
Supervisory Control Service - A control approach

supporting flexible processes

Eduardo A. P. Santos1, Rosemary Francisco1, Maja Pesic2, Wil van der Aalst2

1Pontif́ıcia Universidade Católica do Paraná,
Curitiba, Brazil

2Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, The Netherlands

April 20, 2010

Abstract

In order to be competitive, companies are demanding more flexibility from their Process Aware
Information Systems (PAISs). However, increasing flexibility and complexity of modern PAISs
usually leads to less guidance for its users and consequently requires more experienced users. For
instance, a flexible PAIS allows users to freely choose a specific execution sequence. However, there
are no guarantees that the chosen sequence is the best one or at least it conforms to established
business rules. In this paper we propose a supervisory control service architecture, which can be
used to support end users of flexible PAISs during process execution by giving a list of disabled
(or enabled) events (activities) i.e. at any point in time a list of possible next steps is given. To
evaluate the correctness of the supervisory control service the approach has been implemented and
tested.
Key words: supervisory control, business process, process aware information system, monitoring,
operational decision making.

1 Introduction

Nowadays there is a consensus that the economic success of an enterprise depends on its ability

to react to changes in its environment in a quick and flexible way (Weber et al. 2008). The

increase in global competition is pushing enterprises to reduce their response times when launching

new products and at the same time offer competitive prices. Diversity, fluctuations in demand,

the short life cycle of products due to the frequent introduction of new needs, in addition to the

increase in the client’s expectations in terms of quality and delivery time, are nowadays the main

challenges with which companies have to deal in order to remain competitive and stay in business.

For these reasons companies have recognized business agility as a competitive advantage, which is

fundamental for being able to cope with the problems today’s organizations are facing.

According to Weber et al. (2007) and Weber et al. (2008), Process-aware Information Sys-

tems offer promising perspectives in this respect, and a growing interest in aligning information

systems in a process-oriented way can be observed. A Process-Aware Information System (PAIS)

is a software system that manages and executes operational processes involving people, applica-

tions, and/or information sources on the basis of process models. Examples of PAISs are workflow

1



management systems, case-handling systems, enterprise information systems, etc (Dumas et al.

2005). In this context, companies are demanding more flexibility from their PAISs. Whilst the

concept of flexibility is relatively simple, its implementation is more difficult to achieve in practice

(Schonenberg et al. 2008b; Schonenberg et al. 2008a). PAIS can only capture an abstraction of the

business process that they facilitate, and recognition that there is a deviation between this process

definition and the ”real-life” process that they are intended to support requires external (typically

human) input. In general, in flexible PAIS it occurs frequently that users working on a case have

the option to decide between several activities that are enabled for that case. However, for all

flexibility approaches, the user support provided by the PAIS decreases with increasing flexibility,

since more options are available, requiring users to have in-depth knowledge about the processes

they are working on. Traditionally, this problem is solved by educating users (e.g., by making them

more aware of the context in which a case is executed), or by restricting the PAIS by introducing

more and more constraints on the order of activities and thus sacrificing flexibility. Both options,

however, are not satisfactory and limit the practical application of flexible PAIS (Schonenberg et al.

2008b; Schonenberg et al. 2008a; Schonenberg et al. 2008).

In the last years many works have pointed out the flexibility a key for the successful application

of workflow technology. The need for flexible PAISs has been recognized and several competing

paradigms have been proposed (Schonenberg et al. 2008) (Pesic, Schonenberg, Sidorova, and van der

Aalst 2007). However, many researchers have argued that in many applications is desirable to

control the process and to avoid incorrect or undesirable executions of the process. In fact, according

to van der Aalst et al. (2009), this matter can be seen as paradox, as users expect flexibly and to feel

unconstrained in their actions but also expect support at the same time. Van der Aalst et al. (2008)

look at other related problem: within a single process/organisation different degrees of flexibility

may be required. For instance, the front-office part of the process may require more flexibility while

the back-office part requires more control. Thus, many approaches describe the trade-off between

flexibility requiring user assistance. Approaches like recommendation service (Schonenberg et al.

2008a) and prediction service (Dongen et al. 2008) give advices to users based on performance

considerations. In fact, these services do not force users to take a particular action, they inform

users what is the best execution sequence of activities to be perform.

According to van der Aalst et al. (2007) decision making in PAISs involves build-time and run-

time decisions. At build-time, idealized process models are designed based on the organization’s

objectives, infrastructure, context, constraints, etc. At run-time, this idealized view is missed. For

instance, process models generally assume that planned tasks happen within a certain period. When

such assumptions are not fulfilled, users must make decisions regarding alternative arrangements to

achieve the goal of completing the process within its expected time frame or to minimize tardiness.

So, as flexibility increases in PAISs, users get more freedom to select suitable tasks for execution.

Users can choose, according to their own decision, a specific execution sequence. However, they

get no guarantees that the chosen sequence is the best one or at least it conforms to established

business rules. Also, on top of PAIS there is no control or only has control in the form of very local

rules. In this case, a specific execution could not immediately cause a violation, but the violation

could become inevitable. In this sense, we propose to add more global business rules in order to

2



support users during execution of activities. We do not want neither to remove flexibility on PAISs

or use classical restrictive workflow systems, we want to give advices to users in such way that

business rules will not be violated.

We propose the Supervisory Control Service (SCS) coupled to PAIS. This service has to provide

additional business rules according to an observed log event. These business rules aim to inform

the users what has to be done (or what should not be done) when processing a case (e.g., choose

among enabled activities which one must be executed). The SCS provides information in the form

of disabled activities, saying to the user which activities cannot be executed because they violate

some control rule. In our paradigm, the SCS can tell the users what cannot happen but it is

not be able to force or to choose which event must be executed, i.e. it can block but not force

users. For example, after an observed event, three events (activities) can happen, but according

to some control rule, the SCS disables one of them. The users has to choose one of the two other

activities to continue processing a case. The SCS uses an idea similar to the recommendation

service proposed in Schonenberg et al. (2008). The SCS provides information to a user about

which activities he/she should avoid in order to achieve a certain group of specifications. Thus,

at run time, cases are created and executed considering the constraints imposed by the process

model. The SCS imposes additional constrains to such cases according to specifications that were

not established in the process model. These specifications can be changed when a redefinition of

control rules is necessary. As a recommendation service, our approach is useful when in the process

model multiple activities are enabled during execution of a case. Thus, the users can receive an

’on-line’ guide from the SCS that tells them which activities should be avoided.

The remainder of this paper is structured as follows. In Section 2, we present an overview of

supervisory control service. In Section 3 we present the supervisory control theory and the control

architecture of SCS. Then, in Section 4 we show the architecture of SCS and its formal modeling.

In Section 5 an example is presented. The implementation of SCS as a Plug-in for Process Mining

Framework is described in Section 6. Finally, in sections 7 and 8 we discuss related work and

provide conclusions, respectively.

2 Overview of supervisory control service

Figure 1 illustrates the Supervisory Control Service (SCS) supporting users of PAISs. In general,

each business process to be supported is described as a process model in the respective PAIS. The

SCS can be used when the process model provides users a certain freedom to manoeuvre, even

considering the constraints imposed by the process model. For example, when multiple activities

are enabled during execution of a case. In this situation, users can decide in which order they

will execute enabled tasks. It always will be expected that users decide to a better execution

sequence, in order to reach the the specific goals. However, considering the lack of information

about the process that they are performing, users can take other decisions. Unfortunately, some of

these decisions can not be satisfactory in the sense that they can violate some established rules or

decrease the performance of the related process. The basic idea of the SCS is to restrict the set of

enabled activities during process execution, limiting the level of manoeuvre to the users. Control

3



rules or specifications are defined in order to establish the behavior of the SCS. Thus, the SCS

guides users by disabling activities that would violate predefined goals or business rules. It can be

seen as a closed loop system (as in control theory), as the SCS plays the role of controller and the

PAIS plays the role of the system to be controlled.

Figure 1: Overview of supervisory control service

In order to implement the SCS, some requisites are necessary. Firstly, we consider any PAIS can

generate events log. At run-time, PAIS records information about executed activities in event logs.

Typically, event logs contain information about start and completion of activities, their ordering,

resources which executed them and the cases (i.e. process instances) they belong to (Van der

Aalst et al. 2003). In our approach we consider Σ to represent the set of event types associated

to a log. The set Σ can be seen as the “alphabet” of a language and event sequences can be

thought of as “words” in that language. In this framework, we can pose questions such as “Can we

control a PAIS in such way that it speaks a given language?” or “Which language does this PAIS

should avoid?”. Different from conformance analysis (Rozinat and van der Aalst 2008), where it is

assumed that a task is associated to at most one type of log event (typically a complete event), in

our approach we consider a task logs events at a more fine-grained level. For example, the start,

the completion, the suspend of an activity are typical events considered to SCS goals. Secondly,

we consider SCS working on a real time mode. Thus, the PAIS should be equipped with a logging

mechanism and the SCS must be connected to PAIS. We consider that any information system can

offer this information in some form. Note that this is a reasonable assumption as any PAIS has

a work list handler (to offer work) and some event logging facility. In addition, a communication

infrastructure is necessary to support online connection between the PAIS and the SCS. Thirdly, a

well-consolidated formalism to build the engine of SCS is fundamental. As PAISs become more and

more complex, in many situations one must deal with a large set of (complex) business rules. The

consequence is increasing of complexity the SCS to be constructed. Thus, the formal foundation

used to build the SCS must deal with issues as blocking, optimality (what is the best solution?),

implementation feasibility, and so on.

As illustrated in Figure 1, the SCS works as following. The process engine generates a set of

information elements which is completely observed and processed by the SCS. This set is formed by

4



a string τ (an event sequence), a list of enabled activities (after τ) and a case identifier. According

to control rules established in SCS, a list of disabled activities is sent to process engine (we call

this list the control action at τ). Thus, SCS provides a “map” or “guide” to users, informing them

which activities can be executed and which activities cannot. Considering that SCS always allows

to reach a target state (or complete every established task), the users can chose one activity from

the list of remained enabled activities. In real life flexible processes, with increasing complexity

there are so many options for users, that user support becomes fundamental. Restricting these

options based on control rules can ensure correctness and support efficiency. At the same time, as

the SCS engine can easily and systematically be modified (if control rules or specifications change),

this approach is declarative making it very flexible and customizable. For example, if some control

rule must be modified, included or excluded, it is easy to synthesize a new controller. This task

can be performed automatically using our approach described in the next section.

