
Inter-Workflow Support

Ronny S. Mans1,3, Nick C. Russell2, Wil M.P. van der Aalst1, Arnold J.
Moleman3, Piet J.M. Bakker3

1 Department of Information Systems, Eindhoven University of Technology, P.O. Box
513, NL-5600 MB, Eindhoven, The Netherlands.

{r.s.mans,w.m.p.v.d.aalst}@tue.nl
2 Carba-Tec Pty Ltd, 128 Ingleston Rd, Wakerley QLD 4154, Australia.

nrussell@carbatec.com.au
3 Department of Quality Assurance and Process Innovation, Academic Medical

Center, University of Amsterdam, P.O. Box 2260, NL-1100 DD, Amsterdam, The
Netherlands. {a.j.moleman,p.j.bakker}@amc.uva.nl

Abstract. Processes concerning the diagnosis and treatment of patients
can be characterized as weakly-connected interacting light-weight work-
flows coping with different levels of granularity. Moreover, for each indi-
vidual patient a doctor proceeds in a step-by-step way deciding about
the next steps to be taken. Classical workflow notations fall short in
supporting these patient processes as they primarily support monolithic
processes in which it is assumed that a workflow process can be modeled
by specifying the life-cycle of a single case in isolation. In this paper,
we present an extension of the Proclets framework which allows for di-
viding complex entangled processes into simple fragments. Additionally,
increased emphasis is placed on interaction related aspects such that
fragment instances for individual patients can cooperate in any desired
way. Finally, we describe an architecture in which inter-workflow support
facilities can be added to existing WfMSs.

1 Introduction

In healthcare organizations, such as hospitals, many complex, non-trivial pro-
cesses are performed which are lengthy in duration. Actually, a lot of these
processes involve patient processes which are concerned with the diagnosis and
treatment of patients. For reasons of patient safety and to ensure the quality of
services delivered to patients, for these patient processes it is crucial that tasks
are performed in the right order and in due time. Moreover, it needs to be taken
into account that tasks may be performed at different medical departments. In
order for providing support and monitoring for these processes, Workflow Man-
agement Systems (WfMSs) present an attractive vehicle to this end. Based on
process definitions, WfMSs are able to manage the flow of work in these pro-
cesses such that individual workitems are done at the right time by the proper
person [6, 14, 26, 24].

However, a number of difficulties commonly arise when hospitals attempt to
automate these patient processes. This is due to the fact that a patient process

MDM:05/02

recei
ve

deci
de

broch
ures

visit:Sue 25/01

visit:Anne 26/01

blood
test

send
report

archi
ve

lab:
Sue

25/01

send
report

archi
ve

regi
ster

deci
de

send
reports

recei
ve

decid
e

broch
ures

visit:Sue 10/02

recei
ve

decid
e

broch
ures

visit:Anne 12/02

lab:
Anne
26/01

initial
prepar
ations

recei
ve

deci
de

broch
ures

initial
prepar
ations

initial
prepar
ations

blood
test

Fig. 1. Interacting workflow fragments.

for an individual patient typically consists of a number of workflow fragments
that may cope with different levels of granularity and run at their own speed.
Moreover, the doctor proceeds in a step-by-step way when deciding about the
steps to be taken next. These two aspects can be illustrated by the example that
is depicted schematically in Figure 1.

Figure 1 shows the possible patient process of two patients. For patient “Sue”
the process starts with the first visit to the outpatient clinic (the process in-
stance which is named “visit:Sue 25/01”). For the first visit, first some initial
preparations are necessary (task “initial preparations”). After this, the results
of previous tests are received (task “receive”). Then, a doctor decides about the
next step(s) that need to be taken (task “decide”) followed by brochures that
are provided by a nurse (task “brochures”). As indicated by the outgoing arcs
from the “decide” task, a second visit is necessary (“visit:Sue 10/02”), a lab
test needs to be taken (“lab:Sue 25/01”), and Sue’s case needs to be discussed
during a multidisciplinary meeting (“MDM:05/02”). For the lab test that needs
to be taken, first a blood test is taken (task “blood test”). Subsequently, a report
describing the result of the lab test is sent (“send report”), and the report is
archived (task “archive”). Note that as the report is required as input for the
second visit, there is an arc leading from the “send report” task to the “receive”
task of the second visit. At the multidisciplinary meeting, multiple patients are
discussed individually. First, some initial preparations need to be taken for the
meeting (task “initial preparations”) after which patients can be registered for
the meeting (task “registration”). Then at the meeting itself, for the registered
patients, a decision is made about the next steps that need to be taken (task
“decide”). Finally, reports are sent out (task “send reports”). Note that Sue is

2

registered for the meeting and that the resulting report is necessary as input for
the second visit.

For patient “Anne” a similar process is followed. Note that for both patients
many more options may be possible. For example, for Sue an MRI or CT test
may be necessary, which is either initiated at the second visit (task “decide”) or
during the multidisciplinary meeting (task “decide”). Alternatively, the result of
the lab test for Sue may be necessary as input for the multidisciplinary meeting
instead of the second visit. Also note that Anne and Sue are discussed at the
same multidisciplinary meeting. So, process instance “MDM 05/02” operates at
a different level of granularity (a group of patients) than the other instances
shown in Figure 1 (a single patient).

As illustrated by the example, the entire patient process should be seen as
a cloud of standardized workflow fragments for which the ultimate selection of
these fragments and the interactions between them is patient specific. Moreover,
these fragments may cope with different levels of granularity. Current workflow
languages require that the complete workflow is described as one monolithic
overarching workflow [25]. As a consequence, using current workflow languages,
it is hard to describe such a cloud of loosely coupled workflow fragments and all
the possible interactions that may occur between these fragments.

In particular, for providing the required support, so called Proclets are an
interesting means in order to model these kind of processes and have them
executed by a WfMS. Proclets are lightweight interacting processes that can
be used to divide complex entangled processes into simple fragments and, in
doing so, place increased emphasis on interaction-related aspects of workflows.
Proclets aim to address the following problems that existing workflow approaches
are currently facing:

– Models need to be artificially flattened and are unable to account for the mix
of different perspectives and granularities that coexist in real-life processes.

– Cases need to be straightjacketed into a monolithic workflow while it is more
natural to see processes as intertwined loosely-coupled processes

– One-to-many and many-to-many relationships that exist between entities in
a workflow can not be captured.

– It is difficult to model interactions between processes.

Proclets were one of the first modeling languages to acknowledge above men-
tioned problems and are part of the Proclet framework which has been described
in detail by van der Aalst et al. [4, 5]. Based on our healthcare experiences, an
extension of the Proclet framework will be presented in this paper. In particular,
via so-called “interaction points”, “internal interactions”, and “external inter-
actions”, at design time, possible interactions between Proclet classes can be
modeled without the need to define complex pre- and postconditions. Next, at
run-time they allow users to select interactions between future and existing Pro-
clet instances. In this way, users can define the next steps that need to be taken
in the process of treating a patient (e.g. a lab test, a next visit of a patient).
Note that although the framework has been extended based on experiences from
the healthcare domain, this does not mean that its application is limited to the

3

healthcare domain only. Any environment where processes are fragmented, in-
teraction is important, and tasks which are done at different levels of granularity,
can potentially be supported.

In order to illustrate that the framework can also be applied in other en-
vironments, we next list some real world examples where interactions between
instances, different levels of aggregation, and relations between entities play an
important role:

– The reviewing of papers for a conference: For a conference the goal is to
select the best papers from all papers that have been submitted. Before
issuing a call for papers, several people are invited to take part in the program
committee. For the papers that have been submitted, the program committee
selects multiple reviewers per paper. A reviewer may be asked to review
multiple papers. Finally, a decision is made by the program committee and
the authors are informed whether their paper has been rejected or accepted.

– Processing of insurance claims: some claims may refer to the same accident.
Even though claims may start out as separate instances, at some point it
may be desirable to merge all related claims so that a uniform decision can
be reached.

– In software development: software modules are composed of submodules,
which in turn may be composed of sub-submodules and so on. Considera-
tions at higher or lower levels of aggregation may influence other levels. For
example, the discovery of a design flaw at a higher level may impact modules
at lower levels or at the same level at which the flaw has been discovered.

As indicated earlier, the Proclet framework allows for executing patient pro-
cesses in a WfMS. So, an additional contribution of this paper is that we inves-
tigate the general problem of how WfMSs can be fully extended with facilities for
inter-workflow support. So, our focus is not on simply extending the functionality
of a particular WfMS.

The remainder of this paper is organized as follows. The Proclet framework
together with our contributions will be discussed in detail in Section 2. After-
wards, in Section 3, the design of a WfMS extended with inter-workflow support
is presented. Section 4 discusses related work. Finally, Section 5 concludes the
paper.

2 The Proclet Framework

In this section, we discuss how Proclets provide a framework for modeling and
executing workflows. First, the most important concepts of the framework will be
introduced in Section 2.1. Afterwards, in subsequent sections, particular aspects
of the framework will be addressed.

2.1 Concepts

In this section, we discuss the main concepts of the Proclet framework. This will
be done by two scenarios. One scenario is rather simple while the other one is

4

more complex. Additionally, these scenarios allow for showing the mechanisms
that relate to the concepts that are introduced.

First Scenario Before introducing the framework, we first present the first
scenario which is shown in Figure 2. In this scenario, we schematically depicted
the process that needs to be followed by patient “Sue”. Currently, Sue is in the
process of having a first visit (fragment “visit:Sue 25/01”). As indicated by the
outgoing arcs from the “decide” task, the doctor decides during the “decide” task
that a next visit is necessary (fragment “visit:T2”) and that a lab test needs to
be taken (fragment “lab:T1”). As the last two fragments need to be created in
the future, the fragments for them are visualized with a dotted rectangle around
them. Additionally, their instance identifier starts with a “T”. As a subsequent
action of creating an instance for the lab test, the result of the lab test needs to
be used as input for the second visit. This is indicated by the arc leading from
the input condition of the “lab” fragment to the “send report” task and the arc
leading from the “send report” task to the “receive” task of the second visit.

recei
ve

broch
ures

visit:Sue 25/01

blood
test

archi
ve

lab:
T1

decid
e

broch
ures

visit:T2

initial
prepar
ations

deci
de

send
report

recei
ve

initial
prepar
ations

current state:
decision about the

next steps that need
to be taken

current state:
instance that is

currently running

instance that needs
to be created for the

second visit

instance that needs
to be created for the

lab test

Fig. 2. The first scenario. In this scenario, for patient “Sue” it is decided during the
first visit that a lab test is required and that a second visit is required.

Based on the scenario discussed above, we start introducing the Proclet
framework. That is, the framework is centered around the notion of Proclets.
There is a distinction between a Proclet class and a Proclet instance. A Proclet
class can best be seen as a process definition which describes which tasks need
to be executed and in which order. For a Proclet class, instances can be created
and destroyed. One instance is called a Proclet instance. For the definition of
a Proclet class, a selection can be made between multiple graphical languages.
In this paper, we use a graphical language based on the YAWL language [7].
However, other languages, such as Petri Nets [1] or EPCs [2], can also be used.
With regard to the selection of a graphical language, some limitations apply.
First of all, Proclet instances need to have a state and they need to support the
notion of a task. Second, a Proclet class needs to be sound, i.e., satisfy basic

5

correctness requirements such as absence of deadlocks, proper termination, etc.
[3].

In order to have interactions and collaboration among Proclets, interaction
points, channels, ports, and performatives are important. The meaning of them
will be discussed below. Additionally, we describe how a Proclet class and in-
stances of it are defined.

– A Proclet class has a unique name . In the same way, an instance of a
Proclet class has an unique identifier.

– Proclet instances interact with each other via channels. A channel can be
used to send a performative to an individual Proclet instance or to a group
of Proclet instances.

– A performative is a specific kind of message with several attributes which
is exchanged between one or more Proclets. Two important attributes are
the “sender” and “set of receivers” attributes. The sender attribute contains
the identifier of the Proclet instance creating the performative. The set of
receivers attribute contains the identifiers of the Proclet instances receiv-
ing the performative, i.e. a list of recipients. Additional attributes will be
discussed in more detail later (Section 2.4).

– A Proclet class has ports. Performatives are sent and received via these
ports in order for a Proclet instance to be able to interact with other Proclet
instances. A port is either an incoming or an outgoing port. Each outgoing
port is connected with exactly one incoming port. We call such a connec-
tion, an external interaction . Furthermore, every port is connected to
one interaction point . An interaction point represents a specific point in
the Proclet class at which interactions with other Proclet classes may take
place, i.e. via the associated ports performatives may be sent and received.
An interaction point may be linked to an input condition and a task.

– Moreover, a port has two attributes.
First, the cardinality specifies the number of recipients of performatives ex-
changed via the port. An ∗ denotes an arbitrary number of recipients, + at
least one recipient, 1 precisely one recipient, and ? denotes no or just one
recipient. Note that by definition an input port has cardinality 1.
Second, the multiplicity specifies the number of performatives exchanged via
the port during the lifetime of an instance of the class. In a similar fashion
to the cardinality, an ∗ denotes that an arbitrary number of performatives
are exchanged, + at least one, 1 precisely one, and ? denotes that either one
or no performatives are exchanged.

– For an interaction point having only incoming ports, it may be desired that
the receiving of an individual performative is followed by the subsequent
sending of a performative later in the process (e.g. the creation of a lab
test needs to be followed by the execution of a task in the same process
which sends the result of the test to the desired Proclet instance). Therefore,
an interaction point with only incoming ports may be connected with an
interaction point which has only outgoing ports. Such a connection is called
an internal interaction .

6

broch
ures

visit

blood
test

archi
ve

lab

initial
prepar
ations

deci
de

send
report

*,
?

1,1

*,?

recei
ve

1,
?

1,1

1,*

port

interaction
point

triggers
creation of

Proclet
instance

lab

visit

follows preceding

a) Proclet classes with interaction points, ports, and internal and external interactions b) class diagram containing
the two Proclet classes

performative

external
interaction

internal
interaction

0..*

1..1

0..*

1..1

cardinality

multiplicity

preceding follows
0..* 0..*

Fig. 3. Based on the first scenario, the concepts of the Proclet framework that are
introduced so far are illustrated. That is, two Proclet classes are modeled. Moreover,
for them, interaction points, channels, ports, and performatives are indicated.

The above mentioned concepts are illustrated in Figure 3. Based on the
first scenario, in Figure 3a, two Proclet classes are shown together with their
interaction points, ports, and external interactions. In Figure 3b, a class diagram
is shown containing the two Proclet classes. First, as can be seen in Figure 3a,
the “visit” Proclet class models all the tasks related to a visit of the patient,
whereas the “lab” Proclet class does the same for a lab test. The “decide” step
of the “visit” Proclet class has an interaction point with two outgoing ports.
One outgoing port is leading to the interaction point that belongs to the input
condition of the “lab” Proclet class. Sending a performative to the incoming
port of this interaction point results in the creation of an instance of the “lab”
Proclet class. Similarly, sending a performative via the second outgoing port of
the “decide” task results in the creation of an instance of the “visit” Proclet
class. As indicated by cardinality * for the two outgoing ports of the “decide”
task only multiple instances of the “lab” Proclet class and multiple instances
of the “visit” Proclet class may be initiated. The multiplicity of the two ports
is ? which means that it is optional to send a performative in order to create
an instance of the “lab” and “visit” Proclet class. Finally, performatives can be
send from the “send report” task to the “receive” task modeling that the result
of a lab test may be used as input for a patient visit. The cardinality 1 and
multiplicity ? of the outgoing port of the “send report” task indicate that it
is optional to send a performative to one “visit” Proclet instance. In a similar
fashion, the cardinality 1 and multiplicity * of the incoming port of the “receive”
task indicate that it is optional that performatives are received from the “send
report” task.

However, although performatives can be sent to multiple receivers, there is
still the issue that it needs to be controlled to which specific Proclet instance or

7

instances a performative is sent. For example, for Figure 3, when an instance
exists of the “lab” Proclet class and the “send report” task is executed, it is
still the question to which “visit” Proclet instance a performative is sent. In
particular, if we want to achieve the behavior for “Sue” which is defined during
the execution of the “decide” task in the first scenario (which is visualized in
Figure 2), the following is required for the two Proclet models shown in Figure
3

– One Proclet instance exists for the first visit which has “visit:Sue 25/01” as
instance identifier.

– A performative is sent from the “decide” task of the first visit to the initial
condition of the “visit” Proclet such that one instance is created for the
second visit of “Sue”.

– A performative is sent from the “decide” task of the first visit to the initial
condition of the “lab” Proclet such that one instance is created for the desired
lab test for “Sue”.

– The creation of an instance for the lab test should be followed by the exe-
cution of the “send report” task such that a performative is sent from that
task to the “receive” task of the second visit.

Next to that, for the above mentioned interactions it is important that it is
known whether they already have taken place, i.e. the state of them needs to be
known. For example, in order for the “receive” task of the second visit to take
place it is important to know whether the performative from the “send report”
task has already been received.

Entities and Interaction Graphs .

