Clone Detection in Repositories of
Business Process Models

Reina Ubal, Marlon Dumas!, Luciano Garcia-Baiiuelos®, and Marcello La Rosa?

! University of Tartu, Estonia
{reinak, marlon.dumas, luciano.garcia} @ut.ee
2 Queensland University of Technology, Australia
m.larosa@qut.edu.au

Abstract. As organizations reach to higher levels of business process manage-
ment maturity, they often find themselves maintaining repositories of hundreds or
even thousands of process models, representing valuable knowledge about their
operations. Over time, process model repositories tend to accumulate duplicate
fragments (also called clones) as new process models are created or extended by
copying and merging fragments from other models. This calls for methods to de-
tect clones in process models, so that these clones can be refactored as separate
subprocesses in order to improve maintainability. This paper presents an indexing
structure to support the fast detection of clones in large process model reposito-
ries. The proposed index is based on a novel combination of a method for process
model decomposition (specifically the Refined Process Structure Tree), with es-
tablished graph canonization and string matching techniques. Experiments show
that the algorithm scales to repositories with hundreds of models. The experimen-
tal results also show that a significant number of non-trivial clones can be found
in process model repositories taken from industrial practice.

1 Introduction

It is nowadays common for organizations engaged in long-term business process man-
agement programs to deal with collections of hundreds or even thousands of process
models, with sizes ranging from dozens to hundreds of elements per model [15, 14].
While highly valuable, such collections of process models raise a significant mainte-
nance problem [14]. This problem is amplified by the fact that process models in large
organizations are maintained and used by stakeholders with varying skills, responsibil-
ities and goals, sometimes distributed across independent organizational units.

One problem that arises as repositories grow is that of managing overlaps across
models. In particular, process model repositories tend to accumulate duplicate frag-
ments over time, as new process models are created by copying and merging fragments
from other models. Experiments conducted during this study show that a well-known
process model repository contains several hundred non-trivial clones. This situation is
akin to that observed in source code repositories, where significant amounts of duplicate
code fragments, known as code clones, are accumulated over time [10].

Cloned fragments in process models raise several issues. Firstly, clones make indi-
vidual process models larger than they need to be, thus affecting their comprehensibil-
ity. Secondly, clones are modified independently, sometimes by different stakeholders,

2 R. Uba et al.

leading to unwanted inconsistencies across models that originally contained a duplicate
clone. Finally, process model clones hide potential efficiency gains. Indeed, by factor-
ing out cloned fragments into separate subprocesses, and exposing these subprocesses
as shared services, companies may reap the benefits of larger resource pools.

In this setting, this paper addresses the problem of retrieving all clones in a pro-
cess model repository that can be refactored into shared subprocesses. Specifically, the
contribution of the paper is an index structure, namely the RPSDAG, that provides oper-
ations for inserting and deleting models, as well as an operation for retrieving all clones
in a repository that meet the following requirements:

— All retrieved clones must be single-entry, single-exit (SESE) fragments, since sub-
processes are invoked according to a call-and-return semantics.

— All retrieved clones must be exact clones so that every occurrence can be replaced
by an invocation to a single (shared) subprocess. While identifying approximate
clones could be useful in some scenarios, approximate clones cannot be directly
refactored into shared subprocesses, and thus fall outside the scope of this study.

— Any retrieved clone that occurs /N times in the repository, should not be contained
inside any other clone that also occurs N times. This maximality requirement is nat-
ural, since once we have identified a clone, every SESE fragment strictly contained
inside this clone is also a clone, but we do not wish to return all such sub-clones.

— Retrieved clones must have at least two nodes (no “trivial” clones).

Identifying clones in a process model repository boils down to identifying fragments
of a process model that are isomorphic to other fragments in the same or in another
model. Hence, we need a method for decomposing a process model into fragments and
a method for testing isomorphism of these fragments. Accordingly, the RPSDAG is
built on top of two pillars: (i) a method for decomposing a process model into SESE
fragments, namely the Refined Process Structure Tree (RPST) decomposition; and (ii)
a method for calculating canonical codes for labeled graphs. These canonical codes re-
duce the problem of testing for graph isomorphism between a pair of graphs, to a string
equality check. Section 2 introduces these methods and discusses how they are used
to address the problem at hand. Next, Section 3 describes the RPSDAG, including its
insertion and deletion algorithms. Section 4 presents an experimental evaluation of the
RPSDAG using several process model repositories. Finally, Section 5 discusses related
work while Section 6 draws conclusions.

2 Background

This section introduces the two basic ingredients of the proposed technique: the Refined
Process Structure Tree (RPST) and the code-based graph indexing.

2.1 RPST

The RPST [18] is a parsing technique that takes as input a process model and computes
a tree representing a hierarchy of SESE fragments. Each fragment corresponds to the
subgraph induced by a set of edges. A SESE fragment in the tree contains all fragments
at the lower level, but fragments at the same level are disjoint. As the partition is made
in terms of edges, a single vertex may be shared by several fragments.

Clone Detection in Repositories of Business Process Models 3

to the claim reimbursement

I (‘Determine if the Complete customer or
invoice relates third party

Determine
whether tax
invoice is valid

Determine
source of Investigate error

e re
for proof of
ownership
Determine if
invoice is
duplicate

Contact service
provider activity for the
relevant Insurer team

Determine if
invoice has
already been paid

yes Determine
whether Insurer
92 authorised work

Contact customer
activity for the
relevant Insurer team

Determine
source of
invoice

Determine
whether tax
invoice is valid

|
Determineifthe) | AL________
invoice relates 1 |
to the claim |
Determine | |
source of H Investigate error :
Determine whether invoice : :
|
|
|

Complete customer or
third party

reimbursement

invoice received is | JIAN L o= - o o o o o S)
for proof of
ownership

Close the
relevant invoice
ceived activity

Determine if
invoice is
duplicate

Contact service
provider activity for the
relevant Insurer t

Determine if

invoice has whether Insurer
already been paid authorised work
,,,,,,,,,,, Contact customer

activity for the
relevant Insurer team

Determine Close the
relevant invoice

received activity

Fig. 1. Excerpt of two process models of an insurance company.

