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Abstract. The field of process mining provides a collection of tech-
niques and tools that aim to support the extraction of information out
of event logs. This information may provide businesses insight into actual
execution and performance of their business processes and may help iden-
tify ways of improving these processes. While the quality of the results of
the application of mining algorithms depends on the degree of complete-
ness of the event log (some even assuming that the logs are complete),
there is currently no approach to estimate completeness of an event log
in an objective manner. In this paper such an approach is proposed in the
context of mining control-flow dependencies. An experimental evaluation
of the approach is also presented.

1 Introduction

Business Process Management (BPM) is concerned, among others, with pro-
viding support for (re)design, deployment, and analysis of business processes.
Process mining can be seen as a subfield of BPM providing a powerful collection
of techniques for deriving information from event logs. Two classical applica-
tions of process mining are model discovery, where the objective is to derive a
process model from an event log [11], and conformance checking, where actual
process behaviour, captured in an event log, is compared to expected process
behaviour, captured in a process model. Over time the field of process mining
has evolved, and broadly speaking, application of the techniques developed may
provide valuable insight into operational performance of business processes and
may help identify opportunities for their improvement. An overview of various
mining algorithms can be found in [4,2,9]. An open source platform, ProM, exists
which provides support for many of these algorithms and which has been used
in industrial applications [8].

Although many problems in the field of process mining have been solved in a
satisfactory manner, unsolved problems remain and these present impediments
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to advancement of the field [4]. One of these problems, which has received very
little attention in the literature, deals with completeness of the event logs.

Generally speaking, the quality of results mined from a given event log de-
pends on the algorithm used and on the amount of information present in this
log. Mining algorithms can be classified into several categories as argued in [9].
The first category consists of algorithms which assume the event log to be glob-
ally complete, i.e. all possible behaviour should have been recorded in the log.
The second category contains those algorithms that make specific assumptions
on completeness but do not require all possible behaviour to be captured, i.e.
they require the log to be locally complete. The third category consists of algo-
rithms where the quality of the result correlates with the degree of completeness
of the event log, but no assumptions on completeness are made at all [9]. Instead,
for these algorithms hold that the more complete a log is, the better the result.

For the first category of algorithms it is necessary to be able to determine
whether or not an event log indeed contains all possible behaviour. For the second
category, it is important to say whether or not a log is complete with respect to
the specific assumptions, while for the third type of algorithm, any information
on completeness is relevant for predicting the applicability of that algorithm.

This then leads to the question: how can one determine global or local com-
pleteness of an event log in an objective manner?

Naturally the completeness of an event log depends on the type of information
one is interested in. For example, one may wish to mine organizational structures
or temporal information about task or case completions. In this paper the focus
is on mining of control-flow dependencies, in other words, determining which
tasks exist and what their relative execution order is. The objective of mining
such dependencies is to obtain a process model of which the (repeated) execution
could have led to the event log. Model discovery has been widely studied and
was among the first applications of process mining.

Having established a focus on control-flow dependencies, the next issue to
address is how to measure or estimate the degree of completeness with respect
to control-flow information in an event log. A logical choice for unit of informa-
tion is the concept of a trace. While different definitions of traces are possible,
e.g. the various moments of choice could be preserved as part of a trace [14],
here we simply see a trace as a sequence of actions which constitute a successful
completion of a process instance. Typically, completeness assumptions are for-
mulated in terms of a process model that can generate the log. However, as we
do not have access to that process model to determine whether this is the case,
we estimate the degree of completeness in a probabilistic manner.

First we determine how many essentially different traces we have observed in
the event log. This leads to a number of observed trace classes. For each trace
class we then compute the occurrence error rate determined by the difference
between the actual occurrence frequency of this class and its expected occurrence
frequency. It is a central assumption of our work that this error rate provides
an indication of the number of trace classes missing from the log. By selecting
the right classification approach to obtain trace classes, several notions of global
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and local completeness can be considered. However, in this paper, we focus on
global completeness, i.e. the sequence of activities in a trace provides the trace
class and traces are considered different if and only if their activity sequences
are different.

It is important to note that our method for determining the degree of com-
pleteness of a log is not dependent on the choice of a specific mining algorithm.
However, as different mining algorithms have different assumptions on complete-
ness, we need to select a classification method that corresponds to these as-
sumptions. Since we selected global completeness for this paper, our results can
directly be used for those algorithms that assume global completeness [18,6,10].
For other algorithms, requiring local completeness, different trace classification
methods have to be developed for our approach to be applicable.

The remainder of this paper is organized as follows. Section 2 describes ba-
sic concepts needed to define the problem and to describe our approach, while
Section 3 contains definitions related to completeness (with respect to control-
flow dependencies) of event logs. Then the proposed approach for determining
the degree of completeness of an event log is outlined in a step-wise manner in
Section 4. In Section 5 the results obtained are evaluated and examined in an ex-
perimental manner. Section 7 describes related work, while Section 8 concludes
the paper and outlines future work.

2 Problem Definition

In this section a number of basic definitions are presented that are used to
formalise our approach to determining log completeness followed by a fomulation
of the two main problems that we aim to solve.

2.1 Basic Definitions

A task is an activity to be performed in the context of a business process. A
process model provides an abstraction of a business process capturing its tasks
and all possible execution orders of these tasks in a formal manner. A process
instance, sometimes referred to as a case [3], represents the actual execution of
a business process. A trace is the result of the successful completion of a process
instance and consists of a sequence of events, where each event corresponds to
the execution of a task [3].

