is the database that

16

contains all data. The conformance checker as well as the risk interrupter,

can be based on a standard SQL engine. So the part of the system we focus

on can be realized using a standard database management system. Of course

the OLAT needs coupling with the information system to collect events of the

information system and perhaps sends interrupts to the information system.

It also needs a reporting facility. Since we aim at a generic OLAT we should

be able to configure the OLAT for specific information systems, but this in

fact involves the construction of a standard data-intensive application. For

the other modules, like the discovery programs, we can use existing tools

that use the database. So the implementation is a serious engineering effort

but does not require new scientific insights.

5. Conceptual Model

The heart of the OLAT is the database. This section describes a concep-

tual model for all the datasets needed for the OLAT. Figure 4 depicts the

conceptual model, using the techniques described in Section 2. The concep-

tual model consists of a data model, which is explained in Section 5.1, and

consistency constraints that should hold for any organization. These con-

straints are explained in detail in Section 5.2. Note that if these constraints

are violated, the database becomes inconsistent, which is not the same as

a violation of a business rule. Conformance of business rules is treated in

Section 6.

5.1. Data Model

Figure 4 depicts the conceptual model. It is arranged into four com-

ponents: the process definition, the business data definition, the organiza-

tional definition and runtime. We first explain the conceptual model, and

17

Figure 4: Conceptual model for OLAT

then show how, using predicate logic, all kinds of business rules can be for-

mulated on this model. Remember that we do not distinguish between the

Dejure and Defacto models here: they share the same data model. Also,

note that we sometimes introduce transitive closures of relations (i.e., h∗, u∗

and prev∗). These transitive closures are assumed to be updated explicitly

in the database, which is easy to perform. We use them to avoid recursive

definitions in constraints (i.e. queries), thus allowing us to to implement the

conformance checker with a SQL engine.

18

5.1.1. Business Data Definition

Processes involve business data, e.g., entities like invoices, products and

customers. To describe the type of business data and the relationships

between these data elements, we introduce the Business Data Definition. It

stores the Entity Types of business data and the binary relationship between

them. In fact, this component stores general data models as introduced in

Section 2. However, we link them via form links to tasks.

5.1.2. Process Definition

The process definition component describes the processes monitored in

OLAT. Note that we store the process models in the form of a data model.

A process contains tasks that can be executed for that process. Processes

are often hierarchical. Parts of the process are either reusable or are refined

using sub processes. In our conceptual model, this is modeled by relation

u. If two processes x and y are related via u, then process x uses process y,

i.e. y is a sub process of x. (In the instance (see Appendix B) of the data

model this means that (x, y) ∈ u.) To avoid recursion and to be able to

use queries, we also store the irreflexive transitive closure of u in a relation

named u∗. Tasks can be shared by different processes. As stated in the

introduction, a task is identified with a form providing the necessary data

to execute that task. A task typically reads and writes entities. The entity

FormLink models this relation, its attribute type defines whether the entity

is read, written or both. To express conditions on the order in which tasks

occur, we use labeled Petri nets. A transition is labeled with the process

(relation f) and the task (relation h) it represents. The conceptual model

allows that transitions which are connected via a place, do not need to be

in the same (sub) process. However we assume that all places connected to

19

a transition belong to the same process. This way, places can be shared by

two or more processes, thus providing the possibility to define compositions

of processes, rather than only flat processes. The initial tokens of a place are

an attribute of the place. Note that although we use labeled Petri nets, any

other process notation could be used to define the order in which tasks can

occur. Also note that we have no direct Runtime information of the firing

of transitions or the marking of a place. However it is possible to derive this

information if h is a bijection (see e.g. [27, 28]).

5.1.3. Organizational Definition

Tasks can be executed by different roles. Roles are placed in a hierarchy.

If a role is higher in the hierarchy, it means that this role can execute all

the tasks of its subordinates. The hierarchy is expressed using relation h:

if a and b are related by h (i.e. (a, b) ∈ h in the instance) then b is the

supervisor of a. Again, we add the transitive and reflexive closure of the

hierarchy relation, h∗.

Agents are assigned to roles via an Assignment. This assignment can be

for all processes or for a single process, which is depicted by the optional

relation p. To indicate the time interval in which this assignment holds, the

entity Assignment has two attributes: start and end, indicating the start

and end times of the interval.

5.1.4. Runtime

The Runtime component stores all events and associated data from the

information system. There are two type of events: events that indicate that

something has been done for a specific task (the entity Event in the model)

and and the granting of permissions by agents (the entity Permission). The

20

data associated with an event is business data, i.e. the content of the forms

filled in. The entities Entity and Association store the business data defi-

nition. Each Entity belongs to an Entity Type. An Association associates

two entities and belongs to some Relationship.

A Case is an instance of a process, and it proceeds through Events that

are raised whenever a task is executed. An event is always executed by some

agent for a task in a process. The occurrences of events form a partial order.

This partial order is represented by the relation prev. The relation prev∗ is

the transitive closure of relation prev, and is used for formulating business

rules. Typically, an event for a task in a case also involves entities in the

business data which are created or updated. This information is stored in

UpdateEntity. Entity contains the latest version of the entity, UpdateEntity

stores the changes.