3 Supervisory control theory

The framework described in previous section gives the basis for the design of Supervisory Control

Services (SCSs). In this section we introduce the Supervisory Control Theory (SCT) proposed by

Ramadge and Wonham (1989) as a formalism for supervisor’s synthesis. Supervisory control theory

has been developed in recent decades as an expressive framework for the synthesis of control for

Discrete-Event Systems (DES). In SCT, the open-loop (term familiar in control theory) behavior

of a DES, called plant, is modeled by an automaton. The restrictions to be imposed on the plant

can be expressed in terms of a language representing the admissible behavior and it is named

specification (Ramadge andWonham 1987). The Ramadge-Wonham model (or RWmodel) provides

computational algorithms for the synthesis of a minimally restrictive supervisor that constrains the

behavior of the plant by disabling some events in such a way that it respects the admissible language

and that it ensures nonblocking, i.e., there is always an event sequence available to reach a marked

state. While the admissible language can be viewed as a safety specification (assuring that nothing

“bad” happens), nonblocking can be interpreted as a liveness specification that ensures that the

supervisor will not prevent the completion of a task (something “good” happens) (Queiroz et al.

2005). Note that in Ramadge-Wonham model supervisors cannot force the completion of tasks.

This corresponds to reality where we can not force the occurrence of events.

The SCT is based on automata theory, or dually formal language theory, depending on whether

one prefers an internal structural or external behavioral description at the start. Briefly, in RW

model a Discrete Event System (DES) is modeled as the generator of a formal language, the control

feature being that certain events (transitions) can be disabled by an external controller. The idea

is to construct this controller so that the events it currently disables depend in a suitable way on

the past behavior of the generating DES. In this way the DES can be made to behave optimally

with respect to a variety of criteria, where ‘optimal’ means in ‘minimally restrictive way’. Among

the criteria are ‘safety’ specifications like the avoidance of prohibited regions of the state space, or

the observation of services priorities; and ‘liveness’ specifications, as least in the weak sense that

distinguished target states always remain reachable. Thus, our SCS uses the RW model as the basic

5



formalism to build its control engine. Note that in our approach the process engine is the plant in

RW model (system to be controlled) and the SCS is considered the controller.

3.1 Formal languages and automata

This section gives a brief introduction to theory used in RW model. This description is classical and

similar introductions can be found in Carroll and Long (1989), Cassandras and Lafortune (2008),

and Hopcroft et al. (2006). We begin by viewing the event set Σ of a DES as an alphabet. We will

assume that Σ is finite. A sequence of events taken out of this alphabet forms a word or string. A

string consisting of no events is called the empty string and is denoted by ϵ. The length of a string

is the number of events contained in it, counting multiple occurrences of the same event. If s is a

string, we will denote its length by |s|. By convention, the length of the empty string ϵ is taken to

be zero, i.e. |ϵ| = 0.

A language defined over an event set Σ is a (possibly infinite) set of finite-length strings formed

from events in Σ. The key operation involved in building strings, and thus languages, from a set of

events Σ is concatenation. The concatenation uv of two strings u and v is the new string consisting

of the events in u immediately followed by the events in v. The empty string ϵ is the identity

element of concatenation, i.e., uϵ = ϵu = u for any string u. Let us denote by Σ∗ the set of all finite

strings of elements of Σ, including the empty string ϵ; the ∗ operation is called the Kleene-closure.

Observe that the set Σ∗ is countably infinite since it contains strings of arbitrarily long length. A

language over an event set Σ is therefore a subset of Σ∗. In particular, ∅, Σ, and Σ∗ are languages.

We conclude this discussion with some terminology about strings. If tuv = s with t, u, v ∈ Σ∗,

then: t is called a prefix of s, u is called a substring of s, and v is called a suffix of s.

The usual set operations, such as union, intersection, difference, and complement with respect to

Σ∗, are applicable to languages since languages are sets. In addition, we will also use the following

operations: Concatenation: Let La, Lb ⊆ Σ∗, then LaLb := {s = sasb ∈ Σ∗|sa ∈ La ∧ sb ∈ Lb}. In

words, a string is in LaLb if it can be written as the concatenation of a string in La with a string in

Lb. Prefix-closure: Let L ⊆ Σ∗, then L := {s ∈ Σ∗|(∃t ∈ Σ∗)st ∈ L}. In words, the prefix closure

of L is the language denoted by L and consisting of all the prefixes of all the strings in L. Note that

L ⊆ L. L is said to be prefix-closed if L = L. Thus language L is prefix-closed if any prefix of any

string in L is also an element of L. Kleene-closure: Let L ⊆ Σ∗, then L∗ := {ϵ}∪L∪LL∪LLL . . .

This is the same operation that we defined above for the set Σ, except that now it is applied to

set L whose elements may be strings of length greater than one. An element of L∗ is formed by

the concatenation of a finite (but possibly arbitrarily large) number of elements of L; this includes

the concatenation of ”zero” elements, that is, the empty string ϵ. Note that the ∗ operation is

idempotent: (L∗)∗ = L∗.

A language is a formal way of describing the behavior of a DES. It specifies all admissible

sequences of events that the DES is capable of “processing” or “generating”. In this sense the

representation of a DES using languages can be thought as a external behavior model, in which

the DES’s trajectory is described. However, the use of languages is computational limited. The

difficulty here is that “simple” representations of languages are not always easy to specify or work

6



with. To deal with this issue automata theory is used.

An automaton is a device that is capable of representing a language according to well defined

rules. The simplest way to present the notion of automaton is to consider its directed graph

representation, or state transition diagram. A Deterministic Automaton, denoted by G, is a six-

tuple G = {Q,Σ, δ,Γ, qo, Qm}, where: Q is the set of states; Σ is the finite set of events associated

with G; δ : Q×Σ → Q is the transition function: δ(q, e) = q′ means that there is a transition labeled

by event e from state q to state q’; in general, δ is a partial function on its domain; Γ : Q → 2Σ is

the active event function (or feasible event function); Γ(q) is the set of all events e for which δ(q, e)

is defined and it is called the active event set (or feasible event set) of G at q; q0 is the initial state;

Qm ⊆ Q is the set of marked states.

The connection between languages and automata is easily made by inspecting the state tran-

sition diagram of an automaton. Consider all the directed paths that can be followed in the state

transition diagram, starting at the initial state; consider among these all the paths that end in a

marked state. This leads to the notions of the languages generated and marked by an automaton.

The language generated by G = {Q,Σ, δ,Γ, q0, Qm} is L(G) = {s ∈ Σ∗|δ(q0, s)} is defined. The

language marked by G is Lm(G) := {s ∈ L(G)|δ(q0, s) ∈ Qm}. The language L(G) represents all

the directed paths that can be followed along the state transition diagram, starting at the initial

state; the string corresponding to a path is the concatenation of the event labels of the transitions

composing the path. Therefore, a string s is in L(G) if and only if it corresponds to an admissible

path in the state transition diagram, equivalently, if and only if δ is defined at (q0, s). If δ is a total

function over its domain, then necessarily L(G) = Σ∗. We will use the terminology active event to

denote any event in Σ that appears in some string in L(G). Note that not all events in Σ need be

active. The second language represented by G, Lm(G), is the subset of L(G) consisting only of the

strings s for which δ(q0, s) ∈ Qm, that is, these strings correspond to paths that end at a marked

state in the state transition diagram. The language marked is also called the language recognized

by the automaton, and we often say that the given automaton is a recognizer of the given language.

Figure 2 shows an automaton and its generated and marked languages.

Figure 2: Example of generated and marked language of an automaton

There are two approaches to deal with DES representation using automata: a global approach

and a local approach. In the global approach a DES is considered as a whole, and the set of all

event sequences build a unique model. In large scale systems this approach can become complex.

In addition, whenever a DES must be modified (for example, by including or excluding a specific

7



subsystem), the model must be modified as a whole. In the local approach a DES is supposed to be

constituted of subsystems and each one of them can be represented by a local automaton. To obtain

a global representation of such DES it is necessary to compose the local models. A local approach

aims to facilitate representing large scale DESs, considering that it is easier to obtain small models.

Also, whenever a DES must be modified it is only necessary rebuild a specific local model(s). A key

operation to apply the local approach is the composition of automata. In general, when modeling

systems composed of interacting components, the event set of each component includes private

events that pertain to its own internal behavior and common events that are shared with other

automata and capture the coupling among the respective system components (Cassandras and

Lafortune 2008). The standard way of building models of entire systems from models of individual

system components is by parallel composition.

Consider the two automata G1 = {Q1,Σ1, δ1,Γ1, q01, Qm1} and G2 = {Q2,Σ2, δ2,Γ2, q02, Qm2}.

The parallel composition (or synchronous product) of G1 and G2 is the automaton G1||G2 :=

Ac(Q1 ×Q2,Σ1 ∪Σ2, δ,Γ1||2, (q01, q02), Qm1 ×Qm2) where Ac stands for taking the accessible part

of G1||G2:

δ ((q1, q2) , e) :=



(δ1 (q1, e) , δ2 (q2, e)) if e ∈ Σ1 ∩ Σ2 ∧ e ∈ Γ1 (q1) ∩ Γ2 (q2)

(δ1 (q1, e) , q2) if e ∈ Σ1 ∧ e ̸∈ Σ2 ∧ e ∈ Γ1 (q1)

(q1, δ2 (q2, e)) if e ∈ Σ2 ∧ e ̸∈ Σ1 ∧ e ∈ Γ2 (q2)

undefined, otherwise

(1)

and thus Γ1||2(q1, q2) = [Γ1(q1) ∩ Γ2(q2)] ∪ [Γ1(q1)\Σ2] ∪ [Γ2(q2)\Σ1].

In the parallel composition, a common event, that is, an event in Σ1∩Σ2, can only be executed if

the two automata both execute it simultaneously. Thus, the two automata are synchronized on the

common events. The private events, that is, those in (Σ2\Σ1)∪ (Σ1\Σ2), are not subject to such a

constraint and can be executed whenever possible. In this kind of interconnection, a component can

execute its private events without the participation of the other component; however, a common

event can only happen if both components can execute it. If Σ1 = Σ2, then all transitions are

forced to be synchronized. If Σ1 ∩ Σ2 = ∅, then there are no synchronized transitions and G1||G2

is the concurrent behavior of G1 and G2. This is often termed the shuffle of G1 and G2. Figure 3

shows an example of synchronous product of two automata.

3.2 Supervisory control

The situation under consideration in this section is that of a given DES, modeled at the untimed

(or logical) level of abstraction, and whose behavior must be modified by feedback control in order

to achieve a given set of specifications. Let us assume that the given DES is modeled by automaton

G, where the state space of G need not be finite. Let Σ be the event set of G. Automaton G models

the uncontrolled behavior of the DES. The premise is that this behavior is not satisfactory and

must be modified by control; modifying the behavior is to be understood as restricting the behavior

to a subset of L(G). In order to alter the behavior of G we introduce a supervisor; supervisors will

be denoted by S. Note that we separate the plant (term usually used in industrial automation) G

8



Figure 3: Example of synchronous product of two automata

from the controller (or supervisor) S, as is customary in control theory. This raises two questions:

(a) What is the meaning of specifications? and (b) How does S modify the behavior of G?