The following definitions capture some of these concepts in a precise manner
and they are almost the same as those presented in [4]. In this paper, our starting
point is a set of tasks that are being executed in real life. We assume that we
know all possible tasks involved in a process in advance and we assume the log
ranges over these tasks. Furthermore, all events in the log should be ordered,
typically using the time at which they were recorded.

Definition 1 (Log). Let T be a finite set of tasks. We define L = (E, C, γ, τ, >)
as an event log over T , where E is a set of events, C is a set of case identifiers,
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γ : E → C a surjective function relating events to cases, τ : E → T a function
relating events to tasks and >⊆ E × E a total ordering on events.

Definition 2 (Trace). Let T be a finite set of tasks and L = (E, C, γ, τ, >) a
log over T . For all cases c ∈ C, we define the trace σc = {e ∈ E | γ(e) = c} as
all events relating to case c. Since the events in E are totally ordered, the events
in σc are also totally ordered.

The execution of instances of various process models manifests itself through
the corresponding traces whose events are recorded in process logs.

Definition 3 (Event log length). Let T be a finite set of tasks and L =
(E, C, γ, τ, >) a log over T . We define the length of the event log L as the number
of elements in C, which is denoted as |C|.

Note that therefore an event log’s length is identical to its number of traces.

As stated before, our approach is based on the identification of trace classes
in the log and we focus on global completeness, i.e. the trace class of a trace is
based on the sequence of tasks it represents.

Definition 4 (Trace equivalence). Let T be a finite set of tasks and L =
(E, C, γ, τ, >) a log over T . Furthermore, let c1, c2 ∈ C be two case identifiers
and σc1

, σc2
the corresponding traces. We say that σc1

and σc2
are equivalent

denoted by σc1
≡ σc2

if and only if for all e1 ∈ σc1
and e2 ∈ σc2

holds that
(#e∈σc1

e < e1 = #e∈σc2
e < e2) =⇒ τ(e1) = τ(e2) and |σc1

| = |σc2
|.

Definition!4 states that two traces σc1
and σc2

are equivalent if and only if
their lengths are equal and every event of the first trace refers to the same task
as the corresponding event of the second trace, i.e. the one having the same
position if put in a sequence based on the ordering relation.

Clearly, the trace equivalence relation defined above forms an equivalence
relation and we will refer to the corresponding equivalence classes as trace classes.
Sometimes we will refer to two equivalent traces as being the same and we
will refer to a trace σ occuring n times in an event log L if and only if the
corresponding trace class has n elements.

Definition 5 (Global completeness of an event log). Let T be a finite set
of tasks, P a process model over T and L a log over T . We say that L is globally
complete if and only if the number of trace classes in the log according to the ≡
relation equals the number of all possible execution orders of T in P .

It should be pointed out that a process model’s behaviour cannot be fully char-
acterised through its trace classes. This is due to the fact that the notion of trace
used is limited and does not preserve moments of choice, but also because no
currently existing process mining algorithm is capable of discovering all work-
flow control-flow patterns [9], which constitutes an inherent limitation to process
model discovery.
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2.2 Problem Formulation

While different control-flow mining algorithms may require different kinds of
input information, their purpose is the same, to derive a process model capturing
the control-flow dependencies that are reflected in event logs. The essence of
control-flow information is captured by the tasks that occur in the various events
in an event log and their execution order in the various process instances. The
more different traces the event log contains the more one can derive about the
actual control-flow dependencies between tasks.

In [9], an overview of mining algorithms is presented. For each algorithm,
insights are given into the requirement with respect to completeness of the log,
i.e. if a log does not satisfy its requirements, then the result is not guaranteed
to actually represent the process under consideration. In that case, more traces
should be recorded.

However, once a log satisfies the completeness requirements of an algorithm,
the addition of new traces does not influence the outcome anymore. In particular,
if a log is global complete, then the addition of a trace will never introduce new
trace classes.

Unfortunately, most completeness metrics are defined on the log and the
model used to generate the log. As such a model is usually not present, it’s not
possible to determine the completeness of the log. (In fact, if the model was
present, then process mining becomes a useless excercise.)

Allthough in [9], several completeness metrics are specified, in this paper,
we are concerned with finding the answers to the following two problems, both
related to estimating the extent to which a log is globally complete:

Problem 1 (Log length problem). Given a set of tasks T , an event log L over T
for a process model P (not known), a confidence level K (0 < K < 1) and a
maximum error ε (0 < ε < 1), what should the minimal length N of the log be
in order to be able to assert with confidence level K that the maximum error
between the real distribution and the empirical distribution of traces is no more
than ε?

Problem 2 (Completeness problem). Given a set of tasks T , an event log L over
T and a confidence level K (0 < K < 1), how can we determine with confidence
level K what the ratio is between the number of observed trace classes in L
versus the total number of trace classes in P?

There is an interesting alternative formulation to Problem 2. The challenge
is to guess for an urn with an unknown number of marbles, how many different
colours these marbles may have. The only input to the problem is a number of
selections of marbles where it was recorded what the colour of the marble was
before it was put back in the urn [17]. This reformulation of the problem depends
on a number of assumptions, which will be discussed in the next section.
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3 Assumptions

In this section the assumptions that underpin our work are made explicit. Each
assumption is described in detail and it is argued that the assumption is rea-
sonable, why it is needed, and what would go wrong if the assumption was not
made.

