
A Behavioral Similarity Measure between

Labeled Petri Nets Based on Principal

Transition Sequences

Jianmin Wang1,2,3, Tengfei He1,2, Lijie Wen1,2,3, Nianhua Wu1,2, Arthur H.M.
ter Hofstede4,5★, and Jianwen Su6

1 School of Software, Tsinghua University, 100084, Beijing, China
2 Key Laboratory for Information System Security, Ministry of Education

3 Tsinghua National Laboratory for Information Science and Technology, China
jimwang@tsinghua.edu.cn,{htf08,wenlj00,chp04}@mails.thu.edu.cn

4 Queensland University of Technology, Brisbane, Australia
a.terhofstede@qut.edu.au

5 Eindhoven University of Technology, Eindhoven, The Netherlands
6 University of California, Santa Barbara, CA 93106-5110, U.S.A.

su@cs.ucsb.edu

Abstract. Being able to determine the degree of similarity between pro-
cess models is important for management, reuse, and analysis of business
process models. While various approaches to measuring process model
similarity have been proposed in the literature, these approaches tend to
use structural aspects of a process model rather than their behavior. In
this paper we propose a novel method to determine the degree of similar-
ity between process models, which exploits their semantics. Our approach
is designed for labeled Petri nets as these can be seen as a foundational
theory for process modeling. As the set of traces of a labeled Petri net
may be infinite, the challenge is to find a way to represent behavioral
characteristics of a net in a finite manner. Therefore, the proposed sim-
ilarity measure is based on the notion of so-called “principal transition
sequences”, which aim to provide an approximation of the essence of a
process model. This paper defines a novel similarity measure, proposes
a method to compute it, and demonstrates that it offers certain benefits
with respect to the state-of-the-art in this field.

1 Introduction

Business process models form an essential part of many of today’s enterprises.
They represent valuable intellectual property and they may e.g. be used for
communicating business practices (both for internal and external purposes), for
business process improvement, and as a basis for workflow automation. Therefore
it is not surprising that business process model collections can become quite
large. In fact, in [19] it is pointed out that for multinational corporations such

★ Senior Visiting Scholar of Tsinghua University.

2 Jianmin Wang et al.

collections may contain thousands of process models. These models are created in
areas such as enterprise architecture, product lifecycle management, HR capacity
planning, project management, knowledge management, web service composition
etc. Models are often not created from scratch, they need to comply with existing
policies, and duplication of models, or parts of models, is to be avoided. Therefore
being able to find similar process models effectively is useful, if not essential.
The potential size of business process model repositories mandates automated
support for such similarity searches. The effectiveness of this support hinges on
the chosen similarity measure for business process model comparisons.

The concept of business process model similarity has attracted attention in
the recent BPM literature but, more broadly, similarity measures have applica-
tions in other areas as well, for example (see [7]) in the area of web services for
the purposes of matchmaking, mining and clustering in web service directories.
At the same time, this problem also holds interest for the data management
community due to their increased interest in process data [21].

Business process similarity measures can exploit the tasks in a process model
(through their labels), the dependencies between these tasks (by considering the
control-flow relationships specified) as well as the semantics of a process model
(by taking the dynamic behavior of these control-flow dependencies into ac-
count). Recent efforts in the BPM community have tended to focus on similarity
measures based on task labels or on relationships between tasks as specified in
the process model (or both). This has meant that algorithms from the fields of
information retrieval and graph theory could be exploited. However, such ap-
proaches may not adequately take the behavior of a process model into account,
as it is pointed out in [2] that two processes may look quite similar, considering
the tasks labels and the process structure, but may behave quite differently.

In this paper focus is therefore on a similarity measure that is based on the
behavior of process models. As will be explained, our approach differs from other
approaches reported in the literature [2, 4, 22, 10], that also take process behavior
into account. In order to concretise our approach we have chosen labeled Petri
nets as the process modeling formalism. These provide an accepted foundation
for business process modeling and analysis [1, 15]. From a fundamental perspec-
tive, behavioral similarity of labeled Petri nets can be measured through the use
of the concept of bisimilarity, by considering the languages generated by the nets,
or by looking at their reachability graphs. According to the information-theoretic
definition of similarity [14], similarity (or distance) between processes can be di-
rectly determined through the use of the complete set of firing sequences. For a
Petri net with loops this set may not be finite however, and an approach based
on the use of all firing sequences therefore does not provide a good basis for de-
termining behavioral similarity. Consequently, in our approach we introduce the
notion of “principal transition sequence”, to provide a finite approximation of
the essence of the behavior of a process model. This notion is then used to define
a measure for business process model similarity. Therefore the key contributions
of this paper are the definition of a similarity measure based on process behavior,
an approach to computing this measure, and an exploration of its significance.

A Behavioral Similarity Measure Based On Principal Transition Sequences 3

The remainder of this paper is organized as follows. Section 2 defines the
basic concepts used throughout this paper. Section 3 introduces the notion of
principal transition sequence, and Section 4 presents the proposed similarity
measure that is based on such sequences, and Section 5 is concerned with its
evaluation. Related work is discussed in Section 6, while Section 7 concludes the
paper and discusses potential future work.

2 Preliminaries

This section defines fundamental, and well-known, notions of Petri nets used
throughout the paper (see e.g. [17, 23]).

Definition 1 (Petri net). A Petri net is a quadruple � = (S, T, F,M0) where
S is a finite set of places, T is a finite set of transitions such that S ∩ T = ∅,
F ⊆ (S × T) ∪ (T × S) is a set of arcs, and M0 : S → ℕ (the set of natural
numbers) is the initial marking.

We may refer to the structure of a Petri net � = (S, T, F,M0) without the initial
marking as N = (S, T, F), and we may also refer to a Petri net as a pair (N,M0)
where N is the net structure and M0 the initial marking.