The language L(G) contains strings that may be unacceptable because they violate some rule

or nonblocking condition that we wish to impose on the system. It could be that certain states of

G are undesirable and should be avoided. These could be states where G blocks, via a deadlock or

a livelock; or they could be states that are inadmissible. Moreover, it could be that some strings

in L(G) contain substrings that are not allowed. These substrings may violate a desired ordering

of certain events, for example, requests for the use of a common resource should be granted in a

first-come first-served manner. Thus, we will be considering sublanguages of L(G) that represent

the legal or admissible behavior for the controlled system. In some cases, we may be interested in

a range of sublanguages of L(G), of the form Lr ⊂ La ⊆ L(G) where the objective is to restrict

the behavior of the system to the range delimited by Lr and La; here, La is interpreted as the

maximal admissible behavior and Lr as the minimal required behavior. In both the inclusion and

range problems, we could have the additional requirement that blocking does not occur.

Ramadge and Wonham consider a very general control paradigm for how S interacts with G.

In this paradigm, S sees (or observes) some, possibly all, of the events that G executes. Then, S

tells G which events in the current active event set of G are allowed next. More precisely, S has the

capability of disabling some, but not necessarily all, feasible events of G. The decision about which

events to disable will be allowed to change whenever S observes the execution of a new event by

G. In this manner, S exerts dynamic feedback control on G. The two key considerations here are

that S is limited in terms of observing the events executed by G and that S is limited in terms of

disabling feasible events of G. Thus, it is considered the presence of observable events in Σ - those

that S can observe - and the controllable events in Σ - those that S can disable.

3.3 Controlled DES

In Ramadge and Wonham model, the event set of G is partitioned into two disjoint sets, being

the set of controllable events Σc, and the set of uncontrollable events Σuc. An event is classified

9



as controllable if its occurrence can be disabled by supervisor. It is classified as uncontrollable

in the opposite case. According to (Cassandras and Lafortune 2008), an event might be modeled

as uncontrollable because it is inherently unpreventable (for example, a fault event); or it models

a change of sensor readings not due to a command; it cannot be prevented due to hardware or

actuation limitations; or it is modeled as uncontrollable by choice, as for example when the event

has high priority and thus should not be disabled or when the event represents the tick of a clock.

Formally, a supervisor S : L(G) → 2Σ is a function that maps from the sequence of generated events

to a subset of controllable events to be disabled. The behavior of the plant G under supervision of

supervisor S is represented by the language marked by the automaton S/G (synchronous product

of S and G). The necessary and sufficient conditions for the existence of a supervisor are presented

in Ramadge and Wonham (1989).

The key existence result for supervisors in the presence of uncontrollable events is the Controlla-

bility Theorem. Consider a DES G = {Q,Σ, δ,Γ, q0, Qm} where Σuc ⊆ Σ is the set of uncontrollable

events. Let K ⊆ L(G), where K ̸= ∅. Then there exists supervisor S such that Lm(S/G) = K

if and only if KΣuc ∩ L(G) ⊆ K. This condition on K is called the controllability condition. The

necessary and sufficient condition for the existence of a non-blocking supervisor S that reaches a

given specification K ⊆ Lm(G)(Lm(S/G) = K) is the controllability of K. The language expres-

sion for the controllability condition can be rewritten as follows: for all s ∈ K, for all σ ∈ Σuc,

sσ ∈ L(G) ⇒ sσ ∈ K. Thus an occurrence of an uncontrollable event, after a string in K, keeps

this sequence in K.

Figure 4: Illustration of Controllability condition

If a given language K is not controllable, it is desirable to find the “largest” sublanguage of

K that is controllable, where “largest” is in terms of set inclusion. The question is: Does such

a sublanguage of K exist? According to Ramadge and Wonham (1989), the class of controllable

sublanguages in L(G) is C(M,G) = {K|K ⊆ Lm(G)} and K is controllable with respect to G and

it contains a (unique) supremal element named SupC(M,G).

A possible representation of a supervisor is a pair S = (S,Φ), where S = (QS ,ΣS , δS , qS0 , Q
S
m)

is an automaton with ΣS = ΣG = Σ and Φ : QS → 2Σ is an output map that specifies the subset

of controllable events to be disabled at each state of the automaton representing the supervisor.

Usually the automaton representing the supervisor is the automaton S/G itself. Minhas (2002) and

Su and Wonham (2004) deal with the reduction of supervisors. The reduction of the supervisor

S is the achievement of another representation of it, namely S = (Sr,Φr), where the automaton

10



Sr has a smaller number of states than the automaton S/G and such that this reduction does not

affect the control action of the supervisor.

3.4 Supervisory control architecture

Figure 5 presents a Supervisory Control Architecture. The SCA as in Ramadge and Wonham (1989)

assumes that the plant (taking place of the system to be controlled) spontaneously generates all

events and the role of the supervisors is to enable/disable controllable events. Assume that all the

events in Σ executed by G are observed by supervisor S. Thus, in Figure 5, σ is the string of all

events executed so far by G and σ is entirely seen by S. The control paradigm is as follows. The

transition function of G can be controlled by S in the sense that the controllable events of G can

be dynamically enabled or disabled by S.

Figure 5: Supervisory control architecture

For each σ ∈ L(G) generated so far by G (under the control of S), S(σ) ∩ Γ(δ(q0, σ)) is the set

of enabled events that G can execute at its current state δ(q0, σ). In other words, G cannot execute

an event that is in its current active event set, Γ(δ(q0, σ)), if that event is not also contained in

S(σ). In view of the partition of Σ into controllable and uncontrollable events, we will say that

supervisor S is admissible if for all σ ∈ L(G):

Σuc ∩ Γ(δ(qx0, σ)) ⊆ S(σ) (2)

which means that S is not allowed to ever disable a feasible uncontrollable event. From now on, it

will be only consider admissible supervisors. S(σ) is called the control action at σ. S is the control

policy. Given G and admissible S, the resulting closed-loop system is denoted by S/G (read as

S controlling G). The controlled system S/G has generated and marked languages. These two

languages are simply the subsets of L(G) and Lm(G) containing the strings that remain feasible in

the presence of S. The language generated by S/G is defined recursively as follows: 1. ϵ ∈ L(S/G);

2. [(s ∈ L(S/G)) ∧ (sσ ∈ L(G)) ∧ (σ ∈ S(s))] ⇔ [sσ ∈ L(S/G)]. The language marked by S/G is

defined as follows: Lm(S/G) := L(S/G) ∩ Lm(G).

Remark that the supervisory control architecture shown in Figure 5 is a basis for defining

the SCS as illustrated in Figure 1. In fact, the supervisor obtained using SCT approach will be

the main entity implemented in supervisory control service. However, in order to implement the

control system under the SCT approach it is necessary to deal with some limitations of Ramadge

and Wonham model. The complexity of supervisors’ synthesis, although polynomial in the number

of states of the plant and specification models, is an obstacle in applications since the number

11



of states that represent the system increases exponentially with the number of its components.

This restricting factor, that is specially relevant for large scale systems, has been considered by

several authors that attempt to overcome these computational difficulties by exploiting different

aspects of the system, as Local Modular Control (LMC) (De Queiroz and Cury 2000b), hierarchical

control (Wong and Wonham 1996) (Zhong and Wonham 1990), modular control (Ramadge and

Wonham 1988) (?), symmetry (Cury and Eyzell 2001). In addition, despite the fact that the

Ramadge and Wonham model is a well established theory, the gap between the theoretical model

and implementation methodologies still remains. Thus, to deal with supervisors’ synthesis we use

LMC approach (De Queiroz and Cury 2000b), which is an extension of Ramadge and Wonham

model that consider a distributed control architecture. Also, as a contribution of this work, we

propose a supervisory control architecture in order to implement the results of LMC.

3.5 Modular supervisory control

According to the LMC approach (De Queiroz and Cury 2000b), the system to be controlled is mod-

eled by a Product System Representation (PSR), i.e., by a set of asynchronous subsystems Gi|i ∈ I

such that all pairs of subsystems in this set have disjoint alphabets (Ramadge and Wonham 1989).

The behavior of each subsystem is represented by an automaton Gi = (ΣGi, QGi, δGi, qGi
0 , QGi

m ),

such that the behavior of the entire system to be controlled is obtained by the synchronous product

of all subsystems of the PSR, i.e. G = ||∀i∈IGi. The whole set of events is Σ = ∪i∈IΣ
Gi. Con-

sidering a subsystem in Gi|i ∈ I, ΣcGi denotes its set of controllable events and ΣucGi its set of

uncontrollable events. Furthermore, large scale systems are characterized by having several speci-

fications, each acting on just part of the global system. Generally, these specifications attempt to

synchronize some concurrent subsystems. This peculiarity of PSR is exploited by local modular

control in the following.

The LMC approach states that, instead of synthesizing a single global supervisor that satisfies

the entire set of specifications, one local supervisor is synthesized in order to satisfy each spec-

ification. Each one of the local supervisors restricts the behavior of a part of the system to be

controlled. This part is the local plant corresponding to the considered supervisor. A local plant

Glj is obtained by performing the synchronous product of the subsystems (activities) which share

events with the considered specification. The synthesis of a local supervisor Sj is performed con-

sidering the corresponding specification Ej (Σj ⊆ Σ) and its local plant Glj (Gj =
∥∥
i∈Nj Gi), with

Nj = {k ∈ N |Σk ∩ Σj ̸= ∅}. Thus, the local plant Glj joins only the subsystems of the original

composed system that are directly restricted by Ej . By using this procedure, it is possible to

synthesize a local supervisor for each one of the established specifications. If at least one local

supervisor in the set Sj |j ∈ J disables the occurrence of an event, then the occurrence of this event

is disabled in G. Even when all local supervisors are non-blocking, the concurrent control action of

the whole set of supervisors may still result in the blocking of the entire system. Therefore, after

accomplishing the synthesis procedure, it is necessary to verify the modularity property of the set

of supervisors as stated in (De Queiroz and Cury 2000a). When this condition holds, it is necessary

and sufficient to assure that the modular approach does not cause any loss of performance with

12



relation to the monolithic approach.

