
Checking Behavioral Conformance of
Artifacts

Dirk Fahland Massimiliano de Leoni
Boudewijn F. van Dongen
Wil M.P. van der Aalst,

Eindhoven University of Technology, The Netherlands
(d.fahland|m.d.leoni|b.f.v.dongen|w.m.p.v.d.aalst)@tue.nl

March 24, 2011

The usefulness of process models (e.g., for analysis, improvement, or execution) strongly
depends on their ability to describe reality. Conformance checking is a technique to vali-
date how good a given process model describes recorded executions of the actual process.
Recently, artifacts have been proposed as a paradigm to capture dynamic, and inter-
organizational processes in a more natural way. Artifact-centric processes drop several
restrictions and assumptions of classical processes, e.g., process instances cannot be con-
sidered in isolation as instances in artifact-centric processes may overlap and interact
with each other. This significantly complicates conformance checking; the entanglement
of different instances complicates the quantification and diagnosis of misalignments. This
paper is the first paper to address this problem. We show how conformance checking of
artifact-centric processes can be decomposed into a set of smaller problems that can be
analyzed using conventional techniques.

Keywords: artifacts, process models, conformance, overlapping process instances

Contents

1 Introduction 5

2 Artifacts 8
2.1 Artifacts: An Example . 8
2.2 Recording Artifact Behavior: Instance-Aware Logs 9
2.3 Proclets . 11

2.3.1 Syntax of Proclets . 11
2.3.2 Semantics of Proclets by an Example 13
2.3.3 Formal Definitions - Semantics . 14

3 The Artifact Conformance Problem 19

4 Solving Interaction Conformance 20
4.1 Reducing Artifact Conformance to Existing Techniques 20
4.2 Structural Viewpoint: a Proclet and its Environment 20
4.3 Behavioral Viewpoint: Extending Cases to Interaction Cases 21
4.4 The Decomposition is Correct . 22

5 Conformance Checking Techniques for Artifacts 26
5.1 Mapping from Proclets to Reset Nets . 26
5.2 Mapping Interaction Cases to Cases of Inhibitor-Reset Nets 31
5.3 Replay Techniques for Inhibitor-Reset Nets 32

6 Operationalization in ProM 34

7 Related Work 36

8 Conclusion 37

4

1 Introduction

Business process models have become an integral part of modern information systems
where they are used to document, execute, monitor, and optimize business processes.
However, many studies show that models often deviate from reality (see. [13]). To avoid
building on quicksand it is vital to know in advance to what extent the model conforms
to reality.

Conformance checking is the problem of determining how good a given process model
M describes process executions that can be observed in a running system S in reality.
Several conformance metrics and techniques are available [15, 9, 19, 11, 14, 3]. The most
basic metric is fitness telling whether M can replay every observed execution of S. In
case M cannot replay some (or all) of these executions, the model M needs to be changed
to mach the reality recorded by S (or the systems and/or its underlying processes are
changed to align both).

Existing conformance checking techniques assume rather simple models where process
instances can be considered in isolation. However, when looking at the data models of
ERP products such as SAP Business Suite, Microsoft Dynamics AX, Oracle E-Business
Suite, Exact Globe, Infor ERP, and Oracle JD Edwards EnterpriseOne, one can easily
see that this assumption is not valid for real-life processes. There are one-to-many and
many-to-many relationships between data objects, such as customers, orderlines, orders,
deliveries, payments, etc. For example, an online shop may split its customers’ quotes
into several orders, one per supplier of the quoted items, s.t. each order contains items for
several customers. Consequently, several customer cases synchronize on the same order
at a supplier, and several supplier cases synchronize on the same quote of a customer.
In consequence, we will not be able to identify a unique notion of a process instance
by which we can trace and isolate executions of such a process, and classical modeling
languages are no longer applicable [16, 12, 5].

The fabric of real-life processes cannot be straightjacketed into monolithic processes.
Therefore, we need to address two problems:

(1) Find a modeling language L to express process executions where several cases of
different objects overlap and synchronize.

(2) Determine whether a process model M expressed in L adequately describes actual
executions of a dynamic and inter-organizational processes in reality — despite the
absence of process instances.

The first problem is well-known [16, 12, 5] and several modeling languages have been
proposed to solve it culminating in the stream of artifact-centric process modeling that
emerged in recent years [16, 12, 5, 7, 10]. In short, an artifact instance is an object that

5

participates in the process. It is equipped with a life-cycle that describes the states and
possible transitions of the object. An artifact describes a class of similar objects, e.g.,
all orders. A process model then describes how artifacts interact with each other, e.g.,
by exchanging messages [7, 10]. Note that several instances of one artifact may interact
with several instances of another artifact, e.g., when placing two orders consisting of
multiple items with an electronic bookstore items from both orders may end up in the
same delivery while items in the same order may be split over multiple deliveries.

In this paper we use proclets [16] as a modeling language for artifacts to study and
solve the second problem. A proclet describes one artifact, i.e., a class of objects with
their own life cycle, together with the interface to the other proclets. A proclet system
connects the interfaces of its proclets via unidirectional channels thus allowing the life-
cycles of the instances of the connected proclets to interact with each other by exchanging
messages; one instance may send a message to multiple other instances, or an instance
may receive messages from multiple instances.