In order to be able to precisely specify the interactions that need to take place
for “Sue” and their current state, we need to introduce two additional concepts.
The fist concept is called an entity. An entity is an object that exists next to
existing and future Proclet instances. Examples of an entity are a patient, a
claim, or a software product that needs to be developed. So, “Sue” can be an
entity. For an entity, tasks in multiple Proclet instances need to be performed. In
order for these tasks to be performed in the desired order, specific interactions
are required between existing and future Proclet instances. Note that this also
may involve a sequence of interactions among multiple Proclet instances.

In order to store for an entity the interactions that need to take place between
existing and future Proclet instances and their state, we introduce a so-called
interaction graph. An interaction graph belongs to a specific entity and consists
of interaction nodes and interaction arcs. An interaction node refers to an in-
teraction point of a Proclet instance for which one or more internal or external
interactions will take place, i.e. an instance of an interaction point. So, an inter-
action node is a triple of which the first value refers to the identifier of the Proclet
class, the second value refers to the identifier of the Proclet instance, and the
third value refers to the identifier of the interaction point for which one or more

8

interactions take place. On its turn, an interaction arc refers to an interaction,
either internal or external, that needs to occur between two interaction points of
a Proclet instance. In that way, the direction of the arc in the graph is the same
as the direction of the arc for the associated internal or external interaction.

In Figure 4, for the first scenario, the corresponding interaction graph is
given for entity “Sue”. First, in Figure 4a, the instances for the fist visit, second
visit, and lab test are shown. However, they are now modeled using terminology
of the Proclet framework, i.e. using interaction points, ports, and so on. For
example, the “decide” task of the first visit has two outgoing ports illustrating
the performatives that will be sent in order to create an instance for the lab
and the second visit. Also, for the first visit (Proclet instance with identifier
“visit:Sue 25/01”), currently the “decide” task is executed. As a result, the
“initial preparations” and “receive” task are already executed which is indicated
by the check marks.

As a result of executing the “decide” task for the first visit, which necessitates
interactions with existing and future Proclet instances, an interaction graph
is created for entity “Sue”. The graph is shown in Figure 4b. There are five
interaction nodes and four interaction arcs. Note that by dotted arcs, nodes of
the interaction graph are linked with their corresponding interaction points in a
Proclet instance. Additionally, via dotted arcs, arcs of the interaction graph are
linked with their corresponding internal or external interactions. The meaning
of each arc for the entity “Sue” is as follows:

– (visit,Sue 25/01,decide) → (lab,T1,create): from the “decide” task of the
“visit” Proclet class with instance identifier “Sue 25/01”, a performative is
sent in order to create an instance of the lab Proclet class. As the lab instance
still needs to be created a temporary instance identifier is used for it (i.e. T1).
Note that the arc refers to an external interaction. For presentation reasons,
input and output ports are not shown in an interaction graph. Instead, for
an external interaction, the respective interaction nodes are immediately
connected via an arc.

– (visit,Sue 25/01,decide) → (visit,T2,create): similar as for the previous arc.
This time an instance of the “visit” Proclet class needs to be created which
represents the second visit. Note that also for the second visit a temporary
instance identifier is used (i.e. “T2”).

– (lab,T1,create) → (lab,T1,send report): the creation of an instance for the
“lab” Proclet class needs to result in a subsequent interaction. This is rep-
resented by an internal interaction for which no performatives will be sent.
Note that the subsequent interaction is the sending of a performative, start-
ing from the “send report” task of the same instance to the “receive” task
of the second visit.

– (lab,T1,send report)→ (visit,T2,receive): from the “send report” task of the
“lab” Proclet instance, a performative needs to be sent which is received by
the “receive” task of the future “visit” Proclet instance for the second visit
which has temporary instance identifier “T2”.

9

recei
ve

broch
ures

visit:Sue 25/01

blood
test

archi
ve

lab:T1

decid
e

broch
ures

visit:T2

initial
prepar
ations

deci
de

send
report

recei
ve

initial
prepar
ations

(visit,
Sue 25/01,

decide)

((S
ue

,1
),

un
pr

od
uc

ed
)

(lab,T1,
create)

((Sue,2),
executed_none)

((Sue,7),
unproduced) (visit,T2,create)

((Sue,3),

unproduced)

(lab,T1,
send report)

(visit,
T2,

receive)

interaction
node

interaction
arc

interaction
state

interaction
identifier

a) The Proclet instances that need to be performed for ‘Sue’ together with the desired interactions

Proclet class
identifier

Proclet instance
identifier

interaction point
identifier

b) Interaction graph defined during execution of the ‘decide’ task. The graph saves the Proclet instances that need to be
performed for ‘Sue’ together with the desired interactions.

*,
?

*,
?

1,1

1,?

1,1

1,*

Interaction Graph

current state:
decide task is

executed

for Sue the creation of
the lab instance needs
to be followed by the

‘send report’ step

Fig. 4. For entity “Sue”, using the Proclet terminology introduced so far, it is shown
how the existing and future Proclet instances need to interact (Figure a). Additionally,
for entity “Sue” the associated interaction graph is shown (Figure b).

Obviously, the interaction graph of entity “Sue” saves all the interactions
that need to take place between future and existing Proclet instances. In other
words, the entity “Sue” is the linking pin between the three Proclet instances.

As indicated before, in an interaction graph we also save the state of the
interactions for an entity. Therefore, every arc in the interaction graph has an
interaction identifier and an interaction state.

The interaction identifier is an identifier of which the first value relates to
the entity itself and of which the second value relates to a unique identifier
for the interaction. These interaction identifiers allow for keeping track of the
state of external interactions for entities, i.e. performatives that are exchanged.
Additionally, in order to realize the latter, an additional attribute is added to

10

a performative called set of interaction identifiers. For the interaction arcs for
which a performative is sent, the associated interaction identifier is added to this
set. More details will be provided later.

Next, the interaction state of an arc stores the specific state of an interaction
for the respective entity. For example, for an external interaction, has already
a performative been sent or received. For an internal interaction, is the task
that is linked to the interaction point already executed or not. In total, for an
arc referring to an external interaction we distinguish four different states and
for an arc referring to an internal interaction we also distinguish four different
states. Below, for the first scenario, tasks will be executed for different Proclet
instances. In that way, it can be seen which performatives are exchanged. More-
over, it allows for explaining how the arcs of an interaction graph are updated
and which states we distinguish. In this way, the “mechanisms” of an interaction
graph can be illustrated and the “mechanisms” of an interaction point, internal
interaction, and external interaction.

Executing the First Scenario .
For the first scenario, visualized in Figure 2, subsequently tasks for the first visit,
lab test, and second visit will be performed. Similarly, as in Figure 4 we show
the current state of the Proclet instances and the current state of the interaction
graph for entity “Sue”. Tasks that are completed are indicated by a check mark.

Step 1:

In Figure 4, the “decide” task of the first visit is currently executed and an
interaction graph is created. In Figure 5, the next step is visualized. That is,
for the “decide” task that is executed, in the interaction graph it can be seen
that two interactions need to take place. So, two performatives need to be sent
in order to create an instance of the “lab” Proclet class and an instance of the
“visit” Proclet class. As an example, we see the performative that is sent to
create an instance of the “visit” Proclet class. The sender of the performative is
the Proclet instance that is currently executed (“visit:25/01”). The receiver of
the performative is the instance of the “visit” Proclet class which has temporary
identifier “T2” as it still needs to be initiated. As interaction identifier we see
that “(Sue,7)” is added.

As a result, in the interaction graph for entity “Sue”, we see that the inter-
action state of the arc leading from the “(visit,Sue 25/01,decide)” node to the
“(lab,T1,create)” node has been changed to “sent”. The same can be observed for
the arc leading from the “(visit,Sue 25/01,decide)” node to the “(visit,T2,create)”
node. This is due to the fact that a performative has been sent for that interac-
tion. That is, the sender and receiver of the performative match with the sender
and receiver of the associated interaction arc in the graph. Also, the performative
contains the interaction identifier of the arc for which it is sent.

Step 2:

The next step is shown in Figure 6. The receival of the two performatives has
resulted in the creation of an instance for the “lab” Proclet class and the “visit”
Proclet class as well. Instead of instance identifier “T1” the instance of the “lab”

11

Performative
Sender: visit:Sue 25/01
Receivers: visit:T2
Interaction identifiers: [(Sue,7)]

recei
ve

broch
ures

visit:Sue 25/01

blood
test

archi
ve

lab:T1

decid
e

broch
ures

visit:T2

initial
prepar
ations

deci
de

send
report

recei
ve

initial
prepar
ations

(visit,
Sue 25/01,

decide)

((S
ue

,1
),

se
nt

)

(lab,T1,
create)

((Sue,2),
executed_none)

((Sue,7),
sent) (visit,T2,create)

((Sue,3),

unproduced)

(lab,T1,
send report)

(visit,
T2,

receive)

a) The Proclet instances that need to be performed for ‘Sue’ together with the desired interactions

b) Current state of the interaction graph for ‘Sue’

*,
?

*,
?

1,1

1,?

1,1
1,*

current state:
decide task is

executed

current state:
performatives are sent

S
u
e

state has been
changed

Fig. 5. As a result of executing the “decide” task, two performatives are sent. As a
consequence, the interaction graph is updated.

Proclet class has now identifier “lab:25/01”. As a consequence, in the interaction
graph for “Sue”, the interaction nodes referring to the “lab” instance have been
updated with the new instance identifier. Moreover, the interaction state of the
arc leading from the “(visit,Sue 25/01,decide)” node to the “(lab,25/01,create)”
node has been changed to “consumed”. That is, a performative has been received
for that interaction arc which resulted in the creation of an instance of a Proclet
class, i.e. the performative can be considered as “consumed” as its receival led to
a certain action. Additionally, it can be seen that the interaction state of the arc
from the “(lab,25/01,create)” node to the “(lab,25/01,send report)” node has
been changed to “executed source”. As an instance of the “lab” Proclet class
has been created, for this internal interaction the source interaction point has
been executed.

For the instance of the “visit” Proclet class that has been created, similar
remarks can be made. As can be seen in the graph, the interaction state of
the associated arc has been changed to “consumed” too. Moreover, instead of
instance identifier “T2”, the instance of the “visit” Proclet class has now instance
identifier “Sue 10/02”.

Step 3:

As a next step in the scenario, the “blood test” task of the “lab” Proclet
instance has been performed. As a result, the “send report” task may be per-
formed. The result of performing the task can be seen in Figure 7. For, the arc
in the interaction graph leading from the “(lab,25/01,send report)” node to the

12

recei
ve

broch
ures

visit:Sue 25/01

blood
test

archi
ve

lab:Sue 25/01

decid
e

broch
ures

visit:Sue 10/02

initial
prepar
ations

deci
de

send
report

recei
ve

initial
prepar
ations

(visit,
Sue 25/01,

decide)

((S
ue

,1
),

co
ns

um
ed

)

(lab,Sue 25/01,
create)

((Sue,2),
executed_source)

((Sue,7),
consumed) (visit,Sue 10/02,create)

((Sue,3),

unproduced)

(lab,Sue 25/01,
send report)

(visit,
Sue 10/02,

receive)

a) The Proclet instances that need to be performed for ‘Sue’ together with the desired interactions

b) Current state of the interaction graph for ‘Sue’

*,
?

*,
?

1,1

1,?

1,1
1,*

current state:
decide task is

finished

instance of ‘lab’
Proclet has been

created

instance of ‘visit’
Proclet has been

created

S
u
e

graph is updated with
instance identifier of

the second visit
Proclet instance

graph is updated with
instance identifier of

the lab Proclet
instance

state has been
changed

Fig. 6. As a result of receiving the two performatives, instances for the “lab” and
“visit” Proclet classes are created. As a consequence, the interaction graph is updated.

“(visit,Sue 10/02,receive)” node, a performative is sent to the “receive” task of
the “visit” Proclet instance with instance identifier “Sue 10/02”. As a result, the
interaction state of the arc has been updated to “sent”. Moreover, the performa-
tive that is sent is visualized in the figure. That is, the sender and receiver of the
performative match with the sender (“lab:Sue 25/01”) and receiver (“visit:Sue
10/02”) of the associated interaction arc in the graph. Also, the performative
contains the interaction identifier of the arc for which it is sent (“(Sue,3)”).

Furthermore, it can be seen that the interaction state of the arc from the
“(lab,Sue 25/01,create)” node to the “(lab,Sue 25/01,send report)” node has
been changed to “executed both”. Due to the execution of the “send report” task
both the source and destination interaction node of this internal interaction have
been executed now. In that case, the interaction state is updated to “executed
both”.

In case the arc would not have state “executed source”, i.e. the interaction
point which is connected to the input condition is not executed, the “send report”
task may not be executed. This is due to the fact that the meaning of an internal
interaction is that first the source interaction point is executed, which is linked
with either a task or an input condition, and then the task which belongs to the
destination interaction point is executed.

Step 4:

13

recei
ve

broch
ures

visit:Sue 25/01

blood
test

archi
ve

lab:Sue 25/01

decid
e

broch
ures

visit:Sue 10/02

initial
prepar
ations

deci
de

send
report

recei
ve

initial
prepar
ations

(visit,
Sue 25/01,

decide)

((S
ue

,1
),

co
ns

um
ed

)

(lab,Sue 25/01,
create)

((Sue,2),
executed_both)

((Sue,7),
consumed) (visit,Sue 10/02,create)

((Sue,3),

sent)

(lab,Sue 25/01,
send report)

(visit,
Sue 10/02,

receive)

a) The Proclet instances that need to be performed for ‘Sue’ together with the desired interactions

b) Current state of the interaction graph for ‘Sue’

*,
?

*,
?

1,1

1,?

1,1
1,*

current state:
‘send report’ task is

executed

S
u
e

Performative
Sender: lab:Sue 25/01
Receivers: visit:Sue 10/02
Interaction identifiers: [(Sue,3)]

state has been
changed

Fig. 7. The “send report” task of the “lab” Proclet instance is executed. This results
into a performative that is send to the “receive” task of the “visit” Proclet instance
for the second visit. As a consequence, the interaction graph is updated.

The last step of the first scenario is that we start executing steps for the sec-
ond visit. As can be seen in Figure 8, the “receive” task is currently executed.
For this task, we find in the interaction graph, the arc leading from the “(lab,Sue
25/01,send report)” node to the “(visit,Sue 10/02,receive)” node. This indicates
that for completing this task it is required that a performative is received which
contains “(Sue,3)” as interaction identifier. As this performative has been sent as
result of executing the “send report” task, the “receive” task may be completed.
Consequently, the interaction state of the arc is updated to “consumed” indicat-
ing that the required performative was available and that it has been consumed
in order to complete the task. Note that if the performative would not have been
available yet, it is not possible to complete the task. So, although it is possible
to complete the task according to the process definition, it still needs to wait
till all required performatives are received. However, an exception to this rule is
possible. This will be discussed later in Section 2.2.

Second Scenario Before, we have considered a simple scenario for which we
have shown some of the mechanisms of an interaction graph. Moreover, we only
considered steps that are done for an individual patient. Now, as a follow-up we
consider a more complex scenario in which we demonstrate that the framework
can also deal with Proclet classes that operate at different levels of granularity.

14

recei
ve

broch
ures

visit:Sue 25/01

blood
test

archi
ve

lab:Sue 25/01

decid
e

broch
ures

visit:Sue 10/02

initial
prepar
ations

deci
de

send
report

recei
ve

initial
prepar
ations

(visit,
Sue 25/01,

decide)

((S
ue

,1
),

co
ns

um
ed

)

(lab,Sue 25/01,
create)

((Sue,2),
executed_both)

((Sue,7),
consumed) (visit,Sue 10/02,create)

((Sue,3),

consum
ed)

(lab,Sue 25/01,
send report)

(visit,
Sue 10/02,

receive)

a) The Proclet instances that need to be performed for ‘Sue’ together with the desired interactions

b) Current state of the interaction graph for ‘Sue’

*,
?

*,
?

1,1

1,?

1,1

1,*

current state:
‘receive’ task is

executed

S
u
e

state has been
changed

Fig. 8. The “receive” task of the “visit” Proclet instance is executed. As a performa-
tive has been sent which contains “(Sue,3)” as interaction identifier, the task may be
completed. Subsequently, the interaction graph is updated.

Therefore, for the second scenario we deal with a Proclet class which operates
at the level of an individual patient whereas another Proclet class operates at
the level of a group of patients.

broch
ures

visit

blood
test

archi
ve

lab

deci
de

initial
prepar
ations

initial
prepar
ations

deci
de

send
report

regi
ster

send
reports

*,
?

1,1

*,
?

1,?

recei
ve

1,
?

1,* *,
1

1,1

1,*

1,*

MDM

a) visit, lab, and MDM Proclet classes

lab

MDMvisit

follows preceding

follows

preceding

0..*0..*

0..* 0..*

0..*

1..1

b) class diagram containing the three Proclet classes

0..*

1..1

preceding follows
0..* 0..*

Fig. 9. The Proclet classes that are used for the second scenario.