According to De Queiroz and Cury (2000b), when the condition of modularity does not hold,

the local modular approach cannot be applied directly, but it can still be explored by other method-

ologies. The modular-control-and-coordination approach presented in (Wong and Wonham 1998),

modular control with priorities (Chen et al. 1995), and the scheme for conflict resolution presented

in (Wong et al. 1995) are examples of such methodologies. On the other hand, another great

advantage of representing the specifications in terms of the local system is that, for some special

cases, the designer can identify modularity without the obligation of additional calculations. An

evident example is when the local specifications (composed with the affected subsystems) have

disjoint alphabets. Also note that, although in the original problem no restrictions are imposed

on the information structure for control, the results presented point out that the locally modular

synthesis for composed systems induces a natural decentralized structure for supervisors. In fact,

each local supervisor only needs to exchange information with its corresponding local plant.

4 Development cycle of SCS

The SCS development occurs cyclically in three stages - modeling, synthesis and implementation

- up to the moment in which it complies with the real system’s requirements. This development

approach allows a continuous review of the results obtained in each step. By doing this, the designer

can receive a new requirement (for example, a need for processes reconfiguration or for modifying

business rules) and build a new control system which will appropriately comply with this new

requirement. Figure 6 shows the three stages of the development cycle.

Figure 6: Development cycle of SCS

As presented in previous section, in order to apply the Ramadge and Wonham model it is

necessary to identify the system to be controlled and the control rules (specifications) to be imposed.

These activities characterizes the first stage of development cycle. At this point it is necessary to

recall that the PAIS is the system to be controlled. According to the main concept of SCS, its

objective is to restrict the feasible behavior of PAIS users. To do that, the control mechanism

implemented in SCS dynamically disables some activities according to the past event sequence

13



from PAIS. Considering that the control action is related to the tasks, we pose that the system

to be controlled can be represented as the set of the activities involved in PAIS. Additionally, as

mentioned before, we consider in this abstraction an activity events log at a more fine-grained

level. It means that, for control purposes, we are interested in observing intermediate states of an

activity, not only its finalization (for some types of analysis such as process mining and conformance

checking, usually only the complete event is considered). For instance, an activity model might have

states with different semantics: ‘activity is idle’ (waiting for a case), ‘activity is being executed’

(processing a case), and so on. Note that the control function the supervisory service expects must

able to identify the states of activities correctly. It means the states of an activity can be defined in

accordance to business rules (in the sense that some events must be observed in order to implement

some business rule). For modeling purposes, each activity is associated to an automaton model and

then a global model can be obtained through parallel composition.

The second stage consists of applying the synthesis procedure proposed by Ramadge and Won-

ham (1989) as of models obtained in previous stage. At this point a decision has to be made on

which approach will be used: classical (monolithic supervision), modular (Ramadge and Wonham

1988), local modular (De Queiroz and Cury 2000b), decentralized (Rudie and Wonham 1992), hi-

erarchical (Wong and Wonham 1996), and so on. In addition, considering that the objective is to

implement the supervisors in information systems, it is advisable and necessary to apply supervisor

reduction algorithms as proposed in Vaz and Wonham (1986), Su and Wonham (2004), and Minhas

(2002). According to Su and Wonham (2004), this is because the algorithm to compute the maxi-

mal controllable language can be much larger than what is actually required for the same control

action. The reason for that is the controlled behavior incorporates all the a priori transitional con-

strains required by control action to enforce the specifications. The problem of finding a simplified

proper supervisor equivalent in control action but minimal in terms of size, is evidently of practical

interest. This allows a smaller amount of memory and a better control program legibility and at

the same time it facilitates modifications and maintenance in the whole control system.

The third stage of development cycle consists of implementing the theoretical results obtained

with the application of Ramadge and Wonham model. Basically it is necessary to systematically

translate the theoretical supervisor of Ramadge and Wonham model into a computational language.

The main issue is to succeed in making the program perform in the same way as the supervisor

does in SCT.

According to development cycle of SCS shown in Figure 6 business rules can be defined at

design-time and at run-time. At design-time, the process designer can incorporate business rules

within a process definition. In this case the SCS and the PAIS are implemented together. At

run-time, new requirements or business rules may be necessary to incorporate in SCS. Thus, the

control program running in SCS should be modified in order to include new business rules.

4.1 Modeling activities

To apply the modular supervisory control approach (De Queiroz and Cury 2000b) at synthesis stage,

we consider that a PAIS offers a set of activities. We use the Product System Representation to

14



model the elements of this set. Each activity is assigned to an automaton representing its behavior.

Briefly, each state of this automaton represents a possible intermediate state or a refinement of such

activity. Events represent the transition to a state to another one. The initiation and finalization of

an activity are examples of events. In general, the modeling of an activity is done considering which

information should be observed by SCS. Depending on what business rules should be implemented,

a set of intermediate states should be observed. Figure 7 presents three examples of activity models.

The first one, with two states, represents the situation where an activity signalizes the occurrence

of event complete (it represents a finalization of such activity). The second one is a refinement of

the first one, as it includes an intermediate state. In this case, it is necessary observe an activity in

one of three states: in initial state it is not being executed, in the second state it is being executed

and in the third state it has been finalized. The events start and complete represent the initiation

and the finalization execution of such activity, respectively. The third one includes a fourth state

that may represent exceptional situations. For example, this state is reached if the execution of an

activity is temporarily halted (through the occurrence of event suspend).

Figure 7: Examples of activity models

The product system representation (PSR) employed in the modeling step preserves the natural

modularity and structure of a process description. Notice that the independent behavior of each

activity is represented through a corresponding automaton. As a consequence the set of asyn-

chronous automata built reflects the set of activities constituting the process (or part of it) to

be controlled. Adding or excluding an activity in a process description only requires adding or

excluding the automaton corresponding to this activity in the adopted PSR. Besides, when the

implementation of a specific business rule requires to observe a new state of some activity, it is

only necessary to include a new state in the corresponding automaton. Despite the fact that the

changes previously mentioned will modify the model representing an activity, the impact caused by

them can be treated in a simple and objective manner as described.

4.2 Modeling business rules

The SCS must ensure that the execution of activities in PAIS is restrained by business rules. Since

it is in principle impossible to list all possible business rules, we only present groups of them that

occur frequently. Based on the specifications classes proposed by Cassandras and Lafortune (2008),

we define four specification classes present in business processes:

1. Prohibited states: we identify states in the activities model that cannot occur due to some

15



restrictions or security. For instance, a state where two activities are simultaneously processing

a case must be avoided because a constraint is violated. The business rule model is obtained

by simply excluding those states from the activities model. Figure 8 shows an example of such

rule. It is considered that the model G is obtained by synchronous product of two automata

(each one representing an activity). Each activity is represented by an automaton as shown

in Figure 7 (example 2).

Figure 8: Business rules - prohibited states

2. Ordering based rules: express constraints concerning the ordering of events and activities in

processes. For instance, an activity must always precede an other activity; an activity must

not exceed a limited number of repetitions of a process; a mutual exclusion between two

activities. Figure 9 shows some examples of such business rules. It is considered that events

labeling the automata (events αi) show in Figure 9 may represent the initiation of activities.

3. Illegal substring : if a business rule identifies as illegal all strings of the activities model that

contain a specific substring, it is possible to build an automaton that represent this specifi-

cation. To do that, an algorithm described in Cassandras and Lafortune (2008) can be used.

Figure 10 show an example of such business rule.

4. State Splitting : If a specification requires remembering how a particular state of the activities

model was reached in order to determine what future behavior is admissible, then that state

must be split into as many states as necessary. The active event set of each newly introduced

state is adjusted according to the respective admissible continuations. Figure 11 show an

example of such business rule (Cassandras and Lafortune 2008).

The decomposition of business rules in groups as proposed allows developing libraries of models.

This guarantees the minimization of time consumed at the several steps involved in the design of

the SCS with similar characteristics. The advantage of this approach, comparing with empirical

ones, is to preserve the knowledge in modeling business rules. It also facilitates to transfer such

knowledge to other projects and designers. In addition, this would make feasible for business experts

to add business rules without the help of specialists in automata theory, but just selecting textual

description of a business rule (which is assigned to an automaton).

16



Figure 9: Business rules - ordering based rules

5 Example

As an example applying our SCS approach, we use a fictive process, described in Schonenberg et al.

(2008). In the example which employees have to do five activities named A, B, C, D and E. The

employees can decide in which order to execute these activities. Ideally, the employees finish these

as soon as possible. All activities have a fixed duration, however, activities B and C use the same

database application and if B is directly followed by C, then the combined duration of the activities

is much shorter, since there is no closing time for B and not set-up time for C, moreover C can

use the data provided by B, without data re-entry. Activities A and E, during their execution, can

unexpectedly fail. In case both activities fail simultaneously, the repair of activity A has priority

over the activity E. Also, for security reasons, activities B and D should not be executed at the

same time. It is necessary a mutual exclusion between them. The supervisory control service

can guide the employees providing them which activities are disabled in order to accomplish the

specifications. Remark that disabling an activity means it is not allowed to occur (control action

provided by SCS).

For modeling purposes, we consider each task can be modeled as an automaton having two

states: (1) an initial state means the activity is not being executed (a case has not come yet); (2)

another state means a case is being processing. In the case of activities A and E, it is necessary

to represent a third state, named ‘fail’. Activities B, C and D operate as follows. Initially there is

no case to be processed. With event start, the activity is initiated (state 1 is reached). When it

17



Figure 10: Business rules - illegal substring

Figure 11: Business rules - state splitting

finishes (signalled by the occurrence of event complete) it returns to state 0. Activities A and E

operate similarly, but both can suspend and a new state is reached (event suspend means that the

activity is temporarily halted). After a repair (event repair), they return to their corresponding

initial state. The automata representing the five activities are named GA, GB , GC , GD and GE and

are shown in Figure 12. States labeled with 0 represent waiting for a case and states labeled with

1 represent ‘executing activity’. In the case of automata GA and GE , state 2 represents ‘activity

suspended’. We consider that the events related to beginning of an activity (start events) are

controllable and the events related to ending of an activity (complete events) are uncontrollable.

Thus, when an activity begins, the supervisors cannot disable it until it finishes. Also, the events

related to suspending an activity (suspend events) are considered uncontrollable (in the sense they

are unpredictable) and the events related to repair (repair events) are controllable (it is possible

to avoid a repair). Also, in automata a controllable event may be indicated by an optional tick on

its transition arrow. In automata a controllable event is indicated by a tick on its transition arrow.