If an agent A authorized another agent B to perform a part of its work,

agent B acquires a Permission from agent A to perform some work. A

permission is always for a time interval and it can apply to a role, a process,

a case, a task, or any combination of thereof. By obtaining a role permission,

agent B can perform all tasks of that role, given that A has that role in

the first place. A permission can also apply to a specific process or case,

indicating that agent B can do anything A can do for that process or case.

If the permission is for a task, agent B can execute that task as well. A

permission is only allowed if agent A has the proper permissions for the work

he delegates. Note that it is not always detectable in which role an agent

executes a task, only whether it has the right authorization.

21

5.2. Constraints on the Data Model

There are two types of constraints that can be defined on the process

model: logical consistency constraints which do not depend on any business

context, i.e. constraints to maintain the consistency of the data model, and

conformance constraints which ensure the conformance of the data model

within the business context. There is a simple distinction between the two:

Consistency constraints do not use any specific attribute value, while busi-

ness rules do. The latter are described in the next section. For the business

data, there are no separate constraints, as it is a general schema for an ERD.

In the remainder of this section we explain some of the most important con-

sistency constraints. We classify the constraints according to the component

of the entity types they address. We first describe the constraints in natural

language, their formalization can be found in Appendix A.

5.2.1. Consistency Constraints for the Process Definition

The conceptual model allows for sub processes. Although a process can

be nested arbitrarily deep, cycles in the process hierarchy are of course not

allowed. This can be expressed using two constraints. First, the relation u

should be irreflexive, i.e. processes cannot depend on themselves. Secondly,

as u∗ is the transitive closure of u, and we do not want any cyclic references,

u∗ needs to be irreflexive as well. For the purpose of discovery algorithms,

we require that the task and process uniquely identifies a transition. This

gives rise to the following constraints:

p1: Relation u∗ is the transitive closure of relation u.

p2: Relations u and u∗ are irreflexive.

p3: If a transition belongs to a certain process and represents a task, this

task should be a task of that process.

22

p4: The combination of a task and a process uniquely identifies a transition.

To formalize p4, this statement is identical to stating that if for two tran-

sitions t1 and t2 the related task and process are the same, the transitions

are the same:

∀t1, t2 ∈ Transition : (h(t1) = h(t2) ∧ f(t1) = f(t2)) ⇒ t1 = t2

The formalization of all the constraints can be found in Appendix A.

5.2.2. Consistency Constraints for the Organizational Definition

Consistency constraints for the organizational definition are related to

the definition of the role hierarchy and the granting of permissions. Permis-

sions can be granted to act in a certain role, to perform a task, or to be

involved in a process or case, or any combination therof. An agent is only

allowed to give a permission to another agent for a role if that agent has the

proper authorization. The agent has this authorization if either it is allowed

to assume that role, or it possesses the permission explicitly. This leads to

the following (non-exhaustive) set of constraints.

o1: Relation h∗ is the transitive closure of relation h.

o2: Relation h∗ is reflexive.

o3: The start time of an assignment is strictly smaller than its end time.

o4: The start time of a permission is strictly smaller than its end time.

o5: An agent can only grant a permission for a role if it is assigned to that

role, or if it has a permission for that role itself.

o6: An agent can only raise an event for a task in a case if it has a role

assignment to execute that task, or it has a permission to execute it.

23

5.2.3. Consistency Constraints for the Runtime

The main consistency constraints for the run time are concerned with

the correctness of events: the events should happen in the right order, i.e.

the timestamp of events in the relation prev should conform to the ordering.

Also, the storage of business data should be according to the schema. This

leads to the following set of constraints.

r1: The relation prev∗ is the transitive closure of relation prev.

r2: If an event y occurs after event x, then the time stamp of x should be

at most the time stamp of y.

r3: The source and target entities an association relates to, should be of the

correct type specified by the relationship the association belongs to.

r4: If an event in a case occurs, the task should be in the process of which

the case is an instance

r5: If an entity is updated by an event, it should be of an entity type that

is in the form of the task the event is of

r6: If a permission is both for a process and a case, the process of the case

should be the same process as the permission is for.

r7: If an agent performs a task, and it is authorized by an assignment, this

assignment is unique.

6. Business Rules

In this section we present business rules. Since it is in principle impos-

sible to list all possible business rules, we only consider some characteristic

examples that occur frequently. Remember that a business rule is a con-

straint on the data model involving business data as parameters. Therefore,

we are able to express business rules as parameterized constraints. Further,

24

note that we can check them by query processing. So the implementation

of the Conformance Checker could be based on a standard database engine.

It is not only possible to express business rules for a single process or case,

but it is also possible to express business rules involving several processes or

cases.

In general, business rules concern the following aspects:

• ordering based, i.e. about the execution order of tasks in cases;

• agent based, i.e. about the involvement of a role or agent in cases and

processes;

• value based, i.e. in forms belonging to a task.

In business rules these aspects may be combined. In this section, we show

examples for each of the aspects. In some examples we need the set of

attributes Λ and the set of values V . We use the notation e.a = v to express

that attribute a of entity e has value v.

6.1. Examples of Ordering Based Rules

Ordering based rules express constraints concerning the ordering of events

and tasks in processes. Below we use the same function names as in the con-

ceptual model of Figure 4.

