
APROMORE: An Advanced Process Model Repository

Marcello La Rosa∗,a, Hajo A. Reijersb, Wil M.P. van der Aalstb, Remco M. Dijkmanb, Jan Mendlingc, Marlon Dumasd, Luciano
Garcı́a-Bañuelosd

aQueensland University of Technology, GPO Box 2434, Brisbane 4001, Australia
bEindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands

cHumboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
dUniversity of Tartu, J Liivi 2, Tartu 50409, Estonia

Abstract

Business process models are becoming available in large numbers due to their widespread use in many industrial applications such
as enterprise and quality engineering projects. On the one hand, this raises a challenge as to their proper management: How can it
be ensured that the proper process model is always available to the interested stakeholder? On the other hand, the richness of a large
set of process models also offers opportunities, for example with respect to the re-use of existing model parts for new models. This
paper describes the functionalities and architecture of an advanced process model repository, named APROMORE. This tool brings
together a rich set of features for the analysis, management and usage of large sets of process models, drawing from state-of-the
art research in the field of process modeling. A prototype of the platform is presented in this paper, demonstrating its feasibility, as
well as an outlook on the further development of APROMORE.

Key words: repository, business process model, process collection.

1. Introduction

Business process modeling has become a very popular form
of conceptual modeling (Davies et al., 2006). A process model
describes, often in some graphical notation, how a certain pro-
cedure is composed out of different tasks, which resources are
involved in carrying out these tasks, and which objects are be-
ing manipulated (Curtis et al., 1992; Giaglis, 2001). One can
roughly distinguish between process models that describe pro-
cedures as they exist (e.g., to show compliance with quality
standards), or that capture alternative ways to produce a par-
ticular product or service (e.g., as blueprints for improvement
projects). A process model can be used both within the specific
context of IT deployment and for more business-oriented pur-
poses (Bandara et al., 2005). Respective examples for these two
types of process model usage are the configuration of a work-
flow management system, and the support of an activity-based
calculation of a product’s cost price.

The broad application of process modeling has stimulated
contemporary organizations to create dozens, hundreds, and
even thousands of process models (Becker et al., 2000; Gulla
and Brasethvik, 2000; Reijers et al., 2009; Siegeris and Grasl,
2008). With such massive collections of of process models, an
apparent issue is how to sensibly deal with these, in particular

∗Corresponding author. Tel.: +61731389482; fax: +61731389390.
Email addresses: m.larosa@qut.edu.au (Marcello La Rosa),

h.a.reijers@tue.nl (Hajo A. Reijers), w.m.p.v.d.aalst@tue.nl (Wil
M.P. van der Aalst), r.m.dijkman@tue.nl (Remco M. Dijkman),
jan.mendling@wiwi.hu-berlin.de (Jan Mendling),
marlon.dumas@ut.ee (Marlon Dumas), lgbanuelos@gmail.com (Luciano
Garcı́a-Bañuelos)

when considering that models may need to be consulted, up-
dated, and re-used over longer periods of time by various stake-
holders. This paper proposes an architecture for an Advanced
Process Model Repository – APROMORE – which offers a rich
set of features to maintain, analyze, and exploit the content of
process models. The features that we envision go well beyond
the data-management oriented functionalities that are offered
by commercial process repositories. Instead, the emphasis is on
sophisticated, state-of-the art functionalities such as advanced
model-based analysis, comparison, unification, and consolida-
tion. These functionalities may operate on separate and/or sets
of related process models.

APROMORE has been implemented as an open-source
SaaS (Software-as-a-Service). It is thought to be of interest
to practitioners who wish to extract greater value from their
process models’ content, technology vendors that wish to ex-
tend their offerings by tapping into APROMORE’s features,
and researchers who wish to benefit from synergies by incor-
porating their techniques in the platform and re-using available
techniques.

The structure of this paper is as follows. Section 2 provides
a background on data repository technologies and specifically
on process model repositories. This paves the way for Section 3
and Section 4, which respectively describe the envisioned main
features of APROMORE and the service-oriented architecture
to support and realize these features. Section 5 presents the
internal process definition adopted by APROMORE, which is
essential to deal with the multitude of process modeling nota-
tions. Section 6 provides a glimpse of the current prototype
implementation and describes two typical application scenarios

Preprint submitted to Expert Systems with Applications October 8, 2009

that are supported by this implementation. Finally, Section 7
concludes the paper with a summary and an outlook on future
work in this area.

2. Background

This section discusses the background of advanced process
model repositories. In Section 2.1 we present concepts and so-
lutions related to general data repositories. In Section 2.2 we
then focus on commercial and academic process model reposi-
tories.

2.1. Data Repositories

Data repositories have been discussed for quite some time
in the database research community. The term repository in
this context refers to an extension of a database management
system with an explicit control layer with a strong emphasis on
metadata management. A repository can then be defined as a
“shared database of information about engineered artifacts pro-
duced and used by an enterprise” (Bernstein and Dayal, 1994).
Database repositories are closely interrelated with the manage-
ment of static data models. Model management addresses chal-
lenges in this area on different levels, from representational
questions on a structural level, to processing issues, and topics
of organizational embeddedness in the socio-technical system
of an enterprise (Dolk and Konsynski, 1984; Blanning, 1993).
The main concepts of model management are models and map-
pings between models (Bernstein, 2003). The major share of
mappings can be related to the areas of data warehousing (Jarke
et al., 1999) and schema integration (Melnik et al., 2003). Re-
search in all these areas is well-established for static data mod-
els, but an overarching approach for process model repositories
with integrated model management functionalities is still miss-
ing these days.

2.2. Process Model Repositories

Process model repositories have been designed both with
a focus on workflow execution and on conceptual modeling.
In an execution environment, the major focus is on the provi-
sion of features for the definition of process control-flow, data
structures, resources, and program interfaces (Leymann and Al-
tenhuber, 1994). These main aspects are also present in con-
temporary BPM tools, but extended e.g. with discovery com-
ponents for dynamic composition (Weber et al., 2007). In con-
trast, the focus of conceptual modeling frameworks is more on
extension features. For example, IDS Scheer’s ARIS process
modeling tool supports the extension of the process metamodel
along with customization of symbols (Scheer and Nüttgens,
2000)1. Standard features include model creation, modification
and deletion, accompanied by simple lexical search (e.g. search
all models containing ‘Shipment Payment’) and reporting func-
tionalities (Lee and Joung, 2000). Similar functionalities are

1www.aris.com

offered by ADONIS (Karagiannis and Kühn, 2002). Other solu-
tions, such as Lombardi’s Blueprint2 and the ARIS Governance
Engine, allow users to visualize changes between multiple ver-
sions of a process model. All these systems also offer access
control. Specific requirements on a distributed environment in-
cluding access rights are discussed in (Theling et al., 2005).

The application of semantic technologies has been consid-
ered from various angles for process repositories. Work on the
commercial tool Semtalk has early recognized the potential of
formal ontologies for adding and dynamically changing meta-
models in a process repository (Fillies et al., 2003). Formal
ontologies are also used in the work of Klein and Bernstein
(2004). The authors utilize extensive metadata in the process
repository for reasoning and process model retrieval. For query-
ing process repositories, they define the Process Query Lan-
guage (PQL) (Klein and Bernstein, 2004). Repositories also
play an important role for an overarching concept of Seman-
tic Business Process Management (SBPM) (Hepp et al., 2005).
In (Karastoyanova et al., 2008), the authors identify modeling,
system configuration, execution and analysis as key features of
a respective SBPM architecture. This architecture builds on
three layers: persistence layer, service layer (including lock-
ing, version control, and rule inference), and a repository API
on top.

3. Capabilities of an advanced process model repository

Besides the standard repository functionalities currently of-
fered by commercial and academic products, such as check-
in/check-out, access control, simple search queries, there are
several functional areas that can be envisioned when consider-
ing advanced support for dealing with process model collec-
tions. In this section, we distinguish four areas to discuss such
advanced features: i) evaluation, ii) comparison, iii) manage-
ment, and iv) presentation, and use this classification to propose
the capabilities of APROMORE, as reported in Table 1.