SESE fragments contained in the RPST can be classified into
one of four classes [13]. A trivial (T) fragment consists of a sin-
gle edge. A polygon (P) fragment is a sequence of fragments. A
bond corresponds to a fragment where all child fragments share a
common pair of vertices. Any other fragment is a rigid.

Figure 1(a) presents a sample process model, for which the
RPST decomposition is shown in the form of dashed boxes. A sim-
plified view of the tree is presented in Figure 2. Using this view, Fig.2. RPST of
it can be seen that the root fragment corresponds to polygon P14, Process model in
which in turn contains the rigid R13 and a set of trivial fragments Fig. 1(a).

(simple edges) which are not shown to simplify the figure. R13
is composed of polygons P12, P5, P4, and so forth. Polygons P4, P5, P7 and P10 have

4 R. Uba et al.

been highlighted to ease the comparison with the similar subgraphs found in the process
model shown in Figure 1(b).

Although the example process models are presented using the BPMN notation,
the set of techniques can be used with other graph-oriented modeling notations. To
achieve this notation-independence, we use the following graph-based representation
of (BPMN) process models:

Definition 1 (Process Graph). A Process Graph is a labelled connected graph G =
(V,E,l), where:
— V is the set of vertices.
— E CV x V is the set of directed edges (e.g. representing control-flow relations).
— [:V — X*is alabeling function that maps each vertex to a string over alphabet
Y. We distinguish the following special labels: [(v) = “start” and l(v) = “end”
are reserved for start events and end events respectively; [(v) = “xor-split” is used
for vertices representing xor-split (exclusive decision) gateways; similarly [(v) =
“xor-join”, I(v) = “and-split” and [(v) = “and-join” represent merge gateways,
parallel split gateways and parallel join gateways respectively. For a task node ¢,
I(t) is the label of the task.

This definition can be extended to capture other types of BPMN elements by in-
troducing additional types of nodes (e.g. a type of node for inclusive gateways). Orga-
nizational information such as lanes and pools can be captured by attaching dedicated
attributes to each node (e.g. each node could have an attribute indicating the pool and
lane to which it belongs). In this paper, we do not consider sub-processes, since each
sub-process can be indexed separately for the purpose of clone identification.

2.2 Canonical labeling of graphs

Our approach for graph indexing is an adaptation of the approach proposed in [20]. The
adaptations we make relate to two specificities of process models that differentiate them
from the class of graphs considered in [20]: (i) process models are directed graphs; (ii)
process models can be decomposed into an RPST.

Following the method in [20], our starting point is a matrix representation of a
process graph encoding the vertex adjacency and the vertex labels, as defined below.

Definition 2 (Augmented Adjacency Matrix of a Process Graph). Let G =
(V,E,l) be a Process Graph, and v = (v1,...,v)y|) a total order over the ele-
ments of V. The adjacency matrix of GG, denoted as A, is a (0, 1)-matrix such that
A, ; = 1if and only if (v;,v;) € E, where i,j € {1...|V|}. Moreover, let us con-
sider a function h : X* — N\ {0, 1} that maps each vertex label to a unique natu-
ral number greater than 1. The Augmented Adjacency Matrix M of G is defined as:
M = diag(h(I(v1)), ..., h(l(vjv)))) + A

Given the augmented adjacency matrix of a process graph (or a SESE fragment
therein), we can compute a string (hereby called a code) by concatenating the contents
of each cell in the matrix from left to right and from top to bottom. For illustration, con-
sider graph G in Figure 3(a), which is an abstract view of fragment B3 of the running

Clone Detection in Repositories of Business Process Models 5

example (cf. Figure 1(a)). For convenience, next to each vertex we show the unique ver-
tex identifier (e.g. v1), the corresponding label (e.g. [(v1) =“A”), and the numeric value
associated with the label (e.g. h(I(v1)) = 2). Assuming the order v = (v, va, V3, V4)
over the set of vertices, the matrix shown in Figure 3(b) is the adjacency matrix of G.
Figure 3(c) is the diagonal matrix built from h(I(v)) whereas Figure 3(d) shows the
augmented adjacency matrix M for graph G. It is now clear why 0 and 1 are not part of
the codomain of function h, i.e. to avoid clashes with the representation of vertex adja-
cency. Figure 3(e) shows a possible permutation of M when considering the alternative
order v/ = (vy, vy, va, v3) over the set of vertices.

@ 0110 2000 2110 2011
@ @ 0001 0300 0301 0500
0001 0040 0041 0130

@ 0000 0005 0005 0104

(a) (b) (©) (@) (e)

Fig. 3. (a) a sample graph, (b) its adjacency matrix, (c) its diagonal matrix with the vertex label
codes, (d) its augmented adjacency matrix, and (e) a permutation of the augmented matrix

Next, we transform the augmented adjacency matrix into a code by scanning from
left-to-right and top-to-bottom. For instance, the matrix in Figure 3(d) can be repre-
sented as “2.1.1.0.0.3.0.1.0.0.4.1.0.0.0.5”. This code however does not uniquely rep-
resent the graph. If we chose a different ordering of the vertices, we would obtain a
different code. To obtain a unique code (called a canonical code), we need to pick the
code that lexicographically “precedes” all other codes that can be constructed from an
augmented adjacency matrix representation of the graph. Conceptually, this means we
have to consider all possible permutations of the set of vertices and compute a code for
each permutation, as captured in the following definition.