Task always precedes a task A task t2 should always be performed be-

fore task t1 in any case of process u.

b1: TaskAlwaysBeforeTask(u : Process, t1, t2 : Task) :=

∀x1 ∈ Event : (p(c(x1)) = u ∧ t(x1) = t1) ⇒
∃x2 ∈ Event : t(x2) = t2 ∧ c(x1) = c(x2) ∧ (x2, x1) ∈ prev∗

25

Restrict update operation After task u is performed in a case, no entity

of type x can be updated anymore in that case. For example, an

employee cannot change the travel expense form (or entity) after it

has been approved.

b2: RestrictUpdate(u : Task, x : EntityType) :=

∀e1, e2 ∈ Event : c(e1) = c(e2) ∧ t(e1) = u ∧ (e1, e2) ∈ prev∗

∧ ¬(∃y ∈ UpdateEntity : p(y) = e2 ∧ t(e(y)) = x)

Limit number of repetitions of a task in cases of a process In any case

of process P task u cannot be executed more than n times.

b3: LimitNrOfTasks(u : Process, z : Task) :=

∀w ∈ Case : p(w) = u ⇒ |{x ∈ Event | c(x) = w ∧ t(x) = z}| ≤ n

6.2. Examples of Agent Based Rules

Role or agent based business rules express constraints about the involve-

ment of roles and agents in processes.

4-eyes principle Two tasks t1 and t2 in the same case should always be

executed by different agents.

b4: 4EyesPrinciple(t1, t2 : Task) := ∀x, y ∈ Event :

(c(x) = c(y) ∧ t(x) = t1 ∧ t(y) = t2) ⇒ execBy(x) 6= execBy(y)

Mutually exclusive agents Two agents a1 and a2 should never appear

together in a case.

b5: MutualExclusiveAgents(a1, a2 : Agent) := ¬∃u1, u2 ∈ Event :

u1 6= u2 ∧ c(u1) = c(u2) ∧ execBy(u1) = a1 ∧ execBy(u2) = a2

26

Task limit on an agent an agent a cannot do more than n tasks in any

case of process u.

b6: TaskLimitOnAgent(u : Process, a : Agent, n : Nat) :=

∀w ∈ Case : (p(w) = u) ⇒
|{x ∈ Event | c(x) = w ∧ execBy(x) = a}| ≤ n

Forbidden to write An agent a1 is not allowed to update any entity in a

process u.

b7: ForbiddenToWrite(a : Agent, u : Process) := ∀x ∈ Event :

(execBy(x) =a ∧ p(c(x))=u) ⇒ ¬(∃y ∈ UpdateEntity : p(y) = x)

6.3. Examples of Value Based Business Rules

Value based business rules concern the values of business data. Typically,

these constraints can have the following form:

• two values should be equal,

• one value should be larger then another value, or

• a value should be within some given set (i.e. within some limits).

Limit on entity attribute value for an agent An agent a is not allowed

to write an entity of type b with value of attribute x larger than n.

b8: LimitEntAgent(a : Agent, b : EntityType, x : Λ, n : V) :=

∀z ∈ Event , y ∈ UpdateEntity : (p(y) = z ∧ t(e(y)) = b

∧ execBy(z) = a) ⇒ e(y).x ≤ n

Limit on entity attribute value for a case For each entity of type b

written in case w, the value of attribute x is lower than n.

27

b9: LimitEntInCase(w : Case, b : EntityType, x : Λ, n : V) :=

∀y ∈ Event , z ∈ UpdateEntity : c(y) = w ∧ t(e(z)) = b ∧ p(z) = y

∧ e(z).x < n

Approval limit An agent a can only perform task u in a case if for each

entity of type b written in that case, attribute x is lower than value

n. E.g., a bank vice-president can approve a loan up to a limit of

$500,000.

b10: ApprLim(a : Agent, u : Task, b : EntityType, x : Λ, n : V) :=

∀y ∈ Event : (execBy(y) = a ∧ t(y) = u)

⇒ LimitEntinCase(c(y), b, x, n)

Note that LimitEntinCase is defined in rule b9.

Three way match In each case of process n, if task u is executed, then

entities of types a, b and c belonging to the case should have the same

value. E.g., the price of the invoice should match the price on the

quotation and on the delivery notice.

b11: ThreeWayMatch(u : Task, a, b, c : EntityType) :=

∀w ∈ Case, v ∈ Event , x, y, z ∈ UpdateEntity :

(t(v) = u ∧ c(p(x)) = c(p(y)) = c(p(z)) = c(v) = w)

⇒(e(x).value = e(y).value = e(z).value

∧ t(e(x)) = a ∧ t(e(y) = b ∧ t(e(z)) = c)

28

7. Example

In the previous section we have shown how in our conceptual model

business rules can be expressed in predicate logic, and thus can be checked

by transforming these predicates into queries and running them on the

database. As these predicates are parameterized, they can be filled in for

a specific process, by specifying the parameters of the business rules. In

this way, end users and process owners are not confronted with predicate

logic, but rather express business rules on their processes by picking these

predicates and assigning values to the parameters of the rules.

As an example to illustrate the framework, Figure 5 shows an Administer

Account Transfer process. In this Petri net, if a transition is connected to a

task, the transition is labeled with the name of that task. The Petri net has

three unlabeled silent steps, which are needed for routing the process. The

Petri net has 20 transitions, the business process consists of 17 tasks; three

transitions are in fact ”silent steps” only added for control flow purposes.