As will be shown, this proposal builds on a large set of exist-
ing contributions in terms of approaches and techniques which
can be adapted to be incorporated in APROMORE. The exis-
tence of the various approaches and techniques demonstrates
the potential power of APROMORE. It should be noted, how-
ever, that each of these contributions focus only on a small piece
of the overall landscape of functionalities we envision, and tend
to look at process models in isolation, rather than looking at a
process model in relation to other models. Moreover, the major-
ity of these approaches and techniques has been devised to work
for specific process modeling languages only. Our goal is to
provide a wide range of model-independent functionalities that
can be directly applied to contemporary process notations such
as BPMN, EPCs, YAWL, WS-BPEL, WF-nets, Protos, etc.

3.1. Evaluation
Evaluation is concerned with establishing the adherence of

process models to various quality notions. This area includes

2www.lombardisoftware.com/bpm-blueprint-product.php

2

Evaluation Comparison Management Presentation
Quality analysis Similarity search Harmonization-driven creation Abstraction

Correctness analysis Conformance analysis Pattern-based creation Secondary Notation
Performance analysis Pattern-based analysis Reference-based completion Reporting

Pattern-based completion
Individualization
Extension control

Table 1: Classification of advanced process model repository functionalities according to service areas.

three topics: correctness analysis, performance analysis, and
usability analysis. There is a rich body of knowledge that
discusses correctness properties like liveness, boundedness or
soundness, mainly based on Petri net concepts (Murata, 1989;
Aalst, 1996; Hee et al., 2006). Empirical research has shown
that process model collections from practice typically include a
substantial rate of error models (Mendling, 2009). As shown in
(Fahland et al., 2009) there are mature verification approaches
available. However, these are rarely supported by commercial
tools.

Performance analysis is also a well-established discipline
with its roots in operations research and operations manage-
ment (Anupindi et al., 1999). However, it is often impractical
to get meaningful durations, data on execution times and proba-
bilities of alternative branches for performance analysis. More-
over, existing models of human behavior in organizations are
too simplistic as demonstrated in Aalst et al. (2010). Recent re-
search derives simulation parameters from operational systems
using process mining techniques (Rozinat et al., 2008). Such
features are still missing in commercial tools.

The evaluation of process models has become subject to us-
ability considerations. Research on process model understand-
ing aims to identify the factors that foster or impede model qual-
ity (Mendling et al., 2007). Structural metrics such as size or
complexity have proven to be closely connected with under-
standing and error probability (Mendling, 2008). Process mod-
eling guidelines such as the Seven Process Modeling Guide-
lines (7PMG) (Mendling et al., 2009b) or (Becker et al., 2000)
have been proposed. Future tools might directly support them
by keeping track of complexity metrics.

3.2. Comparison

Comparison offers capabilities to determine similarities be-
tween models or identify relevant patterns. This area covers
the topics of similarity search, conformance analysis, patterns-
based analysis and extension analysis.

The heterogeneous representation of comparable behavior
has raised the issue of similarity calculation (Dijkman, 2007;
Dijkman et al., 2009). In essence, process model similarity
determines how close the behavior of two process models is.
It can be associated with syntactical, semantical, and contex-
tual aspects of activities in a process model (van Dongen et al.,
2008). Taking process behavior into account yields better re-
sults than classical metadata based process query techniques
such as (Momotko and Subieta, 2004; Klein and Bernstein,

2004). Query languages such as BPMN-Q (Awad et al., 2008)
can use similarity calculations for ranking query results.

The calculation of similarity is on a conceptual level closely
related to checking whether certain patterns or process frag-
ments are contained in process models (pattern-based anal-
ysis). Dedicated query languages such as BPMN-Q or PQL
(Klein and Bernstein, 2004) support the formulation of queries
to find such patterns.

Conformance analysis evaluates to which extent an input
model conforms to a reference process model in a given do-
main. Respective research is discussed in (de Medeiros et al.,
2008).

3.3. Management

Management refers to different ways to create, modify and
complete process models, potentially based on existing content.

Harmonization-driven creation uses merging algorithms to
create a new process from a set of similar models (which can be
retrieved via similarity analysis). Related work has discussed
process model integration techniques (Aalst and Basten, 2001;
Preuner et al., 2001; Grossmann et al., 2005; Mendling and Si-
mon, 2006; Gottschalk et al., 2008), but these techniques are
still embryonic and only work for specific process modeling
languages. Moreover, commercial tool support is still missing.
Pattern-based creation allows one to create a process model
based on the composition of a set of process fragments (so
called “business patterns”) for a specific domain. The general
idea of creating a process model based on predefined building
blocks has been presented in (Thom et al., 2007).

Individualization relates to the area of configurable process
models (Rosemann and Aalst, 2007; La Rosa, 2009). It builds
on algorithms to derive a correct process model from a con-
figured process model (Aalst et al., 2009), potentially covering
control flow, data and resources involved in a process (La Rosa
et al., 2008).

Over time new versions of reference models may be
shipped, e.g. resulting from bug-fixes or changes to legislative
rules. Similarly, a reference model individualization may also
be extended, e.g. to cover customer requirements that are not
captured by the reference process model. In this context, exten-
sion control is required. It has to establish extension points to
control the evolution of configurable reference models and of
their individualizations, such that the two types of models can
be kept in synchronization. This idea is illustrated in (Balko
et al., 2009) but it has not yet been implemented.

3

3.4. Presentation

Presentation provides support for improving the under-
standing of large process models and collections thereof. It
relates to useful abstraction mechanisms, secondary notations
(color, size, etc.), and reporting facilities.

Abstraction is an important concept to achieve a task-
oriented presentation of content for a particular user of a pro-
cess repository. Different abstraction concepts such remov-
ing infrequent paths and activities and automatically collaps-
ing nodes based on high cohesion/low coupling strategies have
been proposed for the simplification and understandability of
process models (Günther and Aalst, 2007; Streit et al., 2005;
Eshuis and Grefen, 2008; Polyvyanyy et al., 2008).

Secondary notation (Green and Petre, 1996) is a powerful
tool to emphasize relevant information without touching the
formal structure of a process model. It includes the use of color
palettes, e.g. by highlighting the most followed process flow de-
pending on a given user context (Aalst, 2009), icons (Mendling
et al., 2009a), and the change of the graph layout. The impor-
tance of graph layout is well understood in the conceptual mod-
eling area (Ware et al., 2002; Schrepfer et al., 2009). Specific
layout requirements of BPMN (Object Management Group,
2008) models have been recently discussed in (Kitzmann et al.,
2009; Effinger et al., 2009).

Finally, reporting provides a range of model statics such as
number of users or frequency of decisions, to accompany the
more traditional visual representation of process models.

The four functional areas that have been discussed up to
this point – evaluation, comparison, management, and presen-
tation – characterize the main types of functionalities that can
be offered by an advanced process model repository. We fore-
see scenarios where end users will be combining elements from
different functional areas. For example, the result of a process
model evaluation could lead to an improvement plan describing
a number of modifications on the process model (management)
to align the latter to a reference model (comparison). Or more,
after evaluating the quality of a collection of process models,
the best performing models are selected and compared to each
other in order to detect similarities. This result is used to merge
the selected models into a configurable reference model (man-
agement), which is then presented to the user via a combination
of abstraction techniques.

In the next section, we describe the architecture of APRO-
MORE which is tailored towards supporting the functionalities
mentioned.

4. Architecture

We propose to implement APROMORE via a service-
oriented architecture as illustrated in Figure 1. This architec-
ture follows a three-tier model composed of an enterprise layer,
an intermediary layer and a basic layer. The enterprise layer is
the front-end of the repository. It hosts the repository man-
ager – a public service which exposes the typical amenities
of a repository, such as check-in/check-out, simple querying,

views, version control, change notification, context manage-
ment and security (Bernstein and Dayal, 1994). This service
is the unique entry point to the repository and can be accessed
directly by BPM Suites (BPMS) or reference model vendors for
cross-enterprise integration, or via a Web portal by the users of
an organization.

The basic layer encapsulates the business logic and data of
a traditional software architecture. The business logic consists
of the algorithms to operate over process model collections, e.g.
matching algorithms, merging algorithms, individualization al-
gorithms. These algorithms are needed to provide the advanced
functionalities described in Section 3. Each class of algorithms
(evaluation, comparison, management and presentation) is en-
capsulated by a logic-centric service for reusability and main-
tainability purposes.

The repository manager accesses these logic-centric ser-
vices via the batcher service sitting in the intermediary layer.
This service acts as a façade over the algorithms and allows
users to batch operations via simple scripts that can be submit-
ted through the repository manager. For example, one could
search for all models similar to an input process model, merge
the result and visualize it in a given notation according to spe-
cific abstraction preferences.