After selecting proclets as a representation, we can focus on the second problem;
determine whether a given proclet system P allows for the behavior recorded by the
actual information system S, and if not, to which degree P deviates from S and where.
The problem is difficult because S does not structure its executions into isolated process
instances. For this reason we develop the notion of an instance-aware log. The system
S records executed life-cycle cases of its objects in separate logs L1, . . . , Ln — one log
per class of objects. Each log consists of several cases, and each event in a case is
associated to a specific object and also stores with which other objects (having a case
in another log) the event interacted (by sending or receiving messages). The artifact
conformance problem then reads as follows: given a proclet system P and instance-
aware logs L1, . . . , Ln, can the proclets of P be instantiated s.t. the life-cycles of all
proclets and their interactions “replay” L1, . . . , Ln?

Depending on how objects in S interact and overlap, a single execution of S can be
very long, possibly spanning the entire lifetime of S which results in having to replay all
cases of all logs at once. Depending on the number of objects and cases, this may turn
out infeasible for conformance checking with existing techniques.

Proclets may also be intertwined in various ways. This makes conformance checking
a computationally challenging problem. Analysis becomes intractable when actual in-
stance identifiers are taken into account. Existing techniques simply abstract from the
identities of instances and their interactions. Therefore, we have developed an approach
to decompose the problem into a set of smaller problems: we minimally enrich each
case in each log to an interaction case, describing how one object evolves through the
process and synchronizes with other other objects, according to other cases in the other
logs. We then show how to abstract a given proclet system P for each proclet P to an
abstract proclet system P|P s.t. P can replay L1, . . . , Ln iff for each proclet P of P the
abstract proclet system P|P can replay each interaction case of P . As an interaction
case focuses on a single instance at a time (while taking its interactions into account),
existing conformance checkers [14, 3, 2] can be used to check conformance.

The remainder of this report is structured as follows. In Section 2, we recall how
artifacts allow describing processes where cases of different objects overlap and interact.

6

There, we also introduce the notion of an instance-aware event log that contains just
enough information to reconstruct executions of such processes. Further, proclets are
introduced as a formal language to describe such processes. Section 3 then formally states
the conformance checking problem in this setting, and Section 4 presents our technique
of decomposing proclet systems and logs for conformance checking. Section 5 provides
details how to reduce the decomposed conformance checking problem to a conformance
problem on Petri nets. The entire approach is implemented in the process mining toolkit
ProM; Section 6 presents the tool’s functionality and shows how it can discover deviations
in artifact-centric processes. Related work is presented in Section 7. Section 8 concludes
the paper.

7

2 Artifacts

This section recalls how the artifact-centric approach allows to describe processes where
cases of different objects overlap and interact. We present proclets as a formal model
to describe such processes. Moreover, we introduce the new notion of an instance-aware
log which is a minimal extension of a classical event log to record executions of processes
with overlapping instances.

2.1 Artifacts: An Example

To motivate all relevant concepts and to establish our terminology, we consider a backend
process of a CD online shop that serves as a running example in this paper. The CD
online shop offers a large collection of CDs from different suppliers to its customers. Its
backend process is triggered by a customer’s request for CDs and the shop returns a
quote regarding the offered CDs. If the customer accepts, the shop splits the quote into
several orders, one at each CD supplier. One order handles all quoted CDs by the same
supplier. The order then is executed and the suppliers ship the CDs to the shop which
distributes CDs from different orders according to the original quotes. Some CDs may
be unavailable at the supplier; in this case notifications are sent to the CD shop which
forwards the information to the customer. The order closes when all CDs are shipped
and all notifications are sent. The quote closes after the customer rejected the quote, or
after notifications, CDs, and invoice have been sent.

Figure 2.1 models the above process in terms of a proclet system consisting of two
proclets: one describing the life-cycle of quotes and the other describing the life-cycle
of orders. Note that Fig. 2.1 abstracts from interactions between the CD shop and the
customers. Instead the focus is on interactions between quotes in the CD shop and
orders handled by suppliers.

The distinctive quality in the interactions between quotes and orders is their cardi-
nality : each quote interacts with several orders, and each order interacts with several
quotes. That is, we observe many-to-many relations between quotes and orders. For
example, consider a process execution involving two quote instances: one over CDa (q1)
and the other over CDa, CDb, and CDc (q2). CDb and CDc have the same supplier,
CDa has a different supplier. Hence, the quotes are split into two order instances (o1
and o2). In the execution, CDa and CDb turn out to be available whereas CDc is not.
Consequently, CDa is shipped to the first quote, and CDa and CDb are delivered to the
second quote. The second quote is also notified regarding the unavailability of CDc. This

8

quote order

send quote

+,1

create from
request

accept

reject

processed +,?

deliver
generate
invoice

notified un-
availability

+,?

close

add CD1,+

add CD

order at
supplier

+,?