The process starts with a customer representative receiving (task t1) an ac-

count transfer instruction from a client, who records the transfer instruction

(task t2). Next, a financial clerk validates the instructions (task t3). If the

validation reveals a problem, communication details of the invalid instruc-

tion are extracted (task t5). Otherwise, a financial accountant checks the

transaction limit of the transaction (task t4). If the transaction is higher

than the limit for the customer, the process starts the Authorization sub

process, in which the financial accountant requests an authorization, which

is either authorized or not by the financial manager (tasks t8a and t8b). If

the limit is not reached, or the transaction is authorized, the banking spe-

cialist checks the available funds. If this check fails, communication details

29

Table 1: Task-Role matrix
Roles

task Senior

Customer Banking Financial Financial Financial Financial

Representative Specialist Manager Manager Accountant Clerk

task t1 X
task t2 X
task t3 X
task t4 X
task t5 X
task t6 X
task t7 X
task t8a X
task t8b X
task t9 X
task t10a X
task t10b

task t11

task t15 X
task t16 X
task t17

task t18 X

are derived from the account unit (task t9). If the check is successful, the

Accounting Entry sub process is started, which applies the accounting entry

and calculates a fee for it. In all cases, the results are collected in a report

(task t15), and after approving it (task t16), the customer is notified (task

t18). If the report is not approved, it is changed (task t17).

The process also involves the role of the senior financial manager, who is

in charge of the financial manager. The financial manager is head of a team

consisting of a financial accountant and a financial clerk. Table 1 shows the

assignment of roles to tasks. Note that by the hierarchy, e.g., the senior

financial manager can do everything a financial clerk can do.

The organization has the following agents: agent-joe, agent-sue, agent-

eric and agent-beth. These agents fulfill the roles within the organization.

On this organization, we define the business rules that need to hold on

30

Figure 5: Example of an account transfer process

31

the process. Firstly, it is not allowed to update the entity ‘cust-account ’

after task t11 has been executed. Secondly, agent-joe and agent-sue are not

allowed to work together in any case. Agent-eric is not allowed to execute

more than 4 tasks, and agent-beth cannot do more than one task. Last,

tasks t7 and t8a in a case may not be executed by the same agents, and this

also applies to tasks t7 and t8b, and for tasks t10a and t10b. To set up the

Conformance Checker of OLAT, we need to implement these business rules

in the system. Given the set of predefined business rules in the previous

section, the process owner only has to specify the following functions:

e1: RestrictUpdate(t11, cust-account)

e2: MutualExclusiveAgents(agent-joe, agent-sue)

e3: TaskLimitOnAgent(agent-eric, 4)

e4: TaskLimitOnAgent(agent-beth, 1)

e5: 4EyesPrinciple(t7, t8a)

e6: 4EyesPrinciple(t7, t8b)

e7: 4EyesPrinciple(t10a, t10b)

Most of these rules apply to all processes in the system; however, it is

also possible to associate a process parameter with a rule in order to apply

it specifically to a process or a subprocess.

8. Practical Experience with Business Rules

As data analytics becomes more affordable, there are more applications

of it in auditing. The Big Four audit firms are all venturing into this space

and embedding their principles into the audit approach. In recent years we

have seen a shift from introducing more controls in the information system to

32

substantive data analytics, to validation of business rules. The main benefit

of this type of audit is that there is a shift from identifying the risk from

violation of a business rule towards detection of the violation. In practice

we still see a combination of both: a control is tested, it fails and then

the whole population of data has to be validated against the business rules.

While we have not yet developed a full blown OLAT, Deloitte Netherlands

used a preliminary version of it in off-line mode for the validation of several

business rules on a large log files from real information systems. We mention

one example in each of the rule classes we have identified.

Ordering based rule

A utility company introduced the rule that invoices could only be paid

if there was a valid purchase order present in the system. This rule was

applicable for 3 months and was configured in their system as an automated

control, which we verified to work correctly. However in the process an

invoice was registered in the system just before it was paid and the essence

of the rule was that the company wanted to prevent placing orders that were

not approved through the formal process. Therefore it was decided to run

the business rule “Task t1 always precedes task t2” with t1 = “PO approval”

and t2 = “Invoice registration” against the complete population of invoices

of these 6 months. We found that in the first 3 months, a significant number

of invoices were paid without a PO approval being present at all. In the last 3

months we noted that for all invoices paid a PO had been approved, but that

this approval was in a significant number of cases occurred after registration

of the invoice.

33

axk41
Cross-Out

Agent based rule

At a large consumer products company we found that authorizations in

their SAP system allowed for booking and approval of purchase orders across

business units. This was against company policy and also posed a risk for the

reliability of their financial statements. Using an extension of the business

rule “Forbidden to write” to distinguish between processes in business units

(a.k.a “Company Code” in SAP) we found that on the total population of

1892 purchase orders there were 140 agents involved in 5 business units.

The business rule held for all but one agent that was involved in the process

of two business units. Further inquiry about this exception with the agent

confirmed that our assessment was correct, but that there was a plausible

explanation for this fact.