15

In Figure 9, we see three Proclet classes. The “visit” and “lab” Proclet classes
have already been discussed in the first scenario. The “MDM” Proclet class is
concerned with a weekly meeting in which gynecological oncology doctors discuss
the medical status of multiple patients. For this meeting, multiple patients may
be registered (task “register”). This can be seen by multiplicity * of the associ-
ated incoming port which indicates that multiple performatives may be received.
During the “decide” task, the patients that are registered are discussed. Finally,
for each patient that is discussed, a report may be sent out (task “send reports”).
This is also represented by cardinality * of the associated outgoing port which
indicates that a performative may be multicasted to multiple “visit” Proclet
instances.

Note that there is an internal interaction defined from the “register” task to
the “send reports” task. This internal interaction has as meaning that for every
patient that is registered, it can be decided that its subsequent report needs to
be sent to a specific Proclet instance (e.g. the second visit of the patient).

Obviously, the “MDM” Proclet class operates at another level of granularity,
i.e. a group of patients, than the other Proclet classes. This can also be seen in
the Figure 9b which shows a class diagram containing the Proclet classes.

The scenario that will be executed is visualized in Figure 10 and deals with
two different patients. Here, for both “Sue” and “Anne” tasks from multiple
Proclet instances will be performed. In particular, for “Sue” during execution
of the “decide” task at the first visit (Proclet instance “visit:Sue 25/01”) it
is decided that a next visit is required (Proclet class “visit” with temporary
instance identifier “visit:T1”). Moreover, “Sue” needs to be discussed during the
multidisciplinary meeting for which already an instance is existing with identifier
“MDM:05/02”. Afterwards, the report needs to be used as input for the second
visit.

For “Anne” exactly the same is decided during execution of the “decide”
task. So, she is also discussed during the multidisciplinary meeting for which
already an instance is existing with identifier “MDM:05/02”. However, for her
the instance that is existing for the first visit has identifier “Anne 26/01” and
the instance for the second visit has temporary identifier “T2”. As a result of
executing the “decide” task for “Sue”, which necessitates interactions with ex-
isting and future Proclet instances, an entity is created called “Sue” and for
which subsequently an interaction graph has been created. For “Anne” exactly
the same is done during the execution of the “decide” task for her but now an en-
tity is created called “Anne” and a separate interaction graph has been created.
For both entities the corresponding interaction graphs are shown in Figure 10.
These interaction graphs are very similar to the first scenario. However, instead
of a lab test, now for both patients an interaction with the “register” task of the
“MDM:05/02” Proclet instance is required. This is followed by the execution of
the “send reports” task after which a performative is send to the “receive” task
of the second visit for both “Sue” and “Anne”. Note that as no performatives
have been sent yet, each arc in the interaction graph has either interaction state
“unproduced” or “executed none”. Moreover, it is important to mention that as

16

recei
ve

broch
ures

visit:Sue 25/01

decid
e

broch
ures

visit:T1
initial

prepar
ations

deci
de

recei
ve

initial
prepar
ations

*,?

*,?

1,1

1,
*

current state:
decide task is

executed deci
de

initial
prepar
ations

regi
ster

send
reports

1,
* *,1

MDM:05/02

recei
ve

broch
ures

visit:Anne 26/01

decid
e

broch
ures

visit:T2

initial
prepar
ations

deci
de

recei
ve

initial
prepar
ations

*,
?

*,
?

1,1

1,*

for both ‘Sue’ and
‘Anne’ the ‘register’
step needs to be

followed by the ‘send
reports’ step

a) The Proclet instances that need to be performed for ‘Sue’ and ‘Anne’. For both the desired interactions are shown

((S
ue

,4
),

un
pr

od
uc

ed
)

((Sue,5),
executed_none)

((Sue,7),
unproduced) (visit,T1,create)

((Sue,6),

unproduced)

(visit,
T1,

receive)

(MDM,
05/02,

register)

(MDM,
05/02,

send report)

((A
nn

e,
4)

,
un

pr
od

uc
ed

)

((Anne,5),
executed_none)

((Anne,7),
unproduced) (visit,T2,create)

((Anne,6),

unproduced)

(visit,
T2,

receive)

(MDM,
05/02,

register)

(MDM,
05/02,

send report)

(visit,
Sue 25/01,

decide)

(visit,
Anne 26/01,

decide)

S
u
e

A
n
n
e

b) Interaction graphs saving the Proclet instances that need to be performed for ‘Sue’ and ‘Anne’
together with the desired interactions

S
u
e

A
n
n
e

nodes and arcs for the
‘MDM’ Proclet instance
appear in both graphs

Fig. 10. For both “Sue” and “Anne” it is shown how existing and future Proclet
instances need to interact (Figure a). Additionally, for both, the interaction graph that
is created during the execution of the “decide” task is shown (Figure b).

both patients are discussed during the multidisciplinary meeting, similar inter-
action nodes and similar interaction arcs for the “MDM:05/02” Proclet instance
appear in the graphs of both “Sue” and “Anne”. Below, for both patients, tasks
will be executed for different Proclet instances. In this way, the impact of having
the same interaction node in multiple graphs can be illustrated.
Step 1:

In Figure 11, the result of executing the “decide” task for both “Sue” and
“Anne” is shown. Performatives are sent in order to create for both an instance of
the “visit” Proclet class. Additionally, performatives are sent in order to register
both of them for the multidisciplinary meeting. Note that as for “Sue” and

17

“Anne” their “decide” task is executed in different Proclet instances, the sending
of performatives and updating the interaction graph for them occurs completely
independently from each other.

recei
ve

broch
ures

visit:Sue 25/01

decid
e

broch
ures

visit:T1
initial

prepar
ations

deci
de

recei
ve

initial
prepar
ations

*,?

*,?

1,1

1,
*

current state:
decide task is

executed deci
de

initial
prepar
ations

regi
ster

send
reports

1,
* *,1

MDM:05/02

recei
ve

broch
ures

visit:Anne 26/01

decid
e

broch
ures

visit:T2

initial
prepar
ations

deci
de

recei
ve

initial
prepar
ations

*,
?

*,
?

1,1

1,*

a) The Proclet instances that need to be performed for ‘Sue’ and ‘Anne’. For both the desired interactions are shown

((S
ue

,4
),

se
nt

)

((Sue,5),
executed_none)

((Sue,7),
sent) (visit,T1,create)

((Sue,6),

unproduced)

(visit,
T1,

receive)

(MDM,
05/02,

register)

(MDM,
05/02,

send report)

((A
nn

e,
4)

,
se

nt
)

((Anne,5),
executed_none)

((Anne,7),
sent) (visit,T2,create)

((Anne,6),

unproduced)

(visit,
T2,

receive)

(MDM,
05/02,

register)

(MDM,
05/02,

send report)

(visit,
Sue 25/01,

decide)

(visit,
Anne 26/01,

decide)

current state:
performatives sent for

‘Sue’

current state:
performatives sent for

‘Anne’

S
u
e

A
n
n
e

b) Current state of the interaction graphs for ‘Sue’ and ‘Anne’

state has been
changed

state has been
changed

Fig. 11. As a result of executing the “decide” task for both “Sue” and “Anne” in total
four performatives are sent. As a consequence, both interaction graphs are updated.

18

Subsequently, both interaction graphs are updated as expected. So, all the
outgoing arcs of an interaction node that refer to a “decide” task that has been
executed, have received the “sent” state.

recei
ve

broch
ures

visit:Sue 25/01

decid
e

broch
ures

visit:Sue 10/02
initial

prepar
ations

deci
de

recei
ve

initial
prepar
ations

*,?

*,?

1,1

1,
*

current state:
decide task is

finished deci
de

initial
prepar
ations

regi
ster

send
reports

1,
* *,1

MDM:05/02

recei
ve

broch
ures

visit:Anne 26/01

decid
e

broch
ures

visit:Anne 12/02

initial
prepar
ations

deci
de

recei
ve

initial
prepar
ations

*,
?

*,
?

1,1

1,*

a) The Proclet instances that need to be performed for ‘Sue’ and ‘Anne’. For both the desired interactions are shown

((S
ue

,4
),

se
nt

)

((Sue,5),
executed_none)

((Sue,7),
consumed) (visit,Sue 10/02,create)

((Sue,6),

unproduced)

(visit,
Sue 10/02,

receive)

(MDM,
05/02,

register)

(MDM,
05/02,

send report)

((A
nn

e,
4)

,
se

nt
)

((Anne,5),
executed_none)

((Anne,7),
consumed) (visit,Anne 12/02,create)

((Anne,6),

unproduced)

(visit,
Anne 12/02,

receive)

(MDM,
05/02,

register)

(MDM,
05/02,

send report)

(visit,
Sue 25/01,

decide)

(visit,
Anne 26/01,

decide)

instance of ‘visit’
Proclet has been
created for Sue

instance of ‘visit’
Proclet has been
created for Anne

b) Current state of the interaction graphs for ‘Sue’ and ‘Anne’

S
u
e

A
n
n
e

graph is updated with
instance identifier of

the second visit
Proclet instance

graph is updated with
instance identifier of

the second visit
Proclet instance

2 performatives are
not consumed yet

state has been
changed

state has been
changed

Fig. 12. Both for “Sue” and “Anne” an instance of the “visit” Proclet class is created.
For the “receive” task of the “MDM” proclet instance, the relevant performatives are
not consumed yet.

Step 2:

The next step is shown in Figure 12. As a consequence of receiving the
required performatives, an instance of the “visit” Proclet class with instance
identifier “Sue 10/02” has been initiated for “Sue” and an instance has been

19

created for “Anne” with instance identifier “Anne 12/02”. Note that in the in-
teraction graphs, the related interaction nodes and the related interaction arcs
for them are updated accordingly, i.e. they have state “consumed”. However, for
the “register” task, the performatives have not been consumed yet as the pre-
ceding “initial preparations” task is still not executed. Therefore, the interaction
arcs corresponding to these performatives still have state “sent”.

Step 3:

Subsequently, for the “MDM” Proclet instance we perform the “initial prepa-
rations” task. Afterwards, the “register” task may be executed. The result can
be see in Figure 13. For the “register” task of the “MDM” Proclet with instance
identifier “05/02” we find in the interaction graph of both “Sue” and “Anne”
an arc leading to the “(MDM,05/02,register)” node. So, in order to complete
the task, for entity “Sue” a performative should be received with “(Sue,4)” as
interaction identifier and for entity “Anne” a performative should be received
with “(Anne,4)” as interaction identifier. As can be checked in Figure 12, these
performatives have been sent. So, the task may be executed. For the receival of
the performative which contains interaction identifier “(Sue,4)”, the associated
interaction arc with the same identifier is updated to “consumed” in the inter-
action graph of “Sue”. For the performative which contains interaction identifier
“(Anne,4)”, the same is done but then for the interaction graph of “Anne”.

For the “register” task, both for “Sue” and “Anne” an internal interaction
is defined for which the “(MDM,05/02,register)” interaction node is the source
node. As this task will be completed, both for the interaction graphs of entities
“Sue” and “Rose”, the state of the corresponding outgoing interaction arc of the
node is set to “executed source”. Obviously, in order to perform a task it may
be required to inspect and update multiple interaction graphs.

Note that if we abstract from the interaction identifier of an arc, then the
internal interaction arc from the “(MDM,05/02,register)” node to the
“(MDM,05/02,send report)” node is the same in both the interaction graph of
“Sue” and “Anne”. For these arcs it is important to see that the state is always
the same and always changes simultaneously. This is due to the fact that both
the tail and the head of these arcs refer to the same interaction node.

Step 4:

As a next step, the “send reports” task of the “MDM” Proclet instance
is executed. First of all, as can be seen in Figure 14, for the “send reports”
task, both for “Sue” and “Anne” an internal interaction is defined for which
the “(MDM,05/02,send reports)” interaction node is the destination node. As
we have seen earlier, the “register” task, which is the source of the two internal
interactions, has already been executed, i.e. the state of the interaction arcs is
“executed source”. So, it is allowed to execute the task. Consequently, the state
of the arcs is simultaneously updated to “executed both”.

Note that if the task which belongs the source node of an internal interaction
has not been executed yet, it is not allowed to execute the task which belongs
to the destination node of the internal interaction. This is due to the fact that
the meaning of an internal interaction is that first the task which corresponds

20

recei
ve

broch
ures

visit:Sue 25/01

decid
e

broch
ures

visit:Sue 10/02
initial

prepar
ations

deci
de

recei
ve

initial
prepar
ations

*,?

*,?

1,1

1,
*

deci
de

initial
prepar
ations

regi
ster

send
reports

1,
* *,1

MDM:05/02

recei
ve

broch
ures

visit:Anne 26/01

decid
e

broch
ures

visit:Anne 12/02

initial
prepar
ations

deci
de

recei
ve

initial
prepar
ations

*,
?

*,
?

1,1

1,*

a) The Proclet instances that need to be performed for ‘Sue’ and ‘Anne’. For both the desired interactions are shown

((S
ue

,4
),

co
ns

um
ed

)

((Sue,5),
executed_source)

((Sue,7),
consumed) (visit,Sue 10/02,create)

((Sue,6),

unproduced)

(visit,
Sue 10/02,

receive)

(MDM,
05/02,

register)

(MDM,
05/02,

send report)

((A
nn

e,
4)

,
co

ns
um

ed
)

((Anne,5),
executed_source)

((Anne,7),
consumed) (visit,Anne 12/02,create)

((Anne,6),

unproduced)

(visit,
Anne 12/02,

receive)

(MDM,
05/02,

register)

(MDM,
05/02,

send report)

(visit,
Sue 25/01,

decide)

(visit,
Anne 26/01,

decide)

b) Current state of the interaction graphs for ‘Sue’ and ‘Anne’

S
u
e

A
n
n
e

current state:
‘register’ task is

executed

state has been
changed

state has been
changed

state has changed
simultaneously

Fig. 13. The “register” task of the multidisciplinary meeting is performed. As perfor-
matives have been sent earlier which contain either “(Sue,4)” or “(Anne,4)” as inter-
action identifier, the task may be completed. Subsequently, the interaction graphs for
both are updated.

to the source interaction node is executed, and then the task which belongs to
the destination interaction node is executed.

Next, in the interaction graphs of both “Anne” and “Sue”, the
“(MDM,05/02,send report)” node has exactly one outgoing arc. Both arcs point
to the “receive” task of the “visit” Proclet class. So, as can be checked in Figure
9, this means that both interaction arcs refer to the same port. However, the

21

recei
ve

broch
ures

visit:Sue 25/01

decid
e

broch
ures

visit:Sue 10/02
initial

prepar
ations

deci
de

recei
ve

initial
prepar
ations

*,?

*,?

1,1

1,
*

deci
de

initial
prepar
ations

regi
ster

send
reports

1,
* *,1

MDM:05/02

recei
ve

broch
ures

visit:Anne 26/01

decid
e

broch
ures

visit:Anne 12/02

initial
prepar
ations

deci
de

recei
ve

initial
prepar
ations

*,
?

*,
?

1,1

1,*

a) The Proclet instances that need to be performed for ‘Sue’ and ‘Anne’. For both the desired interactions are shown

((S
ue

,4
),

co
ns

um
ed

)

((Sue,5),
executed_both)

((Sue,7),
consumed) (visit,Sue 10/02,create)

((Sue,6),

sent)

(visit,
Sue 10/02,

receive)

(MDM,
05/02,

register)

(MDM,
05/02,

send report)

((A
nn

e,
4)

,
co

ns
um

ed
)

((Anne,5),
executed_both)

((Anne,7),
consumed) (visit,Anne 12/02,create)

((Anne,6),

sent)

(visit,
Anne 12/02,

receive)

(MDM,
05/02,

register)

(MDM,
05/02,

send report)

(visit,
Sue 25/01,

decide)

(visit,
Anne 26/01,

decide)

b) Current state of the interaction graphs for ‘Sue’ and ‘Anne’

S
u
e

A
n
n
e

current state:
‘send reports’ task is

executed

state has been
changed

state has been
changed

performative is
multicasted

Performative
Sender: MDM:05/02
Receivers: visit:Sue 10/02, visit:Anne 12/02
Interaction identifiers: (Sue,6),(Anne,6)

state has changed
simultaneously

Fig. 14. The “send reports” task of the multidisciplinary meeting is performed. As a
result, one performative is multicasted to the “visit:Sue 10/02” Proclet instance and
the “visit:Anne 12/02” Proclet instance. Subsequently, the interaction graphs for both
are updated.

instance identifiers are different. So, for “Sue” there needs to be a performative
which is sent to the “(visit,Sue 10/02,receive)” Proclet instance with “(Sue,6)”
as interaction identifier and for “Anne” there needs to be a performative which
is sent to the “(visit,Anne 12/02,receive)” Proclet instance with “(Anne,6)” as
interaction identifier. However, as the two potential performatives have the same
sender and the “receive” task of the “visit” Proclet class as destination, only one
performative will be created which is multicasted to the different receivers. So,
as can be seen in Figure 14, there is a performative which has “MDM:05/02”
as sender, “visit:Sue 10/02” and “visit:Anne 12/02” as receivers, and contains

22

“(Sue,6)” and “(Anne,6)” as interaction identifiers. Note that the corresponding
interaction arcs are updated accordingly, i.e. the state is set to “sent”.

recei
ve

broch
ures

visit:Sue 25/01

decid
e

broch
ures

visit:Sue 10/02
initial

prepar
ations

deci
de

recei
ve

initial
prepar
ations

*,?