The automata shown in Figure 12 model all strings of events that could happen in the open-

loop system (i.e. uncontrolled), including undesired ones. We can interpret these automata as

representing the semantics of involved activities, without any additional restrictions. However,

it is necessary to include some control during the execution of activities in order to meet the

specifications. In fact, it can be done avoiding some event sequences. To calculate the control logic

that avoids the occurrence of undesired sequences, it is necessary to express the required behaviour

18



Figure 12: Automata representing activities A,B,C,D and E

in terms of constructs mentioned in Section 4.1. These specifications are built considering the

restrictions described previously and can be represented by the automata shown in Figure 13. In

order to obtain a shorter execution of the described process, specification E1 establishes that the

task B must be performed just after task C has been finished. Notice that in automata E1 event

start C can only occur after an occurrence of event complete B. Specification E2 establishes that the

activity A has priority of repair over the activity E in the case of both fail. Automaton E2 shows

that repair of activity E (event repair E ) is only possible after repairing activity A (event repair

A). Note that event repair E is not active in state 1 (in which activity A has failed). Specification

E3 establishes a mutual exclusion between activities B and D. In this automaton, after occurrence

of event start B (start C ), is not possible an occurrence of event start C (start B), unless after

occurrence of event complete B (complete C ).

Figure 13: Automata representing specifications

According to Local Modular Control approach, the first step to synthesize local supervisors is to

obtain the local plant to each specification. The local plants to E1, E2 and E3 are respectively given

by Gl1 = GB ||GC , Gl2 = GA||GE and Gl3 = GB ||GD. These local plants are shown in Figure 14.

Notice that specifications E1 and E3 are related to the common activity model GB . The states of

local plants are labeled with the corresponding states of automata which originated them (through

product synchronous operation). For example, the state ‘00’ of local plant G1 corresponds to state

0 both in activities B and C.

Using the algorithms proposed by Ramadge and Wonham (1989), it is possible to obtain three

local supervisors, each one guarantees the specification expressed by the corresponding automaton

19



Figure 14: Automata representing local plants

Ej(j = 1, 2, 3). The synthesis of a local supervisor Sj is performed considering the corresponding

specification Ej and its local plant Glj . By using this procedure, it is possible to synthesize

a local supervisor for each one of the established specifications. The software TCT (Feng and

Wonham 2006) was used to perform the synchronous composition, the synthesis of supervisors and

the reducing procedure of supervisors. The obtained supervisors S1, S2 and S3 corresponding to

specifications E1, E2 and E3, respectively, are shown in Figure 15. The resulting closed-loop system

denoted by Si/Gi (read as Si controlling Gi) results in the subsets of L(Gi) and Lm(Gi) containing

the strings that remain feasible in the presence of Si. For example, only event start B is defined for

the initial state of supervisor S1 (see Figure 15), whilst events start B and start C are defined on

initial state of local plant Gl1 (see Figure 14). It means S1 controlling Gl1 avoids the occurrence

of event start C in the initial state of G1 to meet the requirement stated in E1. Remark that

according to RW model the automaton S is driven by the occurrence of events in the plant G and

the output map Φ : QS → 2Σc specifies the subset of controllable events that must be disabled as

a correspondence of the active state of automaton S. The output maps of supervisors shown in

Figure 15 are: for S1 is Φ1(0) = start C , Φ1(1) = start C , Φ1(2) = start B , Φ1(5) = start B ; for S2

is Φ2(8) = repair E ; and for S3 is Φ3(0) = start D , Φ3(1) = start D . For example, in automaton

S1 is only defined the occurrence of event startB in its initial state and the output map defines

event startC in the same state. As S1 observes and control the local plant G1 (see Figure 14), it

20



means that event startC is not allowed to occur in the initial state of G1 (only event startB is

allowed).

Figure 15: Automata representing local supervisors

5.1 Optimizing the control structure

As a final step before the physical implementation, reduction of supervisors is taken into account,

for a reduction in the number of states of a supervisor can represent memory economy and clarify

the control logic. The reduced supervisor has a smaller number of states and the same control

action that corresponding supervisor has. For supervisors S1, S2 and S3 their respective reduced

supervisors Sr1, Sr2 and Sr3 are obtained by reduction algorithm proposed by Su and Wonham

(2004). Although this algorithm has exponential complexity, it becomes feasible for local modular

supervisors that usually have a smaller number of states. Each supervisor may be represented by

a corresponding pair (Sj ,Φj). Considering the reduced supervisors Srj shown in Figure 16, their

output maps are: for Sr1 is Φr1(0) = start C , Φr1(1) = start B ; for Sr2 is Φr2(1) = repair E ;

and for Sr3 is Φr3(1) = start B,start D . Figure 16 illustrates the set of reduced local modular

supervisors, with their control actions (disabled events) represented in boxes linked to corresponding

state. Thus, for the three local supervisors we compute the control action, assigning to each state

a set of events that must be disabled, that is, events that at the corresponding state may occur in

the respective local plant and are not allowed by the supervisors.

As can be seen in Figure 16, each supervisor disables a set of controllable events according to

its states. Notice that two controllable events are associated to activities A and E: events start

A(start E ) and repair A(repair E ). Thus, supervisor Sr2 can disable these events to meet the

21



specification E2. In the case activities A and E suspend simultaneously (state 1 of supervisor Sr2

is reached), the supervisor Sr2 always disables repair E, since repair of activity A has priority over

repair of activity E. Note that no control action is taken on events start A and start E (none of the

supervisors disable these events). In states 0 of the local supervisor Sr1, users can perform activity

C (event start C disabled in initial state) only after finished activity B (after event complete B).

Supervisor Sr3 imposes mutual exclusion between activities B and D. If one of this activity happens

(occurrence of event start B or start C), immediately the another activity is disabled (through

disabling event start B or start C in state 1).

Under the point of view of the process, it is necessary that the employees perform all activities,

according to the sequence established by supervisors. So, this sequence end when the marked states

of the three supervisors are reached and after all activities has been performed.

Figure 16: Automata representing reduced local supervisors

We point out that applying the monolithic approach would result in a single global supervisor

(non-reduced) with 90 states and 401 transitions. Our corresponding reduced representation of it

has only 8 states and 68 transitions. Despite the fact that applying the monolithic approach is

this case seems to be feasible (in the sense the reduced monolithic supervisor has a few number of

states), in large-scale processes a modular approach is obviously advantageous.

5.2 The SCS architecture

To guide the physical implementation of the control system from abstract supervisors, we propose

a three level program structure that plays the set of reduced supervisors concurrently (in the case

of modular control approach), commands the evolution of asynchronous task models and acts as

an interface between the theoretical model and real control event logs.

In our framework, the set of tasks associated to a PAIS plays the same role that the plant in SCT.

It means the control action imposed by SCS will be at PAIS activities. Thus, each task belonging

to this set is represented by an automaton Gi. Also, the global model of this set is represented by

automaton G, obtained by parallel composition of automata Gi. In order to develop the proposed

approach, we define the SCS Architecture (SCSA) according to Figure 17. This SCSA assumes the

tasks related to a PAIS are represented by a Product System Representation (PSR) as Gi|i ∈ I.

22



Supervisor’s synthesis is accomplished applying the Local Modular Control (LMC) approach, which

results in a set of local supervisors as Sj |j ∈ J (see section 3.5). It is also possible to perform the

supervisor’s synthesis under a monolithic approach; in this case a global supervisor takes place of

the set of local supervisors. This CA is structured as follows: i) The Modular Supervisors (MS)

level consists of a set of local supervisors, or in a particular case, by a single global supervisor; ii)

The Product System (PS) level is constituted by a set of structures named product system modules,

each of them uniquely associated with an automaton in the PSR chosen to represent an activity;

iii) The Communication Layer (CL) level is basically a program that has some functionality and

manages the communication between process engine of PAIS and PS level.

The communication among the different levels of SCS is depicted in Figure 17. Each supervisor

follows the sequence of events (named process events) treated at PS level. Based on such sequence

the set of supervisors disables events, which are informed to PS level. The disabling of a controllable

event in MS level results in a disabled event at PS level. A product system module associated with

a particular automaton in PSR implements the independent behavior of an activity modeled as

the corresponding Gi, i ∈ I. As we mentioned before, automaton Gi represents the semantics of

a task. Each module is responsible for generating controllable and uncontrollable events in the

corresponding alphabet Gi. In PS level, these events are triggered according to signals received

from CL level. The CL level has two main objectives: (i) it is responsible to receive the event

log from process engine, to process this log, and to send trigger signals to PS corresponding to

controllable and uncontrollable events; (ii) it is responsible to receive the disabled events from PS

level, and to send the associated disabled tasks to process engine.

Figure 17: Supervisory control service architecture

The CL level triggers the occurrence of controllable and uncontrollable events at the PS level,

according to the on line reading of event log obtained from process engine. To do that, the CL

level has to extract the event type from the log and associate it to a trigger signal. Remark that an

event log contains a lot of information about activities, but only the information related to events

used in modeling of tasks are relevant. Thus, CL level has to extract the event type related to

a task. For instance, an event type is associated to a start or a completion of a task. CL level

assigns to each event type a trigger signal and each trigger signal is assigned to a controllable or

23



uncontrollable event (process events). In addition, CL level detects a disabled event from PS level

and send it to the process engine the associated disabled task. Thus, the SCS drives the end user

of PAIS by sending continuously information about the disabled activities. The end user has to

choose an activity (possibly among other) that is not disabled by the SCS.

Figure 18 shows an overview of SCS architecture and its corresponding automata that have been

used in Section 5. At the beginning of processing, all modular supervisors and the five activity

models are in initial state at MS and PS level, respectively. At this state, it is verified the disabled

events and the output map is updated (the set of all disabled events by the three supervisors).

Remark that if at least one local supervisor in the set Srj |j ∈ 1, 2, 3 disables the occurrence of a

controllable event, then the occurrence of this event at PS level is disabled. A controllable disabled

event at MS level is informed to PS level. At this level, this event is not allowed to occur and a new

reading is expected from CL level. When the occurrence of an event at PS level is detected, the

corresponding product system module executes its transition function and this event is informed to

MS level. Then, the active state of some modular supervisor (which has this event in its alphabet)

and its corresponding output map is updated. CL level works managing the input and output

events from/to PAIS. It is responsible to inform PAIS users which activities are not allowed to

occur after an execution sequence of events.

5.3 Checking allowed sequence activities

We show in this section some sequences that can be executed by users of PAIS under control of

SCS. One way to do this is to replay events in the three level program structure shown in Figure 17.

Doing this, it is possible to identify the activities that users can execute according to the control

action from SCS. Also, we can check if the overall system behaves well considering the defined

business rules. In the case of example show in Section 5, we want to verify if the three business

rules shown in Figure 13 are being obeyed.

To initialize the replay of events in the program structure, we consider that the three local

supervisors shown in Figure 16 are in initial state when the SCS is turned on. Also, the five activities

are enabled (users can choose some execution sequence) in initial states of these supervisors. As

shown in Figure 16, the only event being disabled is start C by supervisor Sr1. Thus, SCS informs

to PAIS that the only activity that users can not execute is activity C. The PAIS users can choose

among the other four activities to initiate some execution sequence. Following the control action

imposed by the three local supervisors we can identify some activities sequences that users can

execute.