Example 1. For Petri net �1 in Fig. 1, S = {p0, p1, p2, p3, p4, p5}, T = {t0, t1, t2,
t3, t4, t5}, F = {(p0, t0), (t0, p1), (p1, t1), (p1, t2), (t1, p2), (t2, p3), (p2, t3), (p3, t4),
(t3, p4), (t4, p4), (p4, t5), (t5, p5)}, andM0 = {(p0, 1), (p1, 0), (p2, 0), (p3, 0), (p4, 0),
(p5, 0)}. In order to shorten the denotation of markings and to facilitate their
use in algebraic operations we will write markings as vectors, e.g. M0 can be
written as (1, 0, 0, 0, 0, 0).�� �� ���� �� ���� �� ���� �� ���	
�� 	
 ���� �� ���� �� ���� �� ���� �� ���	
�� 	
 ���� �� �� �

Fig. 1. Petri net and labeled Petri net

For each x ∈ S ∪ T , the pre-set of x, denoted as ∙x, is the set of elements
which are input of x, i.e. ∙x = {y∣(y, x) ∈ F}, while the post-set of x, denoted
as x∙, is the set of elements which are output of x, i.e. x∙ = {y∣(x, y) ∈ F}.

Example 2. For Petri net �1 in Fig. 1, ∙t1 = {p1} and t1∙ = {p2}.

Definition 2 (Labeled Petri Net). A labeled Petri net is a six-tuple L� =
(S, T, F,A, L,M0), where (S, T, F,M0) is a Petri net, A is a finite set of action
names, and L is a mapping from T to A∪{"} (" represents an action not visible
to the outside world).

4 Jianmin Wang et al.

Having assigned names, including ", to transitions, we can capture duplicate and
hidden tasks naturally. We sometimes refer to a labeled Petri net as a Petri net
when no confusion can occur.

Example 3. For the labeled Petri net L�1 in Fig. 1, where S, T , F and M0

are same as the Petri net �1 of Fig. 1. For this net A = {X,Y, Z,W} and
L = {(t0, X), (t1, Y), (t2, Z), (t3, Z), (t4, Y), (t5,W)}.

In some cases we do not want to distinguish between transitions and their labels.
When the labels are unique for each transition we may use a label to refer to a
transition.

Definition 3 (Firing Rule). Suppose that L� = (S, T, F,A, L,M0) is a labeled
Petri net. A transition t ∈ T is said to be enabled in marking M , denoted as
M [t⟩, iff M(s) ≥ 1 for each input place s ∈ ∙t. If transition t is enabled in M1,
firing t results in a marking M2 such that the following holds:

M2(s) =

⎧

⎨

⎩

M1(s)− 1 ifs ∈ ∙t− t∙;

M1(s) + 1 ifs ∈ t ∙ − ∙ t;

M1(s) otherwise.

The notation M1[t⟩M2 captures that M2 is the result of firing t in M1.

Example 4. For the Petri net L�1 of Fig. 1, t0 is enabled at M0 = (1, 0, 0, 0, 0, 0)
while the other transitions are not. Firing t0 results in the marking (0, 1, 0, 0, 0, 0).

Definition 4 (Incidence Matrix). Let L� = (S, T, F,A, L,M0) be a labeled
Petri net, CL� = [cij]∣S∣×∣T ∣ is the incidence matrix of L� defined by

cij =

⎧

⎨

⎩

1 if(tj , si) ∈ F ∧ (si, tj) ∕∈ F ;

−1 if(tj , si) ∕∈ F ∧ (si, tj) ∈ F ;

0 otherwise.

When no confusion can occur we write C instead of CL� .

Example 5. The incidence matrix of both Petri nets shown in Fig. 1 is the same
and it is shown in Fig. 2.

Fig. 2. The incidence matrix of the Petri nets shown in Fig. 1

Definition 5 (Occurrence Vector of Transition Sequence). Let L� =
(S, T, F,A, L,M0) be a labeled Petri net and � be a sequence of transitions. The

A Behavioral Similarity Measure Based On Principal Transition Sequences 5

associated occurrence vector X� of � is defined as (#(t1, �),#(t2, �), . . . ,#(t∣T ∣, �))
where for 1 ≤ i ≤ ∣T ∣, #(ti, �) denotes the number of occurrences of ti in �. The
marking that results from firing transition sequence � in marking M can be com-
puted as MTr +CL� ⋅XTr

� (where e.g. XTr
� is the transpose of occurrence vector

X�). A transition sequence � of length n is referred to as effective for a marking
M iff the first transition is enabled in M and firing the first i transitions in
order always means that the i+1th transition is enabled (for any 1 ≤ i ≤ n−1).
If M ′ is the marking resulting from firing the transitions in � in order starting
from marking M , we can write M [�⟩M ′ to denote this fact.

Example 6. For the labeled Petri net L�1 in Fig. 1, � = t0t1t3 is an effective
transition sequence for M0 = (1, 0, 0, 0, 0, 0) and firing this sequence takes us to
marking (0, 0, 0, 0, 1, 0). The occurrence vector X� is (1, 1, 0, 1, 0, 0), hence this
marking can be computed as the transpose of MTr

0 + CL�1
⋅XTr

� .

Definition 6 (Coverability). Let M1 and M2 be reachable markings of a la-
beled Petri net L� = (S, T, F,A, L,M0), that is, there exist firing sequences �1

and �2, such that M0[�1⟩M1 and M0[�2⟩M2. We say that M1 is covered by M2

iff M2(p) ≥ M1(p) for each place p ∈ S.