*,?

1,1

1,
*

deci
de

initial
prepar
ations

regi
ster

send
reports

1,
* *,1

MDM:05/02

recei
ve

broch
ures

visit:Anne 26/01

decid
e

broch
ures

visit:Anne 12/02

initial
prepar
ations

deci
de

recei
ve

initial
prepar
ations

*,
?

*,
?

1,1

1,*

a) The Proclet instances that need to be performed for ‘Sue’ and ‘Anne’. For both the desired interactions are shown

((S
ue

,4
),

co
ns

um
ed

)

((Sue,5),
executed_both)

((Sue,7),
consumed) (visit,Sue 10/02,create)

((Sue,6),

consum
ed)

(visit,
Sue 10/02,

receive)

(MDM,
05/02,

register)

(MDM,
05/02,

send report)

((A
nn

e,
4)

,
co

ns
um

ed
)

((Anne,5),
executed_both)

((Anne,7),
consumed) (visit,Anne 12/02,create)

((Anne,6),

consum
ed)

(visit,
Anne 12/02,

receive)

(MDM,
05/02,

register)

(MDM,
05/02,

send report)

(visit,
Sue 25/01,

decide)

(visit,
Anne 26/01,

decide)

b) Current state of the interaction graphs for ‘Sue’ and ‘Anne’

S
u
e

A
n
n
e

current state:
‘receive’ task is

executed

state has been
changed

state has been
changed

Fig. 15. For both “Sue” and “Anne”, the “receive” task is performed. As a performative
has been sent which contains both “(Sue,6)” and “(Anne,6)” as interaction identifier,
the task may be completed. Subsequently, the interaction graphs for both are updated.

Step 4:

Finally, as last step for both “Sue” and “Anne” the “receive” task of their
second visit is executed (Figure 15). As a performative exists which contains

23

the interaction identifiers for both of them, the “receive” tasks for the two may
be executed. Subsequently, the interaction state of the corresponding arc in the
two graphs are updated to “consumed”. However, note that for both of them,
the execution of the “receive” task and the subsequent update of the interaction
graph occurs completely independently from each other.

Proclets Framework So Far .

In Figure 16, the concepts that have been introduced so far for the Proclets
framework are visualized. For an interaction point we have indicated that it
represents a specific point in a Proclet class at which interactions with other
Proclets may take place. However, based on internal interactions that can be
defined and interaction graphs of entities that can be extended, the notion of
an interaction point can be more refined. Therefore, a distinction is made into a
configuration, an inbox, and an outbox interaction point. The meaning of them
is as follows.

Inbox Interaction Point: For one or more entities, performatives may be re-
ceived. In this way, an inbox interaction point is only connected to input
ports. For each input port, an arbitrary number of performatives may be re-
ceived. An inbox interaction point is either connected to a task or an input
condition.

In Figure 16, inbox interaction points are marked with the abbreviation
“IB”. For example, the “receive” task in the “visit” Proclet class is an inbox
interaction point as for an entity only performatives are received.

Outbox Interaction Point: For one or more entities, performatives may be
sent to multiple receivers. So, an outbox interaction point is only connected
to output ports. For each output port, an arbitrary number of performatives
may be sent. Note that by definition an output port is only connected to a
task.

In Figure 16, outbox interaction points are marked with the abbreviation
“OB”. For example, the “send reports” task of the “MDM” Proclet class is
an outbox interaction point as for multiple entities a performative may be
sent.

Configuration Interaction Point: A configuration interaction point is the
same as an outbox interaction point. Additionally, when an instance of a
task is executed for such an interaction point, it is allowed to extend the
interaction graph for multiple entities. In case for an entity such a graph does
not yet exist, it will be created otherwise it can be extended. For each entity
for which the interaction graph is extended, a human actor can nominate
interactions that need to take place between existing and future Proclet
instances. In Section 2.3 more details are provided about the extension of an
interaction graph and for which entities this may occur.

In Figure 16, configuration interaction points are marked with the abbrevi-
ation “CP”. For example, the “decide” task of the “visit” Proclet class is a

24

configuration interaction point as for an entity multiple performatives may
be sent and the associated interaction graph may be extended.

broch
ures

visit

blood
test

archi
ve

lab

deci
de

initial
prepar
ations

initial
prepar
ations

deci
de

send
report

regi
ster

send
reports

*,
?

1,1

*,
?

*,?

recei
ve

1,
?

1,* *,
1

1,1

1,*

1,*

MDM

a) visit, lab, and MDM Proclet classes

lab

MDMvisit

follows preceding

follows

preceding

0..*0..*

0..* 0..*

0..*

1..1

0..*

1..1
OB

CP

IB

IBIB

IB OB

port

configuration
interaction

point

performative

external
interaction

internal interaction

cardinality

multiplicity

inbox
interaction

point

outbox
interaction

point

b) class diagram containing the three Proclet classes

((S
ue

,4
),

co
ns

um
ed

)

((Sue,5),
executed_both)

((Sue,7),
consumed) (visit,Sue 10/02,create)

((Sue,6),

sent)

(visit,
Sue 10/02,

receive)

(MDM,
05/02,

register)

(MDM,
05/02,

send report)

b) Illustration of interaction graphs for entity ‘Sue’

Interaction graph
influencing the behavior of
existing and future Proclet

instances

 interaction states of interaction arcs

unproduced sent consumed
external interaction:

internal interaction:
executed none executed source executed both

different states of
interaction arcs

c) Subsequent interaction states for arcs representing an external or internal interaction

Performative
Sender: MDM:05/02
Receivers: visit:Sue 10/02
Interaction identifiers: (Sue,6)

interaction
node

interaction
arc

interaction
identifier

interaction
state

Proclet class

interaction graph
for ‘Sue’

preceding follows
0..* 0..*

Fig. 16. Illustration of the concepts that have been introduced for the Proclets frame-
work so far. Additionally, for interaction points, a distinction has been made into
configuration (CP), inbox (IB), and outbox(OB) interaction points.

For an internal interaction this means that its source interaction point is al-
ways an inbox interaction point and its destination interaction point is always an
outbox interaction point. For example, for the “MDM” Proclet class an internal
interaction is defined which leads from the “register” inbox interaction point to
the “send reports” outbox interaction point.

As indicated in Figure 16, interaction graphs that exist for entities, influence
the behavior and interactions between existing and future Proclet instances. To
this end, the interaction state of interaction arcs in these graphs are important.

25

For arcs referring to external interactions, the state transitions from “unpro-
duced”, “sent”, to “consumed”. The general meaning of each state is as follows.

unproduced: No performative has been produced yet for the interaction rep-
resented by the arc. Note that an interaction arc corresponds to a performa-
tive when the interaction identifier of the arc is contained in the “interaction
identifiers” attribute of the performative.

sent: A performative has been produced for the interaction represented by the
arc. In particular, the interaction identifier of the arc is contained in the “in-
teraction identifiers” attribute of the performative that has been produced.

consumed: In case the head of the arc refers to an input condition of a Proclet
class, state “consumed” is obtained when the corresponding performative
has been ‘consumed’ in order to create an instance of a particular Proclet
class. In case the head of the arc refers to a task instance, state “consumed” is
obtained when the corresponding performative has been “consumed” in order
to complete the task instance. Note that a task instance may be completed
if for all interaction nodes that belong to the task instance, all the incoming
arcs have state “sent”. However, an exception to the latter is possible in
case of an exception that is handled. This will be discussed in more detail in
Section 2.2.

For arcs referring to internal interactions, the state transitions from “executed
none”, “executed single”, to “executed both”. The general meaning of each state
for an arc is as follows.

executed none: if an arc has state “executed none” both the source and des-
tination internation nodes have not been executed. That is, for a source
interaction node which is linked to an input condition of a Proclet class,
this means that no instance of that Proclet class has been created yet. For a
source interaction node which is linked to a task instance, the task instance
has not been executed yet. For the destination interaction point, which is
always linked with a task instance, this also means that the task instance
has not been completed yet.

executed single: For a source interaction node which is linked to an input
condition of a Proclet class, this means that an instance of the Proclet class
has been created. For a source interaction node which is linked to a task
instance, this means that the task instance has been executed.

executed both: As a follow-up on the previous state, now the task instance
which is linked to the destination interaction point, has been executed.

With regard to the state of an arc, it should be noted that the same interac-
tion arc may be found in multiple interaction graphs (when abstracting from the
interaction identifier). So, for these arcs, their tails refer to the same interaction
node and their heads refer to the same interaction node. Consequently, the state
of these arcs will always change simultaneously. For example, for the second sce-
nario, we have seen in Figure 14, that the state of the arc from the “register”
task to the “send report” task changed simultaneously from “executed source”
to “executed both” in the interaction graphs of both “Sue” and “Anne”.

26

2.2 Exception Handling

The interactions that are defined in the interaction graphs are nominated by a
human actor. Therefore, these interactions need to occur. However, for them,
several kinds of exceptions may occur in which they cannot take place anymore.
In this section, we discuss the different situations in which an exception may
occur and how they can be handled. First, exceptions that occur in the context
of executing a task are discussed. Next, exceptions in the context of Proclet
instances that are canceled or completed are elaborated upon. Note that the
exceptions that may occur are discussed by referring to the two scenarios that
have been presented earlier.

Execution of a Task .

In order to illustrate an exception that may occur in the context of executing
a task we refer back to the first scenario. However, now we assume the situation
in which the “send report” task of the “lab” Proclet instance has not been
executed. Also, we assume that we are currently executing the “receive” task of
the Proclet instance for the second visit. Note that the latter task is linked to
an inbox interaction point. This situation is depicted in Figure 17.

Time-Out Value .
As no performative has been sent from the “send report” task of the “lab”
instance to the “receive” task of the second visit, it is not allowed to complete the
“receive” task, i.e., the state of the interaction arc for the respective interaction
is still “unproduced”. As a result, an exception occurred for the “visit” Proclet
instance. We distinguish two different approaches in order to deal with such a
situation. The first approach is to reserve more time in which to receive the
missing performative. This can be supported by defining a time-out value for an
inbox interaction point. The value defines how much time needs to be reserved
in which to wait for missing performatives. Once the waiting time has lapsed, a
human user is requested how to deal with the situation. Note that the time-out
value can be mapped to any unit of time. For example, a value of “5” may belong
to 5 minutes.

Another approach to deal with the situation is to force complete the task and
thus not to wait for missing performatives. This situation is illustrated in Figure
17c. As the interaction with the “send report” task will not take place, the arc
from the “(lab,Sue 25/01,send report)” node to the “(visit,Sue 10/02,receive)”
node has received state “failed” in order to indicate that the interaction will not
take place anymore.

Exception Interaction Point .
However, as a follow-up on the approach to force complete the task instance it
may be desired to use the result of the lab test as input for a third patient visit.
This requires, for the entity that is affected by the exception, that it is possible
to extend an interaction graph as part of the latter exception handling strategy.
For entity “Sue” this is illustrated in Figure 18.

27

recei
ve

broch
ures

visit:Sue 25/01

blood
test

archi
ve

lab:Sue 25/01

decid
e

broch
ures

visit:Sue 10/02

initial
prepar
ations

deci
de

send
report

recei
ve

initial
prepar
ations

(visit,
Sue 25/01,

decide)

((S
ue

,1
),

co
ns

um
ed

)

(lab,Sue 25/01,
create)

((Sue,2),
executed_source)

((Sue,7),
consumed) (visit,Sue 10/02,create)

((Sue,3),

unproduced)

(lab,Sue 25/01,
send report)

(visit,
Sue 10/02,

receive)

a) The Proclet instances that need to be performed for ‘Sue’ together with the desired interactions

b) Current state of the interaction graph for ‘Sue’

*,
?

*,
?

1,1

1,?

1,1
1,*

current state:
‘receive’ task is

executed

‘blood test’ task is not
executed yet

S
u
e

(visit,
Sue 25/01,

decide)

((S
ue

,1
),

co
ns

um
ed

)

(lab,Sue 25/01,
create)

((Sue,2),
executed_source)

((Sue,7),
consumed) (visit,Sue 10/02,create)

((Sue,3),

failed)

(lab,Sue 25/01,
send report)

(visit,
Sue 10/02,

receive)

S
u
e

do not wait longer.
Arc has received

state ‘failed’

wait longer or not?

c) State of the interaction graph when it is decided not to wait for the missing performative

CP

IB OB

IB

Fig. 17. Illustration of an exception that may occur in the context of a task that is
executed. Here, no performative has been sent yet from the “lab” instance to the Pro-
clet instance for the second visit. As a result, a problem occurs when executing the
“receive” task for the second visit. One solution is to wait longer for the missing perfor-
mative. Another solution is to force complete the task and to mark the corresponding
interaction arc as having state “failed”.

In order to be able to extend an interaction graph in case an exception
occurs for a certain Proclet instance, a so-called exception interaction point may
be defined for a Proclet class. An exception interaction point is similar to a
configuration interaction point. However, only for the entities that are effected
by the exception, the interaction graph may be extended.

28

In Figure 18a, an exception interaction point has been defined for the “visit”
Proclet class. By following the outgoing arcs, it can be seen that an instance
of the “lab” Proclet class and an instance of the “visit” Proclet class may be
created in case an exception occurs for an instance of the “visit” Proclet class.
Subsequently, in Figure 18b, it is illustrated for entity “Sue” how the interaction
graph is extended using the exception interaction point of the “visit” Proclet
class. That is, starting from the “visit:Sue 10/02” Proclet instance for which the
exception occurred, it is decided to start an instance of the “visit” Proclet class.
Next, the result of the “send report” task of the “lab” Proclet instance is used
as input for the “receive” task of the new “visit” Proclet instance.

The resulting interaction graph for “Sue” can be seen in Figure 18c. As can
be seen, the “(visit,Sue 10/02,exception)” node has been added representing the
exception that occurred. Starting from that node, a next instance of the visit
Proclet class is created (node “(visit,T3,create)”). Finally, the result of the lab
test is used as input for the third patient visit (node “(visit,T3,receive)”).

General .

The approach for executing a task instance for which not all performatives
have been received can be generalized as follows. This is schematically visualized
in Figure 19 where two interaction graphs are shown. Remember that a task
instance for which only performatives can be received is always linked to an
inbox interaction point.

For a task instance “B”, a corresponding interaction point “Bi” may be found
in multiple interaction graphs. In case for task instance “B” not all performatives
have been received, i.e. not all incoming arcs for the interaction nodes named
“Bi” have state “sent”, then an exception occurs for the Proclet instance in which
the task instance occurs (in the figure, for entity “A” there is one incoming arc
having state “unproduced” and for entity “B” there are two incoming arcs having
state “unproduced”). Now, two options are possible.

According to the time-out value defined for the interaction point that belongs
to task instance “B”, a human actor may decide to reserve more time in which
to receive missing performatives.

Another option is to force complete the task instance thereby ignoring the
performatives that still need to be received. In that case, for all incoming interac-
tions arcs for the interaction nodes named “Bi” which have state “unproduced”,
the state is changed into “failed” (in Figure 19, for entity “A” there is now one
incoming arc having state “failed” and for entity “B” there are two incoming
arcs having state “failed”). Additionally, for all affected entities, the exception
graph may be extended. An entity is affected by the exception if for one or
more interaction arcs in the corresponding interaction graph the state had to
be changed into “failed”. Finally, the extension of the interaction graphs may
be done via the exception interaction point of the Proclet class for which the
exception occurred.

29

broch
ures

visit

blood
test

archi
ve

lab

deci
de

initial
prepar
ations

initial
prepar
ations

deci
de

send
report

regi
ster

send
reports

*,
?

1,?

*,
?

*,?

recei
ve

1,
?

1,* *,
1

1,?

1,*

1,*

MDM
OB

CP

IB

IBIB

IB OB exception
interaction

point

a) visit, lab, and MDM Proclet classes. For the ‘visit’ Proclet class an exception interaction point is defined

exception
*,?

*,?

1,?

1,?

recei
ve

broch
ures

visit:Sue 25/01

blood
test

archi
ve

lab:Sue 25/01

decid
e

broch
ures

visit:Sue 10/02

initial
prepar
ations

deci
de

send
report

recei
ve

initial
prepar
ations

(visit,
Sue 25/01,

decide)

((S
ue

,1
),

co
ns

um
ed

)

(lab,Sue 25/01,
create)

((Sue,2),
executed_source)

((Sue,7),
consumed) (visit,Sue 10/02,create)

((Sue,3),

failed)

(lab,Sue 25/01,
send report)

(visit,
Sue 10/02,

receive)

b) The Proclet instances that need to be performed for ‘Sue’ together with the desired interactions

c) Current state of the interaction graph for ‘Sue’

*,
?

*,
?

1,1

1,?