+,?

ship
available

notify un-
available

close

Figure 2.1: A proclet system describing the back-end process of a CD online shop. A
customer’s quote is split into several orders according to the suppliers of the
CDs; an order at a supplier handles several quotes from different customers.

execution gives rise to the following cases of quote and order:

q1 : create, send, accept, processed, deliver, generate, close
q2 : create, send, accept, notified, processed, deliver, generate, close
o1 : add CD, add CD, order, ship, close
o2 : add CD, add CD, order, notify, ship, close

These cases interact with each other as illustrated in Fig. 2.2.

2.2 Recording Artifact Behavior: Instance-Aware Logs

The task of checking whether a given process model accurately describes the processes
executed in a running system S requires that S records the relevant events in a log.
Classically, each process execution in S corresponds to a case running in isolation. Such
a process instance can be represented by the sequence of events that occurred. In an
artifact-centric process like Fig. 2.1, one cannot abstract from interactions and many-
to-many relations; quotes and orders are interacting in a way that cannot be abstracted
away.

Relating events of different cases to each other is known as event correlation; see [4] for
a survey of correlation patterns. A set of events (of different cases) is said to be correlated
by some property P if each event has this property P . The set of all correlated events

9

CDa

CDa

CDb CDc

CDa

CDa

CDc CDb

create send accept processed deliver generate close

create send accept processed deliver generate closenotified

q1:

q2:

add CDo1: add CD order ship close

add CD order ship closenotifyo2: add CD

Figure 2.2: An execution of the CD shop process involving two quote cases and two order
cases that interact with each other in a many-to-many fashion.

defines a conversation. For instance in Fig. 2.2, events accept and processed of q1, and
events add CD and ship of o1 form a conversation. Various correlation mechanisms to
define and set the correlation property of an event are possible [4]. In this paper, we do
not focus on the actual correlation mechanism. We simply assume that such correlations
have been derived; these are the connections between the different instances in Fig. 2.2.

To abstract from a specific correlation mechanism regarding events in a log, we intro-
duce the notion of an instance-aware log. Let e be an event. Event correlation is used to
derive the sender instances, i.e., the instances that sent the messages which e consumed,
as well as the recipient instances, i.e., the instances that receive the messages which the
occurrence of e has produced. Note that we assume asynchronous interaction between
different instances. Since multiple messages can be sent/received to/from the same in-
stance, correlation data are stored as multisets of instance ids. A multiset m ∈ NI over
a set I is technically a mapping m : I → N defining how often each id ∈ I occurs in m;
[] denotes the empty multiset.

Definition 1 (Instance-aware events). Let Σ = {a1, a2, . . . , an} be a finite set of event
types, and let I = {id1, id2, . . .} be a set of instance identifiers. An instance-aware event
e is a 4-tuple e = (a, id ,SID ,RID) where a ∈ Σ is the event type, id is the instance for
which e occurred, SID = [sid1, . . . , sidk] ∈ NI defines the multiset of sender instances,
and RID = [rid1, . . . , ridl] ∈ NI defines the multiset of recipient instances. Let E(Σ, I)
denote the set of all instance-aware events over Σ and I.

Consider for example the third event of q2 in Fig. 2.2. This instance aware event is de-
noted as (accept, q2, , [], [o1, o2, o2]). The fifth event of q2 is denoted as
(processed, q2, [o1, o2], []).

All events of one instance of an object o define a case; all cases of o define the log of
o. An execution of the entire process records the cases of the involved object instances
in different logs that together constitute an instance-aware log.

10

Definition 2 (Instance-aware cases and logs). An instance-aware case σ = 〈e1, . . . , er〉 ∈
E(Σ, I)∗ is a finite sequence of instance-aware events occurring all in the same instance
id ∈ I. Let L1, . . . , Ln be sets of finitely many instance-aware cases s.t. no two cases use
the same instance id. Further, let < be a total order on all events in all cases s.t. e < e′

whenever e occurs before e′ in the same case.1 Then L = ({L1, . . . , Ln}, <) is called an
instance-aware log.

For example, the instance-aware cases of Fig. 2.2 are the following:

σq1 : 〈(create, q1, [], []), (send, q1, [], []), (accept, q1, [], [o1]), (processed, q1, [o1], []),
(deliver, q1, [], []), (generate, q1, [], []), (close, q1, [], [])〉

σq2 : 〈(create, q2, [], []), (send, q2, [], []), (accept, q2, [], [o1, o2, o2]), (notified, q2, [o2], []),
(processed, q2, [o1, o2], []), (deliver, q2, [], []), (generate, q2, [], []), (close, q2, [], [])〉

σo1 : 〈(add CD, o1, [q1], []), (add CD, o1, [q2], []), (order, o1, [], []), (ship, o1, [], [q1, q2]),
(close, o1, [], [])〉

σo2 : 〈(add CD, o2, [q2], []), (add CD, o2, [q2], []), (order, o2, [], []), (notify, o2, [], [q2]),
(ship, o2, [], [q2]), (close, o1, [], [])〉

Together these instances form an instance-aware log with an ordering relation <, e.g.,
(accept, q1, [], [o1]) < (add CD, o1, [q1], []).