Figures 19 to 21 show three examples of execution sequence of activities that are allowed by

SCS. Each execution sequence is presented as a state machine. In addition, in all states of each state

machine is shown which events are being disabled (see a box attached to every state). Figures 19 and

20 show execution sequences in which users finalize an activity before initiate another one. Notice

that after an occurrence of event start i (i = A,B,C,D,E), the next occurrence will be complete i.

Thus, it is possible to identify the sequence that has been chosen: Seq 1 (A → E → B → C → D)

and Seq 2 (B → D → C → A → E). Figure 21 shows other sequence type: after an occurrence

24



Figure 18: Supervisory control service architecture

of an event starti, the next occurrence might be an event start j (i ̸= j) or an event complete i.

Thus, this sequence represents activities being performed simultaneously. For instance, notice that

activities A, D and E are initiate before one of them has been completed.

The examples of execution sequences show in Figures 19 to 21 point out the benefit in using

SCS. Users can adopt this service as a guide to execute his activities with the guarantee that

the business rules or goals are met. Also, the SCS gives flexibility to users in choosing execution

sequences. As presented in Figure 21, it is even possible to users execute activities simultaneously,

with no violation of pre-defined rules.

6 Supervisory control service in ProM

According to the concept of SCS discussed before, this service monitors continuously relevant activ-

ities of a PAIS. Thus, we consider SCS as a separate system coupled to the process engine of PAIS.

The SCS independently checks if the activities are being performed according to pre-established

control action. The purpose is to implement the SCS using the Process Mining Framework ProM.

ProM is a pluggable framework that provides a wide variety of plug-ins to extract information about

25



Figure 19: Execution sequence Seq 2 allowed by SCS

Figure 20: Execution sequence Seq 2 allowed by SCS

a process from event logs (van Dongen et al. 2005), e.g., a process model, an organizational model

or decision point information can be discovered. Similar to the recommendation service proposed

by Schonenberg et al. (2008), we need to make several extensions to ProM considering that, in

contrast to other plug-ins, it is not a posteriori mining technique. The SCS is a service that runs

in real-time during process execution.

Our SCS is implemented as a provider for the Operational Support (OS) service in ProM (i.e.,

OS provider). The OS service is a plug-in of the ProM. The OS provides a TCP/IP interface for

communication of the ProM with the external PAIS. The PAIS can request information from the

OS service at any point during the execution of a process instance. The request must contain (1)

the history of the process instance in the form of the list of activities that have been executed until

the moment of request, and (2) the list of activities that are enabled at the moment of request.

The general overview of implementation of SCS as a OS provider in ProM is shown in Figure 22.

The OS can have connections to an arbitrary number of providers that implement various types of

operational support (e.g., ‘A’, ‘B’, ‘C’, ‘supervisory control’ in Figure 22). When the OS Service

receives a request from the PAIS, the OS forwards this request to all connected providers, and sends

their responses back to the PAIS. This allows for various types of operational support at the same

time. For example, the supervisory control provider may respond by sending the list of disabled

activities, some provider for monitoring business rules can send the list of satisified/violated rules,

some provide for conformance checking can tell whether the process instance under consideration

is conforming to a certain process model, etc.

26



Figure 21: Execution sequence Seq 3 allowed by SCS

ProM

process modelsbusiness rules

OS 
service

provider A

provider B

re
qu

es
t

request

response SC
(list of disabled activities)

re
sp

on
se

 B

request

response A

...
supervisory 

control

analyst

event log

request

response
response A

response SC

response B

TCP/IP

Process-
Aware 

Information 
System

(PAIS)
end user

end user

end user

Figure 22: SCS as a OS provider for ProM

6.1 Simulation of SCS

To evaluate the correctness of the SCS we conducted a simulation. In our simulation we use the SCS

to support the business process shown in Section 5. The process has five tasks (A,B,C,D,E) that

have to be executed exactly once and can be executed in any order. However, three business rules

(specifications) must be followed by users in such way the executing sequences are restricted. To do

that, the SCS informs users which tasks are not allowed to occur after obtaining an observed event

sequence from the PAIS. This way the specifications are met. Basically the goal of the experiment

is to check whether the right activities are disabled. In addition, it is necessary to check if the

supervisors give the expected result concerning the established business rules. The matter here

is that specifications represented by automata could not meet correctly the desired business rules

(initially established as informal statements). In this case, it is necessary to verify if some allowed

tasks sequence does not comply with some of the specifications.

The SCS has been implemented in ProM and the YAWL environment was chosen as the imple-

mentation platform to simulate a PAIS. YAWL provides a very powerful and expressive workflow

language based on the workflow patterns identified in Van Der Aalst et al. (2003) (Van der Aalst

and Ter Hofstede 2005). It also provides a workflow enactment engine (van der Aalst et al. 2004),

and an editor for process model creation, that support the control flow, data and (basic) resource

27



perspectives (Adams et al. 2006). The YAWL environment is open-source and has a service-oriented

architecture, allowing the SCS to be developed as a service independent to the engine.

Figure 23 illustrates the architecture of experiment to test the SCS. Since the initial set-up

of YAWL was based on the service-oriented architecture, the existing interfaces could be used to

also connect to the SCS. Using the web-services paradigm, the SCS can be integrated as a service

in YAWL. As the SCS informs users continuously which activities can not be executed, we built

an interface in YAWL that implements this functionality. Whenever an user has to choose an

execution sequence of activities, she will have available in YAWL environment the information

from SCS about that. Thus, this implementation respect the behavior of SCS action: it do not

force users to take particular actions. Instead, it gives advice based on business rules that must be

respected.

Figure 23: Simulation using SCS as a service for YAWL

The process model implemented in YAWL is shown in figure 24. The process model was dis-

cussed in Section 5. One important point is that the five activities can be executed independently.

According to Figure 24, an activity labeled “Call SCS guide online” has to be executed just before

enabling the five independent activities. Such activity aims to perform the communication between

SCS and YAWL. The execution of this activity starts the SCS routines, and the monitoring and

control of the further activities can be done. Figure 25 shows the work item available at the moment

this activity is enabled. Thus, when user selects this work item the communication between YAWL

and the SCS is established. From this point users can choose an execution sequence of activities

according to the control action of the SCS.

The execution sequence of these activities can be done according to users decision. The SCS

supports users in such way that some business rules are obeyed. Thus, during the execution of

activities, the SCS has to inform to YAWL which activities users are not allow to perform (or

which activities can happen next). The control action sent to YAWL is a list assigning each

activity to a Boolean value. When an activity is assigned to false, the SCS is disabling the event

that corresponds to the beginning of such activity. Otherwise, the SCS allows activities to be

executed in YAWL. As long as an event occurs in YAWL, the program in the SCS is updated and

a new control action is sent.

28



Figure 24: Model of business process in YAWL editor

Figures 26 and 27 show the interplay between SCS (in ProM) and YAWL. In ProM, when the

communication is established, SCS sends the first control action according to specified in the initial

states of the local supervisors (see Figure 16). Notice that in ProM the control action is sent as a list

of disabled (and enabled) activities. According to Figure 26, the only disabled activity is the activity

C (for the case 37). In YAWL we built an interface that that provides users the information (disabled

activities) from the SCS. As users select a specific work item, such interface shows up informing

which activities are disabled. A semaphore assigned to each activity indicates the disabling of

activities (red light). Also, the interface indicates which event has been sent to SCS. For example,

the interface shown in Figure 27 appears just after the work item Call SCS Guide Online has

been selected. According to this figure, the sent event was none, indicating that no event has been

sent until that moment. Notice that no activity (among activities A,B,C,D and E) has been started

yet. According to Figure 27, the first information available to users is that activity C can not be

executed (see the red light assigned to it) at that moment.

Figures 28 to 30 show an example in which a execution sequence is initiated. Figure 28 shows

that after execution of Call SCS online guide, users choose which activity can be executed next

(note that activity C is blocked and it does not appear as a work item available). For example,

a user selecting activity B to be executed, immediately the event start B) is sent to SCS and it

updates its control action. Thus, the new control action after the occurrence of event start B

can be seen in Figure 29: the activities B, C and D are disabled. Figure 30 shows the interface

in YAWL informing users that activities B, C and D are disabled by the SCS after occurrence of

event start B (see the red light assigned to these activities). At this moment a user will execute

the activity B until the end or she also can check the work items available in order to start the

29



Figure 25: Work item available - SCS guide online

Figure 26: The first control action of SCS in ProM

execution of another activity.

Finalizing activity B (signalized through an occurrence of event complete B), the SCS updates

its control action and send it to YAWL. Figure 31 shows the new control action after the event

complete B has been received. Notice that only activity B is disabled by SCS. Figure 33 shows the

interface in YAWL after receive the new control action from SCS. Notice that only the activity B

is assigned to a red light, indicating that it is not allowed to occur. According to Figure 32 a new

set of work items is available after finalization of activity B. In this way, completing the execution

sequence based on control action of the SCS, users have the guarantee that no violation has been

done. This scenario illustrates the functionality that has been implemented in YAWL.

7 Related work

Many approaches has proposed to add control to the business processes and to avoid incorrect

or undesirable executions of the activities. A stream of research proposes using rule-based or

constraint-based modeling languages. Glance et al. (1996) use process grammars for definition

of rules involving activities and documents. The Freeflow prototype (Dourish et al. 1996) uses

30



Figure 27: The first control action in YAWL - activity C disabled

Figure 28: Work items available after Call SCS Guide Online

constraints for building declarative process models. Freeflow constraints represent dependencies

between states (e.g., inactive, active, disabled, enabled, etc.) of different activities, i.e., an activity

can enter a specific state only if another activity is in a certain state. (Wainer and de Lima Bezerra

2003) present a constraint-based language that uses rules involving preconditions (that must hold

before an activity can be executed), postconditions (that must hold after an activity is executed)

and additional conditions that must hold in general before or after an activity is executed. Joeris

(2000) proposes flexible workflow enactment based on event-condition-action (ECA) rules. In (Lu

et al. 2006), a temporal constraint network is proposed for business process execution. (Attie et al.

1996) and (Attie et al. 1993) use Computational Tree Logic (CTL) for the specification of inter-

task dependencies amongst different unique events (e.g., commit dependency, abort dependency,

conditional existence dependency, etc.). Dependencies are transformed into automata, which are

used by a central scheduler to decide if particular events are accepted, delayed or rejected. (Raposo

31



Figure 29: SCS control action in ProM after occurrence initiation of activity B

Figure 30: Disabled activities in YAWL after initiation of activity B

and Hugo ) and (Raposo et al. 2001) propose a larger set of basic interdependencies and propose

modeling their coordination using Petri nets.

