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Abstract. A configurable process model describes a family of similar pro-
cess models in a given domain. Such a model can be configured to obtain
a specific process model that is subsequently used to handle individual
cases, for instance, to process customer orders. Process configuration is
notoriously difficult as there may be all kinds of interdependencies between
configuration decisions. In fact, an incorrect configuration may lead to
behavioral issues such as deadlocks and livelocks. To address this prob-
lem, we present a new verification approach inspired by the “operating
guidelines” used for partner synthesis. We view the configuration process
as an external service, and compute a characterization of all such ser-
vices which meet particular requirements via the notion of configuration
guideline. As a result, we can characterize all feasible configurations (i. e.,
configurations without behavioral problems) at design time, instead of
repeatedly checking each individual configuration while configuring a
process model.
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1 Introduction and Background

Although large organizations support their processes using a wide variety of
process-aware information systems, the majority of business processes are still
not directly driven by process models. Despite the success of Business Process
Management (BPM) thinking in organizations, Workflow Management (WfM)
systems — today often referred to as BPM systems — are not widely used. One
of the main problems of BPM technology is the “lack of content”; that is,
providing just a generic infrastructure to build process-aware information systems
is insufficient as organizations need to support specific processes. Organizations
want to have “out-of-the-box” support for standard processes and are only
willing to design and develop system support for organization-specific processes.
Yet most BPM systems expect users to model basic processes from scratch.



Enterprise Resource Planning (ERP) systems such as SAP and Oracle, on the
other hand, focus on the support of these common processes. Although all ERP
systems have workflow engines comparable to the engines of BPM systems, the
majority of processes are not supported by software which is driven by models.
For example, most of SAP’s functionality is not grounded in their workflow
component, but hard-coded in application software. ERP vendors try to capture
“best practices” in dedicated applications designed for a particular purpose. Such
systems can be configured by setting parameters. System configuration can be a
time consuming and complex process. Moreover, configuration parameters are
exposed as “switches in the application software”, thus making it difficult to see
the impact of certain settings and dependencies between them.

A model-driven process-oriented approach toward supporting business pro-
cesses has all kinds of benefits ranging from improved analysis possibilities
(verification, simulation, etc.) and better insights, to maintainability and ability
to rapidly develop organization-specific solutions. Although obvious, this approach
has not been adopted thus far, because BPM vendors failed to provide content
and ERP vendors suffered from the “Law of the handicap of a head start”. ERP
vendors managed to effectively build data-centric solutions to support particular
tasks. However, the complexity and large installed base of their products makes
it impossible to refactor their software and make it process-centric.

Based on the limitations of existing BPM and ERP systems, we propose to
use configurable process models. A configurable process model represents a family
of process models ; that is, a model that through configuration can be customized
for a particular setting. Configuration is achieved by hiding (i. e., bypassing) or
blocking (i. e., inhibiting) certain fragments of the configurable process model [12].
This way, the desired behavior is selected. From the viewpoint of generic BPM
software, configurable process models can be seen as a mechanism to add content
to these systems. By developing comprehensive collections of configurable models,
particular domains can be supported. From the viewpoint of ERP software,
configurable process models can be seen as a means to make these systems more
process-centric, although in the latter case, quite some refactoring is needed as
processes are hidden in table structures and application code.

Various configurable languages have been proposed as extensions of existing
languages (e. g., C-EPCs [21], C-iEPCs [15], C-WF-nets [3], C-SAP, C-BPEL)
but few are actually supported by enactment software (e. g., C-YAWL [13]). In
this paper, we are interested in models in the latter class of languages, which,
unlike traditional reference models [8,7,11], are executable after they have been
configured. Specifically, we focus on the verification of configurable executable
process models. In fact, because of hiding and/or blocking selected fragments,
the instances of a configured model may suffer from behavioral anomalies such
as deadlocks and livelocks. This problem is exacerbated by the total number
of possible configurations a model may have, and by the complex dependencies
which may exist between various configuration options. For example, the con-
figurable process model we constructed from the VICS documentation4 — an

4 See www.vics.com (Voluntary Interindustry Commerce Solutions Association).
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industry standard for logistics and supply chain management — comprises 50
activities. Each of these activities may be “blocked”, “hidden”, or “allowed”,
depending on the configuration requirements. This results in 350 ≈ 7.18e+23 pos-
sible configurations. Clearly, checking the feasibility of each single configuration
can be time consuming as this would typically require performing state-space
analysis. Moreover, characterizing the “family of correct models” for a particular
configurable process model is even more difficult and time-consuming as a naive
approach would require solving an exponential number of state-space problems.

As far as we know, our earlier approach described in [3] is the only one
focusing on the verification of configurable process models. Other approaches
discuss syntactical correctness related to configuration [21,9,7], but do not provide
techniques for ensuring the behavioral correctness of the configured models. In
this paper, we propose a completely novel verification approach where we consider
the configuration process as an “external service” and then synthesize a “most
permissive partner” using the approach described by Wolf [22] and implemented
in the tool Wendy [19]. This most permissive partner is closely linked to the
notion of operating guidelines for service behavior [18]. In this paper, we define
for any configurable model a so-called configuration guideline to characterize all
correct process configurations. This approach provides the following advantages
over our previous approach [3]:

– We provide a complete characterization of all possible configurations at design
time; that is, the configuration guideline.