Value based rule

At a chemical company we found that the invoice verification option in

SAP (which implements the 3-way match) was set to optional. A quick

sample drawn on the population showed that indeed the option had been

disabled for certain purchase orders that were in the selected sample. Over-

ruling this option poses the risk that invoice amounts, goods received and

goods ordered are not in accordance, but the actual impact of this risk is

hard to quantify. We used the business rule “3-way match” to verify the

whole population of purchase orders based on the amount and monetary

value. In this way we were able to assess the invoices that did not pass the

3-way match criteria. These invoices were followed up and some corrections

were made and credit notes requested from suppliers.

34

9. Related Literature

Most business process modeling tools do not provide adequate support

for information assurance and this is often added in a piecemeal and rather

ad hoc manner. To the best of our knowledge there are few efforts to de-

velop a comprehensive architecture and conceptual model for online audit-

ing, which is an important part of our contribution. However, there has been

significant research interest on various vocabularies and logic-based methods

for expressing business rules in the modeling of processes.

Since the mid-nineties several groups have been working on techniques

for process mining, i.e., discovering process models based on observed events.

In [4] an overview is given of the early work in this domain. The idea to apply

process mining in the context of workflow management systems was intro-

duced in [6]. The alpha algorithm was the first technique able to discover

concurrency [5]. Process mining is not limited to discovery. For example,

in the context of ProM [2] several approaches to conformance checking were

realized. The best developed technique is the Petri-net-based conformance

checking technique by Rozinat et al. [27, 28]. Here an event log and a pro-

cess model are compared and deviations are measured and highlighted in

both the model and log. Metrics such as fitness, appropriateness, etc. quan-

tify conformance and the diagnostics allow for drilling down the problem. It

is impossible to give a complete review of process mining techniques here,

see www.processmining.org for more pointers to literature.

Some related research in this direction is discussed in [14, 15]. Here

the authors have developed a declarative approach for process modeling

using the SBVR (Structured Business Vocabulary and Rules) vocabulary

and created a new framework. The vocabulary is supported by a model

35

and allows process modeling and specification of access constraints in an

English-like language. They also support defeasible logic [8, 23] which is

a non-monotonic logic and can work with a set of inconsistent constraints.

Another approach for handling compliance inspired by defeasible logic and

deontic logic [9] is discussed in [29]. These logics are more advanced than

predicate logic, and are based on notions of permissions, obligations and

prohibitions. They are applied in the context of the Business Contract

Language (BCL) [21, 16] where the focus is on how to proceed when one

party fails to meet its obligations. In such situations, the negligent party

is obliged to perform some other actions in order to make certain amends

for its failure as specified in BCL. A shortcoming of predicate logic is that

it does not allow description of such scenarios easily. In [1], the authors

have used temporal logic expressions to check whether a log corresponds to

constraints. They express their constraints in Linear Time Logic (LTL) [19]

and use a tool called LTL checker to verify if certain desired properties of

the log are satisfied.

Prior research has looked at the issue of information security from various

perspectives, e.g. at the network and operating system levels. However,

our focus is on security at the application level, and the stream of security

related research that is relevant here relates to role based access control

(RBAC) [30]. The basic RBAC framework consists of three entities: roles,

permissions and users. Roles (such as manager, director, etc.) are assigned

permissions or rights (to hire an employee, approve a purchase, etc.) and

users (Joe, Lin, Sue) are associated with roles. Thus, users acquire certain

permissions to perform organizational tasks by virtue of their membership

in roles. The notion of separation of duties [20, 31], although it preexisted in

accounting and control systems, also reemerged in the context of RBAC as

36

the idea that if task 1 is performed by role A, then task 2 must be performed

by role B, and membership of these roles must not intersect. There are two

types of separations of duty: static and dynamic. In recent years, RBAC

has become the preferred access control model for most business enterprises.

This framework allows association of roles with tasks, and only users that

belong to a certain role can perform certain tasks. This is a useful framework

that has now been widely adopted in popular database management systems

from IBM and Oracle.

Some related work on specification and enforcing role-based authoriza-

tions in workflow systems is discussed in [11]. The main focus of this work is

on enforcement of constraints at run-time. The authors develop algorithms

to check whether, given a combination of tasks and users, it is possible to

find a task assignment that will satisfy the collection of constraints and

available users. A formal model called W-RBAC for extending RBAC in

the context of workflows using the notions of case and organizational unit

is described in [32]. A system architecture for enforcing RBAC in a Web-

based workflow system is given in [7]. The approach in [12] is based on the

notions of conflicting roles, permissions, users and tasks. More sophisticated

algorithms for enforcing separation of duties in workflows are developed in

[22]. Finally, another stream of prior work that informs our research is the

literature on basic financial control principles, particularly as it relates to

the recent Sarbanes-Oxley legislation [10, 24, 17, 18].

10. Conclusion

We introduced the need for the on-line auditing of the business processes

of an organization and proposed an On-line Auditing Tool (OLAT). Such an

37

OLAT is connected to the organizations information system but is not a part

of it. The assumption is made that all relevant events in the information

system are passed to the OLAT. In this way, the OLAT can build an inde-

pendent image of the state of affairs in the business processes. Based on this

image auditing processes can run continuously. We have given a high level

architecture of such an OLAT and we studied in more detail the database

and the conformance checker. In fact we designed a conceptual data model

with a set of consistency constraints in predicate logic. The business rules

are designed to realize this part of the OLAT by a standard database man-

agement system in such a way that each business rule is translated in a

straightforward way into a query that can be executed on the database. For

the other components of the OLAT we have referred to process mining tech-

niques and tools. We have performed some real-life case studies with the

approach using a preliminary tool, however in an off-line mode.