A process that follows from interactions of objects o1, . . . , on records each case of
object oi in the respective log Li. The essential correlation information of an event is
represented by each event’s instance id and the sets of sender and receiver ids. Note that
either set is empty if the event is not receiving or not sending any message. The order <
puts events of different cases into an order, and is typically defined by the timestamps
of the event occurrences.

2.3 Proclets

In the recent years, the artifact-centric approach emerged as a paradigm to describe
processes like in our CD shop example where several cases of one object interact with
several cases of another object. Different languages for describing artifacts have been
proposed [16, 12, 5, 7, 10]. In the following, we use proclets [16] to study instantiation
of artifacts and the many-to-many interactions between different artifact instances in
a light-weight formal model. A proclet models an artifact life-cycle as a labeled Petri
net where some transitions are attached to ports. A proclet system consists of a set of
proclets together with channels between the proclets’ ports. Annotations at the ports
lift the cardinality constraints of the underlying data model to the life-cycle model, i.e.,
they specify how many instances interact with each other via a channel.

We first introduce the formal syntax of proclets, then informally explain their seman-
tics along our running example, and then give a full formal definition of their semantics.

2.3.1 Syntax of Proclets

Proclets are based on labeled Petri nets.
1Note that technically two different events could have the same properties (e.g., in a loop). We assume

these to be different, but did not introduce additional identifiers.

11

Definition 3 (Petri net, labeled). A Petri net N = (S, T, F, `) consists of a set S of
places, a set T of transitions disjoint from S, arcs F ⊆ (S × T)∪ (T ×S), and a labeling
` : T → Σ∪{τ} assigning each transition t an action name `(t) ∈ Σ or the invisible label
τ .

A proclet is a labeled Petri net where some transitions are attached to a port which
enables them to communicate with other proclets via message exchange.

Definition 4 (Proclet). A proclet P = (N, ports) consists of a Petri net N = (S, T, F, `)
and a set of ports ⊆ 2T × {in, out} × {?, 1, ∗,+} × {?, 1, ∗,+} where each port p =
(T p, dirp, cardp,multp)

1. is associated to a set T p ⊆ T of transitions s.t. for all t1, t2 ∈ Tp holds: `(t1) =
`(t2) 6= τ ;

2. has a direction of communication (inp: incoming port, the associated transitions
receive a message, outp: outgoing port, the associated transitions send a message);

3. has a cardinality cardp ∈ {?, 1, ∗,+} specifying how many messages may or have
to be sent or received upon an occurrence of one t ∈ T p;

4. has a multiplicity multp ∈ {?, 1, ∗,+} specifying how often all transitions T p may
occur together during the lifetime of an instance of proclet P ; and

5. and no two ports share a transition: T p ∩T q = ∅, for all p, q ∈ ports, p 6= q.

Figure 2.1 shows two proclets. Each has three ports. The output port of accept has
cardinality + (one event may send messages to multiple orders) and multiplicity 1 (this
is done only once per quote). The input port of add CD has a cardinality of 1 (each
individual input message triggers one of the add CD transitions) and a multiplicity +
(at least one message is received during the life-cycle of an order).

We generally assume that each proclet P has a unique transition create(P) with an
empty pre-set (no incoming arcs), and a unique transition final(P) with an empty post-
set. These transitions denote actions to create and finish an instance of P respectively.
We also write p = port(t) iff the port p = (Tp, dir , card ,mult) is associated to transition
t ∈ Tp.

Introducing P implicitly introduces its components Np = (SP , TP , FP , `P) and portp;
the same applies to P ′,P1, etc. and their components N ′ = (S′, T ′, F ′, `′) and port′,
and N1 = (S1, T1, F1, `1) and port1, respectively. This notation also applies to other
structures later on.

Definition 5 (Proclet system). A proclet system ({P1, . . . , Pn}, C) consists of a finite
set {P1, . . . , Pn} of proclets together with a set C of channels s.t. each channel (p, q) ∈ C
is a pair of ports p, q ∈

⋃n
i=1 portsi with direction of p being in and direction of q being

out .

Our notion of a proclet system assumes that each output port p is related to exactly
one input port q (and vice versa) that together constitute a channel (p, q). We will also
write P1 ⊕ . . .⊕ Pn as a short hand for the proclet system ({P1, . . . , Pn}, C).

12

2.3.2 Semantics of Proclets by an Example

In the following, we explain the semantics of proclets by the running example of the CD
shop introduced in Section 2.1. We specifically focus on how proclets are instantiated,
and how ports and channels express many-to-many relations between instances. The full
formal semantics of proclets are given in Section 2.3.3.

Two proclets Figure 2.1 shows the proclet system that describes our online shop. The
left proclet describes the life-cycle of the quote, the right proclet describes the life-cycle
of the order. A process execution emerges by instantiating proclets and letting these
instances exchange messages asynchronously via the three channels. Each channel has
one input port and one output port ; the direction of the channel is indicated by the port’s
bow.