As defined before, we consider an event log to be complete if and only if it
contains all possible trace classes of a certain process model. As we do not know
this process model we cannot be certain whether an event log is complete or not.
There are however ways of dealing with this uncertainty based on assumptions
that can be reasonably made for event logs that help us estimate the probability
of the appearance of a new trace for a given log. If this probability is small, then
the degree of completeness of the log may be considered high. This approach
provides us with an indirect way of estimating the degree of completeness of a
given log.

Assumption 1 Given a log, we know which tasks can occur in the log, i.e. we
know in advance which tasks are present in the unknown process the log originated
from.

By assuming all tasks are known, we eliminate the possibility that each newly
recorded case adds new tasks to the log, thus continuously increasing the number
of trace classes. Since process mining algorithms generally only construct models
using the tasks actually found in the log, this assumption is reasonable.

Assumption 2 Traces of a process model appear randomly and independently.

In a process-aware information system deployed in a large organisation, there are
typically many instances of process models running concurrently. Instances of a
process model may be initiated by a variety of stakeholders and may come about
under a variety of circumstances. By observing the execution log, it cannot be
predicted what the next trace will be, based on already observed traces. It seems
reasonable to assume that traces are produced randomly and independently.

If the appearance of new traces depended on the already observed traces, we
have to deal with correlated traces. Such traces should be treated as different
appearances of the same trace as they can be (partially) derived from existing
traces. If we cannot deduce how traces correlate with each other we may over-
estimate the number of existing trace classes and thus underestimate the degree
of completeness of event logs.

Assumption 3 Any trace of a process model appears with a constant but un-
known probability. While constant for a particular trace class, this probability
may vary across the various trace classes.

A trace class represents a particular application scenario of a process model.
When a process-aware information system has been running for years, the same
scenario may appear periodically. As time goes by the occurrence frequency of
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the various traces becomes relatively stable and in the long run a trace may be
perceived to appear with a constant probability, which we will refer to as its
occurrence probability.

Based on this assumption, we can approach the problem of determining the
degree of completeness of an event log by treating it as a probability distribution
estimation problem. Given an event log, we can obtain observed occurrence
frequencies of trace classes. These frequencies form the empirical distribution of
trace occurrences. The real occurrence probabilities of trace classes on the other
hand, which are unknown, form the real distribution of trace occurrences. As
mentioned before, the difference between these two provides a measure for the
degree of completeness of an event log.

If this assumption is not satisfied, we cannot solve the problem of determining
the degree of completeness of an event log without further information about
occurrence frequencies of traces. It is worthwhile noting that this means that
our approach does not work so well for event logs that result from processes that
have not been running very long as trace occurrence frequencies may not have
sufficiently stabilised.

Assumption 4 The event log is noise-free.

Noise in an event log represents incorrect information. The presence of noise in
process logs still poses formidable problems for process mining. Some research in
this area has been conducted and it seems that a commonly occurring approach
to tackling the problem is to assume the presence of two noise patterns (see
e.g. [20,26]). In one pattern the occurrence of some tasks was not recorded in the
log, while in the other pattern events in a trace randomly exchanged start times.
The solution to dealing with the occurrence of both patterns is to use filtering
techniques. A trace or a task relationship is treated as noise if its occurrence
frequency is lower than some specified threshold. Filtering can take place before
application of a mining algorithm or afterwards. Noise-polluted traces or task
relationships cannot be identified without additional knowledge or assumptions.

It seems reasonable to assume that event logs are not polluted. Noise is caused
by hardware failures or by software bugs and the detection and remedy of these
problems could lead one to also clean-up the event logs involved.

As we do not have ways of identifying noise in event logs, a noise-polluted
log may lead our approach to overestimate the number of possible trace classes
and thus to an underestimation of the actual degree of completeness of the log.

Assumption 5 For all cases in the log, there is an event that identifies the first
and an event that identifies the last task executed for this case.

When recording events in a certain time interval, there will most likely be events
that belong to traces of which the first event occured before the start of the
logging period, as well as traces for which events will still occur after the logging
period has ended. Again, filtering techniques can be used to eliminate these traces
and to keep only those traces in the log to which no events will be appended in
the future.
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The reason for assuming only completed traces to be present in the log is
that we want to ensure that the trace class of a trace does not change over time.

4 Determining the Degree of Completeness of an Event

Log

In this section we discuss the proposed approach to determine event log com-
pleteness and provide the proofs for a number of fundamental results.

4.1 Approach

For an event log generated by an unknown process model we can determine the
observed trace classes and on this basis, we can try to estimate the real occur-
rence probabilities of these trace classes. This does not provide us however with
the number of trace classes missing. While it is hard to estimate the ratio of
the number of observed trace classes versus the actual number of trace classes
in a direct manner, as we do not know the actual process model, an indication
of this ratio is provided by the differences between the observed probabilities
of the appearance of traces of the various classes versus the actual probabilities
of their appearance. The difference between the empirical distribution and the
corresponding real distribution of traces provides a lower bound for the degree
of completeness of a given event log. Note that this difference is expected to be
smaller for large logs, as over time, with the size of the log increasing, the empir-
ical distribution of occurrence probabilities of trace classes tends to converge to
the real distribution of these probabilities due to the law of large numbers [21,16]
(and using Assumptions 2 and 3). This corresponds to our intuition: larger logs
tend to be more informative.