The basic layer also hosts a set of data-centric services
which serves as an interface to access the underlying persis-
tent data – the core of the repository. Each data-centric service
wraps one or more specific data entities and exposes the con-
ventional functionalities of the related DBMS. These include
data storage and retrieval, access control, integrity control and
transactionality. Five data entities compose this layer:

• models archive: business process models in their origi-
nal XML formats, e.g. BPMN models in XPDL (Work-
flow Management Coalition) or EPC models in
EPML (Mendling et al.). These can be reference pro-
cess models for specific domains, individualizations, sin-
gle models or model collections. Moreover, these models
can be configurable (e.g. a configurable reference process
model);

• canonical models archive: a canonical representation of
each of these models in XML. This canonical format fil-
ters out the specificities of a process modeling language,
allowing the various repository algorithms to operate on
a common process definition (more details in Section 5);

• annotations archive: metadata associated with the canon-
ical models, e.g. layout information for visualization, or
search indexes. This metadata is captured in the form
of annotations to canonical models and organized in pro-
files;

• patterns archive: reusable libraries of process definitions
for specific industry verticals, defined in canonical for-
mat. These can be used, e.g. for model creation, com-
pletion or pattern-based evaluation;

• relations archive: the relations between canonical repre-
sentations of different process models, e.g. relations be-

4

Enterprise Layer

Intermediary Layer

Basic Layer

Relations

PatternsArchive
(data-centric)

RelationsArchive
(data-centric)

Portal
(Web application)

Organization BPMS / Reference model
Vendor

Application

Web service

Algorithm

Data entity

Repository Manager
(public)

Logic-centric
services

Batcher
(façade)

AlgorithmsModels

(De)Canonization
(adapter)

ModelsArchive
(data-centric)

C. Models

CModelsArchive
(data-centric)

Annotations

Advanced repository

Patterns

Figure 1: Service-oriented architecture of a process model repository.

tween configurable process models and their individual-
izations, or between process models and their extensions,
used for change notification and adaptation control.

The repository manager accesses both process models and
their canonical representation via the (de)canonization service
– an intermediary adapter equipped with format conversion
capabilities. This service is invoked the first time a request
is made by the user to check-in a new process model in the
repository. This service converts a copy of the model from
its original format into its canonical representation; the latter
model is indexed by the repository manager and stored in the
canonical models archive. From that time onwards, a process
model is always accessed through its canonical representation,
although it is also persisted in the models archive in its original
format (synchronization between the two formats is achieved
through metadata). Since the algorithms operate on the canon-
ical format, new models generated through these algorithms,
e.g. when merging a set of similar processes into a configurable
model, are produced directly in the canonical format. The
(de)canonization service is also invoked to convert a canonical
representation of a process into some tool or language-specific
format when users check-out content from the repository, e.g.
when importing a newly created model into a third-party appli-
cation or into their file system.

5. Canonical Process Format

The canonical process format provides a common, unam-
biguous representation of business processes captured in differ-
ent notations and/or at different abstraction levels, such that all

process models can be treated alike. The idea behind this for-
mat is to represent only the structural characteristics of a pro-
cess model that are common in the majority of modeling lan-
guages. Language-specific concepts are omitted because they
cannot be meaningfully interpreted when dealing with process
models originating from different notations, i.e. when “cross-
language” operations are performed. Moreover, this canonical
format is agnostic to graphical information such as shapes, line
thickness and positions, which is contained in a concrete pro-
cess definition. This information is stored separately in the form
of annotations, and only used when a canonical model needs to
be presented to the user or converted to an original format.

We identify five advantages in using a canonical format for
the provision of advanced process model repository functional-
ities:

1 Standardization: a canonical format makes it possi-
ble to standardize software access to process defini-
tions via a set of APIs. This is achieved through the
(de)canonization adapter, which allows the various al-
gorithms to work on a common process structure. In
this way, cross-language operations can be directly per-
formed and concatenated, i.e. without the need to first
convert a model into another model’s notation.

2 Efficiency: avoiding language conversions in turn im-
proves the overall system efficiency. Moreover, annota-
tions can be used to index canonical elements with spe-
cific meanings, with the purpose to expedite queries. In
fact, searching large collections for models having partic-
ular properties may be very time consuming. Thus hav-

5

ing a single optimized format to avoid on-the-fly ad-hoc
conversions is definitely preferable from a performance
point of view.

3 Interchangeability: annotations also capture non-
structural aspects of a process model, such as graphical
information or process semantics, which can be automat-
ically inferred from a concrete process definition. By or-
ganizing these annotations in profiles, a profile inferred
from a process model can be applied to another canonical
model, and a canonical model can have multiple profiles.
In this way it is e.g. possible to switch between different
graphical representations while keeping the same process
structure.

4 Reusability: the canonical format is also used as the for-
mat for storing business process patterns and industry ref-
erence models. On the one hand, this facilitates the exe-
cution of those operations that involve such content, e.g.
conformance analysis or pattern-based completion. On
the other hand, it makes this content virtually available in
every process modeling language that is supported by the
repository.

5 Flexibility: the elements of a canonical format are de-
fined through an inheritance mechanism such that at the
highest abstraction level a process is simply seen as a di-
rected, attributed graph. This allows algorithms to treat
process models at different levels of granularity, depend-
ing on the type of operation required by the user.

We observe that without a common process format, a vari-
ant of each algorithm would need to be implemented for every
(new) process modeling language. Moreover, conversions from
one language to another would need to be put in place, to allow
cross-language operations such as comparisons and merges.

In the next section we provide a detailed description of the
canonical format adopted in APROMORE.

5.1. Metamodel
The metamodel of the canonical process format is defined

using the UML class diagram shown in Figure 2. A Canon-
icalProcess is a container for a set of Nets, ResourceTypes
and Objects. Each Net is a directed, attributed graph made
up of Nodes and Edges, and represents a process or a sub-
process. The top process is indicated as ‘root’, while all other
Nets are marked as ‘subnets’. Nodes can be of type Routing
or Work, while Edges represent links between Nodes. Routing
nodes capture all elements of a process model which are used
for routing purposes (i.e. no work is performed from a business
perspective), and as such they have more than one incoming
edge and/or more than one outgoing edge. They can be Splits
(ORSplit for inclusive data-driven choice, XORSplit for exclu-
sive data-driven choice and ANDSplit for parallel branching),
Joins (ORJoin for synchronizing merge, XORJoin for simple
merge and ANDJoin for synchronization), and States (to indi-
cate the state before an event-driven decision is made or soon
after a merge). Splits have one incoming edge and multiple

outgoing edges, Joins have multiple incoming edges and one
outgoing edge, States can have multiple incoming and outgo-
ing edges. The conditions upon which an (X)ORSplit choice
is made, must be specified via the attribute ‘condition’ of each
Edge leaving the (X)ORSplit. Also, one such an Edge can be
marked as ‘default’ to indicate the default branch to be chosen if
the conditions associated with all other Edges leaving the same
Split evaluate to false.

Different from Routing nodes, Work nodes capture those
elements of a process which are relevant from a business per-
spective. Work nodes have at most one incoming edge and one
outgoing edge and can be partitioned into Tasks and Events.
A Task node models a process element which actively performs
some work as part of a process, e.g. preparing an invoice or pro-
cessing a message. Task nodes can be atomic, or compound if
they enclose a net describing their behavior. The enclosed net
is indicated as ‘subnet’. Events are used to signal the beginning
or the end of a process, or to signal something that has hap-
pened during a process execution. Events can be specialized
into Message events to capture a message being sent or receipt,
and Time events to capture e.g. a timeout or a delay.