Definition 3 (Graph Canonical Code). Let GG be a process graph, M the augmented
adjacency matrix of G. The Graph Canonical Code is the smallest lexicographical
string representation of any possible permutation of matrix M, that is:

code(M) = str((PTMP)|P e I AVQ € II,P # Q : sut(PTMP) < str(Q" M Q)

where:
— II is the set of all possible permutations of the identity matrix I|pz
— str(IV) is a function that maps a matrix IV into a string representation.

Consider the matrices in Figures 3(d) and 3(e). The code of the matrix in Fig-
ure 3(e) is “2.0.1.1.0.5.0.0.0.1.3.0.0.1.0.4’. This code is lexicographically smaller than
the code of the matrix in Figure 3(d) (“2.1.1.0.0.3.0.1.0.0.4.1.0.0.0.5”). If we explored
all vertex permutations and constructed the corresponding matrices, we would find that
“2.0.1.1.0.5.0.0.0.1.3.0.0.1.0.4” is the canonical code of the graph in Figure 3(a).

Enumerating all vertex permutations is unscalable (factorial on the number of ver-
tices). Fortunately, optimizations can be applied by leveraging the characteristics of the
graphs at hand. Firstly, by exploiting the nature of the fragments in an RPST, we can
apply the following optimizations:

6 R. Uba et al.

— The code of a polygon is computed in linear time by concatenating the codes of its
contained vertices in the (total) order implied by the control flow.

— The code of a bond is also computed in linear time by taking the entry gateway as
the first vertex, the exit gateway as the last vertex and all vertices in-between are
ordered lexicographically based on their labels.

In the case of a rigid, we start by partitioning its vertices into two subsets: vertices
with distinct labels, and vertices with duplicate labels. Vertices with distinct labels are
deterministically ordered in lexicographic order. Hence we do not need to explore any
permutations between these vertices. Instead, we can focus on deterministically order-
ing vertices with duplicate labels. Duplicate labels in process models arise in two cases:
(i) there are multiple tasks (or events) with the same label; (ii) there are multiple gate-
ways of the same type (e.g. multiple “xor-splits”) that cannot be distinguished from one
another since gateways generally do not have labels. To distinguish between multiple
gateways, we pre-process each gateway g by computing the tasks that immediately pre-
cede it and the tasks that immediately follow it within the same rigid fragment, and in
doing so, we skip other gateways found between gateway g and each of its preceding
(or succeeding) tasks. We then concatenate the labels of the preceding tasks (in lexi-
cographic order) and the labels of the succeeding tasks (again in lexicographic order)
to derive a new label s;. The s, labels derived in this way are used to order multiple
gateways of the same type within the same rigid. Consider for example g; and g5 in
Figure 1(b) and let s1 = “Determine if invoice has already been paid”, s2="Determine
whether invoice received is for proof of ownership” and s3="Determine whether Insurer
authorized work”. We have that s, = “s1.s2” while s, = “s1.s3.52”. Since s3 precedes
s2, gateway go will always be placed before g; when constructing an augmented adja-
cency matrix for R13. In other words, we do not need to explore any permutation where
g1 comes before go. Even if task “Determine if invoice is duplicate” precedes g; this
is not used to compute sy, because this task is outside rigid R13. To ensure unicity,
vertices located outside a rigid should not be used to compute its canonical code.

A similar approach is used to order tasks with duplicate labels within a rigid. This
“label propagation” approach allows us to considerably reduce the number of permuta-
tions we need to explore. Indeed, we only need to explore permutations between multi-
ple vertices if they have identical labels and they are preceded and followed by vertices
that also have the same labels. The worst-case complexity for computing the canonical
code is still factorial, but on the size of the largest group of vertices inside a rigid that
have identical labels and identical predecessors and successors’ labels.

3 Clone Detection Method

In this section we introduce the RPSDAG index structure and its associated clone re-
trieval, insertion and deletion methods.

3.1 Index structure and clone detection

The RPSDAG is designed to be directly implemented on top of standard relational
databases. Accordingly, the RPSDAG consists of three tables: Codes(Code, Id, Size,
Type), Roots(Graphld, Rootld) and RPSDAG(Parentld, Childld). Table Codes contains

Clone Detection in Repositories of Business Process Models 7

the canonical code for each RPST fragment of an indexed graph. Column “Id” assigns a
unique identifier to each indexed fragment, column Code gives the canonical code of a
fragment, column Size is the number of vertices in the fragment, and column Type de-
notes the type of fragment (“p” for polygon, “r”” for rigid and “b” for bond). The “Id” is
auto-generated by incrementing a counter every time that a new code is inserted into the
Codes table. Strictly speaking, the “Id” is redundant given that the code uniquely iden-
tifies each fragment. However, the “id” gives us a shorter way of uniquely identifying a
fragment. When the canonical code of a new RPST node is constructed, we use the short
identifiers of its child fragments as labels (in the diagonal of the augmented adjacency
matrix), instead of using the child fragment’s canonical codes which are longer.