– Computation time is moved from configuration time to design time and
results can be reused more easily.

– No restrictions are put on the class of models which can be analyzed. The
previous approach [3] was limited to sound free-choice WF-nets. Our new
approach can be applied to models which do not need to be sound, which can
have complex (non-free choice) dependencies, and which can have multiple
end states.

To prove the practical feasibility of this new approach, we have implemented it
as a plugin of the toolset supporting C-YAWL [23].

The remainder of this paper is organized as follows. Section 2 introduces basic
concepts such as open nets and weak termination. These concepts are used in
Section 3 to formalize the notion of process configuration. Section 4 presents the
solution approach for correctness ensuring configuration. Section 5 discusses tool
support, and Sect. 6 concludes the paper.

2 Business Process Models

For the formalization of the problem we use Petri nets, which offer a formal
model of concurrent systems. However, the same ideas can be applied to other
languages (e. g. C-YAWL, C-BPEL), as it is easy to map the core structures of
these languages onto Petri nets. Moreover, our analysis approach is quite generic
and does not rely on specific Petri net properties.
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Definition 1 (Petri net). A marked Petri net is a tuple N = (P, T, F,m0) such
that: P and T (P ∩ T = ∅) are finite sets of places and transitions, respectively,
F ⊆ (P × T )∪ (T ×P ) is a flow relation, and m0 : P → IN is an initial marking.

A Petri net is a directed graph with two types of nodes: places and transitions,
which are be connected by arcs as specified in the flow relation. If p ∈ P , t ∈ T ,
and (p, t) ∈ F , then place p is an input place of t. Similarly, (t, p) ∈ F means
that p is an output place of t.

The marking of a Petri net describes the distribution of tokens over places and
is represented by a multiset of places. For example, the marking m = [a2, b, c4]
indicates that there are two tokens in place a, one token in b, and four tokens in c.
Formally m is a function such that m(a) = 2, m(b) = 1, and m(c) = 4. We use ⊕
to compose multisets; for instance, [a2, b, c4]⊕ [a2, b, d2, e] = [a4, b2, c4, d2, e].

A transition is enabled and can fire if all its input places contain at least one
token. Firing is atomic and consumes one token from each of the input places
and produces one token on each of the output places. m0

t−→ m means that t is
enabled in marking m0 and the firing of t in m0 results in marking m. We use
m0

∗−→ m to denote that m is reachable from m0; that is, there exists a (possibly
empty) sequence of enabled transitions leading from m0 to m.

For our configuration approach, we use open nets. Open nets extend classical
Petri nets with the identification of final markings Ω and a labeling function `.

Definition 2 (Open net). A tuple N = (P, T, F,m0, Ω, L, `) is an open net if

– (P, T, F,m0) is a marked Petri net (called the inner net of N),
– Ω ⊂ P → IN is a finite set of final markings,
– L is a finite set of labels,
– τ 6∈ L is a label representing invisible (also called silent) steps, and
– ` : T → L ∪ {τ} is a labeling function.

We use transition labels to represent the activity corresponding to the execu-
tion of a particular transition. Moreover, if an activity appears multiple times in
a model, we use the same label to identify all the occurrences of that activity.
The special label τ refers to an invisible step, sometimes referred to as “silent”.
Invisible transitions are typically use to represent internal actions which do not
mean anything at the business level, cf. the “inheritance of dynamic behavior”
framework [2,6]. In Section 4 we use visible labels to synchronize two open nets.
However, initially we use labels to denote activities that may be configured.

Figure 1 shows an example open net which models a typical travel request
approval. The process starts with the preparation of the travel form. This can
either be done by the employee or be delegated to a secretary. In both cases,
the employee personally needs to arrange the travel insurance. If the form has
been prepared by the secretary, the employee needs to check it before submitting
it for approval. The administrator can then approve or reject the request, or
make a request for change. Now, the employee can update the form according to
the administrator’s suggestions and resubmit it. In Fig. 1, all transitions bear a
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Fig. 1. The open net for travel request approval (Ω = {[p8]}).

unique label, except for t5 which bears a τ -label as it has only been added for
routing purposes.

Unlike our previous approach [3] based on WF-nets [1] and hence limited
to a single final place, here we allow multiple final markings. Good runs of an
open net end in a marking in set Ω. Therefore, an open net is considered to be
erroneous if it can reach a marking from which no final marking can be reached
any more. An open net weakly terminates if a final marking is reachable from
every reachable marking.

Definition 3 (Weak termination). An open net N = (P, T, F,m0, Ω, L, `)
weakly terminates if and only if (iff) for any marking m with m0

∗−→ m there
exists a final marking mf ∈ Ω such that m ∗−→ mf .

The net in Fig. 1 is weakly terminating. Weak termination is a weaker notion
than soundness, as it does not require every transition to be quasi-live [1]. This
correctness notion is more suitable as parts of a correctly configured net may be
left dead intentionally.