Work nodes can be associated with one or more Resource-
Types and Objects. Each ResouceType captures a class of orga-
nizational resources participating in the process, i.e. a group of
concrete resources rather than the resources themselves. These
can be Human, e.g. a position or role in an organization, or
Nonhuman, e.g. an information system or equipment. For in-
stance, the Human ResourceType “Finance Officer” may refer
to the set of persons of an organization with role Finance Offi-
cer. ResourceTypes can have one or more specializations, e.g.
“Finance Officer” may be specialized in “Senior Finance Offi-
cer” and “Junior Finance Officer”. This relation is transitive and
antisymmetric, and typically indicates a separation of duties.
Each association between a Work node and a ResourceType in-
dicates that a resource of that ResourceType is required to carry
out the Work node. Therefore, a Work node associated with the
same ResourceType n times, means that n resources of that Re-
sourceType are required to carry out the given Work node (e.g.
this captures the concept of teamwork for human resources, i.e.
a set of persons all working on the same task). The association
between Work nodes and ResourceTypes can specify a ‘quali-
fier’ to indicate the status a given ResourceType takes when per-
forming the associated Work node, e.g. only one person of all
the persons with role “Finance Officer” associated with Work
node “Prepare invoice” is qualified as “Responsible” person.
The association between Work node and ResourceType can be
‘optional’ to indicate that the work may be performed without
involving the specific resource (see the attribute optional of re-
sourceTypeRef).

Objects capture organizational business objects that are in-
volved in the process. These can be physical artifacts, e.g. a
paper-based invoice (Hard object) or information artifacts, e.g.
a file or variable representing an electronic invoice (Soft ob-
ject). For the latter, the ‘type’ of the object must be specified,
e.g. the file extension or variable type. Objects can be associ-
ated with a Work node via an ‘input’ relation if they are uti-
lized by the Work node, and/or via an ‘output’ relation if they

6

Figure 2: The UML metamodel of the canonical process format (association cardinalities of 1 are omitted).

are produced by the Work node. These relations correspond to
read/write operations in the case of Soft objects. An object used
as both input and output of a Work node indicates that the object
is updated, e.g. an invoice is filled-out or a variable changes its
content. Moreover, input objects can be marked as ‘consumed’
if they are destroyed while being used by a Work node. Similar
to ResourceTypes, the association between Objects and Work
nodes can also be tagged ‘optional’ to capture a situation where
the Work node may be performed without using or producing
the specific object.

Nodes, ResourceTypes and Objects can be configurable.
This is denoted by their optional attribute ‘configurable’. A
node’s configuration options are indicated through annotations
outside a canonical representation. Configuration is an impor-
tant aspect for large model repositories. However, given the
diversity of languages and concepts, the configuration mecha-
nism itself is not part of the canonical process format.

In the next section we motivate the choice for such elements
and show how these are mapped to elements in concrete process
modeling languages.

5.2. Methodology and Mapping

The elements to be included in the canonical format were
identified from an analysis of commonalities among six widely
adopted business process modeling languages. These are two
languages for conceptual process modeling: EPCs (Keller et al.,
1992) and BPMN 1.2 (Object Management Group, 2008), and

four languages for executable process modeling: Protos 8.0,3

WF-Nets (Aalst, 1998), YAWL 2.0 (Aalst and Hofstede, 2005)
and WS-BPEL 2.0 (OASIS, 2007).

To date, EPCs (Event-driven Process Chains) are probably
the most used process modeling notation among practitioners.
Initially developed for the design of the SAP R/3 reference
process model (Curran and Keller, 1997), they later became
the core modeling language of the ARIS platform, and were
adopted by other vendors for the design of SAP-independent
reference models (e.g. the ARIS-based reference models for
ITIL (IDS Scheer, 2009a) or SCOR (IDS Scheer, 2009b)). We
support EPCs along with two extensions: eEPCs (extended
EPCs) (Scheer, 1999) and iEPCs (integrated EPCs) (La Rosa
et al., 2008). These cater for the representation of organiza-
tional resources and objects participating in a process, and for
the representation of variation points on top of these elements
respectively.

BPMN (Business Process Modeling Notation) is an emerg-
ing notation that can be seen as alternative to EPCs. BPMN
was designed with the intent to enable both business users and
technical developers to model readily understandable graphical
representations of business processes. The BPMN specification
is driven by the OMG (Object Management Group) standard-
ization committee and is supported by a growing number of
organizations and IT vendors.

WF-Nets (Workflow nets) are a class of Petri nets specif-

3http://www.pallas-athena.com

7

ically designed for modeling executable business processes
(Aalst, 1998). As such, they benefit from a rich body of theoret-
ical results, analysis techniques and tools (Murata, 1989). WF-
Nets have been extensively applied in academia to the formal
verification of business process models (Verbeek et al., 2001).
Specifically, we chose to adopt the core WF-Net notation which
does not feature triggers, explicit splits and joins, and hierarchi-
cal transitions, to avoid overlaps with the YAWL language.

Protos is the modeling language of Pallas Athena’s
BPM|One platform, which has been used for the design and im-
plementation of various BPM solutions worldwide. Besides its
use in practice, we chose Protos for the availability of a number
of large models that the research team obtained via case studies
conducted with European organizations.

YAWL (Yet Another Workflow Language) is an expressive
language to describe, analyze and automate complex business
process specifications, which builds on top of WF-Nets and pro-
vides comprehensive support for the Workflow Patterns (Aalst
et al., 2003). YAWL is widely used in teaching and research,
and is facing an increased uptake in industry (YAWL Founda-
tion).

Finally, WS-BPEL (Web Service Business Process Execu-
tion Language) is an alternative to YAWL, which describes
business process models as a composition of Web services. For
this reason, BPEL represents a convergence between Web ser-
vices and business process technology. Its specification derives
from the joint effort of a number of IT vendors and has been
standardized by the OASIS (OASIS, 2009) consortium.

We compared all modeling elements in the above languages
with each other, by looking at the underlying concepts cap-
tured by each element. For example, EPC functions were com-
pared with BPMN tasks, WF-Nets transitions, Protos activities,
YAWL tasks and BPEL activities, since they all capture the con-
cept of “performing some work”. In order to do so, we first de-
composed any concrete language construct in its fundamental
concepts. For example, in YAWL splits and joins are always
attached to tasks, so we extrapolated the join and split behav-
ior from a YAWL task, and compared the former two with the
routing elements of the other languages (more details on the
conversion of language constructs are provided below). From
this analysis, we created a canonical element for each concept
that was shared by at least four languages out of the six taken
into account.

Table 2 illustrates how the canonical elements from Fig-
ure 2 are mapped to concrete modeling elements. We can
observe that basic concepts such as ‘Edge’, ‘Task’, ‘Event’
and ‘ANDSplit/Join’ are shared by all languages, others such
as ‘State’, ‘XORSplit/Join’ and ‘Object’ are only shared by
five languages, while more advanced concepts such as ‘OR-
Split/Join’, ‘ResourceType’ and the specific Event types ‘Mes-
sage’ and ‘Timer’, are only supported by four out of six lan-
guages. The table uses the term sese (single-entry single-exit)
to refer to model elements with one incoming and one outgo-
ing arc. These elements are treated different from nodes where
a flow splits or multiple flows join (more details are provided
below).

Table 2 also lists at the bottom those elements that are not

supported by the canonical format. These elements refer to con-
cepts that are not sufficiently represented in the six languages
examined, such as error handling, cancelations or multiple in-
stance tasks. Hence, supporting these concepts would have led
to canonical elements being too language-specific. Moreover,
these concepts are typically not interpreted by the various al-
gorithms available in the literature. Nonetheless, the canoni-
cal format can be extended without varying its core structure,
should new concepts be needed in future.

Figure 3 concludes the discussion on the canonical format
by illustrating the canonical representation of thirteen com-
mon language constructs, according to the mapping in Table 2.
Each construct (central column) is converted into a directed, at-
tributed graph (right column) made up of a number of Nodes
and Edges which are annotated with a reference to the respec-
tive element in the concrete language (trivial Edge annotations
are omitted).

The first construct is taken from EPCs and represents a data-
driven decision. EPCs only provide three modeling elements
to capture a process control-flow: Functions, Connectors and
Events. Functions are always mapped to Tasks while Connec-
tors are mapped to Splits and Joins, depending on their type.
Events are mapped to canonical Events if they do not imme-
diately follow an (X)OR-split Connector, otherwise to Edges.
This is because in EPCs the Events following an (X)OR-split
are actually used to represent the conditions upon which the
(X)ORSplit choice is made. Therefore, in this example the
two EPC Events in the example of Figure 3 are mapped to
two Edges, and their labels to the attribute ‘condition’ of these
Edges.