Given a Petri net, starting from its initial marking M0 we can start to explore
the state space of reachable markings. This state space is potentially infinite
and then the associated reachability tree is infinite. To deal with this problem
one can consider coverability trees. The notion of coverability tree is one of the
fundamental methods for behavioral analysis of Petri nets [17]. In coverability
trees a special symbol ! is used, which has the properties that for any integer n,
! > n and ! ± n = !. Through the use of this special symbol we can deal with
unbounded places (a place p is unbounded iff for any number k a marking M

can be reached such that ∣M(p)∣ > k) which are the cause of a state space being
infinite. In [17] an algorithm is presented for the construction of a coverability
tree and in [23] it is shown that a coverability tree is always finite.

Example 7. The coverability tree of both Petri nets in Fig. 1 is the same and is
shown in Fig. 3. ��� �� �� �� �� ����� �� �� �� �� ������� �� �� �� �� �� ��� �� �� �� �� ���� ����� �� �� �� �� �� ��� �� �� �� �� ��������� �� �� �� �� �� ��� �� �� �� �� ��� � !"#!$"%! !"#!$"%!

Fig. 3. The coverability tree of the Petri nets of Fig. 1

6 Jianmin Wang et al.

3 Principal Transition Sequences

This section first provides more information about coverability trees before giv-
ing the definition of principal transition sequences. These transition sequences
can be seen as a characterisation of transition sequences that lead from the ini-
tial marking to a marking that is final (i.e. no transition is enabled). Hence they
are an approximation of the behavior of a Petri net. The section concludes with
the provision of an algorithm to compute principal transition sequences.

3.1 More about Coverability Trees

A Petri net may have loops or unbounded places. When it has loops we will find
markings during the exploration of the state space that we have encountered
before. Consider for example the Petri net of Fig.4(a). When the transition
sequence t0t1t4 is fired in the initial marking, the resulting marking (0, 1, 0, 0)
also results from just firing t0 in the initial marking. Hence in the coverability
tree, shown in Fig. 5, when we encounter (0, 1, 0, 0) again, we can mark it as
“old” (cf. [17]). For a node vo in a coverability tree that we have marked as
“old” we refer to the node with the identical marking that is closest to the root
and on the path from the root to vo as its anchor and we write anchor(vo). Hence
the anchor of node v5 in the coverability tree for L�2 is v1.&' &(&) &*+' +(+) +*,-. /01 2345 6778 94:;<4;:=

&> &(+' +)&' +(&)
,?. /0@ 2345 ;A?7;AB=B 86-<=9C DE FG HI HJ HK

Fig. 4. Labeled Petri nets: a) with a loop b) with unbounded places

When a Petri net has unbounded places its state space is infinite. Consider
the Petri net of Fig. 4(b). In this net the place p1 is unbounded which can be
seen by repeatedly firing transition t0 in the initial marking. When we explore
the state space and fire t0 and then immediately t0 again we discover a marking
(1, 2, 0) which, when compared to the previous marking (1, 1, 0), marks every
place with at least as many tokens and one place with more. As we know that
we can keep firing t0 and can thus obtain an arbitrary number of tokens in p1
we collapse all markings of the form (1, i, 0) into one marking (1, !, 0). This is
illustrated in the coverability tree for L�3 shown in Fig. 5(b).

Transition sequences on the path from an anchor node to one of its leaf nodes
can occur repeatedly, sometimes an infinite number of times, sometimes only a
finite number of times. For example, consider the transition sequence t1t4 in the
coverability tree of Fig. 5(a), in the corresponding Petri net this sequence can
occur an infinite number of times. The transition sequence t2 in the coverability
tree of Fig. 5(b) can only occur a finite number of times as it is bounded by the
number of previous occurrences of t0.

A Behavioral Similarity Measure Based On Principal Transition Sequences 7LMN ON ON OPLON MN ON OPQRLON ON MN OP LON ON MN OPQS QTLON ON ON MP LON ON ON MPQUQU LON MN ON OP L ON MN ON OPQVWXYWZX[W QV WXYWZX[W\]W\]W
LMN ON OP LON ON MPQSWXYWZX[WLMN N̂ OPQRLMN N̂ OPQR\]W LON N̂ MPQS LON N̂ MPQT\]W

_`_a_b _c_d _e _f _g
_`_a _b_c _d _ehij hkj

Fig. 5. Anchor nodes in coverability trees of L�2 and L�3

3.2 Definition of Principal Transition Sequence

In the definition of principal transition sequences we use the auxiliary function
ts(v1, v2, CTL�) which yields the transition path from node v1 to node v2 in
coverability tree CTL�.

Definition 7 (Principal Transition Sequence). Let L� = (S, T, F,A, L,M0)
be a labeled Petri net, CL� its incidence matrix, CTL� its coverability tree with
root vr, Vd its set of dead-end nodes and Vo its set of old nodes. The set of prin-
cipal transition sequences (PTSs) of L�, pts(L�), is the minimal set defined
by:

(1) If vd ∈ Vd then ts(vr, vd, CTL�) ∈ pts(L�)

(2) If vo ∈ Vo then ts(vr, anchor(vo), CTL�) ∈ pts(L�)

(3) If vo ∈ Vo then ts(anchor(vo), vo, CTL�) ∈ pts(L�)

Loosely speaking, principal transition sequences can be used to compose firing
sequences of a labeled Petri net L�. When there are neither loops nor unbounded
places, the principal transition sequences of step (1) correspond to all firing
sequences of L�. When there is a loop or an unbounded place, then step (2)
captures the prefixes of firing sequences and step (3) their repeatable parts.

Example 8. The principal transition sequences of L�1 are t0t1t3t5 and t0t2t4t5,
and these are all the firing sequences. The principal firing sequences of L�2 on
the other hand are t0t1t3, t0t2t3, t0, t1t4 and t2t4.

