
Managing Process Model Complexity -
Part I: Concrete Syntax

Marcello La Rosa1, Arthur H.M. ter Hofstede1, and Petia Wohed2

1 Queensland University of Technology, Australia
{m.larosa, a.terhofstede}@qut.edu.au

2 Stockholm University/KTH, Sweden
petia@dsv.su.se

Abstract. While Business Process Management (BPM) is an estab-
lished discipline, the increased adoption of BPM technology in recent
years has introduced new challenges. One challenge concerns dealing
with process model complexity in order to improve the understanding
of a process model by stakeholders and process analysts. Features for
dealing with this complexity can be classified in two categories: 1) those
that are solely concerned with the appearance of the model, and 2) those
that in essence change the structure of the model. In this paper we focus
on the former category and present a collection of patterns that general-
ize and conceptualize various existing features. The paper concludes with
a detailed analysis of the degree of support of a number of state-of-the-art
languages and language implementations for these patterns.

Key words: Process model, pattern, complexity, presentation

1 Introduction

Business Process Management (BPM) deals with the life-cycle of business pro-
cess models which includes their design, execution and analysis [39]. Through
the application of BPM technology, businesses may realize cost reductions, time
savings, and an increased agility to deal with change. The uptake and further
development of this technology has seen a surge in recent years. Despite ad-
vancements in the field of BPM, both in academia and in industry, there are
still challenges remaining that need to be dealt with in order to increase its
uptake and its scope of application.

One of these challenges concerns the management of complex process models.
Business process models may contain many elements which may have numerous
and intricate control-flow dependencies between them. The more complex a busi-
ness process model is, the harder it is to use it in the communication with the
stakeholders (e.g. to determine if it properly reflects their business practices), to
reason about it (both at design time and at runtime), and to evolve it over time
(due to unforeseen circumstances or due to changing business practices).

2 M. La Rosa et al.

There is a substantial body of literature on process model complexity and un-
derstandability on the one hand (e.g. [9, 21, 25, 28, 5, 35]) as well as on proposed
mechanisms to deal with managing this complexity on the other hand (e.g. [37,
38, 23, 3]). However, these mechanisms are often too language-specific or not
properly motivated. What is lacking is a clear overview of, and a motivation for,
the various features that exist to managing complexity in process models. Such
an overview could ultimately pave the way for more comprehensive support for
complexity management in process modeling languages, standards and tools.

In this paper we follow the established approach of capturing a comprehensive
range of desired capabilities through a collection of patterns (e.g. the well-known
workflow patterns [2] provide a high-level, language-independent description of
control-flow requirements in workflow languages). The patterns presented in this
paper capture features to manage process model complexity as they are found in
the literature, in process modeling languages or in their implementation. In order
to scope the work, focus is exclusively on complexity reduction features that af-
fect the appearance of a process model not its structure. Or, to put it differently,
the patterns are concerned with aspects of concrete syntax not abstract syntax
of a process model. The description of the patterns is language-independent, but
typically their realization in one or more existing approaches is used to reinforce
understanding and to demonstrate relevance. We conclude the paper with an
overview of the degree of support for the patterns in a number of well-known
process modeling languages and language implementations, thus providing an
insight into comparative strengths and weaknesses.

2 Background

Syntactically speaking, a process model is a connected directed graph which
contains a number of nodes and edges connecting them. The set of nodes can
be partitioned into a number of subsets. One well established partition used
by the Workflow Nets notation [4], consists of transitions and places. Another
partition, used in eEPCs [19, 11], consists of events, functions and connectors.
A third partition, applied in BPMN [30], consists of activities, gateways, and
events. Common for all process notations is that they have a node type that
captures the concept of task (in Workflow nets tasks are called transitions, in
eEPCs functions, in BPMN activities/tasks, etc).

Process models are almost always graphically represented. The symbols used to
represent the various types of nodes in the model are part of the concrete syntax
of the process modeling language.The abstract syntax of a process modeling
language is not concerned with representational aspects but deals with capturing
the various types of process elements and the relationships between them. Hence,
changing the graphical appearance of a process model (e.g. by rearranging nodes
or modifying the iconic representation of a certain node type) should not have
any consequences for its abstract syntax representation. In this paper focus is
exclusively on representational matters, hence on concrete syntax.

Managing Process Model Complexity - Part I: Concrete Syntax 3

In order to illustrate the various patterns, the BPMN (Business Process Modeling
Notation) standard is used throughout this paper. An overview of the graphical
representation of the main concepts of this notation can be found in Fig. 1. A
detailed knowledge of this standard is not required to understand the various
examples in this paper. For more information, the reader is referred to [30].

not cond.

cond.