The second and third constructs are two examples of syn-
tactic sugar offered by BPMN, i.e. more concise representations
of a given concept. The two incoming Flows to Task A in the
second construct, are a compact notation for an Exclusive-join
Gateway, while the two outgoing Flows are a compact notation
for a Parallel-split Gateway. This translates to a canonical graph
with one Work Node preceded by an XORJoin Node (mapping
the implicit join) and followed by an ANDSplit Node (map-
ping the implicit split). Similarly, the third construct shows the
compact notation for an Inclusive-split Gateway via two Con-
ditional Flows (each capturing a condition for the choice) and
one Default Flow (capturing the default condition). The corre-
sponding canonical graph will have an ORSplit Node to capture
the inclusive choice and one Edge for each outgoing Flow, with
the Default Flow being mapped into an Edge with attribute ‘de-
fault’ set to true.

The fourth construct shows how AND-join and AND-split
are modeled in WF-Nets and Protos. This behavior is never ex-
plicitly represented, but captured via incoming/outgoing Flows
(or Connections in the case of Protos) to/from a Transition
(called Activity in Protos). Furthermore, Protos allows one
to specify the (X)OR-join and -split behavior for an Activ-
ity. Again, this is not explicitly shown and must be specified
through an Activity’s properties (fifth construct in Figure 3).
In both cases, we need to add two extra Routing Nodes in the
canonical representation to explicitly capture the split and join
behavior, besides a Work Node to capture the Transition or Ac-

8

Canonical element (e/i)EPC BPMN 1.1 WF-Net Protos 8.0 YAWL 2.0 WS-BPEL 2.0
Net EPC, Compound (Sub)Process (Sub)Process (Sub)Net Process, Scope

Function
Edge Arc, Event subsequent Sequence Flow, Arc Connection Flow Sequence, Link

to (X)OR-split Conditional Flow,
Connector Default Flow

Task Function Task Transition Activity Task Assign, Empty,
ExtensionActivity

Event Event not subsequent Plain Event, Input Place, sese Status Input Condition, [mapped directly to
to (X)OR-split Start Rule Event Output Place, Output Condition, specific types Message
Connector sese Place sese Condition and Timer]

Message Event Message Event Message WSInvoker Task Invoke, Receive,
Trigger Reply, onMessage

in Pick
Timer Event Timer Event Timer Timer Task Wait, on Alarm

Trigger in Pick
ANDSplit AND-split Parallel-split Transition’s Activity’s Task’s Flow (opening tag),

Connector Gateway, AND-split AND-split AND-split Source Link
Task’s Parallel-split

ORSplit OR-split Inclusive-split Activity’s Task’s
Connector Gateway, Task’s OR-split OR-split

Inclusive-split
XORSplit XOR-split Data-based Activity’s Task’s If (opening tag),

Connector Exclusive-split XOR-split XOR-split While (opening tag),
Gateway RepeatUntil

(opening tag)
ANDJoin AND-join Parallel-join Transition’s Activity’s Task’s Flow (closing tag),

Connector Gateway AND-join AND-join AND-join Target Link
ORJoin OR-join Inclusive-join Activity’s Task’s

Connector Gateway OR-join OR-join
XORJoin XOR-join Exclusive-join Activity’s Task’s If (closing tag),

Connector Gateway, XOR-join XOR-join While (closing tag),
Task’s Exclusive-join RepeatUntil

(closing tag)
Pick (closing tag)

State Event-based non-sese non-sese non-sese Pick (opening tag)
Exclusive-split (Input/Output) Status (Input/Output)
Gateway Place Condition

ResourceType Org. Unit (eEPC), Pool, Lane Role, Role, Org. Group,
(Human/Nonhuman) Position (eEPC), Role Group, Position,

Supporting Responsible Capability
System (eEPC), (resource), Custom Service
Role (iEPC) Application

Object Object Data Object Document, Task Variable Variable,
(Hard/Soft) (eEPC,iEPC) Folder, For and Until

Data Group, in Wait and
Data element onAlarm

ProcessInterface, Terminate, Complex Multiple, Cancelation, Exit, ForEach,
Person (eEPC) Gateway, Events: Buffer, Team, Multiple Instance, Throw, Validate,

Link, Error, Multiple, Batch Participant Handlers,
Compensation, Can- Correlations
cel, Signal; Events
on Task boundary,
Multiple Instance,
Block repetition,
Adhoc, Transaction,
Message Flow,
Exception Flow

Table 2: Conversion chart for the canonical format, including concrete elements not supported (sese = single-entry single-exit).

9

Canonical representationConcrete construct

WF-Net /
Protos

WS-BPEL <if>
<condition>C1</condition>
<A/>
<elseif>*
<condition>C2</condition>

</elseif>
<else>?
<C/>

</else>
</if>

c2c1 default

XORJoin
@: </if>

XORSplit
@: <if>

<while>
<condition>C</condition>
<A/>

</while>

default

XORSplit
@: </while>

XORJoin
@: <while>

c Work
@: <A/>

<repeatUntil>
<A/>
<condition>C</condition>

</repeatUntil>

default

XORSplit
@: </repeatUntil>

XORJoin
@: <repeatUntil>

c

Work
@: <A/>

<flow>
<links>
<link name="AtoC"/>
<link name="DtoC"/>

</links>
<sequence>
<A>
<sources>
<source
linkName="AtoC"/>

</sources>

</sequence>
<C>
<targets>
<target
linkName="AtoC"/>

<target
linkName="DtoC"/>

</targets>
</C>
<D>
<sources>
<source
linkName="DtoC"/>

</sources>
</D>

</flow>

ANDJoin
@: </flow>

Work
@: <D/>

ANDSplit
@: <flow>

Work
@: <A/>

ANDSplit
@: <sources> in A

ANDJoin
@: <targets> in C

ANDSplit
@: <sources> in C

Edge
@: link AtoC

Edge
@: link DtoC

Work
@:

Work
@: <C/>

Work
@: <A/>

Work
@: <C/>

Work
@:

Language

Protos

A

c1

c2 (X)ORJoin
@: AJ

Work
@: A

(X)ORSplit
@: AS

c3

c4

ANDJoin
@: AJ

Work
@: A

ANDSplit
@: AS

A

c1 c2

X/V

Work
@: A

(X)ORSplit
@: P

c1

c2P

EPC Edge
@: c1

Edge
@: c2

cx = Connection Condition

AS = split component of AAJ = join behavior of A

A

BPMN

XORJoin
@: AJ

Work
@: A

ANDSplit
@: AS

A

Work
@: A

ORSplit
@: AS

c1

c1

(c3)

c2

(c3),default

cx = Flow Condition

cx = Edge with attribute condition="cx"

= Node
= Edge

@: = annotation
= refers to [concrete element]

= Edge with attribute default="true"default

Function

Event

(X)OR Connector

Task

Transition /
Activity

Default Flow

Conditional Flow

c2

Note: the type of split and join (XOR or OR) can be
determined only if this is explicitly set in a Protos Activity

Work
@: CState

@: Q

Work
@: A

A

c1 c2

c3 c4

Work
@: AEvent

@: Q

State
@: Q

Work
@: B

B

AQ

Input
Condition

Work
@: A

Event
@: Q

State
@: Q

Work
@: B

WF-Net /
Protos /
YAWL

Transition /
Activity /

Task

A

B

C

D
Work

@: D
Work

@: B

Place /
Status /

Condition

Q

WF-Net /
YAWL

i

Q

Input
Place

A

B

B

A Q

Output
Condition

o
B

A Q

Output
Place

A

YAWL

ANDJoin
@: AJ

ORSplit
@: AS

c1

c2

Work
@: Ac1

c2

cx = Flow Predicate

Task

AND-join OR-split

Figure 3: Canonical representation of common concrete language constructs.

tivity.
Unlike some of the other languages, in YAWL splits and

joins must be explicitly represented as Task decorations (sixth
construct in Figure 3). This is because they are semantically
bound to the Task’s behavior. Therefore in the canonical format
we need to separate a Task from its routing behavior.

A Place in WF-Net, a Status in Protos and a Condition in
YAWL, are all represented by a circle in the respective nota-
tions, and used to capture either a state of the process or an
event occurring during the execution of a process. In the canon-
ical format we separate these two concepts: if the Place (Status,
Condition) is sese, we map it to an Event, whereas if it is non-
sese, we map it to a State. This latter situation is shown by
the seventh construct in Figure 3, where there are two incoming
and two outgoing arcs.