3 Process Model Configuration

We use open nets to model configurable process models. An open net can be
configured by blocking or hiding transitions which bear a visible label (i. e., not
a τ -label). Blocking a transition means that the corresponding activity is no
longer available and none of the paths with that transition cannot be taken any
more. Hiding a transition means that the corresponding activity is bypassed, but
paths with that transition can still be taken. If a transition is neither blocked nor
hidden, we say it is allowed, meaning nothing changes in the model. Configuration
is achieved by setting visible labels to allow, hide or block.
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Fig. 2. Two possible configured nets based on the model in Fig. 1.

Definition 4 (Open net configuration). Let N be an open net with label
set L. A mapping CN : L → {allow , hide, block} is a configuration for N . We
define:
– AC

N = {t ∈ T | `(t) 6= τ ∧ CN (`(t)) = allow},
– HC

N = {t ∈ T | `(t) = τ ∨ CN (`(t)) = hide}, and
– BC

N = {t ∈ T | `(t) 6= τ ∧ CN (`(t)) = block}.

An open net configuration implicitly defines an open net, called configured
net, where the blocked transitions are removed and the hidden transitions are
given a τ -label.

Definition 5 (Configured net). Let N = (P, T, F,m0, Ω, L, `) be an open net
and CN a configuration of N . The resulting configured net βC

N = (P, TC , FC ,m0,
Ω, L, `C) is defined as follows:

– TC = T \ (BC
N ),

– FC = F ∩ ((P ∪ TC)× (P ∪ TC)), and
– `C(t) = `(t) for t ∈ AC

N and `C(t) = τ for t ∈ HC
N .

As an example, Fig. 2(a) shows the configured net derived from the open net
in Fig. 1 and the configuration CN (Prepare Travel Form (Secretary)) = block
(to allow only employees to prepare travel forms), CN (Arrange Travel Insurance
(Employee)) = hide (to skip arranging the travel insurance), and CN (x) = allow
for all other labels x.

Typically, configurable process models cannot be freely configured, because
the application of hiding and blocking has to comply with the application domain
in which the model has been constructed. For instance, in the travel request
example we cannot hide the labels of both t1 and t2, because all the other
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activities depend on the preparation of the travel form, nor block the label of
t8, because there must be an option to approve the request. The link between
configurable process models and domain decisions was explored in [16].

A configured net may have disconnected nodes and some parts may be dead
(i. e., can never become active). Such parts can easily be removed. However,
as we impose no requirements on the structure of configurable models, these
disconnected or dead parts are irrelevant with respect to weak termination. For
example, if we block the label of t2 in Fig. 1, transition t5 becomes dead as it
cannot be enabled any more, and hence can also be removed without causing any
behavioral issues. Nonetheless, not every configuration of an open net results in
a weakly terminating configured net. For example, by blocking the label of t4 in
the configured net of Fig. 2(a), we obtain the configured net in Fig. 2(b). This
net is not weakly terminating because after firing t7 tokens will get stuck in p3

(as this place does not have any successor) and in p5 (as t5 can no longer fire).
Blocking can cause behavioral anomalies such as the deadlock in Fig. 2(b).

However, hiding cannot cause such issues, because it merely changes the labels
of an open net. Hence, we shall focus on blocking rather than hiding.

In light of the above, in this paper we are interested in all configurations
which yield weakly terminating configured nets. We use the term feasibility to
refer to such configured nets.

Definition 6 (Feasible configuration). Let N be an open net and CN a
configuration of N . CN is feasible iff the configured net βC

N weakly terminates.

More precisely, given a configurable process model N , we are interested in
the following two questions:

– Is a particular configuration CN feasible?
– How to characterize the set of all feasible configurations?

The remainder of this paper is devoted to a new verification approach answer-
ing these questions. This approach extends the work in [3] in two directions: (i) it
imposes no unnecessary requirements on the configurable process model (allowing
for non-free-choice nets [10] and nets with multiple end places/markings), and
(ii) it checks a weaker correctness notion (i. e. weak termination instead of sound-
ness). For instance, the net in Fig. 1 is not free-choice because t4 and t5 share an
input place, but their sets of input places are not identical. The non-free-choice
construct is needed to model that after firing t1 or t7, t5 cannot be fired, and
similarly, after firing t2, t4 cannot be fired.

4 Correctness Ensuring Configuration

To address the two main questions posed in the previous section, we could
use a direct approach by enumerating all possible configurations and simply
checking whether each of the configured nets βC

N weakly terminates or not.
As indicated before, the number of possible configurations is exponential in
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the number of configurable activities. Moreover, most techniques for checking
weak termination typically require the construction of the state space. Hence,
traditional approaches are computationally expensive and do not yield a useful
characterization of the set of all feasible configuration. Consequently, we propose a
completely different approach using the synthesis technique described in [22]. The
core idea is to see the configuration as an “external service” and then synthesize
a “most permissive partner”. This most permissive partner represents all possible
“external configuration services” which yield a feasible configuration. The idea is
closely linked to the notion of operating guidelines for service behavior [18]. An
operating guideline is a finite representation of all possible partners. Similarly,
our configuration guideline characterizes all feasible process configurations. This
configuration guideline can also be used to efficiently check the feasibility of a
particular configuration without exploring the state space of the configured net.
Our approach consists of two steps:

1. Transform the configurable process model (represented as an open net N)
into a configuration interface NCI .

2. Synthesize the “most permissive partner” for the configuration interface
constructed in NCI . This is the configuration guideline for N .