Task
Catching

Link Event
Throwing
Link EventEnd EventStart Event

Sequence
Flow XOR-split XOR-joinAND-joinAND-split

Fig. 1. BPMN 1.2 modeling elements used in this paper.

3 Patterns for Concrete Syntax Modification

We identified eight patterns operating on the concrete syntax of a process model
and classified them according to the hierarchy in Fig. 2. Two layout patterns,
Layout Guidance and Layout Split, describe features to modify the process model
layout. Four highlight patterns outline visual mechanisms to emphasize certain
aspects or parts of a process model. These are Group Highlight, Graphical High-
light, and two annotation patterns: Pictorial Annotation and Textual Annota-
tion. Finally, Explicit Representation refers to the availability of explicit visual
representations for a process construct, while Naming Guidance refers to naming
conventions or advice to be used in a process model.

Explicit
Representation

Group

HighlightLayout

SplitGuidance

Concrete
Syntax

Patterns

Naming
Guidance

Annotation

Pictorial Textual

Graphical

Fig. 2. Patterns for concrete syntax modification.

In the following we provide a detailed description of each pattern including the
purpose, the rationale for its use (where available), its occurrence in languages,
tools and in the literature, an example of its realization in BPMN, and the
criteria used to evaluate how languages and tools support the pattern.

4 M. La Rosa et al.

Pattern 1 (Layout Guidance)

Description This pattern refers to the availability of layout conventions or
advice to organize the various model elements on a canvas. These include indi-
cations on the distribution (alignment) and orientation of modeling elements in
the space.

Purpose To reduce clutter, especially in large process models or models that
have undergone a number of updates.

Rationale Neat and tidy process models are generally easier to comprehend
than chaotic and cluttered ones [25]. Crossing edges negatively affect model
understanding [33].

Realization Some languages provide general guidelines on how a model should
be laid out on the canvas. eEPCs prescribe to model processes from top to
bottom [19], while the BPMN specification recommends “to pick a direction
of Sequence Flow, either left-to-right or top-to-bottom” as well as to “direct
the Message Flow at a 90◦ angle to the Sequence Flow” [30], p.30. Tool-wise,
we can distinguish three categories. Some tools such as IDS Sheer ARIS offer
sophisticated algorithms to layout both eEPCs and BPMN models, where el-
ements orientation, alignment and spacing can be customized. Other, such as
Oracle JDeveloper impose a fixed layout. A third category which includes the
YAWL Editor, Sparx Enterprise Architect (EA) and Pallas Athena Protos, pro-
vides little or no layout support. In the literature, the problem of finding an
optimal placement of model elements on the canvas has received quite some at-
tention. Alpfelbacher et al. [6] suggest to place related elements spatially close
to each other, Huotari et al. [17] and Purchase [33] point out that crossing
edges should be avoided if possible, while Jensen [18] suggests that incoming
and outgoing edges are placed on the opposite sides of a Colored Petri Net node
to improve readability. BPMN-specific layout algorithms have been discussed
in [20], while [14] provides a prototype implementation of a BPMN-Layouter
tool. Finally, initial work towards determining the influence of various layout
factors on process model understanding has been done in [35].

Example Fig. 3a shows a BPMN model that does not follow any layout guide-
line: i) the elements are not oriented in a consistent direction (e.g. the first two
tasks have a top-to-bottom orientation, while the remaining ones are oriented
from left-to-right); ii) subsequent elements are not closely positioned to each
other (e.g. task Create new entry is far from task Insert invoice details and from
the AND-split in-between); iii) there are several crossing edges. Fig. 3b shows the
same model after repositioning the elements according to the BPMN guidelines.

Evaluation Criteria A language achieves full support if it provides layout
conventions or advice. An implementation achieves full support if it provides
layout algorithms that either follow the language layout conventions/advice or
add proprietary extensions.

Managing Process Model Complexity - Part I: Concrete Syntax 5

a)

b)

no
mismatches

Create
new entry

Check
invoice
details

mismatch
exists

Block
invoice

invoice
present

invoice
not present

Create
new entry

Insert
invoice
details

Insert
customer

details
Invoice

in

Check
invoice
details

mismatch
exists

Invoice
out

Block
invoice

Mismatch
checking

invoice
present

invoice
not present

Invoice
in

Mismatch
checking

Insert
invoice
details

Insert
customer

details

Invoice
out

no
mismatches

Fig. 3. a) A BPMN model not following any layout guidelines. b) The same model
after applying the BPMN layout guidelines.