Table Roots contains the Id of each indexed Parentld Childld
graph and the Id of the root fragment for that [Code[Id[Size[Type 3 2
graph. Table RPSDAG is the main component of - i } p ‘8‘ 2
the index and is a combined representation of the 3T E 3 =
RPSTs of all the graphs in the repository. Since 4161 0p
multiple RPSTs may share fragments (these are 2 ; g B 2
precisely the clones we look for), the RPSDAG
table represents a Directed Acyclic Graph (DAG) L : = >
rather than a tree. Each tuple of this table is a pair 16 5
consisting of a parent fragment id and a child frag- - 22| p ; Z
ment id. Figure 4 shows an extract of the tables oI 3
representing the two graphs in Figure 1. Here, the

fragment Ids have been derived from the fragment G”“}’hld R"]"fd

names in the Figure (e.g. the id for P4 is 4) and the 2 2
codes have been hidden for the sake of readability.

Fig. 4. RPST of process model in
Looking at the RPSDAG, we can immediately Fig, 1(a).

observe that the maximal clones are those child
fragments that have more than one parent. Accordingly, we can retrieve all clones in an
RPSDAG by means of the following SQL query.

SELECT RPSDAG. ChildIld, Codes.Size , COUNT(RPSDAG. Parentld)
FROM RPSDAG, Codes

WHERE RPSDAG. Childld = Codes.Id AND Codes.Size >= 2

GROUP BY RPSDAG. ChildId , Codes. Size

HAVING COUNT(RPSDAG. Parentld) >= 2;

This query retrieves the id, size and number of occurrences of fragments that have
at least two parent fragments. Note that if a fragment appears multiple times in the
indexed graphs, but always under the same parent fragment, it is not a maximal clone.
For example, fragment P2 in Figure 1 always appears under B3, and B3 always appears
under P4. Thus, neither P2 nor B3 are maximal clones, and the above query does not
retrieve them. On the other hand, the query identifies P4 as a maximal clone since it has
two parents (cf. tuples (13,4) and (21,4) in table RPSDAG in Fig. 4). Also, as per the
requirements spelled out in Section 1, the query returns only fragments with at least 2
vertices. For example, even if there are two tuples with Childld 5 and 10 in the example
RPSDAG, the query will not return clones P5 and P10 as they are single nodes.

8 R. Uba et al.

3.2 Insertion and Deletion

Algorithm 1 describes the procedure for inserting a new process graph into an indexed
repository. Given an input graph, the algorithm first computes its RPST with function
ComputeRPST() which returns the RPST’s root node. Next, procedure InsertFragment
is invoked on the root node to update tables Codes and RPSDAG. This returns the id
of the root fragment. Finally, a tuple is added to table Roots with the id of the inserted
graph and that of its root node.

Algorithm 1: Insert Graph

procedure Insert Graph(Graph m)
RPST root <= ComputeRPST(m)
rid <= InsertFragment(root)
Roots < Roots U {(Newld(),rid)} // NewlId() generates a fresh id

Algorithm 2: Insert Fragment

procedure InsertFragment(RPST f) returns RPSDAGNodeld
{RPST,RPSDAGNodeld} C < @
foreach RPST child in GetChildren(f) do
| C < CU{(child, InsertFragment(child))}
code <= ComputeCode(f, C)
(id, type) = InsertNode(code, f)
foreach (cf, cid) in C do
| RPSDAG <= RPSDAG U {(id,cid)}
if type =“p” then InsertSubPolygons(id, code, f)
return id

Procedure InsertFragment (Algorithm 2) inserts an RPST fragment in table RPS-
DAG . This algorithm performs a depth-first search traversal of the RPST. Nodes are
visited in postorder, i.e. a node is visited after all its children have been visited. When a
node is visited, its canonical code is computed — function ComputeCode — based on the
topology of the RPST fragment and the codes of its children (except of course for leaf
nodes whose labels are their canonical codes). Next, procedure InsertNode is invoked to
insert the node in table Codes, returning its id and type. This procedure (Algorithm 3)
first checks if the node already exists in Codes, via function GetldSizeType(). If it ex-
ists, GetldSizeType() returns the id, size and type associated with that code, otherwise
it returns the tuple (0,0,“”). In this latter case, a fresh id is created for the node at hand,
then its size and type are computed via functions ComputeSize and ComputeType, and
a new tuple is added in table Codes. Function ComputeSize returns the sum of the sizes
of all child nodes or 1 if the current node is a leaf. Once the node id and type have
been retrieved, procedure InsertFragment adds a new tuple in table RPSDAG for each
children of the visited node.

If the node is a polygon, procedure InsertSubPolygons() is invoked in the last step
of InsertFragment. This procedure is used to identify common subpolygons and factor

Clone Detection in Repositories of Business Process Models 9

Algorithm 3: Insert Node

procedure InsertNode(String code, RPST f) returns (RPSDAGNodeld, String)
(id, size, type) < GetldSizeType(code)
if (id, size, type) = (0,0,“”) then
td <= Newld()
size < ComputeSize(code)
type <= ComputeType(f)
Codes <= Codes U {(code, id, size, type) }
return (id,type)

Algorithm 4: Insert SubPolygons

procedure InsertSubPolygons(RPSDAGNodeld id, String code, RPST f)
foreach (zcode, zid, zsize, ztype) in Codes such that ztype =“p” and zid # id do
{String} LC'S < ComputeLCS(code, zcode)
foreach Icode in LC'S do
(lid, ltype) = InsertNode(lcode, f)
if lid # id then RPSDAG < RPSDAG U {(id, lid)}
if lid # zid then RPSDAG < RPSDAG U {(zid, lid) }
foreach sid in GetChildrenlds(lid) do
| RPSDAG < RPSDAG\ {(id, sid), (zid, sid)} U {(lid, sid)}
InsertSubPolygons(lid, lcode)

them out as separate nodes. Indeed, two polygons may share one or more subpoly-
gons which should also be identified as clones. To illustrate this scenario, let us con-
sider the two polygons P; and P, in Fig. 5, where code(P;) = Bs.a.B.w.z.a.Bj.c
and code(P,) = a.Bj.c.d.a.By.w.z.! These two polygons share bond B; as common
child, while bond B is a child of P; only. However, at a closer look, their canonical
codes share three Longest Common Substrings (LCS), namely a.B1.c, a. B and w.z.2
These common substrings represent common subpolygons, and thus clones that may be
refactored as separate subprocesses.