Proclet for Quote A new instance of proclet quote is created whenever a customer
requests a new quote from the CD shop. The proclet model abstracts from the interaction
with the customer and describes the corresponding interaction as actions that are internal
to the quote. After the quote has been sent to the customer, the customer will either
reject or accept the quote.

When the quote is rejected, action close is enabled which will terminate this instance
of a quote. In this case, no communication with another proclet instance occurred.

Communication to other proclet instances If the quote is accepted, messages are
placed at the input port of the top-most channel to proclet order. The input port
specification (+, 1) describes that one occurrence of the action accept places one or
more messages (cardinality +) at the output port of the channel; the messages may be
addressed to different or the same instances of the order proclet. This way, the proclet
describes that one quote (consisting of many CD items) may be split into several orders
depending on the available suppliers as described in Sect. 2.1. In addition, this output
port may be only used once during the lifetime of the proclet instance as indicated by
mutliplicity 1. This constraint captures that each quote is processed only once and no
retries will be made. After action accept occurred, the quote proclet has to wait for
messages on the other channels to proceed.

The messages placed on the top-most channel by the accept message are sent to
different instances of the order proclet. Each instance of an order proclet (created in-
dependently for each CD supplier as described in Sect. 2.1) collects requests for CDs
from different quotes. This is captured by the port specification (1,+) as follows: the
action add CD will receive one request message for a CD from one quote at a time and
include it in the order (cardinality 1). However, one or more messages (coming from dif-
ferent quotes) can be received via the input port during the lifetime of the order proclet
(multiplicity +).

Thus, the multiplicities between instances of the artifacts quote and order are re-
flected by the possibilities their proclet instances can communicate with each other via

13

connecting channels. Specifically, one quote sends to multiple orders, and one order
receives from multiple quotes.

Proclet for Order After all quotes have been added to the order and the order is
closed, the order is sent to the corresponding supplier (action order at supplier) who then
ships available CDs and sends the corresponding invoice to the CD shop, and by sending
notifications about undeliverable CDs to the CD shop. Notifying about undeliverable
CDs may be skipped if all CDs can be delivered which is expressed by the internal tran-
sition next to notify available. Correspondingly, shipping CDs and generating invoices
may be skipped together if all CDs are undeliverable. The instance of the order proclet
terminates after these actions occurred.

Many-to-Many Communication to Complete an Order When shipping CDs (occur-
rence of action ship available), proclet order generates multiple messages (cardinality + at
the output port) representing multiple deliveries that are split according to the different
quotes added earlier. Sending CDs may occur at most once (multiplicity ?) during the
lifetime of the order proclet because sending may be skipped (if all CDs are unavailable)
but will not be retried. Correspondingly, multiple notifications about undeliverabiliy are
sent at most once to the respective orders.

At the opposite end of the channels, the corresponding instances of the quote proclet
wait for all shipments or notifications from the different orders to arrive (cardinality
+). Either input port might not be used at all (multiplicity ?) in case no or all CDs
can be shipped. Depending on the received messages from its orders, the quote proclet
notifies the customer about undeliverability (left branch after the accept action) and/or
delivers the quote to the customer and generates and sends the corresponding invoice
(right branch). Either branch can be skipped by an internal transition depending on
the outcome of the orders. The instance of the quote proclet terminates via action close
after these actions occurred.

How proclets describe relation between objects According to the specification of the
input and output ports of the channels, a quote is split into multiple orders; each order,
in turn, handles the shipment of CDs of multiple quotes. This way, the many-to-many
relations of the process manifest in the proclet model.

2.3.3 Formal Definitions - Semantics

After this informal introduction to proclet semantics, we now give the corresponding
formal definitions. We tailor the semantics for the setting of conformance checking and
provide so called replay semantics. In a replay semantics, a step of the system model is
not fully determined by the state of the model, but may also be based on external input.
In our case, this external input will be a recorded system execution, that is, an instance
aware log (see Sect. 2.2), which describes which proclet instances exchanged messages
with each other.

14

The replay semantics describes when a sequence σ of instance-aware events satisfies
all behavioral restrictions stated in a proclet system P1⊕ . . .⊕Pn, i.e., whether an actual
execution of the real process follows the life-cycles and relations specified in P1⊕. . .⊕Pn.

Intuitively, the semantics of proclets follows that of high-level Petri nets: a configu-
ration of the system puts tokens on the proclets’ places. To distinguish the different
instances from each other each token is colored by an instance id. The state of a channel
is defined by the messages in the channel. Each message contains the sender’s instance
ids and the recipient’s instance idr to properly identify which proclet instances are
interacting with each other; thus a message is formally a pair (ids, idr).

Definition 6 (Configuration of a proclet system). Let P = ({P1, . . . , Pn}, C) be a
proclet system s.t. SPi ∩SPj = ∅, for all 1 ≤ i < j ≤ n. Let I be a set of instance ids.
A configuration K = (I,mS ,mC) of ({P1, . . . , Pn}, C) is defined as follows:

1. The set I defines the active instances. For each instance id ∈ I let type(id) = Pi

denote proclet of which id is an instance.