The error ε, reflecting the aforementioned difference between real and empir-
ical distribution of trace class frequencies, consists of two parts. The first part
is determined by the difference between the number of observed trace classes
and the total number of trace classes, while the second part is determined by
the difference between the appearance frequencies of observed trace classes and
their real frequencies. As the second part of the error is not negative, the first
part of the error does not exceed ε. Therefore 1 − ε provides a lower bound for
the degree of completeness of an event log, since ε provides an upper bound. The
key challenge now is to find the error ε where the real distribution is unknown.
To solve this problem we apply Chebyshev’s Inequality [22,16].

To summarise, we have converted the problem of determining the degree of
completeness of event logs into the problem of estimating the difference between
the empirical distribution and the real distribution of trace appearances in these
logs.

First, we present the notational conventions used in this section, which are
summarized in table 1.

– For a given finite set of tasks T and an unknown process model P , we assume
that there are W trace classes in total and a trace class is denoted as Tj where
0 < j ≤ W .
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– The occurrence probability of a trace class Tj is denoted as P (Tj) = pj ,
where 0 < j ≤ W . If no confusion can occur we write p instead of pj .

– An event log L = (E, C, γ, τ, >) over a set of tasks T contains N = |C| traces
of M classes, where 1 ≤ M ≤ |C|.

– Given an event log L over a set of tasks T and a trace class Tj, then Tj

occurs µj times in the log.
– The occurrence frequency of a trace class Tj is denoted as

µj

N
.

– Trace classes from TM+1 to TW are unobserved and hence, their occurrence
frequencies have the value of zero.

Table 1. The occurrence probabilities and the occurrence frequencies of trace classes

Trace classes T1 T2 · · · TM−1 TM TM+1 · · · TW

Probability p1 p2 · · · pM−1 pM pM+1 · · · pW

Frequency µ1

N

µ2

N
· · ·

µM−1

N

µM

N
0 · · · 0

Section 4.2 describes how the bounds for an error probability for a single
trace class and for all observed trace classes in a given log can be calculated.
Section 4.3 demonstrates how these results are used to determine a lower bound
for the length of a log. Section 4.4 demonstrates how to estimate the degree of
completeness of a given log. Section 4.5 discusses our insight into the relation-
ships between the four variables used in the calculations, namely, the error ε,
the log length N , the number of observed trace classes M and the confidence
level K.

4.2 Determining the Error Probability for Trace Classes

Theorem 1 shows how an upper bound on the error probability for a single trace
class can be estimated for a given log.

Theorem 1. Let εj be a maximum error specified for trace class Tj of a log L
with length N . It holds that

P
{∣

∣

∣

µj

N
− pj

∣

∣

∣
≥ εj

}

≤ 1

4Nε2
j

,

where |µj

N
− pj | represents the difference between the occurrence frequency of Tj

and its occurrence probability.

Proof. A random variable Xi is used to describe the appearance of the ith trace
in L. Let Xi = 1 if the ith trace of L belongs to trace class Tj , otherwise Xi = 0.
Thus, P (Xi = 1) = pj , and P (Xi = 0) = 1 − pj . Then Xi ∼ Bern(pj) is a
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Bernoulli distribution [21], and its mean value EXi and variance value DXi are
calculated as follows.

EXi = pj , (1)

DXi = pj(1 − pj) (2)

=
1

4
− (pj −

1

2
)2 (3)

≤ 1

4
. (4)

Similarly, a random variable can be defined for each of the other traces in N .
Based on Assumptions 2 and 3 in Section 3, {Xi, 0 ≤ i ≤ N} are independent
identical distributed (i.i.d.) [21] as the various Xi do not impact each other and
they all have identical distributions with values 0 and 1.

Let µj =
∑N

i=1 Xi be the occurrence frequency of trace class Tj , then its
mean and variance can be calculated as follows.

E
(µj

N

)

(5)

=
1

N
Eµj (6)

=
1

N
E(

N
∑

i=1

Xi) (Definition of µj) (7)

=
1

N

N
∑

i=1

EXi (8)

=
1

N

N
∑

i=1

pj (9)

=
1

N
∗ N ∗ pj (10)

= pj . (11)
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D
(µj

N

)

(12)

=D(
1

N

N
∑

i=1

Xi) (Definition of µj) (13)

=
1

N2
D(

N
∑

i=1

Xi) (14)

=
1

N2

N
∑

i=1

DXi (15)

=
1

N2

N
∑

i=1

pj(1 − pj) ({Xi} are i.i.d., where 1 ≤ i ≤ N) (16)

≤ 1

N2

N
∑

i=1

1

4
(Expression 4) (17)

=
1

N2
∗ N

4
(18)

=
1

4N
(19)

According to Chebyshev’s Inequality [22,16], for every εj > 0, the following
holds.

0 ≤ P{|µj

N
− pj| ≥ εj} (20)

≤ 1

ε2
j

D(
µj

N
) (according to Chebyshev’s Inequality) (21)

≤ 1

ε2
j

∗ 1

4N
(Expression 19) (22)

=
1

4Nε2
j

. (23)

⊓⊔

The result obtained in Theorem 1 takes the form of an inequality which depends
on two variables only, the log length N and an upper bound for the error εj . In
order for the inequality to be applicable, the estimation for the probability of
the error rate for a single trace class should be less than one. This means that
log length N should not be less than 1/(4ε2

j), which can be the case for small N
in combination with a small maximum error εj .