There are several aspects of this work that need elaboration. First of all

we would like to build a prototype and to perform some on-line experiments

with it. Secondly we should have the ability to insert business rules from

a library of business rules, i.e a set of predefined predicates like the ones

presented in Section 6. This would make it feasible for controllers and other

business experts to add business rules for conformance checking without

help of computers scientist, by just filling in the parameters. Thirdly, we

plan to modify the conceptual model in order to make the delegation of

roles easier. We also intend to extend the conceptual model to incorporate

domain specific knowledge, for instance OLAT for financial departments or

for health care systems. Finally there are several unexplored components

in the OLAT architecture, such as the Risk Interrupter, the Potential Risk

detector and the Difference Analyzer. We have some rough ideas for them,

38

but there are many open questions. However, the most urgent activity is

experimentation with a prototype, because the proof of the pudding is in

the eating.

A. Consistency Constraints of the Data Model

In this section, the constraints given in Section 5 are formalized. Let

SubPeriod(x, y) := x.start ≥ y.start∧x.end ≤ y.end, and InPeriod(x, y) :=

x.start ≤ y.timestamp ≤ x.end.

A.1. Consistency Constraints for the Process Definition

p1: ∀p1, p2∈ Process : (p1, p2) ∈ u∗ : (p1, p2) ∈ u

∨ (∃p3 ∈ Process : (p1, p3) ∈ u∗ ∧ (p3, p2) ∈ u)

p2: ∀p ∈ Process : (p, p) 6∈ u ∧ (p, p) 6∈ u∗

p3: ∀x ∈ Transition : (h(x), f(x)) ∈ tp

p4: ∀t1, t2 ∈ Transition : (h(t1) = h(t2) ∧ f(t1) = f(t2)) ⇒ t1 = t2

A.2. Consistency Constraints for the Organizational Definition

o1: ∀r1, r2 ∈ Role : (r1, r2) ∈ h∗ :

(r1, r2) ∈ h ∨ (∃r3 ∈ Role : (r1, r3) ∈ h∗ ∧ (r3, r2) ∈ h)

o2: ∀r ∈ Role : (r, r) ∈ h∗

o3: ∀x ∈ Assignment : x.start < x.end

o4: ∀x ∈ Permission : x.start < x.end

o5: ∀x ∈ Permission : (∃z ∈ Role : r(x) = z) :

(∃y ∈ Assignment : from(x) = a(y) ∧ (r(x), r(y)) ∈ h∗

∧ p(x) = p(y) ∧ SubPeriod(x, y))

∨ (∃y ∈ Permission : from(x) = to(y) ∧ t(x) = t(y)

∧ r(x) = r(y) ∧ p(x) = p(y) ∧ c(x) = c(y)

39

∧ SubPeriod(x, y))

o6: ∀ x ∈ Event :

(∃y ∈ Assignment : execBy(x) = a(y) ∧ InPeriod(y, x)

∧ (∃z ∈ Role : (z, r(y)) ∈ h∗ ∧ (t(x), z) ∈ tr)

∧ (∃z ∈ Process : p(y) = z) ⇒ p(y) = p(c(x))) ∨
(∃y ∈ Permission InPeriod(y, x)

∧ (∃z ∈ Task : t(y) = z) ⇒ t(y) = t(x)

∧ (∃z ∈ Case : c(y) = z) ⇒ c(y) = c(x)

∧ (∃z ∈ Process : p(y) = z) ⇒ p(y) = p(x)

∧ (∃z ∈ Role : r(y) = z) ⇒
(∃z ∈ Role : (z, r(y)) ∈ h∗ ∧ (t(x), z) ∈ tr)

)

A.3. Consistency Constraints for the Runtime

r1: ∀e1, e2 ∈ Event : (e1, e2) ∈ prev∗ : (e1, e2) ∈ prev

∨ (∃e3 ∈ Event : (e1, e3) ∈ prev∗ ∧ (e3, e2) ∈ prev)

r2: ∀(x, y) ∈ prev : x.timestamp ≤ y.timestamp

r3: ∀a ∈ Association : t(src(a)) = src(r(a)) ∧ t(tar(a)) = tar(r(a))

r4: ∀e ∈ Event : (t(e), p(c(e))) ∈ tp

r5: ∀u ∈ UpdateEvent : ∃f ∈ FormLink : t(e(u)) = e(f) ∧ t(p(u)) = t(f)

r6: ∀x ∈ Permission : (∃y ∈ Process, z ∈ Case :

p(x) = y ∧ c(x) = z) : p(x) = p(c(x))

r7: ∀y ∈ Event , x1, x2 ∈ Assignment :