For our solution approach, we compose the configurable process model with
a “configuration service”. To do so, we first introduce composition. Open nets
can be composed by synchronizing transitions according to their visible labels.
In the resulting net, all transitions bear a τ -label and labeled transitions without
counterpart in the other net disappear.

Definition 7 (Composition). For i ∈ {1, 2}, let Ni = (Pi, Ti, Fi,m0i , Ωi, Li, `i)
be open nets. N1 and N2 are composable iff the inner nets of N1 and N2 are
pairwise disjoint. The composition of two composable open nets is the open net
N1 ⊕N2 = (P, T, F,m0, Ω, L, `) with:

– P = P1 ∪ P2,
– T = {t ∈ T1 ∪ T2 | `(t) = τ} ∪ {(t1, t2) ∈ T1 × T2 | `(t1) = `(t2) 6= τ},
– F = (F1 ∪ F2) ∩ ((P × T ) ∪ (T × P )) ∪ {(p, (t1, t2)) ∈ P × T | (p, t1) ∈
F1 ∨ (p, t2) ∈ F2} ∪ {((t1, t2), p) ∈ T × P | (t1, p) ∈ F1 ∨ (t2, p) ∈ F2},

– m0 = m01 ⊕m02 ,
– Ω = {m1 ⊕m2 | m1 ∈ Ω1 ∧m2 ∈ Ω2},
– L = ∅, and `(t) = τ for t ∈ T .

Via composition, the behavior of each original net can be limited; for instance,
transitions may no longer be available or may be blocked by one of the two
original nets. Hence, it is possible that N1 and N2 are weakly terminating, but
N1⊕N2 is not. Similarly, N1⊕N2 may be weakly terminating, but N1 and N2 are
not. The labels of the two open nets in Def. 7 serve now a different purpose: they
are not used for configuration, but for synchronous communication as described
in [22].

With the notions of composition and weak termination, we define the control-
lability. We need this concept to reason about the existence of feasible configura-
tions.
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Definition 8 (Controllability). An open net N is controllable iff there exists
an open net N ′ such that N ⊕N ′ is weakly terminating.

Open net N ′ is called a partner of N if N ⊕N ′ is weakly terminating. Hence,
N is controllable if there exists a partner. Wolf [22] presents an algorithm to
check controllability: if an open net is controllable, this algorithm can synthesize
a partner.

After these preliminaries, we define the notion of a configuration interface.
One of the objectives of this paper was to characterize the set of all feasible
configurations by synthesizing a “most permissive partner”. To do this, we
transform a configurable process model (i. e., an open netN) into an open netNCI ,
called the configuration interface, which can communicate with services which
configure the original model. In fact, we shall provide two configuration interfaces:
one where everything is allowed by default and the external configuration service
can block labels, and the other where everything is blocked by default and the
external configuration service can allow labels. In either case, the resulting open
net NCI is controllable iff there exists a feasible configuration CN of N . Without
loss of generality, we assume a 1-safe initial marking; that is, m0(p) > 0 implies
m0(p) = 1. This assumption helps simplifying the configuration interface.

Definition 9 (Configuration interface; allow by default). Let N = (P, T, F,
m0, Ω, L, `) be an open net. We define the open net with configuration interface
NCI

a = (PC , TC , FC ,mC
0 , Ω

C , LC , `C) with

– TV = {t ∈ T | `(t) 6= τ},
– PC = P ∪ {pstart} ∪ {pa

t | t ∈ TV },
– TC = T ∪ {tstart} ∪ {bx | x ∈ L},
– FC = F ∪ {(pstart, tstart)} ∪ {(tstart, p) | p ∈ P ∧ m0(p) = 1} ∪ {(t, pa

t ) |
t ∈ TV } ∪ {(pa

t , t) | t ∈ TV } ∪ {(bx, pstart) | x ∈ L} ∪ {(pstart, bx) | x ∈
L} ∪ {(pa

t , b`(t)) | t ∈ TV },
– mC

0 = [p1 | p ∈ {pstart} ∪ {pa
t | t ∈ TV }],

– ΩC = {m⊕
⊕

t∈T m
∗
t | m ∈ Ω ∧ ∀t∈T m∗t ∈ {[ ], [pa

t ]} },
– LC = {start} ∪ {blockx | x ∈ L}
– `C(tstart) = start, `C(bx) = blockx for x ∈ L, and `C(t) = τ for t ∈ T .

Figure 3 illustrates the two configuration interfaces for a simple open net
N . In both interfaces, the original net N consisting of places {p1, p2, p3, p4} and
transitions {t1, t2, t3, t4} is retained, but all transition labels are set to τ . Let us
focus on the configuration interface where all activities are allowed by default
(Fig. 3(b)). Here transitions bx and by are added to model the blocking of labels
x and y, respectively. Places pa

t1 , pa
t2 , and pa

t3 are also added to connect the
new transitions to the existing ones, and are initially marked as all configurable
transitions are allowed by default. Firing bx will block t1 and t2 by removing
the tokens from pa

t1 and pa
t2 . These two transitions are blocked at the same time

because both bear the same label x in N . Firing by will block t3. Transitions
bx and by are labeled respectively blockx and blocky. This means that in the
composition with a partner they can only fire if a corresponding transition in the
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Fig. 3. An example open net (a) and its two configuration interfaces (b,c).

partner can fire. Transition start has been added to ensure configuration actions
take place before the original net is activated. This way, we avoid “configuration
on the fly”. We shall discuss the construction of the configuration interface where
all activities are blocked by default later on.