From the inequality in Theorem 1, it is clear that the occurrence frequency
of a trace class does not appear in the expression. This implies that such a
bound can be derived without considering the possible appearances of other
trace classes in an event log. Hence, we can estimate the error probability of all
trace classes observed in a log in a similar manner. Corollary 1 demonstrates
how to calculate a lower bound for the error probability for all trace classes.
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Corollary 1. Let M be the number of observed trace classes in a given log L
with length N and ε be the maximum error specified for L. It holds that

P

{

M
∑

i=1

∣

∣

∣

µi

N
− pi

∣

∣

∣
< ε

}

≥ 1 − M3

4Nε2
,

where µi is the number of times a trace class Ti (0 < i ≤ M) appears in the log
and pi (0 < i ≤ M) is the occurrence probability of Ti.

Proof.

P

{

M
∑

i=1

∣

∣

∣

µi

N
− pi

∣

∣

∣
< ε

}

(24)

=P

{

M
∑

i=1

∣

∣

∣

µi

N
− pi

∣

∣

∣
<

M
∑

i=1

ε

M

}

(25)

≥P

{

M
⋂

i=1

(
∣

∣

∣

µi

N
− pi

∣

∣

∣
<

ε

M

)

}

(26)

=1 − P

{

M
⋃

i=1

(∣

∣

∣

µi

N
− pi

∣

∣

∣
≥ ε

M

)

}

(27)

≥1 −
M
∑

i=1

P
{∣

∣

∣

µi

N
− pi

∣

∣

∣
≥ ε

M

}

(28)

≥1 −
M
∑

i=1

1

4N( ε
M

)2
(Theorem 1) (29)

=1 − M3

4Nε2
(30)

⊓⊔

From the inequality, we can see that the bound for an error probability of all
trace classes depends on three variables M , N and ε. For the given values of ε
and M , the log length should not be less than 1 − M3/(4Nε2). This represents
a lower bound for the length of an event log for all observed trace classes. As
stated, the error probability is greater than 1 − M3/(4Nε2) if the error for any
of M trace classes is less than ε/M . To make this expression valid, M3 should
not be greater than 4Nε2. We say that the error probability is 0 if this condition
does not hold.

4.3 Calculating a Lower Bound for the Length of an Event Log

Corollary 2. Let M be the number of observed trace classes in a log L with
length N , ε be the maximum error and K be the minimum confidence level.
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Based on Assumptions 2 and 3 in Section 3, if the error between the empirical
distribution and its real distribution is less than ε, and the confidence level K, a
lower bound for the length of an event log is

M3

4ε2 (1 − K)
≤ N. (31)

Proof. From Corollary 1, we know

P

{

M
∑

i=1

∣

∣

∣

µi

N
− pi

∣

∣

∣
< ε

}

≥ 1 − M3

4Nε2
. (32)

Let

K ≤ 1 − M3

4Nε2
. (33)

Then

M3

4Nε2
≤ 1 − K. (34)

Since 0 < K < 1, 1 − K > 0, and thus

M3

4(1 − K)ε2
≤ N. (35)

⊓⊔

From the inequality, we can see that the lower bound for N depends on three
variables M , K and ε. For the given values of ε and K, we can adjust the value
of either N or M to ensure that a certain confidence interval K holds. In reality,
the number of observed trace classes M cannot be controlled. Hence, the only
variable that can be adjusted is N . It means that we wait for more traces to
appear and hence, we work with a log with a larger value of N . Using these
results, we can answer the log length question raised in Section 2.

For an event log L for a process model P (not known), a confidence level
K (0 < K < 1), and a maximum error ε (0 < ε < 1), in order to assert with
confidence level K that the maximum error between the real distribution and the
empirical distribution of traces is no more than ε, the minimal length N of the

log should be M3

4(1−K)ε2 .

4.4 Analysis of the Magnitude of Information in a Log

As long as the total number of trace classes is finite, we can estimate the prob-
ability of unobserved trace classes without knowing the exact number of such
classes.
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Corollary 3. Let W be the total number of trace classes of process model P , M
be the number of observed trace classes in the given log L with length N , and ε
be the maximum error. It holds that

P

{

W
∑

i=M+1

pi < ε

}

≥ 1 − M3

4Nε2
, (36)

where pi (M < i ≤ W ) is the occurrence probability of trace class Ti (M < i ≤
W ) in the log.

Proof.

P

{

W
∑

i=M+1

pi < ε

}

(37)

=P

{

1 −
M
∑

i=1

pi < ε

}

(38)

=P

{
∣

∣

∣

∣

∣

1 −
M
∑

i=1

pi

∣

∣

∣

∣

∣

< ε

}

(1 −
M
∑

i=1

pi ≥ 0 is always true, so we can add | |.)