1,1

result of the lab test is
now send to the ‘receive’

task of the third visit

S
u
e

exception *,?

decid
e

broch
ures

visit:Sue 17/02

recei
ve

initial
prepar
ations

1,*

exception
1,1

(visit,
Sue 10/02,
exception) ((Sue,8),

unproduced)
(visit,T3,create)

((S
ue

,9
),

un
pr

od
uc

ed
)

node representing the
exception for the second visit

instance for the third
visit

CP

1,*

result of the lab test is now send to the
‘receive’ task of the third visit

instance for the third
visit is created

result of the lab test is not used anymore as
input for the second visit

(visit,T3,receive)

CP

IB OB
IB

IB

CP

CP

exception occurred
for the ‘receive’ task

Fig. 18. An exception interaction point may be defined for a Proclet class (Figure
a). As for “Sue” an exception occurred for the “visit:Sue 10/02” Proclet instance, the
exception interaction point has been used for creating a next instance of the “visit”
Proclet class which represent the third visit (Figures b and c). Also, the result of the
“send report” task is used as input for the third visit.

30

unproduced
 sent

Bi
 sent

Interaction Graph A
X1

Y1

Z1

sent

unproduced
Bi

unproduced

Interaction Graph B
X1

Y1

Z1

failed
 sent

Bi
 sent

Interaction Graph A
X1

Y1

Z1

sent
failed

Bi
failed

Interaction Graph B
X1

Y1

Z1

not all performatives
have been received
for task instance ‘Bi’

Option 2:
force complete the task

instance

Option 1:
wait longer (time-out

value)

Fig. 19. For the general case it is illustrated how an exception is handled in the inter-
action graphs if for a task instance not all required performatives have been received
yet.

Instance Cancelation or Completion .

A Proclet instance may be canceled or completed while still not all desired
interactions occurred for it. First, we illustrate this kind of exception and the
handling of it in the context of the first scenario. Afterwards, the exception
caused by a case cancelation / completion and its handling is explained for the
general case.
Outbox Interaction Point .
One kind of exception that may occur in the context of canceling a Proclet
instance is related to an outbox interaction point. This is illustrated in Figure
20. Here, for the first scenario, we assume that the “lab” Proclet instance is
canceled and that no tasks for it have been executed yet (Figure 20a). Also, for
the second visit, no tasks have been performed yet.

If in the interaction graph of entity “Sue” we look to the arcs that relate to
the canceled “lab” Proclet instance (Figure 20b) then we see that the arc from
the “(lab,Sue 25/01,send report)” node to the “(visit,Sue 10/02,receive)” node
has state “unproduced”. This means that no performative has been sent yet from
the “send report” task to the “receive” task of the second visit. Note that the
“send report” task is linked with an outbox interaction point. As a consequence,

31

we have an exceptional situation as the respective performative will never be
sent in the future, i.e. the defined interaction will never occur.

recei
ve

broch
ures

visit:Sue 25/01

blood
test

archi
ve

lab:Sue 25/01

decid
e

broch
ures

visit:Sue 10/02

initial
prepar
ations

deci
de

send
report

recei
ve

initial
prepar
ations

(visit,
Sue 25/01,

decide)

((S
ue

,1
),

co
ns

um
ed

)

(lab,Sue 25/01,
create)

((Sue,2),
executed_source)

((Sue,7),
consumed) (visit,Sue 10/02,create)

((Sue,3),

unproduced)

(lab,Sue 25/01,
send report)

(visit,
Sue 10/02,

receive)

a) The Proclet instances that need to be performed for ‘Sue’ together with the desired interactions

b) Current state of the interaction graph for ‘Sue’

*,
?

*,
?

1,1

1,?

1,1

1,*

S
u
e

c) State of the interaction graph when the ‘lab’ Proclet instance is canceled

(visit,
Sue 25/01,

decide)

((S
ue

,1
),

co
ns

um
ed

)

(lab,Sue 25/01,
create)

((Sue,2),
executed_source)

((Sue,7),
consumed) (visit,Sue 10/02,create)

((Sue,3),

failed)

(lab,Sue 25/01,
send report)

(visit,
Sue 10/02,

receive)

S
u
e

‘lab’ Proclet instance
is canceled

arc has received
state ‘failed’

performative has
not been sent yet

CP

IB OB

IB

performative has not
been sent yet from the

‘send report’ outbox
interaction point

Fig. 20. Illustration of an exception that may occur if a certain Proclet instance is
canceled. For a task instance which relates to an outbox interaction point, the required
performative has not been sent.

Subsequently, the arc from the “(lab,Sue 25/01,send report)” node to the
“(visit,Sue 10/02,receive)” node receives state “failed” (Figure 20c). Moreover,
similar to the previous exception, it is offered to a human actor to extend the
interaction graph for “Sue”. As the exception occurred for the “lab” Proclet
instance due to its cancelation, the graph may be extended by using the exception
interaction point of the “lab” Proclet class (not shown in Figure 20a). Note that

32

if the “lab” Proclet instance would have been completed and also no performative
had been sent from the “send report” task (e.g. due to a choice in the process),
then the same procedure would be followed as described above.

Inbox Interaction Point .
Another exception that may occur in the context of canceling a Proclet instance
is related to an inbox interaction point. This is illustrated in Figure 21. Here,
for the first scenario, we assume that the “visit” Proclet instance for the second
visit is canceled and that no tasks for it have been executed yet (Figure 21a).
Also, for the “lab” Proclet instance we assume that no tasks have been executed.

Looking to the interaction graph of “Sue” (Figure 21b), for the arcs that
relate to the canceled “visit” instance we see that the arc from the “(lab,Sue
25/01,send report)” node to the “(visit,Sue 10/02,receive)” node has state “un-
produced”. So, no performative has been sent yet from the “send report” task
to the “receive” task of the canceled “visit” Proclet instance. Note that the
“receive” task is linked with an inbox interaction point. So, we have now an
exceptional situation as the performative which still needs to be sent from the
“send report” task can never be consumed by the “received” task anymore, i.e.
the defined interaction will never occur.

Subsequently, the arc from the “(lab,Sue 25/01,send report)” node to the
“(visit,Sue 10/02,receive)” node receives state “failed” (Figure 21d). Also here,
it is offered to a human actor to extend the interaction graph for “Sue”. However,
as the exception occurred for the “visit” Proclet instance due to its cancelation,
the graph may be extended by using the exception interaction point of the “visit”
Proclet class.

In Figure 21c, a comparable situation is shown. Here, the corresponding
interaction graph is presented in case a performative is sent from the “send
report” task but that it has not been consumed yet by the “receive” task of the
canceled “visit” Proclet instance. Also here, by the cancelation of the Proclet
instance for the second visit, the defined interaction will never occur. So, the
respective interaction arc will get state “failed” (Figure 21d) and for entity “Sue”
the interaction graph may be extended.

Note that a similar procedure is followed if a Proclet instance is completed
and that for a task instance, corresponding to an inbox interaction point, not
all performatives have been received yet.

General .

The approach for canceling / completing a Proclet instance for which not
all desired interactions have taken place can be generalized as follows. This is
schematically visualized in Figure 22a and b where for both two interaction
graphs are shown.

The first situation is depicted in Figure 22a where Proclet instance “Y” is
canceled / completed. For Proclet instance “Y”, multiple outbox interaction
nodes may be found in multiple interaction graphs. In case for these interaction
nodes (illustrated by nodes “Yi” and “Yj” in Figure 22a) there is at least one

33

recei
ve

broch
ures

visit:Sue 25/01

blood
test

archi
ve

lab:Sue 25/01

decid
e

broch
ures

visit:Sue 10/02

initial
prepar
ations

deci
de

send
report

recei
ve

initial
prepar
ations

(visit,
Sue 25/01,

decide)

((S
ue

,1
),

co
ns

um
ed

)

(lab,Sue 25/01,
create)

((Sue,2),
executed_source)

((Sue,7),
consumed)

(visit,
Sue 10/02,

create)
((S

ue,3),
unproduced)

(lab,Sue 25/01,
send report)

(visit,
Sue 10/02,

receive)

a) The Proclet instances that need to be performed for ‘Sue’ together with the desired interactions

b) Interaction graph for ‘Sue’ in which the performative
from the ‘lab’ instance has not been produced yet

*,
?

*,
?

1,1

1,?

1,1

1,*

S
u
e

d) State of the interaction graph when the ‘visit’ Proclet instance is canceled

(visit,
Sue 25/01,

decide)

((S
ue

,1
),

co
ns

um
ed

)

(lab,Sue 25/01,
create)

((Sue,2),
executed_source)

((Sue,7),
consumed) (visit,Sue 10/02,create)

((Sue,3),

failed)

(lab,Sue 25/01,
send report)

(visit,
Sue 10/02,

receive)

S
u
e

‘visit’ Proclet instance
is canceled

arc has received
state ‘failed’

performative has not
been sent yet

((S
ue

,1
),

co
ns

um
ed

)

(lab,Sue 25/01,
create)

((Sue,2),
executed_source)

((Sue,7),
consumed)

(visit,
Sue 10/02,

create)

((S
ue,3),

sent)

(lab,Sue 25/01,
send report)

(visit,
Sue 10/02,

receive)

S
u
e

performative has been sent
but not been consumed

c) Interaction graph for ‘Sue’ in which the performative
from the ‘lab’ instance has been produced but not been
consumed

CP

IB OB

IB IB

for the ‘receive’ task, the
performative from the ‘send

report’ task has not been
consumed yet

Fig. 21. Illustration of an exception that may occur if a certain Proclet instance is
canceled. For a task instance which relates to an inbox interaction point, the required
performative has not been received.

outgoing arc having state “unproduced”, then an exception occurs for Proclet
instance “Y’, i.e. for such an arc the defined interaction can never occur.

Consequently, the latter mentioned arcs receive state “failed” (illustrated at
the bottom of Figure 22a). Furthermore, for the affected entities, the opportunity
is offered to extend the interaction graph.

The second situation is depicted in Figure 22b where Proclet instance “Y”
is canceled / completed. For Proclet instance “Y”, multiple inbox interaction
nodes may be found in multiple interaction graphs. In case for these interaction
nodes (illustrated by nodes “Yi” and “Yj” in Figure 22b) there is at least one
incoming arc having state “unproduced” or “sent”, then an exception occurs for

34

unproduced
Yi

Interaction Graph A

Xi

Interaction node is
related to an inbox

interaction point

sent
Yj

Interaction Graph B

Xj

failed
Yi

Interaction Graph A

Xi
failed

Interaction Graph B

Xj Yj

Proclet instance
Y is deleted/
completed

b) Proclet instance Y is deleted. For that instance, all incoming interaction arcs related to an inbox
interaction point which have state ‘unproduced’ or ‘sent’ receive state ‘failed’.

unproduced
Xi

Interaction Graph A

Yi

Interaction node is
related to an outbox

interaction point

unproduced
Xj

Interaction Graph B

Yj

failed
Xi

Interaction Graph A

Yi
failed

Interaction Graph B

Yj Xj

Proclet instance
Y is deleted/
completed

a) Proclet instance Y is deleted. For the deleted instance, all outgoing interaction arcs related to an
outbox interaction point which have state ‘unproduced’ receive state ‘failed’.

interaction
graphs after

that the
exception
occurred

interaction
graphs after

that the
exception
occurred

Fig. 22. For the general case it is illustrated how an exception is handled in the inter-
action graphs if a Proclet instance is canceled or completed.

Proclet instance “Y”, i.e. for such an arc the defined interaction can never occur.

35

Consequently, the latter mentioned arcs receive state “failed” (illustrated at the
bottom of Figure 22b).

2.3 Extending an Interaction Graph

In the previous sections, we have discussed about different aspects of the Proclets
framework. When elaborating on the two scenarios always interaction graphs
were given that were already defined. In this section, we elaborate upon how an
interaction graph is extended for an entity.

The extension of an interaction graph is based on the current interaction
graph of an entity. Also, it is based on the interaction points that exist for Pro-
clet classes and how they are connected, i.e. internal and external interactions
that exist between these interaction points. First, we illustrate the extension
of an interaction graph in the context of the second scenario. Afterwards, it is
explained for the general case.

Scenario .

As shown in Figure 23a, for the second scenario we assume that for the first
visit the “decide” task is currently executed. Moreover, we assume that an in-
stance of the “MDM” Proclet class is running. The “decide” task is linked with a
configuration interaction point which means that the interaction graphs of mul-
tiple entities may be extended. For patient “Sue” we want to achieve that a sec-
ond visit is created for her and that she is discussed during the multidisciplinary
meeting. Also, the result of the discussion for her during the multidisciplinary
meeting needs to be used as input for the second visit. In order to achieve this,
an interaction graph needs to be created.
Step 1:

However, at the moment the “decide” task is executed, no interaction graph
for “Sue” is existing yet. Therefore, as part of the “decide” task, we indicate
that for entity “Sue” an interaction graph needs to be created. The result of this
action can be seen in Figure 23c. Here, we see that there is an interaction node
with name “(visit,Sue 25/01,decide)” which refers to the “decide” task that is
currently executed. Moreover, it is indicated that the node is active. This means
that for the node currently a Proclet instance exists which has the same instance
identifier. In that way, for the node interactions may be nominated which will
potentially occur in the future. The interactions that may be nominated can be
seen by looking to the Proclet classes and how they are connected in Figure
23b. In particular, if we look to the “decide” task in the “visit” Proclet class
then we see that it has three outgoing ports. For them the following can be
observed which is indicated by the dotted arcs between the Proclet classes and
the interaction graph of “Sue”.

– An outgoing port is connected with an inbox interaction point which is linked
with the input condition of the “lab” Proclet class. As a result, for the “lab”
Proclet class multiple instances may be created. However, note that this may
be constrained by the cardinalities and multiplicities of the associated ports.

36

broch
ures

visit

blood
test

archi
ve

lab

deci
de

initial
prepar
ations

initial
prepar
ations

deci
de

send
report

regi
ster

send
reports

*,
?

1,1

*,
?

*,?

recei
ve

1,
?

1,* *,
1

1,1

1,*

1,*

MDM

b) visit, lab, and MDM Proclet classes

recei
ve

broch
ures

visit:Sue 25/01
initial

prepar
ations

deci
de

current state:
decide task is

executed

deci
de

initial
prepar
ations

regi
ster

send
reports

MDM:05/02

a) The Proclet instances that currently exist

visit

(MDM,05/02,register)

(visit,
Sue 25/01,

decide) S
u
e

c) Interaction graph that has been defined for the entity ‘Sue’ so far. Additionally, by the dotted arcs
the next interactions that can be nominated are visualized

lab

interaction graph is
created for ‘Sue’

active
node

multiple Proclet instances may
be created for the ‘lab’ instance

multiple Proclet instances may
be created for the ‘visit’ instance

interaction with the ‘register’ task
of the existing ‘MDM:05/02’

Proclet instance

Fig. 23. Creating an interaction graph for “Sue”. The possible interactions starting
from the “(visit,Sue 25/01,decide)” node are indicated by dotted arcs.

– An outgoing port is connected with an interaction point which is linked
with the input condition of the “visit” Proclet class. As a result, multiple
instances of the “visit” Proclet class may be created.

– An outgoing port is connected with an inbox interaction point which is linked
with the “register” task of the “MDM” Proclet class. As currently an instance
of the “MDM” Proclet class is existing which has instance identifier “05/02”,
it is possible to have an interaction with the “register” task of that Proclet

37

instance. Note that we abstract from the current state of the “MDM:05/02”
Proclet instance.

In Figure 23c, the interactions that may be nominated, starting from the “(visit,Sue
25/01,decide)” node, are indicated by dotted arcs. For them, a human actor de-
cides to create one instance of the “visit” Proclet class which represents the
second visit of “Sue”. Additionally, it is decided to have an interaction with the
“register” task of the existing “MDM” Proclet instance in order to register “Sue”
for the multidisciplinary meeting.
Step 2:

The new interaction graph can be seen in Figure 24. As can be seen, there is
an arc leading from the “(visit,Sue 25/01,decide)” node to the
“(MDM,05/02,register)” node which represents the interaction with the “reg-
ister” task of the “MDM” instance. The arc leading to the “(visit,T1,create)”
node represents the instance of the “visit” that will be created in order to have
the second visit of the patient. Note that a temporary instance identifier is used
(“T1”) because the instance still needs to be created. For the new interaction
arcs, it can be seen that their state is “unproduced” as no performatives have
been sent yet. Also, each arc obtains a unique instance identifier.

Additionally, in Figure 24a, we can see two nodes which are active. For the
“(visit,Sue 25/01,decide)” node, the possible interactions are not shown in order
to not clutter the graph. However, for example, it is still possible to create
an additional instance of the “visit” Proclet class. The other active node is
the “(MDM,05/02,register)” node for which the new interactions that can be
nominated are indicated via dotted arcs. That is, the “(MDM,05/02,register)”
node matches with the “register” task interaction point of the “MDM” Proclet
class. For that interaction point, an internal interaction is defined that has the
“send report” interaction point as its destination. So, an internal interaction
with the “send report” task of the “MDM” Proclet instance is possible.

As can be seen in the figure, the “(visit,T1,create)” node is not active. The
node matches with the interaction point that corresponds to the input condition
of the “visit” Proclet class (Figure 24a). However, for that interaction point no
outgoing external and internal interactions have been defined. So, no interactions
are possible starting from the “(visit,T1,create)” node and subsequently, the
node is not active.
Step 3:

The new interaction graph can be seen in Figure 25b. The internal interaction
for the “MDM” Proclet instance has been added in order to use the outcome
of the multidisciplinary meeting as input for the second visit. Note that the
associated arc has a unique identifier and that the state is “executed none” as
nothing has happened yet.