A Place (Condition) is also used to capture the begin-
ning/end of a WF-Net (YAWL) process. In this case we map
the Place (Condition) to an Event irrespective of the number of
outgoing/incoming arcs. However, if the Place (Condition) is
non-sese, we also map it to a State. This can occur when an In-
put Place (Condition) has more than one outgoing arc or when
an Output Place (Condition) has more than one incoming arc.
In the first case, the added State is used to capture the state in
which an event-driven decision is taken; in the second case, it
is used to capture the final state before the process ends. The
eight construct shows the canonical representation of a non-sese
Input Place (Input Condition), while the ninth construct shows
that of a non-sese Output Place (Output Condition).

The last four constructs show the canonical representation
of the routing activities of WS-BPEL: If (to model exclusive
data-driven choices), While and RepeatUntil (to model loops)
and Flow (to model parallelism). The WS-BPEL standard does
not define a standard visual representation for its processes,
therefore we used the WS-BPEL XML format to illustrate these
examples.

6. Prototype Implementation

As a proof of concept, we implemented a prototype of
APROMORE according to the architecture described in Sec-
tion 4.4 The prototype supports the following features:

• Basic functionalities: model import/export, model
search, model classification;

• Comparison functionality: similarity search;

• Management functionality: harmonization-driven cre-
ation.

These functionalities can be accessed via a Web portal, or
directly by using the available Web services. The portal ex-
poses the above functionalities through a graphical interface to
provide process models visualization and editing capabilities
(see Figure 4). Specifically, the portal is implemented using

4The propotype is available at http://is.tm.tue.nl:8080/pros

10

the so-called “model-view-controller” pattern, where the portal
itself is merely a view on the models stored in the underlying
database with Java methods acting as controllers. The algo-
rithms for similarity search and harmonization-driven creation,
as well as the (de)canonization adapter, are exposed as Web ser-
vices through a standard WSDL interface.

Internally, both the models archive and the canonical mod-
els archive are implemented using a single MySQL database,
although these are exposed as two separate logical entities
through data-centric Web services. Currently, the process mod-
eling languages that are supported are EPCs and BPMN.

Figure 4: A screenshot of the prototype implementation of the Web portal.

In the following we describe two example scenarios that are
supported by the prototype repository.

In the first scenario an organization can use the business
process repository for advanced search functionalities. The col-
lection of process models to be analyzed can originate from
some proprietary BPMS and then imported into the reposi-
tory. Depending on the functionalities provided by the exter-
nal BPMS and the level of integration between the latter and
the repository, BPMS users can profit from the advanced func-
tionalities provided by the repository. For example, they can
search for a particular model based on keywords, on models
classification (e.g. per industry vertical) or by using an input
model that is similar to the model to be searched for. A tighter
integration is possible by invoking the Web services provided
by the repository directly from the BPMS. Alternatively, a link
is established between the repository Web-portal and the BPMS
such that users can use the Web-portal to perform their searches
and upon opening a process model in the portal, the BPMS is
launched.

In the second scenario the harmonization-driven creation
provided by the repository can be used to assist an organization
integrating their process models with those of another organi-
zation, e.g. as part of a merger or acquisition. Both organiza-

tions can import their sets of business processes in the reposi-
tory (provided that they are in a format that the repository sup-
ports). Subsequently, they can use the similarity search function
to search for pairs of models that are similar. In a next step they
can be aided in establishing a match between elements from
one process and elements from the other process and merge
the two models into a configurable process model, using this
match. The resulting model will capture both the commonali-
ties between the two models, and their differences, in the form
of variation points. This new model can then provide a roadmap
for implementing changes to the current business services and
IT infrastructure supporting the business process, in order to
rationalize them.

7. Conclusion

This paper presents APROMORE, which is an advanced
repository to hold, analyze and re-use large sets of process mod-
els. APROMORE is an open source platform implemented ac-
cording to the principles of service-oriented architectures, and
exposed to the end user via a Web interface. The canonical for-
mat for process modeling notations is an essential ingredient for
dealing with the diversity of available notations. A prototype
demonstrating the feasibility of APROMORE is also presented
in this paper.

The contribution of APROMORE can be discussed from
two angles. Considering the interests of practitioners, the tool
is thought to be helpful in dealing with many of the challenges
that stakeholders face when dealing with large numbers of pro-
cess models. In this respect, APROMORE goes well beyond
the typical capabilities offered by commercial tools, e.g., ba-
sic access control and simple version control. APROMORE
provides advanced support for dealing with models in different
notations, platform-independent access, and maintaining the re-
lations that exist between models. Also, APROMORE is capa-
ble of incorporating a collection of state-of-the-art techniques
for analyzing, visualizing, transforming, and creating process
models, which hitherto have mostly been known to the research
community but hardly used in practice. In this way, APRO-
MORE can be regarded to as a tangible means for knowledge
transfer to the process modeling praxis.

From a research perspective, it is noteworthy that APRO-
MORE is open to all researchers who have an interest in ap-
plying and developing techniques dealing with the analysis and
optimization of process models. Due to its service-oriented ar-
chitecture, it will be relatively easy for researchers to develop
their own services and Web plug-ins, offering new capabilities
while interacting with existing ones, by relying on the common
infrastructure of APROMORE. In this way, APROMORE of-
fers a separation of concerns that we hope is appreciated by our
fellow researchers. An initiative that inspired us in this respect
is ProM,5 which is highly successful as an open research plat-
form in the field of process mining.

5www.processmining.org

11

At present, one of the challenges is to populate the repos-
itory with large sets of process models to be used as a test-
bed and which can help to unleash the capabilities of APRO-
MORE. Thanks to the involvement of four research groups in
the APROMORE project, we have some 2000+ models avail-
able. Most of them are of medium size (20-100 tasks) and have
been developed either in an academic or in an industrial context.
At this stage, we are in touch with various industrial partners in
the financial, healthcare, governmental, and creative industries
domains to involve them in this initiative. Other challenges re-
late to more technical and operational issues, such as adding
open, Web-based interfaces to proprietary implementations of
analysis techniques, ensuring that the hardware can scale with
the use in APROMORE, aligning with access models such as
the OpenId initiative,6 and integrating with other open plat-
forms such as ProM and the Oryx visual editor7.

With respect to future research, our efforts will be devoted
to the development of new analysis and management techniques
to be integrated in APROMORE. One example would be the de-
velopment of an advanced version control system that can pro-
vide a semi-automatic resolution of conflicting process model
updates. This is a relevant characteristic for a modern collab-
orative process modeling environment where it is realistic to
assume that many stakeholders with different skills and respon-
sibilities will partake in the modeling activity, thus potentially
generating conflicting versions that need to be harmonized.

In conclusion, we believe that APROMORE is an important
step in reaching a more mature level of dealing with the man-
agement of massive collections of process models. This entails
challenges, but is highly relevant for practice, and serves as an
exciting area for research. We hope that both practitioners and
researchers will join us in the further development of APRO-
MORE.

References

W.M.P. van der Aalst. Structural Characterizations of Sound Workflow Nets.
Computing Science Reports 96/23, Eindhoven University of Technology,
Eindhoven, 1996.

W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

W.M.P. van der Aalst. TomTom for Business Process Management (Tom-
Tom4BPM). In Proceedings of the 21st International Conference on Ad-
vanced Information Systems Engineering (CAiSE’09) – keynote, pages 8–12,
2009.

W.M.P. van der Aalst and T. Basten. Identifying Commonalities and Differences
in Object Life Cycles using Behavioral Inheritance. In J.M. Colom and
M. Koutny, editors, Application and Theory of Petri Nets 2001, volume 2075
of Lecture Notes in Computer Science, pages 32–52. Springer, 2001.

W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.

W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

W.M.P. van der Aalst, M. Dumas, F. Gottschalk, A.H.M. ter Hofstede, M. La
Rosa, and J. Mendling. Preserving Correctness During Business Process
Model Configuration. Formal Aspects of Computing, 2009. (forthcoming).

6http://openid.net
7http://bpt.hpi.uni-potsdam.de/Oryx

W.M.P. van der Aalst, J. Nakatumba, A. Rozinat, and N. Russell. Business
Process Simulation: How to get it right? In J. vom Brocke and M. Rose-
mann, editors, International Handbook on Business Process Management.
Springer, 2010.

R. Anupindi, S. Chopra, S.D. Deshmukh, J.A. van Mieghem, and E. Zemel.
Managing Business Process Flows. Prentice Hall, 1999.