As the different kinds of principal transition sequences correspond to different
behavior we classify them as follows. The primary PTSs of a Petri net L�,
denoted as P1(L�), are those PTSs that fall into category (1) or (2). These are
the PTSs that correspond to nonrepeatable transition sequences. A principal
transition sequence � is an element of the set of finitely repeatable PTSs of L�,
denoted as P2(L�), iff it falls into category (3) and CL� ⋅XTr

� contains a negative
number. It � falls into category (3), but CL� ⋅XTr

� does not contain a negative
number, it is an element of the set of infinitely repeatable PTSs, denoted as
P3(L�).

8 Jianmin Wang et al.

3.3 Computations of PTSs

In this section we present the algorithm for computing the various types of princi-
pal transition sequences as identified in Section 3.2. In this algorithm apart from
auxiliary function ts(v1, v2, CTL�), we also use the auxiliary predicate neg(V)
which determines whether there are any negative values in vector V .

Algorithm 1:Generation of the various PTS sets
Input: A coverability tree CTL� for a labeled Petri net L�

In this tree Vd is the set of dead-end nodes, Vo is the set of old nodes,
and vr is the root node

Output: P1(L�), P2(L�), P3(L�)
P1(L�) := ∅; P2(L�) := ∅; P3(L�) := ∅;
for each vf ∈ Vd ∪ Vo

begin
if vf ∈ Vd then P1(L�) := P1(L�) ∪ ts(vr, vf , CTL�);
if vf ∈ Vo then P1(L�) := P1(L�) ∪ ts(vr, anchor(vf), CTL�);
if vf ∈ Vo then

begin
� := ts(anchor(vf), vf , CTL�);
if neg(CL� ⋅XTr

�)
then P2(L�) := P2(L�) ∪ �

else P3(L�) := P3(L�) ∪ �

end
end

Example 9. According to Algorithm 1, P1(L�1) = {t0t1t3t5, t0t2t4t5}, P2(L�1) =
∅, P3(L�1) = ∅; P1(L�2) = {t0, t0t1t3, t0t2t3}, P2(L�2) = ∅, P3(L�2) =
{t1t4, t2t4}; P1(L�3) = {t1, t0, t0t1}, P2(L�3) = {t2}, P3(L�3) = {t0}.

The set of principal transition sequences is finite as it is a set of paths constructed
from a finite tree. In fact, for any Petri net L�, ∣pts(L�)∣ ≤ ∣Vd∣+2× ∣Vo∣. It is
also not difficult to see that any transition sequence in L� that leads from the
initial marking to a dead marking can be composed from the principal transition
sequences of L� (note that the reverse does not hold). From a process modeling
perspective these sequences are of special interest as a process model is expected
to terminate (hence the behaviour of a sound process model can be reasonably
approximated by its set of principal transition sequences, although it should be
remarked that e.g. branching time is lost).

4 PTS-based Similarity

In this section a similarity measure between labeled Petri nets is defined which
is based on PTSs. As the set of PTSs of a labeled Petri net provides an approx-
imation of its behaviour, this measure takes the semantics of the nets involved
into account.

A Behavioral Similarity Measure Based On Principal Transition Sequences 9

Transition labels describe the intended actions of the various transitions in a
labeled Petri net. For a transition t, its label is given by L(t) and this notation
can be naturally extended to transition sequences. Hence L(�) captures the
trace associated with transition sequence �. This trace can be seen as a string
in the language defined by alphabet A of the net. Labels of transitions may
differ, but still be considered similar to various degrees. Measurements of label
similarity can be based on measures introduced for string similarity (several
string similarity notions based on edit distance can be found in [8]). The degree of
similarity of transitions can then be measured in terms of the degree of similarity
between their labels. In this paper we simplify matters by defining the distance
between the same labels as 1 and the distance between different labels as 0.

Definition 8 (Similarity of Two Principal Transition Sequences). Let
L� and L�′ be labeled Petri nets and � and �′ be transition sequences of L�
and L�′ respectively. The similarity of � and �′, Sim(�, �′), is based on the their
longest common subsequence given by lcs(�, �′), and is defined as:

Sim(�, �′) =
length(lcs(L(�), L(�′)))

max(length(L(�)), length(L(�′)))

Example 10. Let � = t0t1t3 and �′ = t0t1t4t2t3 be transition sequences in Petri
net L�2. Then L(�) = XYW , L(�′) = XY ZW , and lcs(L(�), L(�′)) = XYW .
Therefore Sim(�, �′) = 0.75.

Now that we have defined a method for determining the degree of similarity
between two transition sequences we need to extend the method to deal with
sets of transition sequences in order to determine the degree of similarity between
two sets of PTSs. In [10] similarity between label sets S1 and S2 is determined by
taking, for each element from S1, the element with the highest degree of similarity
from S2, these maximum degrees of similarity are then added for all elements
of S1 and the total sum is divided by the total number of elements of S1. This
unidirectional approach can be transformed into a bidirectional approach, where
similarity is a symmetric operation, by using the similarity measure introduced
in [11]. In the following definition we use this similarity measure and adapt it to
sets of transition sequences.

Definition 9 (Similarity of Two Sets of Transition Sequences based
on [11]). Let P and Q be sets of transition sequences, then if neither P nor Q

is the empty set:

Sim(P,Q) =

∑

�∈P

max
�′∈Q

Sim(�, �′) +
∑

�′∈Q

max
�∈P

Sim(�′, �)

∣P ∣+ ∣Q∣

If either P or Q equals the empty set, but not both, then Sim(P,Q) = 0, while if
both P and Q are the empty set Sim(P,Q) = 1.

Having defined a notion of similarity between sets of transition sequences we can
apply this notion to sets of PTSs to define a notion of similarity between labeled
Petri nets.