Pattern 2 (Layout Split)

Description This pattern refers to the availability of modeling constructs to
divide a model in different parts. Such a division may be a logical model partition
or purely necessitated by physical constraints, such as the size of the modeling
canvas or of the printing page.

Purpose To split large models into several pages for presentation purposes. To
reduce clutter in those models where crossing edges cannot be avoided.

Rationale Reducing model size positively affects model understanding [25].

Realization Some languages provide features to split a model in multiple parts.
For example, BPMN offers the Link Event to allow the flow between two Flow
Object elements to be graphically discontinued for space reasons, i.e. interrupted
after a source Flow Object and resumed before a target Flow Object. The cor-
responding construct in UML Activity Diagrams (ADs) is the Activity Edge
Connector while in eEPCs it is the ProcessInterface. In the literature, Effinger
et al. [13, 14] define a mechanism to split large BPMN models. The idea is to cut
those edges with numerous bends and crossings and insert two pointers at the
two ends of each cut edge. The objective is to obtain subgraphs of nearly equal
size while keeping the number of cut edges as low as possible.

Example The model in Fig. 3b captures the Invoice Processing fragment of
a larger, end-to-end order-to-cash process model, where Invoice Processing in
preceded by Ordering and followed by Delivery. This large model can thus be

6 M. La Rosa et al.

represented over multiple pages, e.g. one page for each logical part. Fig. 4 focuses
on the Invoice Processing part, connected to the other parts via BPMN Link
Events. Moreover, the Invoice Registration part inside Invoice Processing has
been modeled separately (logical separation). The essential thing is that all the
model parts translate to the same conceptual structure since the splitting is
applied to the model’s concrete syntax.

Evaluation Criteria A language achieves full support if it has a construct that
satisfies the pattern description. An implementation achieves full support if, in
addition to the auxiliary language constructs, it allows navigating between the
linked model parts. It rates as partial support if it allows the specification of
splitting constructs only.

no
mismatches

Check
invoice
details

mismatch
exists

Block
invoice

invoice
present

invoice
not present

A
(from Ordering)

Create
new entry

C
(to Delivery)

B.1
(from Invoice
Processing)

B.2
(to Invoice

Processing)

B.1
(to Invoice

Registration)

B.2
(from Invoice
Registration)

Invoice Processing

Invoice Registration

Invoice
in

Mismatch
checking

Invoice
out

Insert
invoice
details

Insert
customer

details

Fig. 4. An example of the use of Layout Split on the model in Fig. 3b.

Pattern 3 (Group Highlight)

Description This pattern refers to the availability of modeling constructs to
visually group a set of logically-related model elements, and add a comment to
characterize the group.

Purpose To visually accentuate a set of model elements based on some shared
property, e.g. grouping all elements that need revision or all elements that refer
to a given resource.

Realization BPMN is the only language that supports this pattern via the no-
tion of Grouping – a dashed-line, rounded corner rectangle with a name. The
elements in a BPMN Grouping are only grouped informally, without changing
the model semantics. The majority of modeling editors provide a drawing palette
to allow drawing a shape to group model elements, and to attach textual com-
ments to the drawing. For example, ARIS allows one to draw shapes such as
rectangles or circles, add a comment via the Free-form text feature, and group
the shape with the text in one element. Similarly, in Protos a modeling area
can be encircled via rectangles or ellipses. The background color of this area
can be changed and a text area can be added to the model to leave comments.
EA provides a non-UML element called System Boundary to define conceptual
boundaries from a visual perspective.

Managing Process Model Complexity - Part I: Concrete Syntax 7

Example Fig 5 shows the use of the BPMN Grouping construct to emphasize
all tasks related to the SAP System and all tasks that need revision, for the
model in Fig 3b.

Evaluation Criteria A language achieves full support if it has a construct that
satisfies the pattern description. An implementation achieves full support if it
has features that either follow from the language or add proprietary extensions.

no
mismatches

Create
new entry

Check
invoice
details

mismatch
exists

Block
invoice

invoice
present

invoice
not present

Invoice
in

Mismatch
checking

Insert
invoice
details

Insert
customer

details Invoice
out

To be revised

SAP System

Fig. 5. An example of Group Highlight using the BPMN Grouping construct.

Pattern 4 (Graphical Highlight)

Description This pattern refers to the availability of features to change the
visual appearance of model elements, such as shape, line thickness and type,
background color, font type and color.

Purpose To visually accentuate some properties or aspects of model elements.

Rationale Appearance properties such as colors can reduce the cognitive over-
head of associating syntactic elements with their semantics [22].