Consider now a configuration service represented as an open net Q. NCI
a ⊕Q

is the composition of the original open net (N) extended with a configuration
interface (NCI

a ), and the configuration service Q. First, blocking transitions such
as bx and by can fire (apart from unlabeled transitions in Q). Next, transition
start fires after which blocking transitions such as bx and by can no longer fire.
Hence, only the original transitions in NCI

a can fire in the composition. The
configuration service Q may still execute transitions, but these cannot influence
NCI

a any more. Hence, Q represents a feasible configuration iff NCI
a can reach

one of its final markings from any reachable marking in the composition. So Q
corresponds to a feasible configuration iff NCI

a ⊕Q is weakly terminating; that
is, Q is a partner of NCI

a .
To illustrate the basic idea, we introduce the notion of a canonical con-

figuration partner ; that is, the representation of a configuration CN : L →
{allow , hide, block} in terms of an open net which synchronizes with the original
model extended with a configuration interface.

Definition 10 (Canonical configuration partner; allow by default). Let
N be an open net and let CN : L→ {allow , hide, block} be a configuration for N .
QCN

a = (P, T, F,m0, Ω, L
Q, `) is the canonical configuration partner with:

– B = {x ∈ L | CN (x) = block} is the set of blocked labels,
– P = {p0

x | x ∈ B} ∪ {pω
x | x ∈ B},

– T = {tx | x ∈ B} ∪ {tstart},
– F = {(p0

x, tx) | x ∈ B} ∪ {(tx, pω
x ) | x ∈ B} ∪ {(pω

x , tstart) | x ∈ B},
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– m0 = [(p0
x)1 | x ∈ B],5

– Ω = { [ ] },
– LQ = {blockx | x ∈ B} ∪ {start},
– `(tx) = blockx for x ∈ B, `(tstart) = start.

The set of labels which need to be blocked to mimic configuration CN is
denoted by B. The canonical configuration partner QCN

a has a transition for each
of these labels. These transitions may fire in any order after which the transition
with label start fires. We observe that in the composition NCI

a ⊕QCN
a first all

transitions with a label in {blockx | x ∈ B} fire in a synchronous manner, and
next the transition with label start (in both nets). After this, the net is configured
and QCN

a plays no role in the composition NCI
a ⊕QCN

a any more.
The following lemma formalizes the relation between the composition NCI

a ⊕
QCN

a and feasibility.

Lemma 1. Let N be an open net and let CN be a configuration for N . CN is a
feasible configuration iff NCI

a ⊕QCN
a is weakly terminating.

Proof. (⇒) Let CN be a feasible configuration for N and let NCI
a be as defined

in Def. 9. Consider the composition NCI
a ⊕QCN

a after the synchronization via
label start has occurred. By construction, (1) NCI

a ⊕QCN
a reached the marking

m = m0 ⊕ m1 ⊕ m2 such that m0 is the initial marking of N , m1 marks all
places pa

t of transitions t ∈ AC
N ∪ HC

N , and m2 is the empty marking of QCN .
Furthermore, (2) all transitions which bear a synchronization label (i. e., tstart and
all bx transitions) and all t ∈ BC

N are dead in m and cannot become enabled any
more. From NCI

a , construct the net N∗ by removing these transitions and their
adjacent arcs, as well as the places pstart and pa

t for all t ∈ TV . The resulting net
N∗ coincides with βC

N (modulo renaming). Hence, NCI
a ⊕QCN

a weakly terminates.
(⇐) Assume NCI

a ⊕QCN
a weakly terminates. From QCN

a , we can straightfor-
wardly derive a configuration C for N in which all labels are blocked which occur
in NCI

a ⊕QCN
a . With the same observation as before, we can conclude that βC

N

coincides with the net N∗ constructed from NCI
a after the removal the described

nodes. Hence, βC
N weakly terminates and C is a feasible configuration for N . ut

Lemma 1 states that checking the feasibility of a particular configuration can
be reduced to checking for weak termination of the composition. However, the
reason for modeling configurations as partners is that we can synthesize partners
and test for the existence of feasible configurations.

Theorem 1 (Feasibility coincides with controllability). Let N be an open
net. NCI

a is controllable iff there exists a feasible configuration CN of N .

Proof. (⇒) If NCI
a is controllable, then there exists a partner N ′ of NCI

a such
that NCI

a ⊕N ′ is weakly terminating. Consider a marking m of the composition
reached by a run σ from the initial marking of NCI

a ⊕N ′ to the synchronization

5 [xk | x ∈ X] denotes the multiset where each element of X appears k times. [ ]
denotes the empty multiset.
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Fig. 4. Two configuration guidelines characterizing all possible configurations.

via label start . Using the construction from the proof of Lemma 1, we can derive
a net N∗ from NCI

a which coincides with a configured net βC
N for a configuration

CN . As NCI
a ⊕N ′ is weakly terminating, CN is feasible.