2. The place marking mS defines for each place s ∈ S :=
⋃n

i=1 Si the number of
tokens that are on place s in instance id . Formally, mS : S → NI assigns each
place s ∈ S a multiset of instance ids, i.e., mS(s)(id) defines the number of tokens
on s in id .

3. The channel marking mC defines for each channel c ∈ C the messages in this
channel. Formally mC : C → NI×I is a multiset of pairs of instances ids, i.e.,
mC(c)(ids, idr) defines the number of messages that are in transit from ids to idr

in channel c.2

The initial configuration is K0 = (∅,mS,0,mC,0) with mS,0(s) = ∅ for all places s, and
mC,0(p, q) = ∅ for all channels (p, q).

A configuration generalizes the notion of a marking of a (case-sensitive) Petri net.
The steps of a proclet system generalize the steps of a (case-sensitive) Petri net in the
same vein. Each transition t occurs in a specific proclet instance id . For this, t has to
be enabled, i.e., all pre-places of t have a token colored id . An occurrence of t consumes
one id -colored token from each pre-place and produces an id -colored token on each
post-place.

The actual contribution of proclets comes from their ports via which t receives or
sends messages. As messages are sent between specific proclet instances, an occurrence
of t also has to determine to which instances it sends a message or from which instances
it receives a message. Technically, we specify a multiset SID of sender instances from
which t expects to receive a message, and a s multiset RID of recipient instances, to
which t is going to send a message. These sets have to satisfy the constraints of the port
p to which t is attached.

2We do not consider here the data perspective of the messages. So, we ignore the informative content
of messages (i.e., the data fields) and only focus on identifiers of the senders and receivers. The use
of data perspective for conformance checking is part of our future work.

15

A transition t can only occur if it is enabled at the given configurationK = (I,mS ,mC)
in instance id . The enabling of t depends on the validity of the multiset SID of sender
instances, from which t expects to receive messages.

Definition 7 (Validity of a multiset of senders w.r.t. a transition). Let P = (N, ports)
be a proclet and t ∈ TP a transition of P . Let SID be a multiset of sender instances,
from which t expects to receive messages. SID is valid w.r.t. t in proclet instance id at
configuration K = (I,mS ,mC) iff

• if t is not attached to an input port, then SID = [], and

• if t is attached to an input port p = (T p, dirp, cardp,multp), t ∈ T p, dirp = in at
channel c = (q, p) ∈ C, then

1. cardp = 1 implies SID = [ids] and mC(c)(ids, id) > 0,

2. cardp = ? implies if |[(ids, id)|(ids, id) ∈ mC(c)]| = 0 then SID = [], else
SID = [ids] for some (ids, id) ∈ mC(c),

3. cardp ∈ {+, ∗} implies SID(ids) = |[(ids, id)|(ids, id) ∈ mC(c)]|, for all ids,
and if cardp = +, then additionally SID 6= [].

Corresponding to receiving messages from expected senders, t also sends message to
chosen recipients RID if t is attached to an output port p. The multiset RID also has to
satisfy the constraints of p, though the choice of RID does not depend on the contents
of the channel as the corresponding message will be produced by t.

Definition 8 (Validity of a multiset of recipients w.r.t. a transition). Let P = (N, ports)
be a proclet and t ∈ TP a transition of P . Let RID be a multiset of recipient instances,
to which t wants to send messages. RID is valid w.r.t. t in proclet instance id at
configuration K = (I,mS ,mC) iff

• if t is not attached to an output port, then RID = [], and

• if t is attached to an output port p = (T p, dirp, cardp,multp), t ∈ T p, dirp = out,
then

1. cardp = 1 implies |RID | = 1,

2. cardp = ? implies |RID | ∈ {0, 1}, and

3. cardp = + implies |RID | ≥ 1.

If t is not attached to an input and/or output port, then SID and/or RID are, re-
spectively, always empty for each occurrence of transition t.

Definition 9 (Enabled transition). Let P = ({P1, . . . , Pn}, C) be a proclet system. Let
K = (I,mS ,mC) be a configuration. Let t be a transition of a proclet Pi, i ∈ 1, . . . , n,
let id be an instance id of Pi, and let SID and RID multisets of expected senders and
intended recipients, respectively.

Transition t is enabled in instance id w.r.t. SID and RID at configuration K, written

K
t,id ,SID ,RID−−−−−−−−→ iff

16

1. instance id has a token on every input place s of t, i.e., for each s ∈ •t holds:
mS(s)(id) > 0,

2. SID is a valid set of sender ids w.r.t. t, and

3. RID is a valid set of recipient ids w.r.t. t.

Like in Petri nets, an enabled transition t can occur which results in a successor
configuration K ′ by consuming tokens from the pre-places of t and producing tokens on
the post-places of t. In addition, if t is attached to a port p, then t will also consume
messages from p or produce messages on p as specified in SID and RID .

Definition 10 (Replay semantics). Let P = ({P1, . . . , Pn}, C) be a proclet system. Let
K = (I,mS ,mC) be a configuration. Let t be a transition of a proclet Pi, i ∈ 1, . . . , n,
let id be an instance id of Pi, and let SID and RID be (possibly empty) multisets sender

and recipient ids so that K
t,id ,SID ,RID−−−−−−−−→ holds (i.e., t is enabled).