Realization eEPCs prescribe the use of different colors for each construct, e.g.
Functions are represented in green, Events in purple, Connectors in grey and
Positions in yellow. In Protos only the Status construct is colored in blue. BPMN
allows flexibility in elements’ size, color and line style, except for specific elements
such as throwing and catching events, for which specific guidelines are indicated.
The majority of modeling editors provide features to change the appearance of
model elements. Those that support eEPCs such as MS Visio, ARIS and Oryx,
visualize eEPC models in their default colors. In ARIS an element’s background
color, line thickness and line type can be changed, while in EA fonts’ color
can also be changed. Other tools such as Oryx and the YAWL Editor only allow
customizing the background color. In the literature, the use of colors is suggested
to identify edge ends and matching splits and joins in Workflow Nets [32], while
in [12] the idea of color-coding matching splits and joins is implemented for
the WoPeD tool. Moreover, in [13] a method is presented to represent different
types of BPMN elements by objects differing in color and shape; in [16] color
variations and line brightness are used to highlight the most significant behavior
of unstructured process models mined from logs, while in [1] line thickness is
suggested to indicate the most traversed process path.

8 M. La Rosa et al.

Example Fig 6 uses colors to highlight matching splits and joins, and thick
edges to highlight the most traversed path, for the model in Fig 3b.

Evaluation Criteria A language achieves full support if it provides guide-
lines to graphically emphasize certain elements. An implementation achieves full
support if it follows the language guidelines and provides features to customize
the visual appearance of modeling elements. It rates as partial support if the
appearance of model elements cannot be customized.

Create
new entry

Enter
invoice
details

Enter
customer

details
Receive
invoice

Check
invoice
details

mismatch
exists

Post
invoice

Block
invoice

Check
invoice

mismatches

invoice
present

invoice
not present

no
mismatches

Fig. 6. Two examples of Graphical Highlight: coloring and line thickening.

Pattern 5 (Pictorial Annotation)

Description This pattern denotes the availability of features to assign picto-
rial elements, such as icons or images, to modeling elements, without changing
semantics.

Purpose To strengthen model-specific concepts (e.g. annotating a receive task
with an envelope), or to add domain-specific information (e.g. annotating a task
with an exclamation mark to indicate criticality).

Rationale Associating pictorial elements with textual descriptions improves
model understanding [31].

Realization In BPMN 2.0 [29], a task can be annotated with an icon indicating
its type. For example, an empty envelope can be used to indicate a Receive task,
while a hand can be used to indicate a Manual task. Similarly, Protos makes
use of icons to distinguish among various activity types, e.g. Basic, Logistics,
Authorize. Features to assign icons or images to modeling elements are recurrent
in modeling editors. In some tools such as JDeveloper and Intalio|Designer icons
are automatically assigned to tasks and cannot be customized. For example, in
Intalio|Designer they are used to distinguish manual from automated BPMN
tasks. In other tools, such as EA and the YAWL Editor, icons or images are
fully customizable. For example, in EA one can replace the background of a
UML activity with an image. In the literature, Mendling et al. [24] recognize the
importance of annotating process models with icons to convey domain-specific
information, and propose a set of 25 icons to graphically represent 25 frequently
occurring task label categories.

Managing Process Model Complexity - Part I: Concrete Syntax 9

Example In Fig 7 each task from Fig 3b has been annotated with an icon. For
example, task “Block Invoice” features an icon indicating danger (explicative
purpose) while task “Check invoice details” features a lens (reinforcing purpose).

Evaluation Criteria A language achieves full support if it has a construct that
satisfies the pattern description. An implementation achieves full support if it
offers features to customize icons/images attached to modeling elements. It rates
as partial support if icons/images are fixed.

Pattern 6 (Textual Annotation)

Description This pattern denotes the availability of features to visually repre-
sent free-form text in the canvas, which can be attached to modeling elements
without changing semantics.

Purpose To add domain-specific information (e.g. annotating an automated
task with a text caption to explicate the task’s inner working).

Realization BPMN is the only language providing a visual construct to attach
free-form text to modeling elements called Text Annotation. This construct is
supported by the main BPMN editors (see e.g. Intalio|Designer, ARIS and Oryx).
Many modeling editors offers proprietary features to visualize free-form text, in
order to compensate for those languages such as UML ADs and eEPCs, which
do not support this pattern. For example, EA offers sticky notes for UML ADs,
ARIS and Protos have text areas while Oryx has Text Notes for eEPCs.

Example The model in Fig 7 is also annotated with text captions to highlight
those tasks that require access to an SAP system, to list all possible mismatches,
and to indicate the procedure to follow in case of blocked invoices (all with
explicative purpose).

Evaluation Criteria A language achieves full support if it has a construct that
satisfies the pattern description. An implementation achieves full support if it
supports the language’s visual construct or provides proprietary features.