(39)

=P

{
∣

∣

∣

∣

∣

M
∑

i=1

µi

N
−

M
∑

i=1

pi

∣

∣

∣

∣

∣

< ε

}

(

M
∑

i=1

µi

N
= 1 holds as

M
∑

i=1

µi = N . ) (40)

=P

{∣

∣

∣

∣

∣

M
∑

i=1

(
µi

N
− pi)

∣

∣

∣

∣

∣

< ε

}

(41)

≥P

{

M
∑

i=1

∣

∣

∣

µi

N
− pi

∣

∣

∣
< ε

}

(42)

≥1 − M3

4Nε2
(Corollary 1) (43)

⊓⊔
Corollary 3 shows that the probability of the sum of the probabilities of all unob-
served trace classes being less than ε is greater than or equal to 1−M3/(4Nε2).
Here ε can be seen as an upper bound for the unknown information in the dis-
tribution. In other words, we can use 1 − ε to denote the lower bound for the
completeness of a log. Similar to the lower bound for N , we can estimate the
lower bound for the completeness of a log as shown in Corollary 4.

Corollary 4. Let M be the number of observed trace classes in the given log L
with length N , ε be the maximum error and K be the confidence level. With the
confidence level K, a lower bound for 1 − ε, is

0 ≤ 1 − ε ≤ 1 − M
3

2

2
√

N (1 − K)
≤ 1 (44)
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Proof. From Corollary 2, it holds that

M3

4 (1 − K) ε2
≤ N. (45)

Since N > 0, then

M3

4N (1 − K)
≤ ε2. (46)

And since ε > 0, 1 − K > 0 and M > 0 then

M
3

2

2
√

N (1 − K)
≤ ε. (47)

And then

1 − ε ≤ 1 − M
3

2

2
√

N (1 − K)
. (48)

The degree of completeness should be in the range of [0..1], therefore,

0 ≤ 1 − ε ≤ 1 − M
3

2

2
√

N (1 − K)
≤ 1 (49)

⊓⊔

From the inequality, we can see that it is a function with four variables
N, M, ε and K. For a given log, N and M are known. For a given confidence
level K, we can then calculate the lower bound for ε, where ε is the sum of the
probabilities of all unobserved trace classes. The integral of the real distribution
is 1, which represents the upper limit of the magnitude of all possible informa-
tion contained in a log. We can then assert with confidence level K that the
information contained in the empirical distribution is not less than 1 − ε.

Please note that without knowing the process model, the exact ratio between
the number of observed trace classes and the total number of trace classes is un-
known. Clearly, the magnitude of completeness, 1 − ε, is not identical to the
ratio. However, since 1 − ε is very close to the ratio and it will converge to the
ratio when the log length gets closer to infinity, we use 1 − ε to estimate the
ratio and we call 1 − ε the magnitude of completeness. Using these results, we
can answer the completeness question raised in Section 2.

Given an event log L for process model P (not known) and a confidence
level K (0 < K < 1). With confidence level K, the ratio between the number of
observed trace classes in L and the total number of trace classes in P is estimated

by means of occurence probability to have an upper bound value of 1− M
3

2

2
√

N(1−K)
.
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4.5 Interrelationships between Variables

Inequality (31) shows how a lower bound for N can be estimated provided that
we know the values of the other three variables: the error ε, the confidence level
K, and the number of observed trace classes M . To understand the impact
of each of these variables on N , we now look at each of them in more detail.
First, we give the formula on the lefthand-side of the inequality a function name
f(ε, K, M) and then divide the formula into three parts and give each of them
a function name (i.e., g(ε), h(K) and i(M)).

f(ε, K, M) = M3

4ε2(1−K)

= 1
ε2 × 1

1−K
× M3

4

= g(ε) × h(K) × i(M)
≤ N.

Fig. 1. The impact factors

– g(ε): While estimating a lower bound for N , ε represents an accepable maxi-
mum estimation error and 1−ε represents the lower bound on the magnitude
of information contained in a log. Fig. 1(1) shows that the value of N in-
creases very sharply when the value of ε goes down below 0.05. This indicates
that the lower the estimation error, the longer the length should be.

– h(K): K is the confidence level of the estimation and takes on the value in
the range of 0..1. In other words, 1−K represents the probability of making
a mistake. Fig. 1(2) shows that the value of h(K) = 1/(1 − K) increases as
the value of K increases. It increases at a slower rate when the value of K
is nearer to 0.0 and increases at a much faster rate as the value of K gets
closer to 1. This indicates that the higher the confidence level, the longer
the log should be.

– i(M): M is the number of observed trace classes in a given log. Fig. 1(3)
shows that the value of i(M) = M3/4 increases very sharply when the value
of M increases. This indicates that the more trace classes we have observed,
the longer the log should be.
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Fig. 2. The expected log length and the magnitude of completeness.

We now discuss the effects by means of the overall function f(ε, K, M).
Fig. 2(1) shows that the value of N increases very quickly as M increases for
K = 0.95 and with various values of ε. It can be seen that for given values of ε
and K, the speed of an increase in the lower bound for N is much faster than
M3. From this, we can conclude that the value of M determines the increasing
speed and ε the magnitude of the lower bound for N .

Similarly, we can see the effects of the variables M , N and K on the required
magnitude of information in a log using inequality (44). Fig. 2(2) shows that the

lower bound on the completeness, 1 − M
3

2 /
(

2
√

N (1 − K)
)

, increases with an

increase in the log length N (from 10 to 150000). We can also see that this lower
bound reduces quite sharply with an increase in the number of trace classes M.
This is as we expected. If the traces are repeated again and again, we assume
that the appearance of a new trace is less probable. And if each of the trace
classes is seldom repeated or appeared only once in a given log, we may assume
that there are many more new traces likely to appear.