A. Awad, G. Decker, and M. Weske. Efficient compliance checking using
bpmn-q and temporal logic. In M. Dumas, M. Reichert, and M.-C. Shan,
editors, Proc. of the 6th International Conference on Business Process Man-
agement, volume 5240 of Lecture Notes in Computer Science, pages 326–
341. Springer, 2008. ISBN 978-3-540-85757-0.

S. Balko, A. Barros, A.H.M. ter Hofstede, M. La Rosa, and M. Adams. Con-
trolled flexibility and lifecycle management of business processes through
extensibility. In W. Esswein, J. Mendling, and S. Rinderle-Ma, editors, Pro-
ceedings of the 4th Workshop on Enterprise Modelling and Information Sys-
tems Architectures (EMISA), volume 152 of Lectures Notes in Informatics,
pages 97–110. GI, 2009. (forthcoming).

W. Bandara, G. Gable, and M. Rosemann. Factors and measures of business
process modelling: model building through a multiple case study. European
Journal of Information Systems, 14(4):347–360, 2005.

J. Becker, M. Rosemann, and C. von Uthmann. Guidelines of business process
modeling. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors,
Business Process Management. Models, Techniques, and Empirical Studies,
volume 1806 of Lecture Notes in Computer Science, pages 30–49. Springer,
2000.

P.A. Bernstein. Applying model management to classical meta data problems.
In Conference on Innovative Data Systems Research (CIDR), pages 209–
220, 2003.

P.A. Bernstein and U. Dayal. An Overview of Repository Technology. In Pro-
ceedings of the 20th Very Large Data Bases Conference (VLDB’94), pages
705–713. M. Kaufmann, 1994.

R.W. Blanning. Model management systems: an overview. Decision Support
Systems, 9(1):9–18, 1993.

T. Curran and G. Keller. SAP R/3 Business Blueprint: Understanding the Busi-
ness Process Reference Model. Upper Saddle River, 1997.

B Curtis, M.I. Kellner, and J. Over. Process modeling. Communications of the
ACM, 35(9):75–90, 1992.

I. Davies, P. Green M. Rosemann, M. Indulska, and S. Gallo. How do practi-
tioners use conceptual modeling in practice? Data & Knowledge Engineer-
ing, 58(3):358–380, 2006.

A. K. Alves de Medeiros, W.M.P. van der Aalst, and A.J.M.M. Weijters. Quan-
tifying process equivalence based on observed behavior. Data & Knowledge
Engineering, 64(1):55–74, 2008.

R.M. Dijkman. A Classification of Differences between Similar Business Pro-
cesses. In Proceedings of the 11th IEEE International Enterprise Dis-
tributed Object Computing Conference (EDOC’07), pages 37–50, Annapo-
lis, Maryland, USA, 2007. IEEE.

R.M. Dijkman, M. Dumas, and L. Garcia-Banuelos. Graph matching algo-
rithms for business process model similarity search. In Proceedings of the
7th International Conference on Business Process Management (BPM’09),
LNCS. Springer, 2009.

D.R. Dolk and B.R. Konsynski. Knowledge representation for model manage-
ment systems. IEEE Transactions on Software Engineering, 10(6):619–627,
1984.

P. Effinger, M. Kaufmann, and M. Siebenhaller. An Interactive Layout Tool for
BPMN. In BPMN 2009 – 1st International Workshop on BPMN (CEC09 -
11th IEEE Conference on Commerce and Enterprise Computing), 2009.

R. Eshuis and P.W.P.J. Grefen. Constructing customized process views. Data
& Knowledge Engineering, 64(2):419–438, 2008.

D. Fahland, C. Favre, B. Jobstmann, J. Koehler, N. Lohmann, H. Voelzer, and
Karsten Wolf. Instantaneous soundness checking of industrial business pro-
cess models. In Proceedings of BPM 2009, Lecture Notes in Computer
Science. Springer-Verlag, 2009.

C. Fillies, G. Wood-Albrecht, and F. Weichhardt. Pragmatic applications of the
Semantic Web using SemTalk. Computer Networks, 42(5):599–615, 2003.

G.M. Giaglis. A Taxonomy of Business Process Modeling and Information
Systems Modeling Techniques. International Journal of Flexible Manufac-
turing Systems, 13(2):209–228, 2001.

F. Gottschalk, Wil M. P. van der Aalst, and M.H. Jansen-Vullers. Merging
event-driven process chains. In R. Meersman and Z. Tari, editors, Pro-
ceedings of the 16th International Conference on Cooperative Information

12

Systems (CoopIS’08), volume 5331 of Lecture Notes in Computer Science,
pages 418–426. Springer, 2008.

T.R.G. Green and M. Petre. Usability analysis of visual programming environ-
ments: A ’cognitive dimensions’ framework. J. Vis. Lang. Comput., 7(2):
131–174, 1996.

G. Grossmann, Y. Ren, M. Schrefl, and M. Stumptner. Behavior based integra-
tion of composite business processes. In W.M.P. van der Aalst, B. Benatal-
lah, F. Casati, and F. Curbera, editors, Business Process Management, 3rd
International Conference, BPM 2005, Nancy, France, September 5-8, 2005,
Proceedings, volume 3649 of Lecture Notes in Computer Science, pages
186–204. Springer, 2005.

J.A. Gulla and T. Brasethvik. On the Challenges of Business Modeling in
Large-Scale Reengineering Projects. In Proceedings of the 4th International
Conference on Requirements Engineering, pages 27–38. IEEE Computer
Society Washington, DC, USA, 2000.

C.W. Günther and W.M.P. van der Aalst. Fuzzy mining – adaptive process
simplification based on multi-perspective metrics. In G. Alonso, P. Dadam,
and M. Rosemann, editors, Proceedings of the 5th International Conference
on Business Process Management (BPM’07), volume 4714 of Lecture Notes
in Computer Science, pages 328–343. Springer, 2007.

K. van Hee, O. Oanea, N. Sidorova, and M. Voorhoeve. Verifying general-
ized soundness for workflow nets. In I. Virbitskaite and A. Voronkov, ed-
itors, Proc. of the 6th International Conference on Perspectives of System
Informatics, PSI’2006, volume 4378 of Lecture Notes in Computer Science,
pages 231–244, Novosibirsk, June 2006. Springer-Verlag.

M. Hepp, F. Leymann, C. Bussler, J. Domingue, A. Wahler, and D. Fensel.
Semantic business process management: Using semantic web services for.
business process management. In IEEE International Conference on e-
Business Engineering, pages 535–540, Beijing, China, 2005. IEEE.

IDS Scheer. ARIS ITIL. Home Page, 2009a. http://www.ids-scheer.

com/en/ARIS/ARIS_Reference_Models_/ARIS_ITIL/3742.html.
Accessed: August 2009.

IDS Scheer. ARIS SCOR. Home Page, 2009b. http://www.ids-scheer.

com/en/ARIS/ARIS_Reference_Models_/SCOR/81882.html. Ac-
cessed: August 2009.

M. Jarke, M.A. Jeusfeld, C. Quix, and P. Vassiliadis. Architecture and quality
in data warehouses: An extended repository approach. Information Systems,
24(3):229–253, 1999.

D. Karagiannis and H. Kühn. Metamodelling Platforms. Invited Paper. In K.
Bauknecht and A. Min Tjoa and G. Quirchmayer, editor, Proceedings of the
3rd International Conference EC-Web 2002 - Dexa 2002, Aix-en-Provence,
France, volume 2455 of Lecture Notes in Computer Science, pages 182–196,
2002.

D. Karastoyanova, T. van Lessen, F. Leymann, Z. Ma, J. Nitzsche, B. Wet-
zstein, S. Bhiri, M. Hauswirth, and M. Zaremba. A reference architecture
for semantic business process management systems. GITO-Verlag, Berlin,
2008.

G. Keller, M. Nüttgens, and A.-W. Scheer. Semantische Processmod-
ellierung auf der Grundlage Ereignisgesteuerter Processketten (EPK).
Veröffentlichungen des Instituts für Wirtschaftsinformatik, University of
Saarland, Saarbrücken, Germany, 1992. (in German).

I. Kitzmann, C. König, D. Lübke, and L. Singer. A Simple Algorithm for
Automatic Layout of BPMN Processes. In BPMN 2009 – 1st International
Workshop on BPMN (CEC09 - 11th IEEE Conference on Commerce and
Enterprise Computing), 2009.