Invoice
out

Insert
customer

details

Insert
invoice
details

Mismatch
checking

Invoice
in

Client needs
be assessed
against financial
policies

SAP System

Possible mismatches:
1) wrong client details

2) wrong payment details
3) invoice backdated

no
mismatches

Create
new entry

Check
invoice
details

mismatch
exists

Block
invoice

invoice
present

invoice
not present

SAP System

SAP System

Fig. 7. Examples of Pictorial and Textual Annotations for the model in Fig. 8b.

10 M. La Rosa et al.

Pattern 7 (Explicit Representation)

Description This pattern denotes the ability to capture process modeling con-
cepts via a dedicated graphical notation.

Purpose To visualize and distinguish the various ingredients of a process model,
not necessarily through a single view.

Rationale Explicit representation can reduce the cognitive overhead of associ-
ating syntactic elements to their semantics [22].

Realization The majority of process modeling languages provide graphical no-
tations for a subset of their concepts only. In UML ADs, AddStructuralFea-
tureValueAction and ApplyFunctionAction are two examples of concepts that are
only represented textually. Similarly, in BPMN 1.2 the various task types (e.g.
Receive, Service, Manual), and the difference between Embedded and Reusable
sub-process, are two examples of concepts that can only be distinguished via a
task’s textual attribute. Although these concepts have now been given a graph-
ical notation in BPMN 2.0, still there are numerous element attributes that do
not have one. In YAWL none of the concepts related to data and resourcing
aspects are visually represented. In Protos joins and splits are always subsumed
by an activity’s multiple incoming, resp., outgoing edges. This is the same in
Petri Nets for AND joins and splits. Only a few languages such as eEPCs and
Workflow Nets, have a graphical notation for all their modeling concepts, al-
though they feature less of them. A third class of languages including BPEL,
XPDL and languages from the past such as BPML and XLANG, does not have
a graphical notation. In the case of BPEL, the majority of editors provide a pro-
prietary graphical notation (see e.g. JDeveloper or the Eclipse BPEL Editor),
while others provide a BPMN skin to a BPEL model (e.g. Intalio|Designer). Out
of the examined tools, Protos is the only one providing three different views of
a process model in the canvas, such as the control-flow, the involved data and
human roles.

Example The models in Fig 3-7 are all examples of process models whose mod-
eling concepts (task, gateway, events, sequence flow) are explicitly represented
via a dedicated graphical notation.

Evaluation Criteria A language achieves full support if all its concepts have a
dedicated graphical notation. It rates as partial support if some concepts are im-
plied and do not have dedicated graphical notation. An implementation achieves
full support if it supports all the language graphical notations or provides propri-
etary notations to compensate for the lack of explicit graphical representation.

Pattern 8 (Naming Guidance)

Description This pattern refers to the availability of naming conventions or
advice for model elements’ labels, which can be syntactic (e.g. using a verb-
object style) or semantic (e.g. using a domain-specific vocabulary).

Purpose To bring clarity and convey domain-specific information.

Managing Process Model Complexity - Part I: Concrete Syntax 11

Rationale Names that follow a verb-object style are less ambiguous [26]. Names
that better convey the modeler’s intention improve understanding [8].

Realization None of the languages examined provides naming conventions or
advice. Tool-wise, renaming features for task and process labels are explored (but
not implemented) in [38], as part of a set of refactoring mechanisms for process
models. A first effort towards the automation of renaming mechanisms is made in
[7], where a prototype implementation is shown that can enforce specific naming
conventions for eEPC elements, via thesauri and linguistic grammars. However,
major tools still neglect naming guidelines, the only exception being made by the
ARIS documentation [11] which indicates general semantic guidelines for eEPCs
(e.g. avoiding generic verbs such as “to process”). On the other hand, the problem
of establishing naming conventions for task names in process models has gained
growing attention in academia and in the industry. From a syntactic perspective,
Mendling et al. [26] conducted a systematic study of different syntactic styles
for task names in process models. The result is that task names in the verb-
object style are perceived as less ambiguous and more useful than names in
other styles (e.g. action-noun). The use of the verb-object style for task names is
also proposed as a modeling guideline in [27] and in [36]. Silver [36] also proposes
naming guidelines for gateways and certain types of events in BPMN 2.0. From
a semantic perspective, Becker et al. [8] envisage using a business term catalogue
to establish and relate the main terms in an organization, which can be filtered
depending on a specific user group. Rosemann [34] further develops this idea and
recommends a preparatory step to process modeling where the involved terms
are separately captured in a hierarchy with their semantic relations. Using a
controlled vocabulary taken from a domain-specific reference model is suggested
in [15], while in [26] the possibility of using a general data dictionary to control
the object part of verb-object names is also envisaged. Regarding the verb part,
Mendling et al. [24] propose a set of 25 frequently occurring verbs of general use,
which they extracted from the SAP R/3 reference model [10] and generalized
via established verb taxonomies.