Assume P, is already stored in the RPSDAG with children B; and By (first graph in
Fig. 5) and we now want to store P,. We invoke procedure InsertFragment(FP;) and add
a new node in the RPSDAG, with B; as a child (second graph in Fig. 5). Since P, is a
polygon, we also need to invoke InsertSubPolygons(F). This procedure (Algorithm 4)
retrieves all polygons from Codes that are different than P, (in our case there is only
P). Then, for each such polygon, it computes all the non-trivial LCSs between its
code and the code of the polygon just being inserted. This is performed by function
ComputeL.CS() which returns an ordered list of LCSs starting from the longest one
(there are efficient algorithms to compute the LCSs of two strings. This can be done

! For the sake of readability, here we use the node/fragment label as canonical code, instead of
the numeric value associated with their label

2 An LCS of strings S and S is a substring of both S; and S, which is not contained in any
other substring shared by S; and S>. LCSs of size one are not considered for obvious reasons.

10 R. Uba et al.

P |P4 IiPs N ‘ ‘PZIPS

aamneama

__

RPSDAG

P1 PZ P1
Insert Insert P; B,
B, B, Fragment(P;) SubPolygons(P;) Insert

LCS(P2,P1)={P3,P4,Ps} B, ﬂ SubPolygons(P;)
LCS(P3,P2)={P4}
P, Py P, P
AN7AN= . (=
Ps Insert Insert
SubPolygons(P;) SubPolygons(P;)
P4 LCS(P2,P1)={Ps} Pa LCS(Ps,Py)={P3}
(continues) (continues)
B4 B

Fig. 5. Two subpolygons and the corresponding RPSDAG.

by using a suffix tree [17] to index the canonical codes of the existing polygons, see

g. [6] for a survey of LCS algorithms). In the example at hand, the longest substring
is a.Bj.c. This substring can be seen as the canonical code of a “shared” subpolygon
between P, and P;. To capture the fact that this shared subpolygon is a clone, we insert
a new node P; in the RPSDAG with canonical code a.Bj .c (unless such a node already
exists, in which case we reuse the existing node) and we insert an edge from P; to P
and from P, to Ps. In order to avoid redundancy in the RPSDAG, the new node P then
“adopts” all the common children that it shares with P, and with P;. These nodes are
retrieved by function GetChildrenlds(), which simply returns the ids of all child nodes
of Ps: these will either be children of P, or P, or both. In our example, there is only
one common child, namely B;, which is adopted by Ps (see third graph in Fig. 5).

It is possible that the newly inserted node also shares subpolygons with other nodes
in the RPSDAG. So, before continuing to process the remaining LCSs between P; and
P, we invoke procedure InsertSubPolygons recursively over Ps. In our example, the
code of P; shares the substring a.B; with both P, and P, (after excluding the code of
Ps5 from the codes of P, and P; since Pj is already a child of these two nodes). Thus we
create a new node P, with code a.Bj as a child of P5; and P», and we make P, adopt the
common child B; (see fourth graph in Fig. 5). We repeat the same operation between
P5 and P but since this time P, already exists in the RPSDAG, we simply remove the
edge between P and Bj, and add an edge between P; and P (fifth graph in Fig. 5).
Then, we resume the execution of InsertSubPolygons(FP;) and move to the second LCS
between P; and P», i.e. a.B;. Since this substring has already been inserted into the
RPSDAG as node P, nothing is done. This process of searching for LCSs is repeated
until no more non-trivial common substrings can be identified. In the example at hand,
we also add subpolygon w.z between P; and P; (last graph in Fig. 5). At this point, we
have identified and factored out all maximal subpolygons shared by P, and P5, and we
can repeat the above process for other polygons in the RPSDAG whose canonical code
shares a common substring with that of P;.

Clone Detection in Repositories of Business Process Models 11

Sometimes there may be multiple overlapping LCSs of the same size. For example,
given the codes of two polygons a.b.c.d.e.f.a.b.c and a.b.c.k.b.c.d, if we extract one
substring (say a.b.c), we can no longer extract the second one (b.c.d). In these cases we
locally choose based on the number of occurrences of an LCS within the two strings in
question. If they have the same number of occurrences, we randomly choose one. In the
example above, a.b.c has the same size of b.c.d but it occurs 3 times, so we pick a.b.c.

We do not explicitly discuss the cases where the polygon to be inserted is a sub-
polygon or superpolygon of an existing polygon. These are just special cases of shared
subpolygon detection, and they are covered by procedure InsertSubPolygons.

Algorithm 5 shows the procedure for deleting a graph from an indexed repository.
This procedure relies on another procedure for deleting a fragment, namely Delete-
Fragment (Algorithm 6). The DeleteFragment procedure performs a depth-first search
traversal of the RPSDAG, visiting the nodes in post-order. Nodes with at most one par-
ent are deleted, because they correspond to fragments that appear only in the deleted
graph. Deleting a node entails deleting the corresponding tuple in table Codes and delet-
ing all tuples in the RPSDAG table where the deleted node corresponds to the parent id.
If a fragment has two or more parents, the traversal stops along that branch since this
node and its descendants must remain in the RPSDAG. At the end of the DeleteGraph
procedure, the graph itself is deleted from table Roots through its root id.