(⇐) If CN is a feasible configuration of N , then by Lemma 1, NCI
a ⊕QCN

a

weakly terminates and by Def. 8, NCI
a is controllable. ut

As shown in [22], it is possible to synthesize a partner which is most-permis-
sive. This partner simulates any other partner and thus characterizes all possible
feasible configurations. In previous papers on partner synthesis in the context
of service oriented computing, the notion of an operating guideline was used to
create a finite representation capturing all possible partners [18]. Consequently,
we use the term Configuration Guideline (CG) to denote the most-permissive
partner of a configuration interface. Figure 4(a) shows the configuration guideline
CGa for the configurable model in Fig. 3(a), computed from the configuration
interface NCI

a in Fig. 3(b).
A configuration guideline is an automaton with one start state and one or

more final states. Any path in the configuration guideline starting in the initial
state and ending in a final state corresponds to a feasible configuration. The initial
state in Fig. 4(a) is denoted by a small arrow and the final states are denoted by
double circles. The leftmost path in Fig. 4(a) (i. e., 〈blockx, start〉), corresponds
to the configuration which blocks label x. Path 〈blocky, start〉 corresponds to the
configuration which blocks label y. The rightmost path (i. e., 〈start〉) does not
block any label. The three paths capture all three feasible configurations. For
example, blocking both labels is not feasible. Figure 4(a) is trivial because there
are only two labels and three feasible configurations. However, configuration
guidelines can be automatically computed for large and complex configurable
process models.

Thus far, we used a configuration interface that allows all configurable activi-
ties by default, i. e., blocking is an explicit action of the partner. It is also possible
to use a completely different starting point and initially block all activities.

Definition 11 (Configuration interface; block by default). Let N = (P, T,
F,m0, Ω, L, `) be an open net. We define the open net with configuration interface
NCI

b = (PC , TC , FC ,mC
0 , Ω

C , LC , `C) with

12



– TV = {t ∈ T | `(t) 6= τ},
– PC = P ∪ {pstart} ∪ {pa

t | t ∈ TV } ∪ {pb
x | x ∈ L},

– TC = T ∪ {tstart} ∪ {ax | x ∈ L},
– FC = F ∪ {(pstart, tstart)} ∪ {(tstart, p) | p ∈ P ∧ m0(p) = 1} ∪ {(t, pa

t ) |
t ∈ TV },∪{(pa

t , t) | t ∈ TV },∪{(ax, pstart) | x ∈ L} ∪ {(pstart, ax) | x ∈
L} ∪ {(a`(t), p

a
t ) | t ∈ TV } ∪ {(pb

x, ax) | x ∈ L},
– mC

0 = [p1 | p ∈ {pstart} ∪ {pb
x | x ∈ L}],

– ΩC = {m⊕ [(pb
x)1 | x ∈ X]⊕ [(pa

t )1 | t ∈ T ∧ `(t) 6∈ X] | m ∈ Ω ∧ X ⊆ L},
– LC = {start} ∪ {allowx | x ∈ L}
– `C(tstart) = start, `C(ax) = allowx for x ∈ L, and `C(t) = τ for t ∈ T .

NCI
b in Fig. 3(c) shows the configuration interface where all activities are

blocked by default. The idea is analogous to the construction of NCI
a . Transitions

ax and ay are added to model the allowing of labels x and y, and places pa
t

(t ∈ TV ) are added to connect these transitions to the original ones. However
these places are empty, and thus all original transitions are initially blocked;
that is, they cannot fire. An original transition (e. g., x) can only be enabled
after its allowing transition (i. e., ax) fires. Places pb

x and pb
y have been added to

inhibit the repeated execution of respectively ax and ay. Without these places,
the inner net (i. e., the net without synchronization labels) would be unbounded,
and controllability would be undecidable [20]. Similar to the “allow by default”
case, we define a canonical configuration partner.

Definition 12 (Canonical configuration partner; block by default). Let
N be an open net and let CN : L→ {allow , hide, block} be a configuration for N .
QCN

b = (P, T, F,m0, Ω, L
Q, `) is the canonical configuration partner with:

– A = {x ∈ L | CN (x) 6= block} is the set of nonblocked labels,
– P = {p0

x | x ∈ A} ∪ {pω
x | x ∈ A},

– T = {tx | x ∈ A} ∪ {tstart},
– F = {(p0

x, tx) | x ∈ A} ∪ {(tx, pω
x ) | x ∈ A} ∪ {(pω

x , tstart) | x ∈ A},
– m0 = [(p0

x)1 | x ∈ A],
– Ω = { [ ] },
– LQ = {allowx | x ∈ A} ∪ {start},
– `(tx) = allowx for x ∈ A, `(tstart) = start.

The structure of the canonical configuration partner QCN

b is identical to that
of QCN

a . Only the labels are different; that is, A = L \ B are the labels that
need to be unblocked. Moreover, we obtain the same results linking feasibility to
controllability.

Lemma 2. Let N be an open net and let CN be a configuration for N . CN is a
feasible configuration iff NCI

b ⊕QCN

b is weakly terminating.