Example Fig. 8 shows the model in Fig. 3b after renaming all activity labels in
the verb-object style.

Selection Criteria A language achieves full support if it provides naming con-
ventions or advice. An implementation achieves full support if it provides re-
naming capabilities that either follow the language naming conventions/advice
or add proprietary extensions. It rates as partial support if it only provides
naming conventions/advice.

4 Benchmarking

We report the results of evaluating a number of languages and tools against
their support for the identified patterns. The criteria used are those presented
in Section 3. In particular, for a tool the rationale was to measure the extent by
which it facilitates the support for a pattern, as it is offered by a language. For

12 M. La Rosa et al.

no
mismatches

Create
new entry

Enter
invoice
details

Enter
customer

details
Receive
invoice

Check
invoice
details

mismatch
exists

Post
invoice

Block
invoice

Check
invoice

mismatches

invoice
present

invoice
not present

Fig. 8. Renaming the activity labels in Fig. 3 according to the verb-object style.

example, for Splitting, we checked if an editor allows one to jump between the
splitting constructs provided by the language. The languages selected for this
evaluation are mainstream process modeling languages deriving from standard-
ization efforts, large-scale adoptions or established research initiatives. Specif-
ically, we selected four languages for conceptual process modeling (UML ADs
2.1.1, eEPCs, BPMN 1.2 and BPMN 2.0) and four languages for executable pro-
cess modeling (BPMN 2.0, BPEL 1.2/2.0, YAWL 2.0 and Protos 8.0.2). For each
language, we also evaluated at least one supporting modeling editor. For UML
ADs 2.1.1 we evaluated EA 7.1; for eEPCs and BPMN 1.2 we evaluated ARIS
7.1 and Oryx 2.0 beta; for BPEL 1.2 JDeveloper 11.1.1.1.0; for YAWL 2.0 the
YAWL Editor 2.0 and for Protos the Protos editor 8.0.2. We did not evaluate
any editor for BPMN 2.0 since at the time of writing there was no mature imple-
mentation for this specification. Table 9 shows the results of the analysis, where
tool evaluations are shown next to the evaluations of their languages, except for
Protos, where the language cannot be separated from its implementation.

U
M

L
A

D
 2

.1

En
te

rp
ri

se

A
rc

h
it

e
ct

 7
.5

e
EP

C
s

A
R

IS
 7

.1

(e
EP

C
s)

O
ry

x
2

.0

(e
EP

C
s)

B
P

M
N

 1
.2

A
R

IS
 7

.1

(B
P

M
N

 1
.2

)

O
ry

x
2

.0

(B
P

M
N

 1
.2

)

B
P

M
N

 2
.0

B
P

EL
 1

.2
/2

.0

JD
e

ve
lo

p
e

r

1
1

.1
.1

.1
.0

Y
A

W
L

2
.0

Y
A

W
L

Ed
it

o
r

2
.0

P
ro

to
s

8
.0

.2

1
Layout
Guidance

- - + + - + + - + - + - +/- -

2
Layout
Split

+ +/- + + +/- + + + /- + - - - - -

3
Group
Highlight

- + - + - + + + + - - - - +

4
Graphical
Highlight

- + + + + + + + + - +/- - + -

5
Pictorial
Annotation

- + - - - - - - + - +/- - + +/-

6
Textual
Annotation

- + - + + + + + + - - - - +

7
Explicit
Representation

+/- + + + + +/- + + +/- - + +/- + +/-

8
Naming
Guidance

- - - +/- - - - - - - - - - -

Fig. 9. Evaluation results.