10 Jianmin Wang et al.

Definition 10 (Similarity of Two Labeled Petri Nets). The degree of sim-
ilarity between labeled Petri nets L� and L�′, Sim(L�,L�′), is defined as:

Sim(L�,L�′) =

3
∑

i=1

�i × Sim(Pi(L�),Pi(L�
′)), �i =

∣Pi(L�)∣+ ∣Pi(L�
′)∣

∣pts(L�)∣+ ∣pts(L�′)∣

Hence, they capture the ratios between the numbers of the various types of
PTSs and the total number of PTSs.

5 Experimental Evaluation

The algorithms for the PTS-based similarity measure (abbreviated as PTS),
TAR similarity measure (abbreviated as TAR) [24] and Bae’s similarity measure
(abbreviated as Bae) [7] were implemented in the BeehiveZ system7, which aims
to provide a general framework for process data management. The code of the
algorithm for the causal footprint similarity measure (abbreviated as CFP) [10]
was directly taken from the open source process mining environment ProM 5.28

and integrated into the BeehiveZ system.
In this section, two experiments are discussed in order to provide an initial

indication of the efficiency and effectiveness of the proposed approach. In the first
experiment the effectiveness of the proposed similarity measure is investigated
through the use of six artificially created process models. The results are con-
trasted with the similarity measure proposed in [10]. In the second experiment a
set of real-life process models are used for the purpose of evaluating both the ef-
ficiency and the effectiveness of the proposed similarity measure. The results are
contrasted with the TAR similarity measure [24], Bae’s similarity measure [7],
and the causal footprint similarity measure [10]. Finally, the time and space
complexity of the algorithm for the computation of PTS-based similarity as well
as its limitations are discussed.

5.1 Experiment I

In Fig. 6 six simple and interrelated models are shown. Models (a)-(c) do not
have loops, while models (a’)-(c’) do. Model (a’) equals Model (a) with the
addition of a loop, similarly Model (b’) equals Model (b) with the addition of a
loop, and finally Model (c’) equals Model (c) with the addition of two loops.

For this collection of six artificially created models the PTS-based similarity
measure (Sim) and the similarity measure of [10] (Sim′) is computed for three
different groupings. In the first grouping we consider models (a)-(c) and pair-
wise compute their degree of similarity. In the second grouping the degrees of
similarity are determined for the combinations (a)-(a’), (b)-(b’), and (c)-(c’). In
the third grouping the degree of similarity is computed among the models (a’)-
(c’). The PTSs of the six models are shown in Table 1. The degrees of similarity

7 http://sourceforge.net/projects/beehivez/files/
8 www.processmining.org

A Behavioral Similarity Measure Based On Principal Transition Sequences 11lmln lolp
lmln lolp

lqlm lnlo
lmln lo
lrlp ls lp lqlm lnlslo lplr lqlm lnlolp

tu vw
t
w
u vv u

tu vw
tu vw x x xtu vv uw

tu vwyz{ y|{ y}{ yz { y| { y} {
Fig. 6. Six interrelated models

between the various pairs of process models in the three groupings are shown in
Table 2.

Table 1. The PTSs of the models in Fig. 6

P1(L�) P2(L�) P3(L�)

(a) {t1t2t4, t1t3t4} ∅ ∅

(b) {t1t2t4t6, t1t3t5t6} ∅ ∅

(c) {t1t2t3t4, t1t3t2t4} ∅ ∅

(a’) {t0, t0t1t3, t0t2t3} ∅ {t1t4, t2t4}

(b’) {t0, t0t1t3t5, t0t2t4t5} ∅ {t1t3t6, t2t4t6}

(c’) {t0, t0t1t2t3, t0t2t1t3} ∅ {t1t2t4, t2t1t4}

As can be seen from Table 2 the causal footprint similarity measure considers
models (a) and (c) as quite similar (more so than the PTS-based measure) even
though one involves a choice between Y and Z and in the other both Y and Z

need to be executed. On the other hand, when only a loop is added the degree of
similarity is much lower than the degree of similarity as measured by the PTS-
based approach. As the set of traces is the same for models (b) and (c) as well as
for models (b’) and (c’) the PTS-based approach rates their degree of similarity
as 100%. Especially for the latter combination this constitutes a real difference
with the degree of similarity as measured through the causal footprint approach.
As the degree of similarity between two models is to some extent subjective, we
leave it up to the reader to draw their own conclusions from Table 2.

5.2 Experiment II

In this section the PTS-based similarity measure is evaluated using real-life pro-
cess models. We obtained the real life business process models from an industrial
boiler manufacturer in the south-east of China. These models were created by
an external consulting company using EPCs [20] for the following six SAP ERP

12 Jianmin Wang et al.

Table 2. Degrees of similarity between various combinations of the six process models

�1 �2 �3 Sim(L�, L�′) Sim′(L�, L�′)

(a,b) 1 0 0 75% 66.74%

(a,c) 1 0 0 75% 92.85%

(b,c) 1 0 0 100% 92.85%

(a,a’) 5/7 0 2/7 61.9% 67.02%

(b,b’) 5/7 0 2/7 60.7% 41.70%

(c,c’) 5/7 0 2/7 60.7% 85.86%

(a’,b’) 6/10 0 4/10 70% 62.22%

(a’,c’) 6/10 0 4/10 70% 72.47%

(b’,c’) 6/10 0 4/10 100% 72.47%

modules: Production Planning, Project System, Material Management, Finan-
cial Accounting, Cost Controlling, and Sales and Distribution. Table 3 shows the
distribution of these business process models over these modules.