Proof. Analogue to the proof of Lemma 1. ut

Theorem 2 (Feasibility coincides with controllability). Let N be an open
net. NCI

b is controllable iff there exists a feasible configuration CN of N

13
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Fig. 5. Three open nets (Ω = {[p6]}).
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Fig. 6. The configuration guidelines (allow by default) for N1 (a), N2 (b) and
N3 (c).

Proof. Analogue to the proof of Theorem 1. ut

Figure 4(b) shows the configuration guideline CGb for the configurable model
in Fig. 3(a), computed from the configuration interface NCI

b in Fig. 3(c). Again,
any path in CGb starting in the initial state and ending in a final state correspond
to a feasible configuration. The leftmost path (i. e., 〈allowx, start〉) corresponds
to the configuration which unblocks label x. Paths 〈allowx, allowy, start〉 and
〈allowy, allowx, start〉 correspond to the configuration where both x and y are
allowed. Finally, the rightmost path (i. e., 〈allowy, start〉) allows y only. Clearly,
the two configuration guidelines in Fig. 4 point to the same set of feasible
configurations as they refer to the same original model.

Let us now consider a more elaborated example to see how configuration
guidelines can be used to rule out unfeasible configurations. Figure 5 shows
three open nets. The structures are identical, only the labels are different. For
example, blocking x in N2 corresponds to removing both t1 and t4, because both
transitions bear the same label.

For these three nets, we can construct the configuration interfaces using Def. 9
or Def. 11, and then synthesize the configuration guidelines. Figure 6 shows the
three configuration guidelines using Def. 9 (allow by default).
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Figure 6(a) reveals all feasible configurations for N1 in Fig. 5(a). From
the initial state in the configuration guideline CGa

1 , we can immediately reach
a final state by following the rightmost path 〈start〉. This indicates that all
configurations which block nothing (i. e., only allow or hide activities) are feasible.
It is possible to just block v (cf. path 〈blockv, start〉) or block both v and y (cf.
paths 〈blockv,blocky, start〉 and 〈blocky,blockv, start〉). However, as Fig. 6(a)
shows, it is not allowed to block y only, otherwise a token would deadlock
in p3. For the same reasons, one can block w only or w and z, but not z only.
Moreover, it is not possible to combine the blocking of w and/or z on the one
hand and v and/or y on the other hand, otherwise no final marking can be
reached. Also x can never be blocked, otherwise both v and w would also need
to be blocked (to avoid a token to deadlock in p2) which is not possible. There
are 35 = 243 configurations for N1. If we abstract from hiding as this does
not influence feasibility, there remain 25 = 32 possible configurations. Of these
only 5 are feasible configurations which correspond to the final states in Fig. 6(a).
This illustrates that the configuration guideline can indeed represent all feasible
configurations in an intuitive manner.

Figure 6(b) shows the three feasible configurations for N2 in Fig. 5(b). Again
all final states correspond to feasible configurations. As the configuration guideline
shows one can block x or y but not both. It is easy to see that one can indeed
block the two leftmost transitions (labeled x) or the two rightmost transitions
(labeled y), but not both.

The configuration guideline in Fig. 6(c) shows that nothing can be blocked
for N3 (Fig. 5(c)). Blocking x or y will yield an unfeasible configuration as a
token will get stuck in p4 (when blocking x) or p3 (when blocking y). If both
are blocked, none of the transitions can fire and thus no final marking can be
reached.

5 Tool Support

To prove the feasibility of our approach, we applied it to the configuration of
C-YAWL models [13]. The YAWL language can be seen as an extension of Petri
nets which provides “syntactic sugaring” (shorthand notations for sequences and
XOR-splits/joins) and advanced constructs such as cancelation sets, multiple
instance tasks and OR-joins [14]. YAWL is based on the well-know workflow
patterns [4]. The YAWL system supporting this language is one of the most
widely used open source workflow systems [14]. Here we do not use YAWL’s
cancelation sets, multiple instance tasks and OR-joins and restrict ourselves to
the basic control-flow patterns supported by most systems. This allows us to
easily map a YAWL model onto an open net.

A C-YAWL model is a YAWL model where some tasks are annotated as
configurable. Configuration is achieved by restricting the routing behavior of
configurable tasks via the notion of ports. A configurable task’s joining behavior is
identified by one or more inflow ports, whereas its splitting behavior is identified
by one or more outflow ports. The number of ports for a configurable task
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Fig. 7. The C-YAWL model for travel request approval.

depends on the task’s routing behavior. For example, an AND-split/join and
an OR-join are each identified by a single port, whereas an XOR-split/join is
identified by one port for each outgoing/incoming flow. An OR-split is identified
by a port for each combination of outgoing flows. To restrict a configurable task’s
routing behavior, inflow ports can be hidden (thus the corresponding task will
be skipped) or blocked (no control will be passed to the corresponding task via
that port), whereas outflow ports can only be blocked (the outgoing paths from
that task via that port are disabled). For instance, Fig. 7 shows the C-YAWL
model for the travel request approval in the YAWL Editor, where configurable
tasks are marked with a ticker border.