There are three active nodes in the interaction graph of which only for the
“(MDM,05/02,send reports)” node the new possible interactions are visualized.
That is, the
“(MDM,05/02,send report)” node matches with the “send reports” interaction
point of the “MDM” Proclet class (see Figure 25a). For that outbox interaction

38

broch
ures

visit

blood
test

archi
ve

lab

deci
de

initial
prepar
ations

initial
prepar
ations

deci
de

send
report

regi
ster

send
reports

*,
?

1,1

*,
?

*,?

recei
ve

1,
?

1,* *,
1

1,1

1,*

1,*

MDM

a) visit, lab, and MDM Proclet classes

S
u
e

b) Interaction graph that has been defined for the entity ‘Sue’ so far. Additionally, for the ‘(MDM,05/
02,register)’ node the next interactions that can be nominated are visualized by dotted arcs

active
node

((S
ue

,4
),

un
pr

od
uc

ed
)

((Sue,7),
unproduced)

(MDM,
05/02,

register)

(visit,
Sue 25/01,

decide) (visit,T1,create)

active
node

(MDM,
05/02,

send reports)

internal interaction for the ‘MDM’
proclet instance

temporary identifer
for the future ‘visit’

instance

unique interaction
identifier

interaction has not
occurred yet

Fig. 24. Extending the interaction graph for “Sue”. The possible interactions starting
from the “(MDM,05/02,register)” node and the “(visit,T1,create)” node are indicated
by dotted arcs.

point there is one outgoing port which is linked with the “receive” interaction
point of the “visit” Proclet class. As this is an inbox interaction point, an in-
teraction is possible with the existing “visit” Proclet class which has instance
identifier “25/01” (node “(visit,Sue 25/01,receive)”). However, in the graph of
entity “Sue” we see an interaction node for a “visit” Proclet instance with tem-
porary instance identifier “T1” which represents the second visit. As it will
exist in the future, also interactions may be defined for it. As a consequence,

39

an interaction with the “receive” task of this future instance is possible (node
“(visit,T1,receive)”).

The resultant interaction graph is shown in Figure 25c. As can be seen, an
interaction has been added such that the result of the multidisciplinary meeting
is used as input for the second visit. Note that a unique interaction identifier is
used and that the state is “unproduced”.

In case for the second visit the “‘decide” task is executed, the interaction
graph can again be extended. However, here it is not needed to provide “Sue” as
entity identifier in order to extend the graph. That is, in the interaction graph
of “Sue”, we already find the “create” and “receive” node for the second visit.
In that way, it is already indicated that the entity is relevant for the second visit
and the graph for it may be extended once allowed.

General .

In the scenario, we have seen how an interaction graph is extended taking
into account existing and future Proclet instances. Also, external and internal
interactions that are defined for Proclet classes are taken into account. Now it
is explained for the general case how an interaction graph is extended.
Relevant entities:

When a task instance corresponding to a configuration interaction point is
executed, it is allowed to extend the interaction graphs of entities. First, it is
important to know for which entities the interaction graph may be extended.
Here we distinguish two different cases:

– a human actor has provided the names of entities for which a corresponding
interaction graph needs to be created and for which interactions can be
defined.

– for the entity already an interaction has been defined for the Proclet instance
of which the task instance is executed. So, in the graph of the entity, already
a node exists which has the same instance identifier as the Proclet instance
for which the task instance is executed. In this case we say that the entity
is relevant for the Proclet instance.

Furthermore, in case an exception occurs for a certain Proclet instance, for
the entities that are affected by the exception, the corresponding interaction
graph may be extended. Note that an entity is affected by an exception if for
one or more interaction arcs in the corresponding interaction graph the state
had to be changed into “failed”.
Extension:

In Figure 26, the procedure that is followed for extending an interaction
graph is visualized. Before starting the procedure, it is first identified whether the
instance of the configuration interaction point is itself present in the interaction
graph. If not, an interaction node for it is added. Afterwards, the procedure is
started by determining which nodes in the graph are active. A node is active
if for its Proclet instance identifier still a Proclet instance exists with the same

40

broch
ures

visit

blood
test

archi
ve

lab

deci
de

initial
prepar
ations

initial
prepar
ations

deci
de

send
report

regi
ster

send
reports

*,
?

1,1

*,
?

*,?

recei
ve

1,
?

1,* *,
1

1,1

1,*

1,*

MDM

a) visit, lab, and MDM Proclet classes

S
u
e

b) Interaction graph that has been defined for the entity ‘Sue’ so far. Additionally, for the ‘(MDM,05/
02,register)’ node the next interactions that can be nominated are visualized by dotted arcs

active
node

((S
ue

,4
),

un
pr

od
uc

ed
)

((Sue,5),
executed_none)

((Sue,7),
unproduced)

(MDM,
05/02,

register)

(visit,
Sue 25/01,

decide) (visit,T1,create)

active
node

(MDM,
05/02,

send reports)

interaction with the ‘receive’ task of
the future ‘visit:T1’ Proclet instance

(visit,
T1,receive)

(visit,
Sue 25/01,

receive)

interaction with the ‘receive’ task
of the existing ‘visit:25/01’

Proclet instance

((S
ue

,4
),

un
pr

od
uc

ed
)

((Sue,5),
executed_none)

((Sue,7),
unproduced) (visit,T1,create)

((Sue,6),

unproduced)

(visit,
T1,

receive)

(MDM,
05/02,

register)

(MDM,
05/02,

send report)

S
u
e

c) resultant interaction graph for entity ‘Sue’

Fig. 25. Extending the interaction graph for “Sue”. The possible interactions starting
from the “(MDM,05/02,send report)” node are indicated by dotted arcs. The resultant
graph is shown at the bottom.

41

Xn1

(X,T1,create)

n1

(X,Ty,create)

(X,i,t)n2 n2 (X,i,t)

n3 n3 (X,i,t)

active
node

extended
Interaction graph

.

.

.

human actor selects
y instances

external
interaction

internal
interaction

human actor selects
the interaction

human actor selects
the interaction

(X,i,t)

Input condition of
Proclet class ‘X’

unproduced

unproduced

executed
none

Fig. 26. Schematic representation of the procedure for extending an interaction graph
for an entity. Each dot represents an interaction point.

instance identifier. Also, a node is active if it has a temporary instance identifier,
i.e. the Proclet instance still needs to be created. Obviously, for active interaction
nodes, interactions that are defined for it may potentially occur in the future.

After having determined all the active interaction nodes in the interaction
graph, for each of them it is calculated in which next interactions the node
can be involved, i.e. the candidate interactions. For calculating these candidate
interactions for active nodes, three different situations can be distinguished which
are indicated by the three numbers in Figure 26. For each different situation,
we elaborate on the kind of interaction that is possible and how a nominated
interaction leads to the extension of the interaction graph.

– The first situation relates to an external interaction. Via this external in-
teraction it is possible to create instances of a given Proclet class. That is,
for active node “n1” that is under consideration, the following is observed.
Looking to the corresponding interaction point of node “n1” in its Proclet
class, it can be seen that via an external interaction, it is connected with
the input condition of Proclet class “X”. As a result, multiple instances of
Proclet class “X” may be created.

For each instance that needs to created, an interaction arc is added leading
from node “n1” to the node that is added for the new instance of Proclet
class “X”. Note that the newly added node has a temporary instance iden-
tifier which has “T” as prefix. Also, the added arc has interaction state
“unproduced” and it has a unique interaction identifier.

42

– The second situation relates to an external interaction. Via this external
interaction it is possible to have an interaction with a task instance of an
existing or future Proclet instance. That is, for active node “n2” that is under
consideration, the following is observed. Note that “n2” may relate to an
existing or future Proclet instance. Looking to the corresponding interaction
point of node “n2” in its Proclet class, it can be seen that via an external
interaction, it is connected with task “T” of Proclet class “X”. Now, for
Proclet class “X” an instance is existing which has instance identifier “i”. So,
an interaction with task “T” of Proclet class “X” with instance identifier “i”
is possible. Consequently, for node “n2” an interaction with node “(X,i,T)”
may be nominated for extension in the graph.
If selected, an interaction arc is added leading from node “n2” to the new
node “(X,i,T)”. Also, the added arc has interaction state “unproduced” and
it has a unique interaction identifier.
Note that for Proclet class “X” also a future Proclet instance may be found
in the interaction graph. That is, there is an interaction node referring to
Proclet class “X” which has temporary instance identifier “Ti”. In that case,
the nomination of the interaction and the subsequent extension of the graph
is done in a similar way as for an existing Proclet instance.

– The third situation relates to an internal interaction. That is, for active
node “n3” that is under consideration, the following is observed. Note that
“n3” may relate to an existing or future Proclet instance. Looking to the
corresponding interaction point of node “n3” in its Proclet class “X”, it
can be seen that via an internal interaction, it is connected with task “T”
of the same Proclet class. As we are dealing with an internal interaction,
task “T” occurs in the same Proclet instance as where node “n3” refers to
(say (temporary) instance identifier “i”). Consequently, for node “n3” an
internal interaction with node “(X,i,T)” may be nominated for extension in
the graph.
If selected, an interaction arc is added leading from node “n3” to the new
node “(X,i,T)”. Also, the added arc has interaction state “executed none”
and it has a unique interaction identifier.

After that the graph is extended in the above described way, the procedure is
repeated. That is, a new set of active nodes is calculated after which for each of
them it is calculated in which interactions the node can be involved. In that way,
a human actor can select new interactions or can indicate that he is finished.

Note that the interactions that are defined between interaction nodes in
the graph might be limited by the cardinality and multiplicity values of the
involved input and output ports. After that a human actor is done with defining
interactions that need to take place, it is checked whether the new interactions
are in line with the cardinality and multiplicity values of the ports. For that,
the interaction graph of the entity itself needs to be considered but also the
interaction graphs of other entities. If this is not ok, then the extended graph for
the entity is rejected and the human actor has the option to define interactions
again.

43

2.4 Performatives

Performatives are sent in between Proclet instances. For such a performative we
have already indicated that it contains three different attributes. However, more
attributes are relevant for an entity. Therefore, below we present the attributes,
and their meaning, that are most relevant for a performative. Note that these
attributes are based on the ones that are presented in [4, 5].

– Time: the moment the performative was created / received.
– Channel : the medium used to exchange the performative.
– Sender : the identifier of the Proclet instance creating the performative.
– Set of receivers: the identifiers of the Proclet instances receiving the perfor-

mative, i.e. a list of recipients.
– Action: the type of the performative.
– Content : the actual information that is being exchanged.
– Set of interaction identifiers: a list of interaction identifiers. In particular,

for the interaction arcs for which the performative is sent, the associated
interaction identifier is added to this set.

The role of the action attribute deserves some special attention. This at-
tribute can be used to specify the illocutionary point of the performative. The
five illocutionary points identified by Searle [23] (assertive, directive, commissive,
declarative, expressive) can be used to specify the intent of the performative. Ex-
amples of typed performatives identified by Winograd and Flores are request,
offer, acknowledge, promise, decline, counter-offer, and commit-to-commit [27]
which each represents a change in the state of a conversation. In the model no
restriction is made to any single classification of performatives (i.e. a fixed set of
types). It is important to use the experience and results reported by researchers
working on the language/action perspective [27] as these give an insight into the
broader requirements in this area. Of course, it is possible to add more attributes
to a performative.

For entities, the “content” field of a performative can be used for exchanging
data between Proclet instances in a structured way. However, first we need to
remember that a performative may be multicasted to multiple receivers. That is,
for different Proclet instances of the same Proclet clas, the performative has the
same task as destination. This is illustrated in Figure 27 in the context of the
second scenario. Here, we see for both “Anne” and “Sue” that a performative
is sent from the “send reports” task of the “MDM” Proclet instance. For both
of them, the performative has the “receive” task of the “visit” Proclet class as
destination. However, for “Sue” the performative needs to be received by the
Proclet instance which has “Sue 10/02” as instance identifier and for “Anne”
the performative needs to be received by the Proclet instance which has “Anne
12/02” as instance identifier.

Now, we explain how the “content” attribute is used for exchanging data for
entities in a structured way. As part of this, we require that for this attribute a
fixed data structure is used. For this data structure, we may have a list of entity
identifiers. On its turn, for each entity identifier we may have a list of name-value

44

recei
ve

broch
ures

visit:Sue 25/01

decid
e

broch
ures

visit:Sue 10/02
initial

prepar
ations

deci
de

recei
ve

initial
prepar
ations

*,?

*,?

1,1

1,
*

deci
de

initial
prepar
ations

regi
ster

send
reports

1,
* *,1

MDM:05/02

recei
ve

broch
ures

visit:Anne 26/01

decid
e

broch
ures

visit:Anne 12/02

initial
prepar
ations

deci
de

recei
ve

initial
prepar
ations

*,
?

*,
?

1,1

1,*

a) The Proclet instances that need to be performed for ‘Sue’ and ‘Anne’. Currently, a performative is sent from the ‘send
reports’ task of the ‘MDM’ instance.

((S
ue

,4
),

co
ns

um
ed

)

((Sue,5),
executed_both)

((Sue,7),
consumed) (visit,Sue 10/02,create)

((Sue,6),

sent)

(visit,
Sue 10/02,

receive)

(MDM,
05/02,

register)

(MDM,
05/02,

send report)

((A
nn

e,
4)

,
co

ns
um

ed
)

((Anne,5),
executed_both)

((Anne,7),
consumed) (visit,Anne 12/02,create)

((Anne,6),

sent)

(visit,
Anne 12/02,

receive)

(MDM,
05/02,

register)

(MDM,
05/02,

send report)

(visit,
Sue 25/01,

decide)

(visit,
Anne 26/01,

decide)

b) Current state of the interaction graphs for ‘Sue’ and ‘Anne’

S
u
e

A
n
n
e

performative is
multicasted

Performative
Time:10:00
Channel: Order system
Sender: MDM:05/02
Receivers: visit:Sue 10/02, visit:Anne 12/02
Action: input
Interaction identifiers: (Sue,6),(Anne,6)
Content:
(Sue,(age,67),(medical status, ok)),
(Anne,(age,73),(medical status),not ok)

Fig. 27. Illustration of the attributes of a performative and its content.

45

pairs. This is illustrated in Figure 27 for the performative that is multicasted to
the “visit” Proclet instances of “Sue” and “Anne”. For the “content” attribute
we see that there is an entity identifier element which has as identifier “Sue”
and that has two name-value pairs. These name-value pairs indicate that Sue is
67 years old and that her medical status is ok. Similarly, for “Anne” we see that
she is 73 years old and that her medical status is not ok.

Note that there is a close link between the information that is contained in
the “content” attribute and the information contained in the “set of interaction
identifiers” attribute. That is, for every interaction identifier in the “Interaction
identifiers” field, a corresponding data element may be found in the “content”
attribute which has the same entity identifier.

2.5 Formalization

In the previous sections, we have discussed all concepts and all aspects of the
Proclets framework. An illustration of the resultant framework can be seen in
Figure 28. In brief, there may be one or more Proclet classes. A Proclet class
is a process definition for which instances may be created or destroyed. Via
interaction points, ports, and channels, interactions between Proclet instances
are possible. This occurs via performatives that are sent between these instances.
Next, an interaction graph defines for an entity the interactions that need to
take place between existing and future Proclet instances and their state. So, all
interaction graphs together define the collaboration and communication between
existing and future Proclet instances.

Having presented all concepts and all aspects of the Proclets framework, they
now can be formalized. First, we formalize the syntax of both Proclet classes
and the connections between them. Afterwards, we present a formal syntax for
interaction graphs and a formal semantics for the enabling of task instances.

Connected Proclet Classes In this section, we formalize the syntax of both
Proclet classes and how they are connected. Our formalizations are based on
the YAWL workflow language [7]. Compared to other languages, YAWL is more
expressive and has clear and unambiguous semantics. Therefore, this makes the
YAWL language an excellent candidate for our extensions. Note that our exten-
sions are in no way limited to the YAWL workflow language and can be applied
to more complex notations (BPM, EPCs, BPEL, etc).

First, we provide some formalizations for YAWL itself. In particular, a YAWL
net may be composed of a number of Extended Workflow Nets (EWF-nets). An
EWF-net can be defined as follows:

Definition 1 (EWF-net). An EWF-net is a tuple EWF = (C, i,o, T, F, split,
join, rem, nofi) such that:

– C is a set of conditions;
– i ∈ C is the input condition;
– o ∈ C is the output condition;

46

broch
ures

visit

blood
test

archi
ve

lab

deci
de

initial
prepar
ations

initial
prepar
ations

deci
de

send
report

regi
ster

send
reports

*,
?

1,?

*,
?

*,?

recei
ve

1,
?

1,* *,
1

1,?