If the node to be removed is a polygon, it has only two parents and both parents are
polygons, it is a shared subpolygon. Before deleting such a node, we need to make sure
all its children are adopted by the parent polygon that will remain in the RPSDAG. For
space reasons, we omit this step in the deletion algorithm.

Also, for space reasons the above algorithms do not take into account the case where
a fragment is contained multiple times in the same parent fragment, like for example a
polygon that contains two tasks with identical labels. To address this case, we have to
introduce an attribute “Weight” in the RPSDAG table, representing the number of times
a child node occurs inside a parent node. Under this representation, a node is a clone if
the sum of the weights of its incoming edges in the RPSDAG is greater than one.

Complexity. The deletion algorithm performs a depth-first search, which is linear on the
size of the graph being deleted. Similarly, the insertion algorithm traverses the inserted
graph in linear time. Then, for each fragment to be inserted, it computes its code. Com-
puting the code is linear on the size of the fragment for bonds and polygons, while for
rigids it is factorial on the largest number of vertices inside the rigid that share identical
labels, as discussed in Section 2.2.° Finally, if the fragment is a polygon, we compute
all LCSs between this polygon and all other polygons in the RPSDAG. Using a suffix
tree, this operation is linear on the sum of the lengths of all polygons’ canonical codes.

4 Evaluation

We evaluated the RPSDAG using four datasets: the collection of SAP R3 reference pro-
cess models [9], a model repository obtained from an insurance company under condi-
tion of anonymity and two collections from the IBM BIT process library [5], namely
collections A and B3. In the BIT process library there are 5 collections (A, B1, B2, B3

3 A tighter complexity bound for this problem is given in [1].

12 R. Uba et al.

Algorithm 5: Delete Graph

procedure DeleteGraph(Graphld mid)
RPSDAGNodeld rid < GetRoot(mid)
DeleteFragment(rid)

Roots <= Roots \ {(mid,rid)}

Algorithm 6: Delete Fragment

procedure DeleteFragment(RPSDAGNodeld fid)
if |[{(pid, cid) € RPSDAG : cid = fid}| < 1 then
foreach (pid, cid) in RPSDAG where pid = fid do
DeleteFragment(cid)
L RPSDAG « RPSDAG \ {(pid, cid)}

Codes < {(code, id, size, type) € Codes : id # fid}

and C). We excluded collections B1 and B2 because they are earlier versions of B3, and
collection C because it is a mix of models from different sources and as such it does not
contain any clones. The SAP repository contains 595 models with sizes ranging from 5
to 119 nodes (average 22.28, median 17). The insurance repository contains 363 models
ranging from 4 to 461 nodes (average 27.12, median 19). The BIT collection A contains
269 models ranging from 5 to 47 nodes (average 17.01, median 16) while collection B3
contains 247 models with 5 to 42 nodes (average 12.94, median 11).

Performance evaluation. We first evaluated the insertion times. Obviously inserting
a new model into a nearly-empty RPSDAG is less costly than doing so in an already
populated one. To factor out this effect, we randomly split each dataset as follows:
One third of the models were used to construct an initial RPSDAG and the other two-
thirds were used to measure insertion times. In the SAP repository, 200 models were
used to construct an initial RPSDAG. Constructing the initial RPSDAG took 26.1s.
In the insurance company repository, the initial RPSDAG contained 121 models and its
construction took 7.4s. For the BIT collections A and B3, 90 and 82 models respectively
were used for constructing the initial RPSDAG. Constructing the initial RPSDAGS took
4.2s for collection A and 3.5s for collection B3. All tests were conducted on a PC with
a dual core Intel processor, 1.8 GHz, 4 GB memory, running Microsoft Windows 7 and
Oracle Java Virtual Machine v1.6. The RPSDAG was implemented as a Java console
application on top of MySQL 5.1. Each test was run 10 times and the execution times
obtained across the ten runs were averaged.

Table 1 summarizes the insertion time per model for each collection (min, max,
avg., std. dev., and 90" percentile). All values are in milliseconds. These statistics are
given for two cases: without subpolygon clone detection and with subpolygon clone
detection. We observe that the average insertion time per model is about 3-5 times
larger when subpolygon clone detection is performed. This overhead comes from the
step where we compare inserted polygon with each already-indexed polygon and com-
pute the longest-common substring of their canonical codes. Still, the average execution

Clone Detection in Repositories of Business Process Models 13

times remain in the order of tens of milliseconds across all model collections even with
subpolygon detection. The highest average insertion time (125ms) is observed for the
Insurance collection. This collection contains some models with large rigid components
in their RPST. In particular, one model contained a rigid component in which 2 task la-
bels appeared 9 times each — i.e. 9 tasks had one of these labels and 9 tasks had the
other — and these tasks were all preceded by the same gateway. This label repetition
affected the computation of the canonical code (4.4 seconds for this particular rigid).
Putting aside this extreme case, all insertion times were under one second and in 90%
of the cases (lgp), the insertion times in this collection were under 50ms without sub-
polygon detection and 222ms with subpolygon detection. Thus we can conclude that
the proposed technique scales up to real-sized model collections.

min max avg std log
SAP 4 85 20 14 40
Insurance 5 1722 32 113 49 No subpolygon
BIT A 3 58 12 9 23
BIT B3 5 467 14 9 28
SAP 4 482 97 81 202
Insurance 26 4402 126 291 222 Subpolygon
BIT A 18 128 41 20 59
BIT B3 5 150 33 24 69

Table 1. Model insertion times (in ms).