Table 3. The business process models from an industrial boiler manufacturer: P# -
Number of Process Models E# - Number of Events, F# - Number of Functions, LP#
- Number of Proces Models with Loops, L# - Number of Loops, PP# - Number of
Process Models with Parallelism, PS# - Number of Parallel Structures, PF# - Number
of Parallel Functions

Module P# E# F# LP# L# PP# PS# PF#

Production Planning(PP) 12 72 41 0 0 1 1 2

Project System(PS) 3 8 5 0 0 0 0 0

Material Management(MM) 38 282 209 2 2 2 2 5

Financial Accounting(FA) 37 288 178 10 16 6 7 17

Cost Controlling(CO) 18 148 90 9 13 3 3 8

Sales and Distribution(SD) 6 41 27 2 3 1 2 5

From Table 3, it can be seen that there are 114 business process models
in the PP, PS, MM, FI, CO and SD modules combined. In terms of number
of process models, the biggest module is MM, which contains 38 EPC models,
while the smallest module is PS, which only contains 3 EPC models. In these
114 EPCs, the total number of events is 839 and the total number of functions
is 550 indicating a relatively high use of control-flow constructs. There are 23
EPCs that contain loops, 20% of the total number of models.

The EPCs were received in MS Word documents and manually modeled in
ARIS. The ARIS’ AML files were provided as input for ProM in order to generate
the corresponding Petri nets. Here it should be remarked that OR-joins in EPCs
are not always correctly preserved in the mapping to Petri nets by ProM (it
can also be remarked that there are inherent problems with the semantics of
OR-joins in EPCs, see [3]), therefore those models that contained OR-joins were

A Behavioral Similarity Measure Based On Principal Transition Sequences 13

modified by hand (and as a result sometimes problems in the original models
were fixed). Roughly speaking the events of EPCs correspond to places in Petri
nets, the functions in EPCs to transitions in Petri nets, and the names of the
functions correspond to the labels of the corresponding transitions.

The similarity between each pair of the 114 converted LPNs is computed and
then the values of three metrics are determined. The first metric is the average
time (AvgT) it takes to compute the degree of similarity between two LPNs
(only for those computations which can be done within the time limit, which
for this experiment was set at 1 hour). The second metric is the percentage of
pairs that satisfies the triangular inequality (TriR). A pair of LPNs x and y

satisfies the triangular inequality iff for every LPN z: Sim(x, z) + Sim(z, y) ≥
Sim(x, y). The third and final metric is the computability fraction (ComF), which
is the percentage of LPNs for which the similarity measure could be computed
(as mentioned, the limit is set at 1 hour). Note that focus is on a single LPN
and whether for this LPN the preparation for the computation of the degree
of similarity with other LPNs can be completed in time. The results of the
comparison of the four algorithms identified earlier along these metrics can be
found in Table 4.
Table 4. Results of the comparison of the four algorithms applied to 114 real-life LPNs

PTS CFP Bae TAR

AvgT (ms) 25.6 14800 4.4 0.9

TriR (%) 99.98 98.96 99.69 98.33

ComF (%) 100 96.49 100 100

As far as ComF is concerned, the CFP algorithm cannot compute the forward
links and backward links of four LPNs (i.e., FA.002, MM.211, MM.212, MM.242)
in less than one hour. The common characteristic of these four LPNs is that they
contain long sequences of transitions (i.e., more than 20 transitions in a path).
It can thus be concluded that the CFP algorithm, contrary to the other three
algorithms, has difficulties in dealing with long transitions paths.

The PTS algorithm fares best as far as the TriR metric is concerned. The
CFP algorithm performs the worst in terms of the AvgT metric. This is because
the calculation of the closure of forward and backward links is time consuming.
Performance worsens in case there are long transitions paths in the process
model, as observed before.

Now we make two observations that do not relate to the above real-life SAP
EPC models, but that provide more insight into the effectiveness of the algorithm
by Bae et al. and the TAR algorithm.

For the LPNs in Figure 6(a) and Figure 6(b) the algorithm by Bae et al.
computes their degree of similarity as 1. The reason for this is that this algorithm
is based on the structure of LPNs and does not take the semantics of splits
(AND vs XOR) into account. The other three algorithms return more reasonable
similarity measures for these LPNs, which are behaviorally not equivalent.

14 Jianmin Wang et al.

The application of the TAR algorithm to the LPNs in Figure 7(a) and Fig-
ure 7(b) yields a degree of similarity of 1 although these LPNs are not behav-
iorally equivalent. The full firing sequences of these two LPNs are {ACD,ACE,BCD,

BCE} and {ACD,BCE} respectively. The TAR sets of these nets are the same
however, i.e., {AC,CD,BC,CE}, and as a result, the TAR algorithm cannot
make a distinction between them. The application of the PTS algorithm to these
nets does not yield a degree of similarity of 1 and therefore, for this case, the
PTS algorithm is more effective than the TAR algorithm.~�~� ~��� �� ���� � ~�~� ������� ~�~� ~��� �� ���� � ~�~� �����������

Fig. 7. Two LPNs which are not behaviorally equivalent

Furthermore, we evaluate the four algorithms with another process model set,
which contains 591 LPNs converted from 604 SAP reference models by ProM.
The comparison results are shown in Table 5. For ComF, the time limit, which
takes to compute the degree of similarity between two LPNs, is set to one minute
for this data set.

Comparing with Table 4, the ComF values of PTS and TAR decreased
slightly. The reason is that there are several LPNs with large parallel struc-
tures in this data set, we will discuss it in section 5.3. Other conclusions can be
drawn similarly here as those from Table 4.

Table 5. Results of the comparison of the four algorithms applied to 591 LPNs con-
verted from SAP reference models

PTS CFP Bae TAR

AvgT (ms) 17.8 2706 10.7 18.9

TriR (%) 99.79 93.04 99.54 97.86

ComF (%) 98.48 91.54 100 99.83

5.3 More discussion about the PTS algorithm

For the PTS algorithm, time and space are mainly spent on the calculation of
a given LPN’s coverability tree and the extraction of all PTSs from this tree.
In our implementation, the coverability graph is used instead of the coverability
tree to reduce the use of space.