(c(y) = a(x1) = a(x2) ∧ (t(y), r(x1)) ∈ tr ∧ (t(y), r(x2)) ∈ tr

∧InPeriod(x1, y) ∧ InPeriod(x2, y)) ⇒ x1 = x2

40

B. Formalization of Modeling Framework

B.1. Petri Nets

A Petri net [26] is a 3-tuple N = (P, T, F) where (1) P and T are two

disjoint sets of places and transitions respectively; (2) F ⊆ (P×T)∪(T×P)

is a flow relation. We call the elements of the set P ∪T nodes of N , elements

of F are called arcs. Places are depicted as circles, transitions as squares. for

each element (n1, n2) ∈ F , an arc is drawn from n1 to n2. Let N = (P, T, F)

be a Petri net. Given a node n ∈ P ∪ T , we define its preset •n = {n′ |
(n′, n) ∈ F}, and its postset n• = {n′ | (n, n′) ∈ F}. Markings are states of

a net. A marking m of N is defined as a function P → N . A pair (N, m) is

called a marked Petri net. A transition t ∈ T is enabled in a marking m if

and only if ∀p ∈ •t : m(p) > 0. Enabled transitions may fire. A transition

firing results in a new marking m′, denoted by (N,m) [t〉 (N, m′), with ∀p ∈
P : m′(p) = m(p)−χF (p, t)+χF (t, p), where χF is the characteristic function

of F .

B.2. Data Model

A database consists of entities, elements or records, stored in tables.

Between these entities, associations exist. Entities belong to an entity

type, associations belong to a relationship between entity types. An Entity-

Relationship diagram (ERD) [13, 25], describes the type of the entities and

the relationships between them. Without loss of generality, we only consider

binary relationships, since non-binary relations can be mapped onto new en-

tities. The cardinality between a relationship r and an entity type E defines

the number of associations of type r an entity of E can have. In this paper

we limit the cardinality to the set of ranges C = {[0..∗), [1..∗), [0..1], [1..1]}.

41

Let Λ be a label set. An Entity-Relationship Diagram (ERD) S is a 4-

tuple S = (E ,A, R, CR), where (1) E is a set of entity types, (2)A : E → P(Λ)

defines the attribute types for each entity type, (3) R ⊆ E × Λ × E is a set

of relationships, for a relationship (x, r, y) ∈ R we call x the source of r and

y to target of r. and (4) CR : R → C × C defines the cardinalities for the

relationships, where for a relation r ∈ R and CR(r) = (x, y), we call x the

source cardinality and y the target cardinality.

The current state of a database is called an instance. Let I denote the

universe of entities and V the set of possible (attribute) values. An instance

consists of entities belonging to an entity type, and associations between

these entities. An instance IS of a schema S = (E ,A, R, CR) is a 3-tuple

IS = (IE , IA, IR) where (1) IE : E → P(I), returns for each entity type the

entities present; (2) IA : I × Λ → V returns for each attribute the attribute

values of each entity; and (3) IR : R → P(I×I) returns for each relationship

the set of associations.

An instance is consistent if it satisfies the ERD, i.e., the ERD satisfies all

the constraints in the ERD, including the cardinality constraints. This is ex-

pressed as follows. Let S = (E ,A, R, CR) be an ERD, and IS = (IE , IA, IR)

be an instance of this ERD. The instance is consistent if:

• for all A,B ∈ E such that A 6= B holds IE(A) ∩ IE(B) = ∅;

• for all (i, l) ∈ dom(IA) there exists an entity A such that i ∈ IE(A)

and l ∈ A(A); and

• for each relationship r = (A, l, B) ∈ R holds π1(IR(r)) ⊆ IE(A),

π2(IR(r)) ⊆ IE(B), for all a ∈ IE(A) that |{b | (a, b) ∈ IR(r)}| ∈
π1(CR(r)) and for all b ∈ IE(B) that |{a | (a, b) ∈ IR(r)}| ∈ π2(CR(r)).

42

The constraints are denoted by standard predicate calculus with logical

operators ¬,∧,∨,⇒ and quantors ∀, ∃ with domains such as ∀x ∈ A : φ(x)

where A is an entity type, a relationship or a defined set. Formulas are built

in a standard way with term symbols from the data model such as entity

types, relationships and attributes, variables like x, y, z and set theory opera-

tions like f(x) ∈ A, f−1(y) ⊆ B, g(f(x)) = h(x) and f(x).a = g(y).b, where

a and b are attributes of the result of entity f(x) and g(y) respectively2.

References

[1] W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen. Process

Mining and Verification of Properties: An Approach Based on Temporal

Logic. In On the Move to Meaningful Internet Systems 2005: CoopIS,

DOA, and ODBASE: OTM Confederated International Conferences,

CoopIS, DOA, and ODBASE, number 3760 in lncs, pages 130–147.

Springer, 2005.

[2] W.M.P. van der Aalst, B.F. van Dongen, C.W. Günther, R.S. Mans,

A.K. Alves de Medeiros, A. Rozinat, V. Rubin, M. Song, H.M.W. Ver-

beek, and A.J.M.M. Weijters. ProM 4.0: Comprehensive Support for

Real Process Analysis. In Application and Theory of Petri Nets and

Other Models of Concurrency (ICATPN 2007), volume 4546, pages

484–494, 2007.

2A function could be a partial function. If it is applied outside its domain, the value

⊥ (bottom) is returned.

43

[3] W.M.P. van der Aalst and K.M. van Hee. Workflow management: mod-

els, methods and systems. The MIT press, Cambridge, Massachusetts,

2002.

[4] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster,

G. Schimm, and A.J.M.M. Weijters. Workflow Mining: A Survey of

Issues and Approaches. Data and Knowledge Engineering, 47(2):237–

267, 2003.