As explained in Section 3, once the models are inserted, we can find all clones with
a SQL query. The query to find all clones with at least 2 nodes and 2 parents from the
SAP reference models takes 75ms on average (90ms for the insurance models, 118 and
116ms for BIT collections A and B3).

Refactoring gain. One of the main applications of clone detection is to refactor the
identified clones as shared subprocesses in order to reduce the size of the model collec-
tion and increase its navigability. In order to assess the benefit of refactoring clones into
subprocesses, we define the following measure.

Definition 4. The refactoring gain of a clone is the reduction in number of nodes ob-
tained by encapsulating that clone into a separate subprocess, and replacing every
occurrence of the clone with a task that invokes this subprocess. Specifically, let S be
the size of a clone, and N the number of occurrences of this clone. Since all occur-
rences of a clone are replaced by a single occurrence plus N subprocess invocations,
the refactoring gainis: S- N — S — N.

Given a collection of models, the total refactoring gain is the sum of the refactoring
gains of the clones of non-trivial clones (size > 2) in the collection.

Table 2 summarizes the total refactoring gain for each model collection. The first
two columns correspond to the total number of clones detected and the total refactor-
ing gain without subpolygon refactoring. The third and fourth column show number of
clones and refactoring gain with subpolygon refactoring. The table shows that a sig-
nificant number of clones can be found in all model collections, and that the size of
these model collections could be reduced by 4-14% if clones were factored out into
shared subprocesses. The table also shows that subpolygon clone detection adds sig-
nificant value to the clone detection method. For instance, in the case of the insurance

14 R. Uba et al.

models, we obtain about 3 times more clones and 3 times more refactoring gain when
subpolygon clone detection is performed.

No subpolygon With subpolygon
Nr. clones refactoring gain Nr. clones refactoring gain
SAP 204 1359 (10.3%) 479 1834 (13.8%)
Insurance 107 394 (4%) 279 883 (9%)
BIT A 57 195 (4.3%) 174 384 (8.4%)
BIT B3 19 208 (6.5%) 49 259 (6.6%)

Table 2. Total refactoring gain without and with subpolygon refactoring.

Table 3 shows more detailed statistics of the clones found with subpolygon detec-
tion. The first three columns give statistics about the sizes of the clones found, the next
three columns refer to the frequency (number of occurrences) of the clones, and the last
three correspond to refactoring gain. We observe that while the average clone size is
relatively small (3-5 nodes), there are some large clones with sizes of 30+ nodes.

Size # occurrences Refactoring gain
avg max std. dev. ||avg max std. dev. ||avg max std. dev.
SAP 4.79 41 4.05 2.33 8 0.77 3.83 44 5.68
Insurance 3.58 32 3.18 2.76 41 3.18 3.16 79 7.67
BIT A 3.02 16 2.08 2.75 9 1.29 2.21 15 3.12
BIT B3 3.18 9 1.58 3.82 20 3.70 5.29 37 8.87

Table 3. Statistics of detected clones (with subpolygon detection).

5 Related Work

Clone detection in software repositories has been an active field for several years. Ac-
cording to [3], approaches can be classified into: textual comparison, token comparison,
metric comparison, abstract syntax tree (AST) comparison, and program dependence
graphs (PDG) comparison. The latter two categories are close to our problem, as they
use a graph-based representation. In [2], the authors describe a method for clone de-
tection based on ASTs. The method applies a hash function to subtrees of the AST in
order to distribute subtrees across buckets. Subtrees in the same bucket are compared
by testing for tree isomorphism. This work differs from ours in that RPSTs are not per-
fect trees. Instead, RPSTs contain rigid components that are irreducible and need to be
treated as subgraphs—thus tree isomorphism is not directly applicable. [11] describes
a technique for code clone detection using PDGs. A subgraph isomorphism algorithm
is used for clone detection. In contrast, we employ canonical codes instead of pairwise
subgraph isomorphism detection. Another difference is that we take advantage of the
RPST in order to decompose the process graph into SESE fragments.

Work on clone detection has also been undertaken in the field of model-driven engi-
neering. [4] describes a method for detecting clones in large repositories of Simulink/-
TargetLink models from the automotive industry. Models are partitioned into connected
components and compared pairwise using a heuristic subgraph matching algorithm.
Again, the main difference with our work is that we use canonical codes instead of sub-
graph isomorphism detection. In [12], the authors describe two methods for exact and
approximate matching of clones for Simulink models. In the first method, they apply an

Clone Detection in Repositories of Business Process Models 15

incremental, heuristic subgraph matching algorithm. In the second approach, graphs are
represented by a set of vectors built from graph features: e.g. path lengths, vertex in/out
degrees, etc. An empirical study shows that this feature-based approximate matching
approach improves pre-processing and running times, while keeping a high precision.
However, this data structure does not support incremental insertions/deletions.

Our work is also related to graph database indexing. GraphGrep [16] is an index de-
signed to retrieve paths in a graph that match a given regular expression. However, paths
are indexed up to a certain threshold length, reducing the usefulness of this index for
clone detection. The closure-tree index [7] organizes graphs as a hierarchy of subgraphs.
Each leaf in the tree stores (a reference to) an entire graph. Non-leave nodes contain
closure subgraphs, where nodes are either real nodes in the original graph or “closure”
nodes representing folded subgraphs. The major drawbacks of the closure-tree index
are large store requirements, and a significant time overhead during creation/update.