5 Experiments

In this section, we demonstrate the applicability of the proposed approach by
running experiments on a number of logs. In Corollary 2, we showed that it is
possible to estimate the lower bound for N using three variables - the number
of observed trace classes M , an acceptable error ε and the confidence level K as
follows:

M3

4ε2 (1 − K)
≤ N. (50)

In Corollary 4, we showed how the completeness, 1 − ε, of each log can be
estimated using three variables - the number of observed trace classes M , the
log length N and the confidence level K as follows:

0 ≤ 1 − ε ≤ 1 − M
3

2

2
√

N (1 − K)
≤ 1. (51)
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Based on these inequalities, we implemented a plugin for the meta-data pack-
age in the ProM framework [23]. In Section 6 we show how to access our imple-
mentation.

The input log files for our experiments were obtained from the example logs
publicly available from the ProM website4. There were altogether 600 log files
available for testing. We parsed all these logs to calculate the log lengths, all
observed trace classes, and the occurrence frequencies of trace classes. Upon
close inspection of these logs, we found that only five out of 600 logs were long
enough for our experiments5. All of them contain five trace classes each (M = 5).
The lengths of these log vary between 200 to 1800. We then calculated the lower
bounds for the log length and the completeness for the example logs.

Table 2. Lower bounds for the length of example logs

# of trace classes K=0.95 K=0.90 K=0.85 K=0.80 K=0.75

ε = 0.1 5 62500 31250 20834 15625 12500
ε = 0.2 5 15625 7813 5209 3907 3125

Table 2 summarizes our findings on the lower bounds for the length of ex-
ample logs. The results show that a lower bound for N decreases either as the
confidence level K decreases or as the error value ε increases. Given the maxi-
mum error value of 0.1, the expected length for logs reduces from 62500 to 12500
when the confidence level K decreases from 0.95 to 0.75. We can also see that
the expected log length increases approximately fourfold when the maximum
error ε is halved from 0.2 to 0.1. This confirms that the smaller the difference
between the empirical distribution and the real distribution, the more traces are
needed. 1 − K represents the probability of making a mistake while estimating
the expected length. The shorter the log is, the higher the probability is of mak-
ing a mistake when asserting that the difference between the two distributions
is to be no more than ε (i.e., 0.1 or 0.2).

Table 3 summarizes our findings on the lower bounds for information com-
pleteness of example logs. For example, for the log a12f0n00 2.xml that has
600 traces and five trace classes, we can assert with 75% confidence that the
degree of completeness is 54.36%. For log a12f0n00 3.xml with 1000 traces, we
can assert the same level of completeness of 54.36% but with a higher confidence
level of 90%, since it contains an additional 400 traces over log a12f0n00 2.xml.
As logs a12f0n00 1.xml and a12f0n00 2.xml only contain 200 and 600 traces
respectively, they are not long enough to calculate completeness values for higher
values of K. For the confidence level value of 80%, we can see the completeness

4 http://prom.win.tue.nl/tools/prom/downloads/Process%20Log%20examples.zip
5 Although the log lengths from the input files are not used in the calculations, they

determine whether the calculation can be done.

http://prom.win.tue.nl/tools/prom/downloads/Process%20Log%20examples.zip
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Table 3. Lower bounds of completeness of example logsa

Log Log Length K=0.95 K=0.90 K=0.85 K=0.80 K=0.75

a12f0n00 1.xml 200 n/a n/a n/a 11.61 % 20.94 %
a12f0n00 2.xml 600 n/a 27.83 % 41.07 % 48.97 % 54.36 %
a12f0n00 3.xml 1000 20.94 % 44.10 % 54.36 % 60.47 % 64.64 %
a12f0n00 4.xml 1400 33.18 % 52.75 % 61.42 % 66.59 % 70.12 %
a12f0n00 5.xml 1800 41.07 % 58.33 % 65.98 % 70.54 % 73.65 %

a All the log files have 5 trace classes each.

value increases from 11.61% to 70.54% when the length of the log increases from
200 to 1800. These results show that the lower bound of the degree of complete-
ness decreases as the confidence level increases, and increases as the log length
increases.

6 Implementation

Figures 3 to 8 show how to access our implementation in ProM. Note that our
implementation shows up in the nightly build version of ProM. First, as shown
in Figure 3, the “Completeness” package needs to be installed.

Figure 4 shows the 5 logs from Table 3 opened in ProM. After opening a log
in ProM, the “Log Meta Data Calculation” plugin needs to be started on one of
the logs, as shown in Figure 5.

The “Log Meta Data Calculation” plugin presents several metrics to choose
from, among which the “Completeness: Global Completeness” metric that im-
plements the work in this paper (Figure 6). After clicking “Finish”, the settings
for this metric will be asked, i.e. the confidence level and the maximum error,
as shown in Figure 7.

Finally, after completion of the plugin, the completeness information has been
added as an attribute to the log, as can be seen in Figure 8. This log can now be
exported to file again so that the completeness value is recorded for future use6.

7 Related Work

We now present the related work to our research in the fields of process mining,
statistics, and probability theory.