From the table, we can make the following observations. First, the selected tools
generally offer wider pattern support than the respective languages. Examples
are the differences between EA and UML ADs, between eEPCs and ARIS for
eEPCs, and between YAWL and the YAWL Editor. A possible reason is that
languages typically focus on defining the process syntax and semantics, but not

Managing Process Model Complexity - Part I: Concrete Syntax 13

on visualization features that are convenient in a modeling environment. When
implementing support for these languages in a modeling editor, visualization fea-
tures become a major concern. Clearly, language support being equal, the more
sophisticated visualization features an editor can offer, the more competitive it
is on the market. Second, the tools that are primarily developed for concep-
tual process modeling provide better patterns support than those developed for
executable process modeling. For example, ARIS for BPMN fully supports six
patterns and partially supports one, while Protos offers full support for only two
patterns, and partial support for other two patterns. This can be explained by
the fact that the visualization features in the second class of tools are not the
main focus, as opposed to other features such as data specification and appli-
cation integration. Third, we can observe an increase in patterns support from
UML ADs to eEPCs, BPMN 1.2 and finally to BPMN 2.0, which clearly re-
flects the evolution of process modeling languages. On the other hand, BPEL
is the only language that does not support any pattern. This is justified by the
fact that BPEL does not define an official graphical notation. Forth, the lim-
ited support for Pictorial Annotation can be explained by the recent advances
in computer graphics—pictorial annotations were not possible a decade ago—
and the growing need for decorating process models with attributes familiar to
business users. Finally, the even less support for Naming Guidance derives from
the fact that traditionally the development of modeling languages has not been
concerned with the use of linguistic support such as ontologies. However, we can
observe a growing academic interest in this pattern from the literature.

5 Conclusion

In this paper, we conducted a systematic analysis of features that exist for man-
aging complexity of process models, where these features affect the concrete
syntax but not the abstract syntax of a model. The result of the analysis took
the form of a collection of patterns and an evaluation of state-of-the-art lan-
guages and language implementations in terms of these patterns. While one
cannot prove that the patterns collection is complete (as there is no reference
framework that could be used for this purpose), confidence about the compre-
hensiveness of this patterns collection is derived from the careful consideration
of the relevant literature, standards and tools.

This pattern-based analysis of the state-of-the-art in process modeling, identified
relative strengths and weaknesses among the languages and tools considered.
This analysis may provide a basis for further language and tool development.
For example, contemporary tools could provide support for naming conventions
or guidelines from both a syntactic and a semantic perspective.

It is worthwhile to conduct further research into the way the various features
presented in this paper can be best used. In particular, it should be considered
how multiple features can be combined to provide a better understanding of
a process model. Ideally this would involve the conduct of extensive empirical

14 M. La Rosa et al.

studies. Subsequent work is planned to look at features and approaches for man-
aging process model complexity which affect the abstract syntax of a process
model.

References

1. W.M.P. van der Aalst. TomTom for Business Process Management (Tom-
Tom4BPM). In CAiSE, volume 5565 of LNCS, pages 2–5. Springer, 2009.

2. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

3. W.M.P. van der Aalst and K.B. Lassen. Translating unstructured workflow pro-
cesses to readable BPEL: Theory and implementation. Inf. Softw. Technol.,
50(3):131–159, 2008.

4. W.M.P. van der Aalst and K. M. van Hee. Workflow Management: Models, Meth-
ods, and Systems. MIT Press, 2002.

5. A.A. Abdul, G.K.T. Wei, G.M. Muketha, and W.P. Wen. Complexity Metrics for
Measuring the Understandability and Maintainability of Business Process Mod-
els using Goal-Question-Metric (GQM). Int. Journal of Computer Science and
Network Security, 8(5):219–225, 2008.

6. R. Alpfelbacher, A. Knopfel, P. Aschenbrenner, and S. Preetz. FMC Visual-
ization Guidelines. http://www.fmc-modeling.org/visualization_guidelines,
2006. Accessed: Nov 2009.

7. J. Becker, P. Delfmann, S. Herwig, L. Lis, and A. Stein. Towards increased com-
parability of conceptual models – enforcing naming conventions through domain
thesauri and linguistic grammars. In Proceedings of ECIS, 2009.

8. J. Becker, M. Rosemann, and C. von Uthmann. Guidelines of Business Process
Modeling. In Business Process Management, volume 1806 of LNCS, pages 30–49.
Springer, 2000.

9. J. Cardoso, J. Mendling, G. Neumann, and H.A. Reijers. A Discourse on Com-
plexity of Process Models. In Business Process Management Workshops, volume
4103 of LNCS, pages 117–128. Springer, 2006.

10. T. Curran and G. Keller. SAP R/3 Business Blueprint: Understanding the Busi-
ness Process Reference Model. Upper Saddle River, 1997.

11. R.B. Davis. Business Process Modelling with ARIS: A Practical Guide. Springer,
2001.

12. A. Eckleder, T. Freytag, J. Mendling, and H.A. Reijer. Realtime Detection and
Coloring of Matching Operator Nodes in Workflow Nets. In Algorithms and Tools
for Petri Nets, pages 56–61. CEUR, 2009.

13. P. Effinger, M. Kaufmann, and M. Siebenhaller. Enhancing Visualizations of Busi-
ness Processes. In Graph Drawing, volume 5417 of LNCS, pages 437–438. Springer,
2008.