For the time and space complexity of the PTS algorithm, in case there is
no parallelism, it can be observed that the length of transition paths as well
as the length of loops in an LPN both correspond to paths of similar length in
the coverability tree (their length is linear in terms of the length of the original
paths). The most problematic situations arise in the presence of large parallel
structures. To examine the worst case complexity of the PTS algorithm in an

A Behavioral Similarity Measure Based On Principal Transition Sequences 15

intuitive manner, we have constructed an LPN with a large parallel structure
and drawn it using PIPE 2.59. This LPN is shown in Figure 8 and, as can be
seen, apart from the only fork transition (t0) and the only join transition (tn+1),
both having the empty label ", all transitions are labeled and can be executed
in parallel. This type of LPN constitutes the worst case for the PTS algorithm
(and incidentally for the TAR algorithm as well).�� ���� ��������� �
Fig. 8. A special kind of LPNs that cannot be handled easily by the PTS algorithm

The time complexity for calculating the coverability graph of an LPN such
as shown in Figure 8 is n! according to Murata [17], while the space complexity
of it is 2n. Both the time and the space complexity are too high if n is more
than 20, which constitutes the boundary of the PTS algorithm from a theoretical
perspective. However, as shown in Section 5.2, this limitation may not be too
significant in practice as LPNs such as shown in Figure 8 with more than 15
tasks in a parallel structure may not occur that often in reality.

6 Related Work

In recent years more and more process models have become available due to
their uptake in a wide range of industrial applications [18], this has triggered an
increased interest in academia in the notion of process model similarity. In this
section we will briefly explore some related work.

The majority of existing work in the area of business process similarity bases
itself on structural elements and/or task labels. Various notions of edit distance
are used to this end. For example, in [13] high-level change operations are used
as a basis for measuring the distance between process models, while in [9] the
problem of measuring process model distance is transformed into a graph match-
ing problem so that the notion of edit distance in graphs can be used. In [16] a
method is provided for measuring process variant similarity. In [7, 5, 6] workflow
dependency graphs are converted into normalized process network matrices and
similarity of processes is measured by calculating the metric space distances be-
tween these normalized matrices. All these approaches essentially abstract from
behavior and as pointed out in [2], process models may be quite similar in terms
of their structure and the labels used, but their behavior may be quite different.

In order to take behavior into account when measuring process model similar-
ity, a process language needs to be used that has a formal semantics. As pointed
out in e.g. [1], Petri nets provide a solid foundation for workflow modeling and

9 http://pipe2.sourceforge.net/

16 Jianmin Wang et al.

analysis. However in order to develop a behavior-based similarity measure, cau-
tion should be exercised as it has been shown [12] that trace equivalence of
Petri nets and equality of reachability trees are undecidable problems. In prac-
tice, process models may exist that have an infinite number of associated traces
and/or states [2]. In order to overcome the problem of dealing with infinite trace
sets and to address the moment-of-choice problem, in [2, 4] a behavior-based
similarity measure of two processes is proposed that uses event logs containing
typical behavior. Through this approach even models with infinite trace sets can
be compared, however it is dependent on these event logs containing “typical
behavior”. Such logs may not always be available in practice and their quality
may be difficult to ascertain.

Causal footprints are used in [10] as a basis for measuring process model
similarity. Causal footprints consist of two kinds of links, look-forward and look-
backward. To determine the degree of similarity between two process models
(EPCs in this case) index vectors are constructed using these causal footprints
and the functions in the models. The similarity of the two models is then com-
puted as the “cosine of the angle between their index vectors” ([10], p. 8). The
approach takes the degree of label similarity into account. An advantage of the
approach in [10] is the fact that their structural analysis can handle process
models with many parallel branches without suffering from the problem of state
space explosion as our approach does. On the other hand our approach holds
more potential when it comes to recognizing lack of similarity between process
models that are structurally similar, but behaviorally different.

In [24] a behavior-based similarity measure is proposed for workflow nets
based on transition adjacency relations. Transitions t1 and t2 are adjacent if t2
immediately follows t1 in every firing sequence in which either of them occur.
The computation of all transition adjacency relations may also be affected by
state space explosion. In addition, adjacency relations essentially correspond to
sequences of size two while in our approach principal transition sequences may
be of arbitrary length. It may thus be expected that, generally speaking, in our
approach behavior is captured more accurately.

7 Conclusions

In this paper a new similarity measure for labeled Petri nets was proposed that
takes behavioral aspects into account. The method for determining the degree
of similarity between two nets circumvents the problem of having to deal with
infinite trace sets or infinite reachability graphs by computing the sets of princi-
pal transition sequences. Experiments, both with artificial and real-life models,
were conducted to explore characteristics of the proposed similarity measure.

There are some limitations to the work presented. For example, while the
proposed similarity measure takes behavioral aspects into account, the set of
principal transition sequences of a net do not fully characterize its behavior.
It remains an open question to what extent the resulting loss of information
affects the quality of the similarity measure. If this loss is significant, refinement

A Behavioral Similarity Measure Based On Principal Transition Sequences 17

of the proposed similarity measure is required. In addition, the computational
complexity of the proposed approach relies on the computation of coverability
trees. More work is required to explore to what extent this poses limitations in
practice and what can be done to manage this complexity.

Acknowledgements

The work is partially supported by the National Basic Research Program of
China (No. 2009CB320700 and No. 2007CB310802) and the National High-Tech
Development Program of China (No. 2008AA042301 and No. 2007AA040607).

References

1. W.M.P. van der Aalst. The application of petri nets to workflow management.
Journal of Circuits, Systems, and Computers, 8(1):21–66, 1998.

2. W.M.P. van der Aalst, A.K. Alves de Medeiros, and A.J.M.M. Weijters. Pro-
cess equivalence: Comparing two process models based on observed behavior. In
Business Process Management, pages 129–144, 2006.