In [8], we described an index to retrieve process models in a repository that exactly
or approximately match a given model fragment. In this approach, paths in the process
models are used as index features. Given a collection of models, a B+ tree is used to
reduce the search space by discarding those models that do not contain any path of the
query model. The remaining models are checked for subgraph isomorphism.

In [19], eleven process model refactoring techniques are identified and evaluated.
Extracting process fragments as subprocesses is one of the techniques identified. Our
work addresses the problem of identifying opportunities for such “fragment extraction”.

6 Conclusion

We presented a technique to index process models in order to identify duplicate SESE
fragments (clones) that can be refactored into shared subprocesses. The proposed index,
namely the RPSDAG, combines a method for decomposing process models into SESE
fragments (the RPST decomposition) with a method for generating a unique string from
a labeled graph (canonical codes). These canonical codes are used to determine whether
a SESE fragment in a model appears elsewhere in the same or in another model.

The RPSDAG has been implemented and tested using process model repositories
from industrial practice. In addition to demonstrating the scalability of the RPSDAG,
the experimental results show that a significant number of non-trivial clones can be
found in industrial process model repositories. In one repository, ca. 480 non-trivial
clones were found. By refactoring these clones, the overall size of the repository is re-
duced by close to 14%, which arguably would enhance the repository’s maintainability.

A standalone release of the RPSDAG implementation, together with sample models,
is available at: http://apromore.org/tools. The tool takes as input a collec-
tion of files and produces a listing of all clones found.

The current RPSDAG implementation can be further optimized in three ways: (i) by
using suffix trees for identifying the longest common substrings between the code of an
inserted polygon and those of already-indexed polygons; (ii) by storing the canonical
codes of each fragment in a hash index in order to speed up retrieval; (iii) by using the
Nauty library for computing canonical codes*. Nauty implements several optimizations
that potentially complement the optimizations described in Section 2.2.

‘http://cs.anu.edu.au/~bdm/nauty/

16 R. Uba et al.

Another avenue for future work is to extend the proposed technique in order to iden-
tify approximate clones. This has applications in the context of process standardization,
when analysts seek to identify similar but non-identical fragments and to replace them
with standardized fragments in order to increase the homogeneity of work practices.

Acknowledgments This research is partly funded by the Estonian Science Foundation,
the European Social Fund via the Estonian ICT Doctoral School and the European Re-
gional Development Fund via the Estonian Centre of Excellence in Computer Science.

References

1. L. Babai. Monte carlo algorithms in graph isomorphism testing. Technical Report D.M.S.
No. 79-10, Universite de Montreal, 1979.
2. 1. D. Baxter, A. Yahin, L. Moura, M. Sant’ Anna, and L. Bier. Clone Detection Using Abstract
Syntax Trees. In the Int. Conf. on Software Maintenance, pages 368-377, 1998.
3. S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison and Evaluation of
Clone Detection Tools. IEEE Trans. on Software Engineering, 33(9):577-591, 2007.
4. F. Deissenboeck, B. Hummel, E. Jiirgens, B. Schétz, S. Wagner, J.-F. Girard, and S. Teuchert.
Clone Detection in Automotive Model-based Development. In /CSE, 2008.
5. D. Fahland, C. Favre, B. Jobstmann, J. Koehler, N. Lohmann, H. Vélzer, and K. Wolf. In-
stantaneous soundness checking of industrial business process models. In BPM, 20009.
6. D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and Computa-
tional Biology. Cambridge University Press, 1997.
7. H.He and A K. Singh. Closure-Tree: An Index Structure for Graph Queries. In the 22nd Int.
Conf. on Data Engineering. IEEE Computer Society, 2006.
8. T. Jin, J. Wang, N. Wu, M. La Rosa, and A.H.M. ter Hofstede. Efficient and Accurate
Retrieval of Business Process Models through Indexing. In OTM, 2010.
9. G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation: Iterative Process Pro-
totyping. Addison-Wesley, 1998.
10. R. Koschk. Identifying and Removing Software Clones. In Tom Mens and Serge Demeyer,
editors, Software Evolution. Springer, 2008.
11. J. Krinke. Identifying Similar Code with Program Dependence Graphs. In WCRE, 2001.
12. N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen. Complete
and Accurate Clone Detection in Graph-based Models. In the 31st Int. Conf. on Software
Engineering, pages 276-286. IEEE Computer Society, 2009.
13. A. Polyvyanyy, J. Vanhatalo, and H. Vo6lzer. Simplified Computation and Generalization of
the Refined Process Structure Tree. In WSFM, 2010.
14. H. A. Reijers, R. S. Mans, and R. A. van der Toorn. Improved Model Management with
Aggregated Business Process Models. Data Knowl. Eng., 68(2):221-243, 2009.
15. M. Rosemann. Potential pitfalls of process modeling: Part a. Business Process Management
Journal, 12(2):249-254, 2006.
16. D. Shasha, J.T-L. Wang, and R. Giugno. Algorithmics and Applications of Tree and Graph
Searching. In PODS, pages 39-52, 2002.
17. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260, 1995.
18. J. Vanhatalo, H. Vélzer, and J. Koehler. The Refined Process Structure Tree. Data Knowl.
Eng., 68(9):793-818, 2009.
19. B. Weber and M. Reichert. Refactoring Process Models in Large Process Repositories. In
CAiSE, pages 124-139. Springer, 2008.
20. D. W. Williams, J. Huan, and W. Wang. Graph Database Indexing Using Structured Graph
Decomposition. In ICDE, 2007.