In (van der Aalst et al. 2009) and (Pesic et al. 2007) a constraint-based WFMS called DE-

CLARE is presented. Declare is a framework that implements various declarative languages, e.g.,

DecSerFlow (van der Aalst and Pesic 2006) and ConDec (Pesic and van der Aalst 2006), and sup-

ports flexibility by design, flexibility by deviation, and flexibility by change. In DECLARE the

possible ordering of activities are determined by constrains. Thus, any order of execution sequence

can be possible as long as constraints are not violated. Everything that does not violate the con-

straints is allowed. Van der Aalst et al. (2008) use DECLARE in the context of FAAS (Flexibility

as a Service). The basic idea of FAAS is to join different notions of flexibility using the concept

of a service. To do that, the authors propose that interfaces between engines support different

languages.

32



Figure 31: SCS control action in ProM after finalization of activity B

Another stream of research proposes to use actual data from PAISs to support decision making.

In (Rozinat et al. 2009) process mining and simulation techniques are combined in the context of

the YAWL system to accurately predict potential near-future behaviors for different scenarios. In

(Dongen et al. 2008) non-parametric regression is used to predict completion times. A recommen-

dation service that uses historic information for guiding the user to select the next work item has

been implemented in ProM (Schonenberg et al. 2008), which is similar to the case-based reasoning

presented in (Weber et al. 2004). A recommender for execution of business processes based on the

Product Data Model (PDM) is presented in (Vanderfeesten et al. 2008a). Other works propose

to use the concept of Adaptive PAIS, in which users are able to make structural process changes

both the handling of exceptions and the evolution of business processes. ProCycle Rinderle et al.

(2005), Weber et al. (2009) and Minor et al. (2008) present approaches that support users to

conduct instance specific changes through change reuse. Worklets (Adams et al. 2006) and Pockets

of Flexibility (Sadiq et al. 2005) approaches provide user assistance by providing simple support

for the reuse of previously selected or defined strategies. Vanderfeesten et al. (2008b) propose

recommendations based on product data model to select the step, which meets the performance

goals of the process best (e.g., lowest cost, shortest remaining cycle time).

Run time support is an important research topic in the context of world wide web. Some

examples are approaches based on business rules (Lazovik et al. 2004), BPEL (Baresi et al. 2004),

event calculus (Mahbub and Spanoudakis 2004), etc. Recommender systems that support users

in their decision-making based on the user’s preferences and are becoming an essential part of e-

commerce and information seeking activities (Resnick and Varian 1997). van der Aalst et al. (2010)

provide a framework for positioning the various types of process mining and details the aspect of

operational support for running processes in a generic manner. Time-based operational support

can be used to detect deadline violations, predict the remaining processing time, and recommend

activities that minimize flow times.

Related work in the context of Supervisory Control Theory addresses implementation of its

control structure. Publications that deal with this issue and academic test bed applications are

presented in (Balemi et al. 1993) (Leduc 1996) (Brandin 1996) (Lauzon et al. 1997) (Fabian and

33



Figure 32: Disabled activities in YAWL after finalization of activity B

Figure 33: Work items available after finalization of activity B

Hellgren 1998) (Charbonnier et al. 1999) (Dietrich et al. 2002) (Liu and Darabi 2002) (Malik 2002)

(De Queiroz and Cury 2002) (Music and Matko 2002) (Gouyon et al. 2004) (Mušic et al. 2005)

(Cote et al. 2005) (Vieira et al. 2006) (Uzam and Wonham 2006) (Li and Jiang 2007) (Silva et al.

2007) (Silva et al. 2008).

8 Conclusion

This paper has addressed the implementation of a supervisory control service in order to support

and restrict the execution of activities in Process-Aware Information Systems (PAIS). Flexible

processes provide much freedom for users. A user might choose, according to her own decision,

a execution sequence of activities. However, we have no guarantees that the chosen sequence is

the best one or at least it conforms to some established business rules. In this context, the SCS

34



proposed in this paper aims to monitor and restrict the execution sequence of activities in such

way that business rules are always obeyed. By using our SCS approach, we aim at offering support

based on previous business rules but not limit the user by imposing rigid control-flow structures.

In fact, the SCS informs users which activities are not allowed after an observed trace of events

at run-time. The users continue with some level of freedom, because they can choose execution

sequences that are allowed under the supervision of SCS.

Many approaches deal with the modeling of Discrete Event Systems and the synthesis of its

controllers. To build the engine of SCS we use the approach proposed by Ramadge and Wonham

(1989). Supervisory Control Theory (SCT) is suited for the control design of DES when restrictions

need to be imposed. Based upon a model that describes the free behavior of the system to be

controlled and a set of specifications, it is possible to perform a formal synthesis of a supervisor.

The control action of the supervisor restricts the behavior of the system to be controlled, so that all

requirements will be satisfied. For performance reasons, the local modular approach (De Queiroz

and Cury 2000b) was used to synthesize local supervisors instead of a unique supervisor.

The SCS has been implemented by extending ProM and the experiment that has been performed

to show its feasibility. The computational infra-structure already implemented in ProM allows

communication with external applications and allows the SCS to be integrated with PAISs that

records events. In this paper we demonstrated that the SCS in ProM can cooperate with the

YAWL system. Future work will aim at extending the application and implementation of SCS in

large-scale business processes. Through a large number of case studies we intent to make SCS a

tool for decision making support. Moreover, we plan to incorporate other control approaches and

investigate the suitability of the approaches in particular settings.

References

Adams, M., A. Hofstede, D. Edmond, and W. van der Aalst (2006). Worklets: A service-oriented

implementation of dynamic flexibility in workflows. Lecture Notes in Computer Science 4275,

291.

Attie, P., M. Singh, E. Emerson, A. Sheth, and M. Rusinkiewicz (1996). Scheduling workflows

by enforcing intertask dependencies. Distributed Systems Engineering 3, 222–238.

Attie, P., M. Singh, A. Sheth, and M. Rusinkiewicz (1993). Specifying and enforcing intertask

dependencies. In Proceedings of the International Conference on Very Large Data Bases, pp.

134–134. Citeseer.

Balemi, S., G. Hoffmann, P. Gyugyi, H. Wong-Toi, and G. Franklin (1993). Supervisory control of

a rapid thermal multiprocessor. IEEE Transactions on Automatic Control 38 (7), 1040–1059.

Baresi, L., C. Ghezzi, and S. Guinea (2004). Smart Monitors for Composed Services. In ICSOC

’04: Proceedings of the 2nd International Conference on Service Oriented Computing, New

York, NY, USA, pp. 193–202. ACM Press.

Brandin, B. (1996). The real-time supervisory control of an experimental manufacturing cell.

IEEE Transactions on robotics and automation 12 (1), 1–14.

35



Carroll, J. and D. Long (1989). Theory of finite automata with an introduction to formal lan-

guages. Prentice-Hall, Inc. Upper Saddle River, NJ, USA.

Cassandras, C. and S. Lafortune (2008). Introduction to discrete event systems. Springer Verlag.

Charbonnier, F., H. Alla, and R. David (1999). The supervised control of discrete-event dynamic

systems. IEEE Transactions on Control Systems Technology 7 (2), 175.

Chen, Y., S. Lafortune, and F. Lin (1995). Modular supervisory control with priorities for discrete

event systems. In Decision and Control, 1995., Proceedings of the 34th IEEE Conference on,

Volume 1.

Cote, D., R. St-Denis, and S. Kerjean (2005). Generative programming for programmable logic

controllers. In 10th IEEE Conference on Emerging Technologies and Factory Automation,

2005. ETFA 2005, Volume 2.

Cury, J. and J. Eyzell (2001). Exploiting symmetry in the synthesis of supervisors for discrete

event systems. IEEE Transactions on Automatic Control 46 (9), 1500–1505.

De Queiroz, M. and J. Cury (2000a). Modular control of composed systems. In Proceedings of

the American Control Conference, Volume 6, pp. 4051–4055.

De Queiroz, M. and J. Cury (2000b). Modular supervisory control of large scale discrete event

systems. Discrete Event Systems: Analysis and Control , 103–110.

De Queiroz, M. and J. Cury (2002). Synthesis and implementation of local modular supervisory

control for a manufacturing cell. In Proceedings of the 6th International Workshop on Discrete

Event Systems (WODES’02), pp. 377–382. Citeseer.

Dietrich, P., R. Malik, W. Wonham, and B. Brandin (2002). Implementation considerations in

supervisory control. Synthesis and control of discrete event systems 1.

Dongen, B., R. Crooy, and W. Aalst (2008). Cycle Time Prediction: When Will This Case Finally

Be Finished? In R. Meersman and Z. Tari (Eds.), Proceedings of the 16th International

Conference on Cooperative Information Systems, CoopIS 2008, OTM 2008, Part I, Volume

5331 of Lecture Notes in Computer Science, pp. 319–336. Springer-Verlag, Berlin.

Dourish, P., J. Holmes, A. MacLean, P. Marqvardsen, and A. Zbyslaw (1996). Freeflow: me-

diating between representation and action in workflow systems. In Proceedings of the 1996

ACM conference on Computer supported cooperative work, pp. 190–198. ACM New York,

NY, USA.

Dumas, M., W. van der Aalst, and A. Ter Hofstede (2005). Process-aware information systems:

bridging people and software through process technology. Wiley-Blackwell.

Fabian, M. and A. Hellgren (1998). PLC-based implementation of supervisory control for discrete

eventsystems. In Decision and Control, 1998. Proceedings of the 37th IEEE Conference on,

Volume 3.

Feng, L. and W. Wonham (2006). TCT: A computation tool for supervisory control synthesis.

In International Workshop on Discrete Event Systems, pp. 388–389.

Glance, N., D. Pagani, and R. Pareschi (1996). Generalized process structure grammars GPSG

for flexible representations of work. In Proceedings of the 1996 ACM conference on Computer

supported cooperative work, pp. 180–189. ACM New York, NY, USA.

36



Gouyon, D., J. Petin, and A. Gouin (2004). Pragmatic approach for modular control synthesis

and implementation. International Journal of Production Research 42 (14), 2839–2858.

Hopcroft, J., R. Motwani, and J. Ullman (2006). Introduction to automata theory, languages,

and computation. Addison-wesley.

Joeris, G. (2000). Decentralized and flexible workflow enactment based on task coordination

agents. In Agent-Oriented Information Systems 2000.: Proceedings of AOIS-2000 at CAiSE*

00., pp. 41. BoD–Books on Demand.

Lauzon, S., J. Mills, and B. Benhabib (1997). An implementation methodology for the super-

visory control of flexible manufacturing workcells. Journal of Manufacturing Systems 16 (2),

91–101.