1,*

1,*

MDM

a) visit, lab, and MDM Proclet classes

lab

MDMvisit

follows preceding

follows

preceding

0..*0..*

0..* 0..*

0..*

1..1

0..*

1..1
OB

CP

IB

IBIB

IB OB

port
configuration

interaction
point

performative

external
interaction

internal interaction

cardinality

multiplicity

inbox
interaction

point

outbox
interaction

point

b) class diagram containing the three Proclet classes

((S
ue

,4
),

co
ns

um
ed

)

((Sue,5),
executed_both)

((Sue,7),
consumed)

(visit,Sue 10/02,create)

((Sue,6),

sent)

(visit,
Sue 10/02,

receive)

(MDM,
05/02,

register)

(MDM,
05/02,

send report)

b) Illustration of interaction graphs for entity ‘Sue’

Interaction graph
influencing the behavior of
existing and future Proclet

instances

 interaction states of interaction arcs

unproduced sent consumed
external interaction:

internal interaction:
executed none executed source executed both

different states of
interaction arcs

c) Subsequent interaction states for arcs representing an external or internal interaction

interaction
node

interaction
arc

interaction
identifier

interaction
state

Proclet class

interaction graph
for ‘Sue’

Performative
Time: 10:00
Channel: order system
Sender: MDM:05/02
Receivers: visit:Sue 10/02
Action: input
Interaction identifiers: (Sue,6)
Content: (Sue,(age,67))

time-out:
10

exception
*,?

*,?CP

1,?

1,?

preceding follows
0..* 0..*

Fig. 28. Illustration of all concepts of the Proclets framework. Note that for interaction
points, the abbreviations “CP”, “IB”, and “OB” represent a configuration, inbox, and
outbox interaction point respectively.

– T is a set of tasks;
– F ⊆ (C\{o} × T) ∪ (T × C\{i}) ∪ (T × T)
– every node in the graph C ∪ T, F) is on a directed path from i to o.
– split : T → {AND,XOR,OR} specifies the split behavior of each task.
– join : T → {AND,XOR,OR} specifies the join behavior of each task.
– rem : PT 9 P(T ∪C\{i,o}) specifies the additional tokens to be removed by

emptying a part of the workflow, and
– nofi : T 9 N×Ninf ×Ninf × {dynamic, static} specifies the multiplicity of

each task.

Note that the tuple (C, T, F) corresponds to a Petri net where C corresponds
to places, T corresponds to transitions, and F is the flow relation. However,
there are two important differences. First of all, an EWF-net has two special

47

places: i and o. Secondly, the flow relation also allows that tasks are directly
connected. Semantically, the latter can be seen as an implicit place connecting
two transitions.

Based on an EWF-net, a Proclet class can now be defined in the following
way:

Definition 2 (Proclet class). A Proclet class is a tuple N = (C, i,o, T, F,
split, join, rem, nofi,PCid, eip, IP, IPtype, time out, P, card,mult, dir, PC,
II), where:

– (C, i,o, T, F, split, join, rem, nofi) is an EWF-net;
– PCid is the unique identifier of the Proclet class;
– eip = is the identifier of the exception interaction point (no name clashes are

assumed). If no exception interaction point is defined for the Proclet class,
the value of eip is “null”;

– IP ⊆ T ∪ {i} ∪ {eip} is the set of interaction points. An interaction point
may only be a task, input condition or the exception interaction point;

– IPtype : IP → {CONFIGURATION, INBOX,OUTBOX} is a function
which maps interaction points on to a type;

– time out : IP 9 N is a partial function which maps a time out value (nu-
meric value) to an interaction point. A time out value only may be defined
for interaction points which are of the INBOX type and are not linked to
an input condition.

– P is a non-empty finite set of ports;
– card : P → {1,+, ∗, ?} is a function which maps a cardinality on to a port;
– mult : P → {1,+, ∗, ?} is a function which maps a multiplicity on to a port;
– dir : P → {IN,OUT} is a function which maps a direction on to a port. A

port is either an input port or an output port;
– PC ⊆ {(p, t)|p ∈ P ∧ t ∈ {i} ∧ IPtype(t) = INBOX ∧ dir(p) = IN} ∪
{(p, t)|p ∈ P ∧ t ∈ T ∧ IPtype(t) = INBOX ∧ dir(p) = IN} ∪
{(t, p)|t ∈ T ∧ p ∈ P ∧ IPtype(t) = OUTBOX ∧ dir(p) = OUT)} ∪
{(t, p)|t ∈ T ∧ p ∈ P ∧ IPtype(t) = CONFIGURATION ∧ dir(p) = OUT)}∪
{(t, p)|t ∈ {eip} ∧ p ∈ P ∧ IPtype(t) = CONFIGURATION ∧ dir(p) =
OUT}}. PC is the set of connections between ports and interaction points.
There may only be connections leading from input ports to interaction points
of type INBOX and there may only be connections leading from interaction
points of type OUTBOX and CONFIGURATION to output ports. Moreover,
the input condition is an interaction point of type INBOX and the exception
interaction point is an interaction point of type CONFIGURATION.

– (∀(x1,y1)∈PC∧x1∈P : (∀(x2,y2)∈PC∧x2∈P∧(x1,y1) 6=(x2,y2) : x1 6= x2)) and
(∀(x1,y1)∈PC∧y1∈P : (∀(x2,y2)∈PC∧y2∈P∧(x1,y1)6=(x2,y2) : y1 6= y2)). Every
port is connected to one and only one interaction point.

– II ⊆ {(a, b)|a ∈ IP ∧ b ∈ IP ∧ IP type(a) = INBOX ∧ IP type(b) =
OUTBOX} is the set of internal interaction arcs. An internal interaction
arc may only be directed from an interaction point of type INBOX to an
interaction point of type OUTBOX.

48

– (∀(x1,y1)∈II : (∀(x2,y2)∈II∧(x1,y1)6=(x2,y2) : x1 6= x2)) and
(∀(x1,y1)∈II : (∀(x2,y2)∈II∧(x1,y1)6=(x2,y2) : y1 6= y2)). An interaction point is
only the head or tail of one and only one internal interaction arc.

Proclet classes are connected with each other via ports in order to allow for
interactions. Therefore, we define a set of connected Proclet classes as follows:

Definition 3 (set of connected Proclet classes).

A set of connected Proclet classes is a tuple S = (Q,P �, PCQ,CH, channel)
where:

– Q is a set of Proclet classes;
– P � =

⋃
N∈Q PN is the set of all ports;

– PCQ ⊆ {(a, b)|N1 ∈ Q ∧ N2 ∈ Q ∧ a ∈ PN1 ∧ b ∈ PN2 ∧ dirN1(a) =
OUT ∧dirN2(b) = IN} is the set of all output ports that are connected with
input ports;

– (∀(x1,y1)∈PCQ : (∀(x2,y2)∈PCQ∧(x1,y1)6=(x2,y2) : x1 6= x2)) and
(∀(x1,y1)∈PCQ : (∀(x2,y2)∈PCQ∧(x1,y1)6=(x2,y2) : y1 6= y2)). Every port is only
connected to one and only one other port.

– CH is a non-empty finite set of channels;
– channel : PCQ→ CH is a function which maps two connected ports on to

a channel.

Note that Figure 28a fully defines a set of connected Proclet classes.

Interaction Graphs In previous sections, we have discussed in a informal way
the semantics of the interactions that occur between and inside Proclet instances
for entities. To this end, we have introduced the notion of an interaction graph
for entities. This also allowed us to define the enabling of task instances. Below,
we will provide a formal syntax for interaction graphs and a formal semantics
for the enabling of task instances. We will do this in two steps. First, we provide
some necessary preliminaries in order to be able to define a valid interaction
graph. Second, we formalize an interaction graph itself. Finally, we formalize the
enabling of task instances.

In order to be able to define interaction graphs, we need to be able to re-
fer to Proclet class identifiers, all interaction points within Proclet classes, and
(temporary) Proclet instance identifiers. Moreover, for the definition of interac-
tion arcs, we need to be able to refer to all internal and external interactions
that exist within and in between all Proclet classes. Therefore, we start with
introducing the following formal notions.

Definition 4 (Preliminaries Interaction Graph).

Let S = (Q,P �, PCQ,CH, channel) be a set of connected Proclet classes. The
preliminary definitions for an interaction graph are the following.

– PCid� = {PCidN} is the set of all Proclet class identifiers;
– I is a finite set of Proclet instance identifiers;

49

– Itemp is a finite set of temporary Proclet instance identifiers;
– I ∩ Itemp = ∅, both I and Itemp contain unique identifiers;
– II� = {IIN |N ∈ Q} is the set of all internal interaction arcs (no name

clashes assumed);
– PII ARCS = {((PCidN , a), (PCidN , b))|N ∈ Q ∧ (a, b) ∈ IIN} is the set

of all internal interaction arcs for all Proclet classes;
– an external interaction path p from an interaction point in net N1 to an

interaction point in net N2 is a path p = 〈n1, n2, n3, n4〉 such that (n1, n2) ∈
PCN1

∧ (n2, n3) ∈ PCQ ∧ (n3, n4) ∈ PCN2
∧N1 ∈ Q ∧N2 ∈ Q;

– PEI ARCS = {((PCidN1
, n1), (PCidN2

, n4))|N1, N2 ∈ Q ∧ n1 ∈ IPN1
∧

n2 ∈ IPN2 ∧ n1 is the first node and n4 is the last node on an external
interaction path p} is the set of all external interaction arcs between all
Proclet classes;

An interaction node refers to a concrete interaction point of a Proclet in-
stance. This means that we need to be able to make references to Proclet class
identifiers, (temporary) identifiers of Proclet instances, and interaction points
within Proclet classes. Therefore, PCid� is the set of all Proclet class identifiers.
For referring to identifiers of existing Proclet classes, we have I which provides
a set of Proclet class identifiers. Directly related to this, Itemp provides a set of
temporary identifiers for future Proclet instances. Together I and Itemp contain
unique identifiers.

For interaction arcs, it is necessary to refer to all interaction points within
Proclet classes and all internal and external interactions that exist in between
these interaction points. Therefore, we have the set II� which contains all the
internal interactions that exist within all Proclet classes. For referring to inter-
nal interactions within Proclet classes, we need to link these interactions with
the identifier of the Proclet class. Therefore, for both the source and destination
interaction point of the internal interaction, we attach the identifier of the re-
spective Proclet class. In that way, the set PII ARCS contains all the possible
internal interaction arcs that exist within all Proclet classes. For external inter-
actions, we already remarked that in that case the direction of the arc between
the two interaction nodes is the same as the direction of the corresponding ex-
ternal interaction of the associated Proclet classes. So, we need to have a path
from the source interaction node a of the external interaction to the destination
interaction point b of the external interaction. Such a path starts at source inter-
action point a, leads subsequently via an output port and an input port (which
is contained in set PCQ), to the destination interaction point b. We call such
a path an external interaction path. However, in the interaction graph there is
only a direct connection from interaction point a to interaction point b ignoring
the ports that are in between. This is defined by the set PEI ARCS which con-
tains all the possible external interactions that exist between two Proclet classes.
Note, that in a similar fashion as for PII ARCS, also the source and destination
interaction points of external interactions are linked with the identifier of the
respective Proclet classes.

By having defined above presented notions, we are now able to define an
interaction graph in the following way.

50

Definition 5 (Interaction Graph).

Let S = (Q,P �, PCQ,CH, channel) be a set of connected Proclet classes. An
interaction graph for an entity is a tuple IG = (entity id, IN, IA, ID,
arcState, iid arc) where:

– entity id is an unique entity identifier (no name clashes are assumed with
entity id’s of other interaction graphs);

– IN ⊆ {(c, i, p)|c = PCidN ∧ i ∈ (I ∪ Itemp) ∧ p ∈ IPN ∧N ∈ Q} is the set
of interaction nodes in an interaction graph;

– IA ⊆ {((c1, i1, p1), (c2, i2, p2))|(c1, i1, p1) ∈ IN ∧ (c2, i2, p2) ∈ IN ∧
((c1, p1), (c2, p2)) ∈ (PEI ARCS ∪ PII ARCS)} is the set of interaction
arcs in an interaction graph of an entity;

– (∀n∈IN : (∃(n1,n2)∈IA : n = n1) ∨ (∃(n1,n2)∈IA : n = n2)), each interaction
node has at least an incoming arc or an outgoing arc;

– arcState : IA→ {UNPRODUCED,CONSUMED,SENT,
EXECUTED NONE,EXECUTED SOURCE,
EXECUTED BOTH,FAILED} is a function which maps interaction arcs
on to an arc state.
For (c, i, p) ∈ IA and (c, p) ∈ PII ARCS, we have arcState((c, i, p)) =
{EXECUTED NONE,EXECUTED SOURCE,
EXECUTED BOTH,FAILED}, i.e. an interaction arc referring to an
internal interaction may only have state “EXECUTED NONE”,
“EXECUTED SOURCE”, and “EXECUTED BOTH”.
For (c, i, p) ∈ IA and
(c, p) ∈ PEI ARCS, we have arcState((c, i, p)) = {UNPRODUCED,
CONSUMED,SENT,FAILED}, i.e. an interaction arc referring to an
external interaction may only have state “UNPRODUCED”,
“CONSUMED”, “SENT”, and “FAILED”.;

– iid arc : IA → {entity id} × ID is a function which maps each arc onto a
unique interaction identifier. Such an interaction identifier consists of a pair
of which the first value is the entity id and of which the second value is an
unique identifier. This implies (∀(a1,b1)∈rng(iid arc) :
(∀(a2,b2)∈rng(iid arc)∧(a1,b1)6=(a2,b2) : b1 6= b2));

An interaction graph corresponds to a specific entity. In the interaction graph
we have interaction nodes which are contained in the set IN . Interaction nodes
are connected via interaction arcs (IA). An interaction arc is either an internal
or external interaction. In order for an interaction node to be included in the
graph, it must have at least one incoming or at least one outgoing interaction
arc. Furthermore, for interaction arcs, the specific state of the interaction is kept
by the arcState function and a unique interaction identifier for the interaction
is kept by the iid arc function. Note that Figure 28b fully defines an interaction
graph for the entity “Sue”.

Furthermore, the enabling of task instances related to inbox interaction
points can be formalized in the following way.

Definition 6 (Enabling of task instances).

51

Let S = (Q,P �, PCQ,CH, channel) be a set of connected Proclet classes.

1. For Proclet class c (c = PCidN , N ∈ Q) having an instance with identifier i
(i ∈ I), the task t (t ∈ TN) is enabled if the following holds for the associated
INBOX interaction point (c, i, t), t ∈ IPN , IPtypeN (t) = INBOX:
– the task t in Proclet instance i is enabled ;
– for all interaction graphs in which interaction node (c, i, t) occurs, the

following needs to hold: (∀((c1,i1,t1),(c,i,t))∈IA :
arcState((c1, i1, t1), (c, i, t)) = SENT ∨
arcState((c1, i1, t1), (c, i, t)) = FAILED), i.e. all incoming interaction
arcs (representing an external interaction) for node (c, i, t) in all inter-
action graphs need to have either state SENT or FAILED.

2. For Proclet class c (c = PCidN , N ∈ Q) having an instance with identifier i
(i ∈ I), the task t (t ∈ TN) is enabled if the following holds for the associated
OUTBOX interaction point (c, i, t), t ∈ IPN , IPtypeN (t) = OUTBOX:
– the task t in Proclet instance i is enabled ;
– for all interaction graphs in which interaction node (c, i, t) occurs, the

following needs to hold: (∀((c1,i1,t1),(c,i,t))∈IA :
arcState((c1, i1, t1), (c, i, t)) = EXECUTED SOURCE), i.e. all incom-
ing interaction arcs (representing an internal interaction) for node (c, i, t)
in all interaction graphs need to have state
EXECUTED SOURCE.

3. For Proclet class c (c = PCidN , N ∈ Q) having an instance with identifier
i (i ∈ I), the task t (t ∈ TN) is enabled if the following holds for the asso-
ciated CONFIGURATION interaction point (c, i, t), t ∈ IPN , IPtypeN (t) =
CONFIGURATION :
– the task t in Proclet instance i is enabled ;

Furthermore, for an input condition of a Proclet class also an INBOX inter-
action point can be defined with multiple input ports. In that way, an instance
of the respective Proclet class is created if the following holds for the interaction
point (c, i, p), c = PCidN , i ∈ Itemp, p ∈ IPN , N ∈ Q:

– for all interaction graphs, there is only one occurrence of interaction node
(c, i, p) which has only one incoming arc a. For arc a, the following needs to
hold: arcState(a) = SENT

3 Architecture

The Proclet framework which has been discussed in the previous section forms
the conceptual foundations for augmenting existing WfMSs with inter-workflow
support. The architecture of such an augmented WfMS is presented in Figure 29
and consists of three components. The Workflow Engine and the Workflow Client
Application components provide the basic functionality that may be expected
from any WfMS. Next, the Inter-Workflow Service component is responsible for
adding inter-workflow support. The interface between the WfMS and the service
has been indicated by a cloud with number “1” in it.