An occurrence of t in id w.r.t. SID and RID defines the instance-aware event e =
(t, id ,SID ,RID) and the step K

t,id ,SID ,RID−−−−−−−−→ K ′ that leads to the successor configuration
K ′ = (I ′,m′S ,m′C) as follows:

1. if t = create(Pi), then I ′ = I∪{id}, id 6∈ I, and if t = final(Pi), then I ′ = I \{id};

2. the occurrence of t changes the tokens of instance id according to Petri net se-
mantics, i.e., for all places s ∈

⋃n
i=1 SPi holds: m′S(s) = mS(s)− id iff s ∈ •t \ t•,

m′S(s) = m(s) + id iff s ∈ t• \ •t, and m′S(s) = m(s) otherwise;

3. the occurrence of t changes the messages in the channels attached as required by
the port of t, i.e., for each channel (p, q) ∈ C holds

a) if t ∈ T q, i.e., t is attached to input port q = (T q, in, card ,mult), then
m′(p, q) = m(p, q) − [SID(ids) · (ids, id) | ids ∈ SID], i.e., id receives as
many messages SID(ids) as expected from each ids ∈ SID ; and

b) if t ∈ T p, i.e., t is attached to output port p = (T p, out , card ,mult), then
m′(p, q) = m(p, q) + [RID(idr) · (id , idr) | idr ∈ RID], i.e., id sends as many
messages RID(idr) as intended to each idr ∈ RID ;

c) m′(p, q) = m(p, q), otherwise.

A sequence K0
t1,id1,SID1,RID1−−−−−−−−−−−→ K1

t2,id2,SID2,RID2−−−−−−−−−−−→ K3
t3,id3,SID3,RID3−−−−−−−−−−−→ . . .Kn of steps is

a run iff K0 is the initial configuration, and for each port p = (T p, dir , card ,mult) holds

1. if mult = ?, then there exists at most one i > 0 s.t. ti ∈ T p,

2. if mult = 1, then there exists exactly one i > 0 s.t. ti ∈ T p,

3. if mult = +, then there exists at least one i > 0 s.t. ti ∈ T p.

17

Note that input and output ports have slightly asymmetric semantics for cardinalities
+ and ∗. An input port of transition t requires t consume all messages available in
the channel in this case (+ requires at least one message to be present for t to be
enabled). An output port will let t produce a number of messages, where the number of
messages is not fixed. This asymmetry originates in the fact that proclet abstract from
the concrete data that would determine the interaction of artifacts, and hence from the
specific messages to consume and to produce.

Thus, an execution of the proclet system P can be observed as a sequence

K0
(t1,id1,SID1,RID1)−−−−−−−−−−−−→ K1

(t2,id2,SID2,RID2)−−−−−−−−−−−−→ . . .Kn where each Ki+1 is the successor con-
figuration of Ki under the instance-aware event (ti, id i,SID i,SID i).

This semantics also allows to replay an instance-aware log L = ({L1, . . . , Ln}, <) on
a given proclet system P = P1 ⊕ . . .⊕ Pn, or to check whether P can replay L. For this
replay, we merge all events of all cases of all logs L1, . . . , Ln into a single sequence σ of
events that are ordered by <. P can replay L iff the events of σ define an execution of
P. For instance, merging the cases σq1, σq2, σo1, σo2 of Section 2.2 yields a case that can
be replayed in the proclet system of Fig. 2.1.

18

3 The Artifact Conformance Problem

The problem of determining how accurately a formal process model describes the pro-
cess implemented in an actual information system S is called conformance checking
problem [15].

Classically, a system S executes a process as a set of isolated instances. The corre-
sponding observed system execution is a sequence of events, called case, and a set of
cases is a log L. The semantics of a formal process model M define the set of valid
process executions in terms of sequences of M ’s actions. Conformance of M to L can
be characterized in several dimensions [15]. In the following, we consider only fitness.
This is the most dominant conformance metric that describes to which degree a model
M can replay all cases of a given log L, e.g., [3]. M fits L less, for instance, if M
executes some actions in a different order than observed in L, or if L contains actions
not described in M . Several conformance checking techniques for process models are
available [3, 15, 9, 19, 11, 14]. The more robust techniques, e.g., [3], find for each case
σ ∈ L an execution σ′ of M that is as similar as possible to σ; the similarity of all σ to
their respective σ′ defines the fitness of M to L.

A proclet system raises a more general conformance checking problem, because a case
contains events of several instances of proclets that all may interact with each other. In
our example from Section 2, handling one quote of the CD shop involves several order
instances, i.e., the case spans one quote instance and several order instances. From a
different angle, a complete handling of an order involves several quote instances.

In the light of this observation, we identify the following artifact conformance problem.
A system records events in an instance-aware event log L. Each event can be associated
to a specific proclet P of a proclet system P, knows the instance in which it occurs and
the instances with which it communicates. Can the proclet system P replay L? If not,
to which degree does P deviate from the behavior recorded in L?