The YAWL Editor offers a visual interface to conveniently configure C-YAWL
models and obtain configured models. Given a configuration, the tool can show a
preview of the resulting configured net by greying out all model fragments which
have been blocked, and commit the configuration by removing these fragments
altogether. To assist end users in ruling out all unfeasible configurations in an
interactive manner, we developed an open-source plugin for the YAWL Editor
named C-YAWL Correctness Checker.6 Given a C-YAWL model in memory,
the plugin first maps this model into an open net. More precisely, it maps each
condition to a place, each configurable task’s port to a labeled transition, and
each non-configurable task to a silent transition. Also, for each task it adds
an extra place to connect the transition(s) derived from its inflow port(s) with
the transition(s) derived from its outflow port(s). By using silent transitions we
prevent all non-configurable tasks from being later configured via a configuration

6 The C-YAWL Correctness Checker (and the C-YAWL system) can be downloaded
from www.yawlfoundation.org.
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Fig. 8. The preview of a configured net for the example in Fig. 7.

interface. Next, the plugin uses the generated open net to create the corresponding
configuration interface (allow by default), and passes the latter to the tool
Wendy [19] to produce the configuration guideline (allow by default). Wendy is
an open source tool7 which implements the algorithms for partner synthesis [22]
and to calculate operating guidelines [18]. A recent case study [19], shows that
Wendy is able to analyze industrial models with up to 5 million states and to
synthesize partners of about the same size. Wendy itself offers no graphical user
interface, but is controlled by input/output streams. In our setting, Wendy’s
output is piped back into the Correctness Checker, where it can be parsed.

At each configuration step, the plugin scans the set of outgoing edges of the
current state in the configuration guideline, and prevents users from blocking
those ports not included in this set. This is done by disabling the block button
for those ports. As users block a valid port, the Correctness Checker traverses the
configuration guideline through the corresponding edge and updates the current
state. If this is not a consistent state; that is, a state with an outgoing edge
labeled “start”, further ports need to be blocked, because the current configuration
is unfeasible. In this case YAWL provides an “auto complete” option. This is
achieved by traversing the shortest path from the current state to a consistent
state and automatically blocking all ports in that path. After this, the plugin
notifies the user with the list of ports being blocked and updates the current
state. For example, Fig. 7 shows that after blocking the input port of task Check
and Update Travel Form, the plugin notifies the user that the input port of task
Prepare Travel Form for Approval (Secretary) and the output port of task Submit
Travel Form for Approval to task Request for Change have also been blocked.

7 Available for download at http://service-technology.org/wendy.
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Figure 8 shows the preview of the resulting configured net. From this we can
observe that condition p3 and task Request for Change will also be removed from
the net as a result of applying the earlier configuration.

Similarly, the plugin maintains a consistent state in case users decide to allow
a previously blocked port. In this case it traverses the shortest backward path to
a consistent state and allows all ports in that path. By traversing the shortest
path we ensure that the number of ports being automatically blocked or allowed
is minimal.

The C-YAWL example of Fig. 7 comprises ten inflow ports and nine outflow
ports. In total more than 30 million configurations are potentially possible. If we
abstract from hiding we obtain 524,288 possible configurations, of which only
1,593 are feasible according to the configuration guideline. Wendy took an average
of 336 seconds to generate this configuration guideline which consumes 3.37 MB
of disk space. Nonetheless, the shortest path computation is a simple depth-first
search which is linear on the number of nodes in the configuration guideline.
Thus, once the configuration guideline has been generated, the plugin’s response
time at each user interaction is instantaneous.

6 Conclusion

Configurable process models are a means to compactly represent families of
process models. However, the verification of such models is difficult as the number
of possible configurations grows exponentially in the number of configurable
elements. Due to concurrency and branching structures, configuration decisions
may interfere with each other and thus introduce deadlocks, livelocks and other
anomalies. The verification of configurable process models is challenging and only
few researchers have worked on this. Moreover, existing results impose restrictions
on the structure of the configurable process model and fail to provide insight
into the complex dependencies between configuration decisions.

This paper uses an innovative approach where configuration is seen as an
external service. This service acts as a partner which can block or allow particular
activities. Using partner synthesis we compute the configuration guideline – a
compact representation characterizing all external services that yield the desired
behavior, which correspond to all feasible configurations. The approach is highly
generic and imposes no constraints on the configurable process model. Moreover,
all computations are done at design time and not at configuration time. As a
result, once the configuration guideline has been generated, the response time
is instantaneous thus stimulating the practical (re-)use of configurable process
models. The approach is supported by a combination of the YAWL system and
Wendy. As a result, C-YAWL models can be configured while correctness is
ensured by a checker integrated in the YAWL Editor.

Several interesting extensions are possible. First, the partner synthesis could
be further refined using behavioral constraints [17]. With such constraints, specific
partners can be ruled out. This could be used to encode knowledge about a
process’ application domain [16] in the configuration interface. For example,
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domain knowledge may state that two activities cannot be blocked or allowed at
the same time. Second, one could consider configuration at run-time, i. e., while
instances are running configurations can be set or modified. This can be easily
embedded in the current approach. Finally, one could devise even more compact
representations of configuration guidelines. For example, the diamond structure
in Fig. 4(b) suggests that this configuration guideline could be represented more
efficiently. An idea would be to convert the automaton into a Petri net using the
theory of regions [5].
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