52

Interaction
Service 1

Interaction
Definition

Editor

Workflow
Engine

2

Inter-Workflow Service

- workitem enabled
- check out workitem
- check in workitem
- case completed
- case canceled
- launch case
- get active cases

Workflow
Management

Inter-Workflow
Support

Communication layer

Work
tray

Case

GUI Workflow
Client

Application

- get process identifiers
- get data for selected process identifier
- start case
- get running cases
- cancel case
- get offered workitems
- allocate workitem
- get allocated workitems
- deallocate workitem
- get data for allocated workitem
- complete workitem
- (dis)connect

Fig. 29. Architecture of a WfMS augmented with inter-workflow support.

In sections 3.1 to 3.3 the individual components in the architecture are dis-
cussed in more detail. For each component a description of the main functionality
is provided together with a discussion on its interactions with other components.

3.1 Workflow Engine

The workflow engine is the heart of the system and provides those facilities
which are required for the logistical completion of cases. The basic facilities that
are important to us regard the creation or deletion of cases and ensuring that
workitems for tasks are carried out in the right order and by the right people.
Moreover, data concerning cases and workitems is managed.

53

3.2 Workflow Client Application

Users working with the WfMS do so via the Workflow Client Application which
delivers the basic user interaction facilities expected of this facility. The com-
ponent consists of a GUI and a communication layer component. The GUI is
responsible for the interactions with the users. The communication layer com-
ponent serves as a connection layer between he engine and the GUI and takes
care of the communication between them.

Subcomponents The GUI component consists of three different subcompo-
nents. Here, the “worktray” provides the same facilities as a classical worktray.
That is, workitems for tasks are advertised, allocated, and performed via the
worktray. Furthermore, only one user can interact with the WfMS to indicate
the completion of a workitem. This prevents concurrency issues should multi-
ple users want to complete the same workitem. Finally, the “Case” component
provides facilities regarding the creation and deletion of cases.

Communication As can be seen in Figure 29, one interface is defined for the
communication between the Workflow Client Application and Workflow Engine.
The interface with number “2” defines the communication that needs to take
place between an engine and a Workflow Client Application in order to satisfy
the basic facilities that are to be provided by an engine.

3.3 Inter-Workflow Service

The Inter-Workflow Service comprises of the Interaction Service component and
the Interaction Definition Editor component. These and additional aspects are
discussed in more detail below.

Interaction Service The Interaction Service component is responsible for stor-
ing and taking care of the interactions that take place between Proclet instances.
More specifically, for tasks for which interactions are necessary, a corresponding
interaction point is defined at the service side which means that the execution
of these tasks is deployed to the Inter-Workflow Service. In that way, for such a
task instance the service identifies which interactions are necessary, i.e. whether
the sending and receiving of performatives is necessary. If yes, then these interac-
tions are taken care of which also may involve the instantiation of Proclet classes.
Next to that, the Interaction Service takes care of identifying whether exceptions
occur (e.g. the cancelation or completion of a Proclet instance). Based on the
decision of a human actor, an exception is handled. Finally, based on already
defined interactions for an entity, subsequent interactions that are possible are
determined in case the opportunity is offered to extend an interaction graph. As
part of this, it is needed to have an overview of the cases that are existing in the
WfMS.

54

Interaction Definition Editor A human actor will only have contact with the
Inter-Workflow Service via the Interaction Definition Editor. In that way, the
component offers the ability to define interactions for an entity, i.e. extending the
corresponding interaction graph, both in normal and exceptional situations. Here
it should be noted that possible interactions for an entity, which are determined
by the Interaction Service, are offered to a human actor via the editor. From these
possible interactions, a selection is made and send to the Interaction Service such
that new possible interactions are calculated and offered again. Next to that,
identified exceptions are presented such that a human actor can decide about
how they need to be handled (e.g. take no action or extend the interaction graph
for an entity).

Inter-Workflow Related Extensions Moreover, note that in Section 2.5, we
extended an EWF-net with concepts for providing inter-workflow support (e.g.
interaction points, ports, connections between ports). However, these extensions
can be applied to any workflow language. For the architecture presented in Figure
29, this means that ordinary process definitions can be stored at the engine
side (e.g. EWF-net definitions presented in Definition 1) and that the inter-
workflow related extensions can be stored at the Inter-Workflow side. That is,
the extensions which are presented by definitions 2 and 3 (e.g. interaction points,
time out values, connections between ports) are stored at the Inter-Workflow
support side. In this way, by making this separation we can truly add Inter-
Workflow support to any WfMS. Logically, the interaction graphs are also stored
at the Inter-Workflow Service side.

Communication with the Engine In order to enable the Inter-Workflow
Service to serve a workflow engine, an interface between them needs to be defined.
The interface consists of a number of events and methods and has been kept to an
absolute minimum in order to ease the number of workflow engines that benefit
from the capabilities offered by the Inter-Workflow Service. Additionally, being a
service, this allows a single instance of the service to take care of the interactions
between Proclet instances and the definition of them by a user. As can be seen in
Figure 29, in the rectangle that is linked to the cloud with number 1, an overview
of these methods and events is provided. The first three methods relate to the
outsourcing of the performance of the workitem to the Inter-Workflow Service.
The two next methods relate to the completion and cancelation of a case for
which it needs to be determined if exception handling is needed. The last two
methods relate to the launching of a case in the engine for a Proclet instance
and obtaining an overview of the cases that are running in the engine.

Finally, note that the Interaction Service and the Interaction Definition Ed-
itor are tightly coupled as large volumes of information are exchanged.

55

4 Related Work

In the introduction we have indicated that the entire patient process of elective
non-routine healthcare processes can be seen as a cloud of standardized process
fragments for which the ultimate selection of the fragments and the interactions
between them are patient specific. In order to support these loosely coupled
workflow fragments and the interactions between them, inter-workflow support
is required.

Contemporary workflow languages and systems provide limited support for
the modeling and execution of loosely coupled interacting workflows. Instead,
one is forced to squeeze real-life processes into a single “monolithic overarching
workflow” which describes how an individual case is handled in isolation. When
doing this, the modeler looses the overview, the natural structure of work is
lost, and the required flexibility cannot be offered to the medical professionals
involved. This issue has been recognized in the literature [4, 5, 25, 10, 18, 20] and
is not limited to the healthcare domain. It also applies in other areas, e.g. the
automotive domain [20], or when reviewing papers for a conference [5]. As a
consequence of assuming that workflows execute completely in isolation, current
WfMSs do not provide an adequate means for inter-workflow coordination [25,
17, 16].

One of the earliest formalisms which acknowledged the above mentioned
problems is the Proclets framework [4, 5, 25] proposed by van der Aalst et al.
In comparison to the Proclets framework there are a limited range of alternate
approaches that deal with the same issues [18] as those dealt with by the Proclets
framework. Müller et al. have worked on the Corepro framework [19, 20] which
allows automatic generation and coordination of individual processes, operating
at different levels of aggregation, based on their underlying data structure. For
a specific component in the data structure, the corresponding structure of the
process is described by the data used during the life cycle of the component.
Relationships between the components in the data structure, which can capture
one-to-many and many-to-many relationships, indicate process dependencies.
Based on the data structure, the initial number of process instances created is
decided at run-time. The creation of new instances at runtime is possible, but
requires an ad-hoc change to the related data structure. In this context, it is
also important to mention that several WfMSs, such as FLOWer (via a dynamic
subplan) and YAWL (via a multiple instance task), offer support for creating
multiple concurrent instances of a task. They support a one-to-many relationship
between the task and its instances. However, many-to-many relationships can not
be captured.

Browne et al. specifically focus on the healthcare domain and present a two-
tier, goal-driven model for workflow processes in the healthcare domain [11–13].
A goal-ontology, presented as a directed acyclic graph, is utilized to represent
the business model at the upper level and is decomposed into an extended Petri-
net model for the lower level workflow schema. A mapping is defined from the
goal-graph to (sub)processes and tasks such that each of the (sub)processes is
designed in a way that achieves one of the upper level goals. This approach

56

leads to a hierarchy of process models with a number of the top-level goals being
implemented through subprocesses. However, there is no interaction between
subprocesses in contrast to the classical way in which hierarchical processes
communicate with each other in a top-down fashion.

Bhattacharya et al. take the so-called business artifacts of a process as a
starting point [9, 10, 21]. A business artifact is an identifiable, self-describing
unit of information. First it needs to be identified which business artifacts need
to be processed in order to achieve a certain business goal. Based on this an
artifact-centric process model can be constructed which consists of the business
artifacts itself, business tasks, and repositories. A repository describes a buffer
for an artifact. Tasks can push an artifact into a repository or pull it out of a
repository. In this way, the content of one or more artifacts can only be changed
by the execution of a task. Consequently, aggregation issues are only handled at
the task level instead of at the process level.

Batch-oriented tasks are tasks that are based on groupings of lower aggre-
gation elements. The concept of a batch-oriented task was introduced in [8] in
order to allow for a task that is executed for multiple instances at the same time.
In [22], the problem is defined and deliberations are provided on the technology
support required to deal with the issue.

Finally, Heinlein focuses on the synchronization of concurrent workflows [17,
16, 15]. An interaction graph is proposed which specifies how multiple workflows
need to be synchronized. In such an interaction graph, tasks, (user-defined) op-
erators, and parameters may be used for defining in a general way how tasks
between multiple workflows need to be synchronized, i.e. the sets of permissi-
ble execution sequences are specified. At run-time, the graph is transformed,
via interaction expressions, into an operational model consisting of states, state
transitions, and state predicates. In this way, the defined task synchronizations
can be enforced such that tasks that are allowed to be executed, but that are not
permissable according to the interaction graph, are disabled. Finally, all involved
workflows operate at the same level of aggregation and no data is exchanged be-
tween workflows.

5 Conclusions

In this chapter, we have presented the design of a WfMS augmented with inter-
workflow support facilities. These facilities are based on the Proclets Framework.
An important concept in this framework are interaction points. Via these inter-
action points, at design time, possible interactions between Proclet classes can
be modeled without the need to define complex pre- and postconditions. Sub-
sequently, at run-time they allow users to select interactions between Proclet
instances.

In case a WfMS augmented with inter-workflow support would be used in a
healthcare environment for the daily management of patient flows several bene-
fits can be obtained. First of all, workflows exist which deal with a single patient
but also workflows exist dealing with a group of patients. Using current WfMSs

57

these workflows need to be described in separate, disconnected, models. By using
our system these workflows are still described in their own models but connec-
tions between them are possible (e.g. registering a patient for a multidisciplinary
meeting). So, the mix of granularities that co-exist in workflows can be taken
into account. Moreover, interactions between them can be captured.

Directly related to the above mentioned issue is that one-to-many or many-to-
many relationships may exist between entities in a workflow. Using contemporary
workflow languages these relationships are typically not expressed. In the Proclet
framework, these relationships are explicitly captured.

Also, for healthcare processes in general, a doctor proceeds in a step-by-
step way in which a series of subprocesses are started. However, it can not be
guaranteed that these finish in time before the start of the next consultation with
a doctor. By using our system, these processes are supported by modeling them
as a series of fragments running at different speeds, but that are still connected
in some way. That is, a process can be considered as a series of intertwined
loosely-coupled workflow fragments.

References

1. W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azéma and G. Balbo,
editors, Application and Theory of Petri Nets 1997, volume 1248 of Lecture Notes
in Computer Science, pages 407–426. Springer-Verlag, Berlin, 1997.

2. W.M.P. van der Aalst. Formalization and Verification of Event-driven Process
Chains. Information and Software Technology, 41(10):639–650, 1999.

3. W.M.P. van der Aalst. Business Process Management Demystified: A Tutorial on
Models, Systems and Standards for Workflow Management. In J. Desel, W. Reisig,
and G. Rozenberg, editors, Lectures on Concurrency and Petri Nets, volume 3098
of Lecture Notes in Computer Science, pages 1–65. Springer-Verlag, Berlin, 2004.

4. W.M.P. van der Aalst, P. Barthelmess, C.A. Ellis, and J. Wainer. Workflow Mod-
eling using Proclets. In O. Etzion and P. Scheuermann, editors, 7th International
Conference on Cooperative Information Systems (CoopIS 2000), volume 1901 of
Lecture Notes in Computer Science, pages 198–209. Springer-Verlag, Berlin, 2000.

5. W.M.P. van der Aalst, P. Barthelmess, C.A. Ellis, and J. Wainer. Proclets: A
Framework for Lightweight Interacting Workflow Processes. International Journal
of Cooperative Information Systems, 10(4):443–482, 2001.

6. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT Press, Cambridge, MA, 2002.

7. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.

8. P. Barthelmess and J. Wainer. Workflow Systems: a Few Definitions and a Few
Suggestions. In N. Comstock and C.A. Ellis, editors, Proceedings of the Confer-
ence on Organizational Computing Systems - COOCS’95, pages 138–147, Milpitas,
California, September 1995. ACM Press.

9. K. Bhattacharya, N. S. Caswell, S. Kumaran, A. Nigam, and F.Y. Wu. Artifact-
Centered Operational Modeling: Lessons from Customer EFngagements. IBM Sys-
tems Journal, 46(4):703–721, 2007.

10. K. Bhattacharya, C. Gerede, R. Hull, R. Liu, and J. Su. Towards Formal Anal-
ysis of Artifact-Centric Business Process Models. In G. Alonso, P. Dadam, and

58

M. Rosemann, editors, International Conference on Business Process Management
(BPM 2007), volume 4714 of Lecture Notes in Computer Science, pages 288–304.
Springer-Verlag, Berlin, 2007.

11. E.D. Browne, M. Schrefl, and J.R. Warren. A Two Tier, Goal-Driven Workflow
Model for the Healthcare Domain. In Proceedings of the 5th International Confer-
ence on Enterprise Information Systems (ICEIS 2003), pages 32–39, 2003.

12. E.D. Browne, M. Schrefl, and J.R. Warren. Activity Crediting in Distributed
Workflow Environments. In Proceedings of the 6th International Conference on
Enterprise Information Systems (ICEIS 2004), 2004.

13. E.D. Browne, M. Schrefl, and J.R. Warren. Goal-Focused Self-Modifying Workflow
in the Healthcare Domain. In Proceedings of the 37th Annual Hawaii International
Conference on System Sciences (HICSS-37 2004) - Track 6. IEEE Computer So-
ciety Press, 2004.

14. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Infor-
mation Systems: Bridging People and Software through Process Technology. Wiley
& Sons, 2005.

15. C. Heinlein. Workflow and Process Synchronization with Interaction Expressions
and Graphs. PhD thesis, Fakultät für Informatik, Universität Ulm, 2000. in Ger-
man.

16. C. Heinlein. Workflow and Process Synchronization with Interaction Expressions
and Graphs. In Proceedings of the 17th International Conference on Data Engi-
neering, pages 243–252. IEEE Computer Society, 2001.

17. C. Heinlein. Synchronization of Concurrent Workflows Using Interaction Expres-
sions and Coordination Protocols. In R. Meersman and Z. Tari, editors, On the
Move to Meaningful Internet Systems 2002: CoopIS, DOA, and ODBASE, volume
2519 of Lecture Notes in Computer Science, pages 54–71. Springer-Verlag, Berlin,
2002.

18. V. Künzle and M. Reichert. Towards Object-Aware Process Management Systems:
Issues, Challenges, Benefits. In T. Halpin, J. Krogstie, S. Nurcan, E. Proper,
R. Schmidt, P. Soffer, and R. Ukor, editors, Proc. 10th Int’l Workshop on Business
Process Modeling, Development, and Support (BPMDS’09), volume 29 of Lecture
Notes in Business Information Processing, pages 197–210. Springer-Verlag, Berlin,
2009.

19. D. Müller, M. Reichert, and J. Herbst. Data-Driven Modeling and Coordination
of Large Process Structures. In Z. Bellahsène and M. Léonard, editors, On the
Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and
IS, volume 4803 of Lecture Notes in Computer Science, pages 131–149. Springer-
Verlag, Berlin, 2007.

20. D. Müller, M. Reichert, and J. Herbst. A New Paradigm for the Enactment and
Dynamic Adaptation of Data-Driven Process Structures. In R. Meersman and
Z. Tari, editors, Advanced Information Systems Engineering, volume 5074 of Lec-
ture Notes in Computer Science, pages 48–63. Springer-Verlag, Berlin, 2008.

21. A. Nigam and N.S. Caswell. Business Artifacts: An Approach to Operational
Specification. IBM Systems Journal, 42(3):428–445, 2003.

22. S. Sadiq, M. Orlowska, W. Sadiq, and K. Schulz. When Workflows Will Not Deliver:
The Case of Contradicting Work Practice. In W. Abramowicz, editor, Proceedings
BIS’05, 2005.

23. J.R. Searle. Speech Acts. Cambridge University Press, Cambridge, 1969.
24. A.H.M. ter Hofstede, W.M.P. van der Aalst, M. Adams, and N. Russell, edi-

tors. Modern Business Process Automation: YAWL and its Support Environment.
Springer-Verlag, 2010.

59

25. W.M.P. van der Aalst, R.S. Mans, and N.C. Russell. Workflow Support using
Proclets: Divide, Interact and Conquer. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, 32(3):16–22, 2009.

26. M. Weske. Business Process Management: Concepts, Languages, Architectures.
Springer-Verlag, Berlin, 2007.

27. T. Winograd and F. Flores. Understanding Computers and Cognition: A New
Foundation for Design. Ablex, Norwood, 1986.

60