M. Klein and A. Bernstein. Towards high-precision service retrieval. IEEE
Internet Computing, 8(1):30–36, 2004.

M. La Rosa. Managing Variability in Process-Aware Information Systems.
Ph.d. thesis, Queensland University of Technology, Brisbane, Australia,
April 2009.

M. La Rosa, M. Dumas, A.H.M. ter Hofstede, J. Mendling, and F. Gottschalk.
Beyond Control-Flow: Extending Business Process Configuration to Roles
and Objects. In Q. Li, S. Spaccapietra, E. Yu, and A. Olivé, editors, Pro-
ceedings of the 27th International Conference on Conceptual Modeling
(ER’08), volume 5231 of Lecture Notes in Computer Science, pages 199–
215. Springer, 2008.

H. Lee and J.-W. Joung. An enterprise model repository: Architecture and
system. J. Database Manag., 11(1):16–28, 2000.

F. Leymann and W. Altenhuber. Managing business processes as an information
resource. IBM Systems Journal, 33(2):326–348, 1994.

S. Melnik, E. Rahm, and P.A. Bernstein. Rondo: A programming platform for

generic model management. In Proceedings of the 2003 ACM SIGMOD in-
ternational conference on Management of data, pages 193–204. ACM New
York, NY, USA, 2003.

J. Mendling. Metrics for Process Models: Empirical Foundations of Verifica-
tion, Error Prediction and Guidelines for Correctness, volume 6 of Lecture
Notes in Business Information Processing. Springer, Berlin, Germany, 2008.

J. Mendling. Empirical studies in process model verification. LNCS Transac-
tions on Petri Nets and Other Models of Concurrency, 2:208–224, 2009.

J. Mendling and C. Simon. Business Process Design by View Integration. In Jo-
hann Eder and Schahram Dustdar, editors, Proceedings of BPM Workshops
2006, volume 4103 of Lecture Notes in Computer Science, pages 55–64,
Vienna, Austria, 2006. Springer-Verlag.

J. Mendling, M. Nüttgens, and M. La Rosa. EPML Schema 2.0. http://www.
processconfiguration.com/schemas/EPML_2.0.xsd. Accessed: Au-
gust 2009.

J. Mendling, H.A. Reijers, and J. Cardoso. What makes process models un-
derstandable? In Gustavo Alonso, Peter Dadam, and Michael Rosemann,
editors, Business Process Management - BPM 2007, volume 4714 of Lec-
ture Notes in Computer Science, pages 48–63. Springer, Brisbane, Australia,
2007.

J. Mendling, J. Recker, and H.A. Reijers. On the usage of labels and icons
in business process modeling. International Journal of Information System
Modeling and Design, 2009a. (forthcoming).

J. Mendling, H.A. Reijers, and W.M.P. van der Aalst. Seven process modeling
guidelines (7pmg). Information and Software Technology (IST), 2009b. In
Press.

M. Momotko and K. Subieta. Process query language: A way to make workflow
processes more flexible. In G. Gottlob, A.A. Benczúr, and J. Demetrovics,
editors, Advances in Databases and Information Systems, 8th East European
Conference, ADBIS 2004, Budapest, Hungary, September 22-25, 2004, Pro-
ceesing, volume 3255 of Lecture Notes in Computer Science, pages 306–
321. Springer, 2004.

T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of
the IEEE, 77(4):541–580, April 1989.

OASIS. Web Services Business Process Execution Language (WS-BPEL), Ver-
sion 2.0. OASIS Standard. OASIS, 2007. http://docs.oasis-open.

org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf. Accessed: August 2009.
OASIS. Home Page. http://www.oasis-open.org. Accessed: August

2009, 2009.
Object Management Group. Home Page. http://www.omg.org. Accessed:

August 2009.
Object Management Group. Business Process Modeling Notation (BPMN),

Version 1.1. OMG Specification. OMG, 2008. http://www.bpmn.org/

Documents/BPMN\%201-1\%20Specification.pdf. Accessed: August
2009.

A. Polyvyanyy, S. Smirnov 0002, and M. Weske. Process model abstraction:
A slider approach. In 12th International IEEE Enterprise Distributed Ob-
ject Computing Conference, ECOC 2008, 15-19 September 2008, Munich,
Germany, pages 325–331. IEEE Computer Society, 2008.

G. Preuner, S. Conrad, and M. Schrefl. View integration of behavior in object-
oriented databases. Data & Knowledge Engineering, 36(2):153–183, 2001.

H.A. Reijers, R.S. Mans, and R.A. van der Toorn. Improved Model Manage-
ment with Aggregated Business Process Models. Data & Knowledge Engi-
neering, 68(2):221–243, 2009.

M. Rosemann and Wil van der Aalst. A Configurable Reference Modelling
Language. Information Systems, 32:1–23, 2007.

A. Rozinat, M.T. Wynn, W.M.P. van der Aalst, A.H.M. ter Hofstede, and C.J.
Fidge. Workflow simulation for operational decision support using design,
historic and state information. In M. Dumas, M. Reichert, and M.-C. Shan,
editors, Business Process Management, 6th International Conference, BPM
2008, Milan, Italy, September 2-4, 2008. Proceedings, volume 5240 of Lec-
ture Notes in Computer Science, pages 196–211. Springer, 2008.

A.-W. Scheer. ARIS – Business Process Frameworks. Springer, 3rd edition,
1999.

A.-W. Scheer and M. Nüttgens. Aris architecture and reference models for busi-
ness process management. In W.M.P. van der Aalst, J.Desel, and A. Ober-
weis, editors, Business Process Management, Models, Techniques, and Em-
pirical Studies, volume 1806 of Lecture Notes in Computer Science, pages
376–389. Springer, 2000.

M. Schrepfer, J. Wolf, J. Mendling, and H.A. Reijers. The impact of secondary
notation on process model understanding. In Proceedings of Practice of En-

13

terprise Modeling (PoEM’09), Lecture Notes in Business Information Pro-
cessing, 2009.

J. Siegeris and O. Grasl. Model driven business transformation – an experi-
ence report. In M. Dumas, M. Reichert, and M.-C. Shan, editors, Proceed-
ings of the 6th International Conference on Business Process Management
(BPM’08), volume 5240 of Lecture Notes in Computer Science. Springer,
2008.

A. Streit, B. Pham, and R. Brown. Visualization support for managing large
business process specifications. In W.M.P. van der Aalst, B. Benatallah,
F. Casati, and F. Curbera, editors, Proceedings of the 3rd International Con-
ference on Business Process Management (BPM’05), volume 3649 of Lec-
ture Notes in Computer Science, pages 205–219. Springer, 2005.

T. Theling, J. Zwicker, P. Loos, and D. Vanderhaeghen. An architecture for
collaborative scenarios applying a common bpmn-repository. In L. Kutvo-
nen and N. Alonistioti, editors, Distributed Applications and Interoperable
Systems, 5th IFIP WG 6.1 International Conference, DAIS 2005, Athens,
Greece, June 15-17, 2005, Proceedings, volume 3543 of Lecture Notes in
Computer Science, pages 169–180. Springer, 2005.

L.H. Thom, J.M. Lau, C. Iochpe, and J. Mendling. Extending business process
modeling tools with workflow pattern reuse. In J. Cardoso, J. Cordeiro, and
J. Filipe, editors, ICEIS 2007 - Proceedings of the Ninth International Con-
ference on Enterprise Information Systems, Volume EIS, Funchal, Madeira,
Portugal, June 12-16, 2007, pages 447–452, 2007.

B.F. van Dongen, R.M. Dijkman, and J. Mendling. Measuring similarity be-
tween business process models. In Proceedings of the 20th International
Conference on Advanced Information Systems Engineering (CAiSE), vol-
ume 5074 of LNCS, pages 450–464. Springer, 2008.

H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow
Processes using Woflan. The Computer Journal, 44(4):246–279, 2001.

C. Ware, H.C. Purchase, L. Colpoys, and M. McGill. Cognitive measurements
of graph aesthetics. Information Visualization, 1(2):103–110, 2002.

I. Weber, I. Markovic, and C. Drumm. A conceptual framework for composition
in business process management. Lecture Notes in Computer Science, 4439:
54, 2007.

Workflow Management Coalition. XPDL Home Page. http://www.wfmc.

org/xpdl.html. Accessed: September 2009.
YAWL Foundation. YAWL Adoption. http://www.yawlfoundation.org/

about/adoption.html. Accessed: August 2009.

14