[5] W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow

Mining: Discovering Process Models from Event Logs. IEEE Transac-

tions on Knowledge and Data Engineering, 16(9):1128–1142, 2004.

[6] R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models

from Workflow Logs. In Sixth International Conference on Extending

Database Technology, pages 469–483, 1998.

[7] G.-J. Ahn, Sandhu. R.S., M.H. Kang, and Park.J.S. Injecting rbac to

secure a web-based workflow system. In ACM Workshop on Role-Based

Access Control, pages 1–10, 2000.

[8] G. Antoniou, D. Billington, G. Governatori, and M.J. Maher. Rep-

resentation results for defeasible logic. ACM Trans. Comput. Logic,

2(2):255–287, 2001.

[9] G. Antoniou, N. Dimaresis, and G. Governatori. A System for Modal

and Deontic Defeasible Reasoning. In AI 2007: Advances in Artificial

Intelligence, number 4830 in LNCS, pages 609–613. Springer, 2007.

[10] D. Berg. Turning Sarbanes-Oxley Projects into Strategic Business Pro-

cesses. Sarbanes-Oxley Compliance Journal, November 2004.

44

[11] E. Bertino, E. Ferrari, and V. Atluri. The specification and enforcement

of authorization constraints in workflow management systems. ACM

Trans. Inf. Syst. Secur., 2(1):65–104, 1999.

[12] R.A. Botha and J.H.P. Eloff. Separation of duties for access control

enforcement in workflow environments. IBM Syst. J., 40(3):666–682,

2001.

[13] P.P. Chen. The Entity-Relationship Model: Towards a unified view of

Data. ACM Transactions on Database Systems, 1:9–36, Jan 1976.

[14] S. Goedertier, C. Mues, and J. Vanthienen. Specifying Process-Aware

Access Control Rules in SBVR . In Advances in Rule Interchange and

Applications, number 4824 in LNCS, pages 39–52. Springer, 2007.

[15] S. Goedertier and J. Vanthienen. Declarative Process Modeling with

Business Vocabulary and Business Rules. In On the Move to Meaningful

Internet Systems 2007: OTM 2007 Workshops, number 4805 in LNCS,

pages 603–612. Springer, 2007.

[16] G. Governatori and Z. Milosevic. A formal analysis of a business con-

tract language. Int. J. Cooperative Inf. Syst., 15(4):659–685, 2006.

[17] S. Green. Manager’s Guide to the Sarbanes-Oxley Act: Improving In-

ternal Controls to Prevent Fraud. Wiley, 2004.

[18] D.A. Haworth and L. R Pietron. Sarbanes-Oxley: Achieving compli-

ance by starting with ISO 17799. Information Systems Management,

23(1):73–87, 2006.

[19] G. Holzmann. Spin Model Checker. Addison Wesley, 2003.

45

[20] D.R. Kuhn. Mutual exclusion of roles as a means of implementing

separation of duty in role-based access control systems. In RBAC ’97:

Proceedings of the second ACM workshop on Role-based access control,

pages 23–30, New York, NY, USA, 1997. ACM.

[21] P.F. Linington, Z. Milosevic, J. Cole, S. Gibson, S. Kulkarni, and

S. Neal. A unified behavioural model and a contract language for ex-

tended enterprise. Data Knowl. Eng., 51(1):5–29, 2004.

[22] D.-R. Liu, M.-Y. Wu, and S.-T. Lee. Role-based authorizations for

workflow systems in support of task-based separation of duty. J. Syst.

Softw., 73(3):375–387, 2004.

[23] D. Nute. Defeasible logic. Handbook of logic in artificial intelligence and

logic programming, volume 3: Nonmonotonic reasoning and uncertain

reasoning, pages 353–395, 1994.

[24] Committee of Sponsoring Organizations. Internal control - integrated

framework.

[25] J. Paredaens, Paul De Bra, M. Gyssens, and D. van Gucht. The struc-

ture of the relational database model. Springer-Verlag New York, Inc.,

New York, NY, USA, 1989.

[26] W. Reisig. Petri Nets: An Introduction, volume 4 of Monographs in

Theoretical Computer Science: An EATCS Series. Springer-Verlag,

Berlin, 1985.

[27] A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Mea-

suring the Fit and Appropriateness of Event Logs and Process Models.

46

In BPM 2005 Workshops (Workshop on Business Process Intelligence),

volume 3812, pages 163–176, 2006.

[28] A. Rozinat and W.M.P. van der Aalst. Conformance Checking of

Processes Based on Monitoring Real Behavior. Information Systems,

33(1):64–95, 2008.

[29] S. Sadiq, G. Governatori, and K. Namiri. Modeling control objectives

for business process compliance. In Business Process Management,

number 4714 in lncs, pages 149–164. Springer, 2007.

[30] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access

control models. IEEE Computer, 29(2):38–47, 1996.

[31] R.T. Simon and M.E. Zurko. Separation of duty in role-based environ-

ments. Computer Security Foundations Workshop, 1997. Proceedings.,

10th, pages 183–194, Jun 1997.

[32] J. Wainer, A. Kumar, and P. Barthelmess. DW-RBAC: A formal secu-

rity model of delegation and revocation in workflow systems. Inf. Syst.,

32(3):365–384, 2007.

47