3. W.M.P. van der Aalst, J. Desel, and E. Kindler. On the Semantics of EPCs: A
Vicious Circle. In M. Rump and F.J. Nüttgens, editors, Proceedings of the EPK
2002: Business Process Management using EPCs, pages 71–80, Trier, Germany,
2002. Gesellschaft für Informatik.

4. A.K. Alves de Medeiros, W.M.P. van der Aalst, and A.J.M.M. Weijters. Quanti-
fying process equivalence based on observed behavior. DKE, 64(1):55–74, 2008.

5. J. Bae, J. Caverlee, L. Liu, and H. Yan. Process mining by measuring process
block similarity. In J. Eder and S. Dustdar, editors, Proceedings of BPM 2006
Workshops, Vienna, Austria, September, 2006, volume 4103 of Lecture Notes in
Computer Science, pages 141–152. Springer, 2006.

6. J. Bae, L. Liu, J. Caverlee, and W.B. Rouse. Process mining, discovery, and inte-
gration using distance measures. In 2006 IEEE Int. Conf. on Web Services (ICWS
2006), September 2006, Chicago, Illinois, USA, pages 479–488. IEEE Computer
Society, 2006.

7. J. Bae, L. Liu, J. Caverlee, L. Zhang, and H. Bae. Development of distance mea-
sures for process mining, discovery and integration. Int. J. Web Service Res.,
4(4):1–17, 2007.

8. W.W. Cohen, P.D. Ravikumar, and S.E. Fienberg. A comparison of string distance
metrics for name-matching tasks. In S. Kambhampati and C.A. Knoblock, editors,
Proceedings of IJCAI-03 Workshop on Information Integration on the Web (IIWeb-
03), August 9-10, 2003, Acapulco, Mexico, pages 73–78, 2003.

9. J.C. Corrales, D. Grigori, and M. Bouzeghoub. Bpel processes matchmaking for
service discovery. In R. Meersman and Z. Tari, editors, Part I of the Proceedings
of the OTM Confederated International Conferences, Montpellier, France, 2006,
volume 4275 of Lecture Notes in Computer Science, pages 237–254. Springer, 2006.

10. R.M. Dijkman, M. Dumas, B.F. van Dongen, R. Käärik, and J. Mendling. Simi-
larity of business process models: Metrics and evaluation. BETA Working Paper
Series, WP 269, Eindhoven University of Technology, The Netherlands, 2009.

18 Jianmin Wang et al.

11. K. Huang, Z. Zhou, Y. Han, G. Li, and J. Wang. An algorithm for calculating
process similarity to cluster open-source process designs. In H. Jin, Y. Pan, and
N. Xiao, editors, Proceedings of Grid and Cooperative Computing - GCC 2004
Workshops: Wuhan, China, October 21-24, 2004, volume 3252 of Lecture Notes in
Computer Science, pages 107–114. Springer, 2004.

12. P. Jancar. Undecidability of bisimilarity for petri nets and some related problems.
Theor. Comput. Sci., 148(2):281–301, 1995.

13. C. Li, M. Reichert, and A. Wombacher. On measuring process model similarity
based on high-level change operations. In Q. Li, S. Spaccapietra, E.S.K. Yu, and
A. Olivé, editors, Proceedings of the 27th International Conference on Conceptual
Modeling, Barcelona, Spain, October 20-24, 2008, volume 5231 of Lecture Notes in
Computer Science, pages 248–264. Springer, 2008.

14. D. Lin. An information-theoretic definition of similarity. In J.W. Shavlik, edi-
tor, Proceedings of the Fifteenth Int. Conf. on Machine Learning (ICML 1998),
Madison, WI, USA, July, 1998, pages 296–304. Morgan Kaufmann, 1998.

15. D. Liu, J. Wang, S.C.F. Chan, J. Sun, and L. Zhang. Modeling workflow processes
with colored petri nets. Computers in Industry, 49(3):267–281, 2002.

16. N.M. Mahmod, S.W. Sadiq, and R. Lu. Similarity matching of business process
variants. In J. Cordeiro and J. Filipe, editors, Proceedings of the Tenth Int. Conf.
on Enterprise Information Systems, Volume ISAS-2, Barcelona, Spain, June, 2008,
pages 234–239, 2008.

17. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, 1989.

18. M. La Rosa, H.A. Reijers, W.M.P. van der Aalst, R.M. Dijkman, J. Mendling,
M. Dumas, and L. Garćıa-Bañuelos. Apromore : An advanced process model
repository (in press). http://eprints.qut.edu.au/27448/, Queensland University
of Technology, Brisbane, Australia, 2009.

19. M. Rosemann. Potential pitfalls of process modeling: part b. Business Process
Management Journal, 12(3):377–384, 2006.

20. A.-W. Scheer, O. Thomas, and O. Adam. Process Aware Information Systems:
Bridging People and Software Through Process Technology, chapter Process Mod-
eling Using Event-Driven Process Chains, pages 119–146. John Wiley & Sons,
Hoboken, New Jersey, 2005.

21. J. Su. Letter from the special issue editor. IEEE Data Eng. Bull., 32(3):2, 2009.
22. A. Wombacher, P. Fankhauser, B. Mahleko, and E.J. Neuhold. Matchmaking for

business processes. In 2003 IEEE Int. Conf. on Electronic Commerce (CEC 2003),
June 2003, Newport Beach, CA, USA, pages 7–11. IEEE Computer Society, 2003.

23. C. Yuan. Principles of Petri Nets (Chinese version). Publishing House of Elec-
tronics Industry, Beijing, China, 1998.

24. H. Zha, J. Wang, L. Wen, C. Wang, and J. Sun. A workflow net similarity measure
based on transition adjacency relations. Computers in Industry, 61:463–471, 2010.