Lazovik, A., M. Aiello, and M. Papazoglou (2004). Associating Assertions with Business Pro-

cesses and Monitoring their Execution. In ICSOC ’04: Proceedings of the 2nd International

Conference on Service Oriented Computing, New York, NY, USA, pp. 94–104. ACM Press.

Leduc, R. (1996). PLC implementation of a DES supervisor for a manufacturing testbed: An

implementation perspective. Ph. D. thesis, University of Toronto.

Li, L. and Z. Jiang (2007). A hybrid supervisory control approach for virtual production systems.

The International Journal of Advanced Manufacturing Technology 32 (9), 1033–1044.

Liu, J. and H. Darabi (2002). Ladder logic implementation of Ramadge-Wonham supervisory

controller. In Proceedings of 6th Int. Workshop on Discrete Event Systems, Volume 1, pp.

383–389.

Lu, R., S. Sadiq, V. Padmanabhan, and G. Governatori (2006). Using a temporal constraint

network for business process execution. In Proceedings of the 17th Australasian Database

Conference-Volume 49, pp. 166. Australian Computer Society, Inc.

Mahbub, K. and G. Spanoudakis (2004). A Framework for Requirents Monitoring of Service

Based Systems. In ICSOC ’04: Proceedings of the 2nd International Conference on Service

Oriented Computing, New York, NY, USA, pp. 84–93. ACM Press.

Malik, P. (2002). Generating controllers from discrete-event models. In Proceedings of Modelling

and Verifying Parallel Processes, Volume 1, pp. 337–342.

Minhas, R. (2002). Complexity reduction in discrete event systems. Ph. D. thesis, University of

Toronto.

Minor, M., A. Tartakovski, D. Schmalen, and R. Bergmann (2008). Agile workflow technology

and case-based change reuse for long-term processes. International Journal of Intelligent

Information Technologies 4 (1), 80–98.

Mušic, G., D. Gradǐsar, and D. Matko (2005). IEC 61131-3 Compliant Control Code Generation

from Discrete Event Models. In Proceedings of the 13th Mediterranean Conference on Control

and Automation, pp. 346–351.

Music, G. and D. Matko (2002). Discrete event control theory applied to PLC programming.

Automatica 43 (1-2), 21–28.

Pesic, M., M. Schonenberg, N. Sidorova, and W. van der Aalst (2007). Constraint-based workflow

models: Change made easy. Lecture Notes in Computer Science 4803, 77.

37



Pesic, M. and W. van der Aalst (2006). A declarative approach for flexible business processes

management. Lecture Notes in Computer Science 4103, 169.

Queiroz, M., J. Cury, and W. Wonham (2005). Multitasking supervisory control of discrete-event

systems. Discrete Event Dynamic Systems 15 (4), 375–395.

Ramadge, P. and W. Wonham (1987). Supervisory control of a class of discrete event systems.

Siam Journal of Manufacturing Systems Control and Optimization 25 (1), 206–230.

Ramadge, P. and W. Wonham (1988). Modular supervisory control of discrete event systems.

Mathematics of Control, Signal and Systems 1 (1), 13–30.

Ramadge, P. and W. Wonham (1989). The control of discrete event systems. Proceedings of the

IEEE 77 (1), 81–98.

Raposo, A. and F. Hugo. Defining task interdependencies and coordination mechanisms for

collaborative systems. Cooperative systems design: a challenge of the mobility age, 88–103.

Raposo, A., L. Magalhães, I. Ricarte, and H. Fuks (2001). Coordination of collaborative activities:

A framework for the definition of tasks interdependencies. In 7th International Workshop on

Groupware-CRIWG, Volume 2001.

Resnick, P. and H. Varian (1997). Recommender systems. Communications of the ACM 40 (3),

56–58.

Rinderle, S., B. Weber, M. Reichert, andW.Wild (2005). Integrating process learning and process

evolution-a semantics based approach. Lecture Notes in Computer Science 3649, 252.

Rozinat, A. and W. van der Aalst (2008). Conformance checking of processes based on monitoring

real behavior. Information Systems 33 (1), 64–95.

Rozinat, A., M. Wynn, W. Aalst, A. Hofstede, and C. Fidge (2009). Workflow Simulation for

Operational Decision Support. Data and Knowledge Engineering 68 (9), 834–850.

Rudie, K. and W. Wonham (1992). Think globally, act locally: Decentralized supervisory control.

IEEE transactions on automatic control 37 (11), 1692–1708.

Sadiq, S., M. Orlowska, and W. Sadiq (2005). Specification and validation of process constraints

for flexible workflows. Information Systems 30 (5), 349–378.

Schonenberg, H., R. Mans, N. Russell, N. Mulyar, and W. van der Aalst (2008a). Process flex-

ibility: A survey of contemporary approaches. In Advances in Enterprise Engineering I:

1st International Workshop Ciao! and 4th International Workshop Eomas at Caise 2008,

Montpellier, France, June 16-17, 2008, Proceedings, pp. 16. Springer.

Schonenberg, H., B. Weber, B. van Dongen, and W. van der Aalst (2008). Supporting Flexible

Processes through Recommendations Based on History. In Proceedings of the 6th Interna-

tional Conference on Business Process Management, pp. 51–66. Springer.

Schonenberg, M., R. Mans, N. Russell, N. Mulyar, and W. van der Aalst (2008b). Towards a

taxonomy of process flexibility. In CAiSE Forum, pp. 81–84.

Silva, D., E. Santos, A. Vieira, and M. de Paula (2007). Application of the supervisory con-

trol theory to automated systems of multi-product manufacturing. In IEEE Conference on

Emerging Technologies and Factory Automation, 2007. ETFA, pp. 689–696.

38



Silva, D., E. Santos, A. Vieira, and M. de Paula (2008). Application of the supervisory control

theory in the project of a robot-centered, variable routed system controller. In IEEE Interna-

tional Conference on Emerging Technologies and Factory Automation ( ETFA 2008), 2008.,

pp. 751–758.

Su, R. and W. Wonham (2004). Supervisor reduction for discrete-event systems. Discrete Event

Dynamic Systems 14 (1), 31–53.

Uzam, M. and W. Wonham (2006). A hybrid approach to supervisory control of discrete event

systems coupling RW supervisors to Petri nets. The International Journal of Advanced Man-

ufacturing Technology 28 (7), 747–760.

Van der Aalst, W., M. Adams, A. ter Hofstede, M. Pesic, and H. Schonenberg (2008). Flexibility

as a Service. BPM Center Report BPM-08-09 .

van der Aalst, W., L. Aldred, M. Dumas, and A. Hofstede (2004). Design and implementation

of the YAWL system. Lecture Notes in Computer Science, 142–159.

van der Aalst, W. and M. Pesic (2006). DecSerFlow: Towards a truly declarative service flow

language. Lectur Notes in Computer Science 4184, 1.

van der Aalst, W., M. Pesic, and H. Schonenberg (2009). Declarative workflows: Balancing

between flexibility and support. Computer Science-Research and Development 23 (2), 99–

113.

van der Aalst, W., M. Pesic, and M. Song (2010). Beyond Process Mining: From the Past to

Present and Future. Technical report, Eindhoven University of Technology, The Netherlands.

van der Aalst, W., M. Rosemann, and M. Dumas (2007). Deadline-based escalation in process-

aware information systems. Decision Support Systems 43 (2), 492–511.

Van der Aalst, W. and A. Ter Hofstede (2005). YAWL: yet another workflow language. Infor-

mation Systems 30 (4), 245–275.

Van Der Aalst, W., A. Ter Hofstede, B. Kiepuszewski, and A. Barros (2003). Workflow patterns.

Distributed and parallel databases 14 (1), 5–51.

Van der Aalst, W., B. Van Dongen, J. Herbst, L. Maruster, G. Schimm, and A. Weijters (2003).

Workflow mining: A survey of issues and approaches. Data & Knowledge Engineering 47 (2),

237–267.

van Dongen, B., A. de Medeiros, H. Verbeek, A. Weijters, and W. van der Aalst (2005). The

ProM framework: A new era in process mining tool support. Application and Theory of Petri

Nets 3536, 444–454.

Vanderfeesten, I., H. Reijers, and W. Aalst (2008a). Product Based Workflow Support: Dynamic

Workflow Execution. In Z. Bellahsene and M. Léonard (Eds.), Proceedings of the 20th In-

ternational Conference on Advanced Information Systems Engineering (CAiSE’08), Volume

5074 of Lecture Notes in Computer Science, pp. 571–574. Springer-Verlag, Berlin.

Vanderfeesten, I., H. Reijers, and W. Aalst (2008b). Product based workflow support: dynamic

workflow execution. Lecture Notes in Computer Science 5074, 571–574.

Vaz, A. and W. Wonham (1986). On supervisor reduction in discrete-event systems. International

Journal of Control 44 (2), 475–491.

39



Vieira, A., J. Cury, and M. de Queiroz (2006). A Model for PLC Implementation of Supervi-

sory Control of Discrete Event Systems. In IEEE Conference on Emerging Technologies and

Factory Automation, 2006. ETFA’06, pp. 225–232.

Wainer, J. and F. de Lima Bezerra (2003). Constraint-based flexible workflows. Lecture Notes in

Computer Science, 151–158.

Weber, B., M. Reichert, and S. Rinderle-Ma (2008). Change patterns and change support

features–enhancing flexibility in process-aware information systems. Data & knowledge engi-

neering 66 (3), 438–466.

Weber, B., M. Reichert, S. Rinderle-Ma, and W. Wild (2009). Providing integrated life cycle sup-

port in process-aware information systems. International Journal of Cooperative Information

Systems 18 (1), 115–165.

Weber, B., S. Rinderle, and M. Reichert (2007). Change support in process-aware information

systems-a pattern-based analysis. Technical report, Citeseer.

Weber, B., W. Wild, and R. Breu (2004). CBRFlow: Enabling Adaptive Workflow Management

Through Conversational Case-Based Reasoning. In Advances in Case-Based Reasoning, Vol-

ume 3155 of Lecture Notes in Computer Science, pp. 434–448. Springer-Verlag, Berlin.

Wong, K., J. Thistle, H. Hoang, and R. Malhamé (1995). Conflict resolution in modular control

with applications to featureinteraction. In Decision and Control, 1995., Proceedings of the

34th IEEE Conference on, Volume 1.

Wong, K. and W. Wonham (1996). Hierarchical control of discrete-event systems. Discrete Event

Dynamic Systems 6 (3), 241–273.

Wong, K. and W. Wonham (1998). Modular control and coordination of discrete-event systems.

Discrete Event Dynamic Systems 8 (3), 247–297.

Zhong, H. and W. Wonham (1990). On the consistency of hierarchical supervision in discrete-

eventsystems. IEEE Transactions on Automatic Control 35 (10), 1125–1134.

40