14. P. Effinger, M. Siebenhaller, and M. Kaufmann. An Interactive Layout Tool for
BPMN. E-Commerce Technology, 0:399–406, 2009.

15. R. Eshuis and P.W.P.J. Grefen. Constructing customized process views. Data &
Knowledge Engineering, 64(2):419–438, 2008.

16. C. W. Günther and W.M.P. van der Aalst. Fuzzy Mining - Adaptive Process Sim-
plification Based on Multi-perspective Metrics. In Business Process Management,
volume 4714 of LNCS, pages 328–343. Springer, 2007.

17. J. Huotari, K. Lyytinen, and M. Niemelä. Improving graphical information system
model use with elision and connecting lines. ACM TCHI, 11(1):26–58, 2004.

Managing Process Model Complexity - Part I: Concrete Syntax 15

18. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. EATCS monographs on Theoretical Computer Science. 1996.

19. G. Keller, M. Nüttgens, and A.-W. Scheer. Semantische Processmodellierung auf
der Grundlage Ereignisgesteuerter Processketten (EPK). Technical report, Uni-
versity of Saarland, Germany, 1992 (in German).

20. I. Kitzmann, C. König, D. Lübke, and L. Singer. A Simple Algorithm for Automatic
Layout of BPMN Processes. volume 0, pages 391–398. IEEE Computer Society,
2009.

21. R. Laue and V. Gruhn. Technologies for Business Information Systems, chap-
ter Approaches for Business Process Model Complexity Metrics, pages 13–24.
Springer, 2007.

22. G.L. Lohse. A Cognitive Model for Understanding Graphical Perception. Human-
Computer Interaction, 8:353–388, 1993.

23. J. Mendling, B.F. van Dongen, and W.M.P. van der Aalst. Getting rid of OR-joins
and multiple start events in business process models. Ent. IS, 2(4):403–419, 2008.

24. J. Mendling, J. Recker, and H.A. Reijers. On The Usage of Labels and Icons
in Business Process Modeling. Int. Journal of Information System Modeling and
Design, 2009. to appear.

25. J. Mendling, H.A. Reijers, and J. Cardoso. What Makes Process Models Under-
standable? In Business Process Management, volume 4714 of LNCS, pages 48–63.
Springer, 2007.

26. J. Mendling, H.A. Reijers, and J. Recker. Activity Labeling in Process Modeling:
Empirical Insights and Recommendations. Information Systems, 2009. to appear.

27. J. Mendling, H.A. Reijers, and W.M.P. van der Aalst. Seven Process Modeling
Guidelines (7PMG). Information and Software Technology, 52(2):127–136, 2010.

28. J. Mendling and M. Strembeck. Influence Factors of Understanding Business Pro-
cess Models. In Business Information Systems, LNBIP, pages 142–153. Springer,
2008.

29. OMG. Business Process Model and Notation (BPMN), ver. 2.0 (draft),
May 2009. http://www.bpmnstyle.com/wp-content/uploads/BPMN%202-
0%20Specification%20BMI2009-05-03.pdf.

30. OMG. Business Process Modeling Notation (BPMN), ver. 1.2, January 2009.
http://www.omg.org/docs/formal/09-01-03.pdf.

31. A. Paivio. Dual Coding Theory: Retrospect and Current Status. Canadian Journal
of Psychology, 45(3):255–287, 1991.

32. M.D.L. Proano. Visual Layout for Drawing Understandable Process Models. Mas-
ter’s thesis, Eindhoven University of Technology, 2008.

33. H.C. Purchase. Which Aesthetic has the Greatest Effect on Human Understanding?
In Graph Drawing, volume 1353 of LNCS, pages 248–261. Springer, 1997.

34. M. Rosemann. Process Management: A guide for the design of business processes,
chapter Preparation of process modeling, pages 41–78. Springer, 2003.

35. M. Schrepfer, J. Wolf, J. Mendling, and H.A. Reijers. The Impact of Secondary
Notation on Process Model Understanding. In PoEM, pages 161–175. IFIP, 2009.

36. B. Silver. BPMN Method & Style. Cody-Cassidy Press, 2009.
37. A. Streit, B. Pham, and R. Brown. Visualization Support for Managing Large

Business Process Specifications. In BPm, pages 205–219, 2005.
38. B. Weber and M. Reichert. Refactoring Process Models in Large Process Reposi-

tories. In CAiSE, volume 5074 of LNCS. Springer, 2008.
39. M. Weske. Business Process Management: Concepts, Languages, Architectures.

Springer, 2007.