In the area of process mining, the notions of event, event log, and trace have
been well defined [5]. A typical definition of an event log covers the name of a
task, a process instance and the execution order between tasks (e.g. [25]) because
these are the most important aspects for control-flow mining. This is referred
to as the required minimal information in [2]. While the completeness problem

6 ProM can freely be obtained from www.processmining.org

www.processmining.org
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Fig. 3. Our Package in the ProM Package Manager

Fig. 4. The logs of Table 3 in ProM

has been mentioned in several papers (e.g. [5,19,1]), it has not been discussed in
detail. The issue of log completeness was first raised by van der Aalst in [4]. The
incompleteness of logs is often seen as a kind of noise [2]. Although many process
mining algorithms require the log to be complete, there are other algorithms such
as the genetic mining algorithm [1] that can work with incomplete logs. In [9],
completeness is one of the metrics used to evaluate process mining algorithms.
As the quality of mining results relies heavily on the degree of completeness of
event logs, an in-depth exploration of this notion, the topic of this paper, is
worthwhile.

The definition of completeness given in the literature varies depending on the
objective of a process mining algorithm [9]. If an algorithm requires information
about relationships between tasks, the log is considered to be incomplete if not all
such relationships are present in the log. A typical definition is given in [5] where
the α-algorithm uses the >W relationship defined between tasks and requires
all possible pairs to appear in the log at least once. In our approach a log is
considered to be complete if at least one trace of all possible trace classes is
present in the log. The disadvantage of this approach is that process models
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Fig. 5. The logs of Table 3 in ProM

Fig. 6. The logs of Table 3 in ProM

Fig. 7. The logs of Table 3 in ProM
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Fig. 8. The logs of Table 3 in ProM

with loops have an infinite number of traces. On the other hand, our approach
aims to be general with respect to the notion of global completeness and is
therefore not tailored to any specific algorithm that requires such completeness.

In this paper, we modeled the problem of completeness of event logs as
the problem of estimating the difference between two probability distributions,
namely the empirical distribution and the real distribution of trace appearances.
Similar problems exist in the field of statistics. In our case the empirical distri-
bution is known. If the real distribution is known, the problem is a traditional
goodness-of-fit test problem, which can be solved by means of the Kolmogorov-
Smirnov test (K-S test) whether the distributions are continuous or not [13]. If
the distribution family of the real distribution is known, the problem of estimat-
ing the difference between a real and an empirical distribution can be solved by
estimating the exact real distribution first. The maximum likelihood estimator
is often a good choice for estimating the (unknown) parameters of this distribu-
tion [24]. In our case however, we do not have any a priori knowledge about the
real distribution. The Dvoretzky-Kiefer-Wolfowitz Inequality can measure the
difference between an empirical distribution and a real distribution with sample
size n and error ratio ε as parameters [24]. This approach is not applicable for
our objectives, as the number of trace classes is an important variable which is
not taken into account in this inequality. The work by M.E. Lladser reported
in [17] is most closely related to our approach. In [17] an iterative algorithm
is proposed to estimate the unseen portions of samples. Unfortunately, this al-
gorithm cannot directly be used to provide a lower bound for the length of a
log given a desired degree of completeness and a confidence level (Problem 1).
Additionally, the paper does not provide a solution to the problem of estimating
degree of completeness of a log in analytical form (an equality or inequality).
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The problem of completeness is similar to, but not the same as, the Coupon
Collecting Problem (refer to page 322 of [22])7 in the field of probability the-
ory. Both problems require one to determine the number of different elements
in an unknown collection through sampling with replacement. The difference
between these problems is that both the total number of coupon types and the
appearance probability of each coupon type are known in the Coupon Collecting
Problem, while neither the number of trace classes nor the occurrence probability
of each class is known in the completeness problem. Thus none of the solutions
(e.g. [12]) to the Coupon Collecting Problem can be applied to directly solve the
completeness problem.

8 Conclusions and Future Work

In this paper, the log length and completeness problems of event logs for control-
flow mining were examined. Based on some natural and reasonable assumptions,
an approach was derived to calculate a lower bound for the length of a log given
an acceptable error rate ε a confidence level K, and the number of observed
trace classes M . We concluded that 1 − ε can be used as a measure for the de-
gree of information present in an event log and a formula was derived to provide
a lower bound for this measure. Subsequently, the various factors influencing
the presented lower bounds and their interrelationships were examined and ex-
periments with some existing logs were conducted to provide some indication of
their potential use in practice.

The work presented in this paper can be extended in several directions. If
one considers models with loops, then our approach has a drawback. For logs
that result from the execution of such models our estimations may not be very
accurate as they tend to underestimate the actual degree of completeness. This is
due to the fact that different iterations of the body of a loop will lead to different
trace classes (while such repeated executions add less and less information). In
order to extend our approach, one could consider alternative definitions of trace
classes. For example, one could define trace classes based on task precedence
relations as this would always yield a finite number of trace classes (given that
the number of tasks is assumed to be finite). Such a definition is particularly
meaningful in case of the well-known α-algorithm (as introduced in [5]). In fact,
one could examine various definitions of trace classes in relation to the log length
and information completeness problems, and link these definitions to process
mining algorithms for which they are particularly suited. In that case the focus
can be increased to include local completeness. Another extension to this work
could assume the existence of noise in logs.

7 This problem is also referred to as Coupon Collector Problem in [15,12] or as Coupon
Collection Problem in [7].
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