19

4 Solving Interaction Conformance

A näıve solution of the artifact conformance problem would replay the entire log L
on the proclet system P, by instantiating proclets and exchanging messages between
different proclet instances. This approach can become practically infeasible because of
the sheer size of L and the number of active instances. Moreover, existing techniques
would be unable to distinguish the difference instances. For this reason, we decompose
the problem and reduce it to a classical conformance checking problem.

4.1 Reducing Artifact Conformance to Existing Techniques

A simple decomposition of the artifact conformance problem would be to take from
L = ({L1, . . . , Ln}, <) for each proclet P , and each instance P id of P the case σid of
P id from the respective log. σid describes how P id evolved according to its life-cycle.
However, completing the life-cycle not only depends on events of P id but also on events
that sent messages to P id or received messages from P id . So, all events of σid together
with all events of L that exchange messages with P id constitute the interaction case σid

of P id . It contains all behavioral information regarding how P id interacts with other
proclet instances.

An interaction case σid of a proclet instance P id gives rise to the following conformance
problem. The proclet system P fits σid iff σid (1) follows the life-cycle of P , and (2)
has as many communication events as required by the channels in P. The interaction
conformance problem is to check how good P fits all interactions cases of all proclets.

We will show in the next section that decomposing artifact conformance into interac-
tion conformance is correct: if P fits L, then P fits each interaction case of each proclet
P of P; and if P does not fit L, then there is an interaction case of a proclet P to which
P does not fit. As each interaction case is significantly smaller than L and involves only
one proclet instance, the conformance checking problem becomes feasible and can be
solved with existing techniques.

4.2 Structural Viewpoint: a Proclet and its Environment

Our aim is to decompose the conformance checking problem of a proclet system P = P1⊕
. . .⊕Pn w.r.t. L into a set of smaller problems: we check interaction conformance for each
proclet Pi. Interaction conformance of Pi considers the behavior of Pi together with the
immediate interaction behavior of Pi with all other proclets P1, . . . , Pi−1, Pi+1, . . . , Pn.

We capture this immediate interaction behavior by abstracting
P1, . . . , Pi−1, Pi+1, . . . , Pn to an environment Pi of Pi. Pi is a proclet that contains

20

order order

+,1accept

processed +,?

notified un-
availability

+,?

add CD1,+

add CD

order at
supplier

+,?

+,?

ship
available

notify un-
available

close

Figure 4.1: The proclet order of Fig. 2.1 together with its environment order.

just those transitions of P1, . . . , Pi−1, Pi+1, . . . , Pn at the remote ends of the channels
that reach Pi — together with the corresponding ports for exchanging messages with Pi.
Obviously, occurrences of transitions of Pi are unconstrained up to messages sent by
Pi. Composing Pi and Pi yields the proclet system Pi ⊕ Pi in which we can replay the
interaction cases of Pi.

Figure 4.1 shows the proclet order together with its abstracted environment order from
the proclet system of Fig. 2.1.

The formal definition reads as follows.

Definition 11 (Environment Abstraction). Let P = ({P1, . . . , Pn}, C) be a proclet
system, Pi = (Ni, ports i), Ni = (Si, Ti, Fi), i = 1, . . . , n. We write t ∈ T p if a transition t
is attached to port p. The channels that reach Pi are Ci = {(p, q) ∈ C | (T p ∪T q)∩Ti 6=
∅}. The transitions at the remote ends of these channels are Ti = {t | (p, q) ∈ Ci, t ∈
(T p ∪ T q) \ Ti}.

The abstract environment w.r.t. Pi is the proclet Pi = (N, ports) with N = (∅, Ti, ∅),
and ports = {q | (p, q) ∈ Ci ∪ C−1i , q 6∈ ports i}. The abstracted system Pi ⊕ Pi is
({Pi, Pi}, Ci).

4.3 Behavioral Viewpoint: Extending Cases to Interaction
Cases

We want to leverage existing conformance checking techniques to check conformance of
a proclet system. As said before, our approach decomposes the problem of checking a
proclet system into checking the conformance of each single proclet Pi and its abstract
environment P i. For this, each case of Pi that is stored in the instance-aware log L
needs to be extended to an interaction case by inserting all events of L that correspond
to transitions of P i, and that send or receive messages from the instance id of this case.

21

Definition 12 (Interaction case, interaction log). Let L = ({L1, . . . , Ln}, <) be an
instance-aware log. Let Pi be a proclet of a proclet system P = P1 ⊕ . . . ⊕ Pn, i ∈
{1, . . . , n}. Without loss of generality we select proclet Pi and its corresponding log Li.
Let σ ∈ Li be a case of an instance id of Pi. Let E be the set of all events in all cases in
L.

For each event e = (a, id ′,SID ,RID) ∈ E , we define e|id as follows:

• if id ′ = id , then e|id := e if id ′ = id ;

• if id ∈ SID or id ∈ RID , then e|id := (a, id ′,SID ′,RID ′) with SID ′(id) = SID(id)
and RID ′(id) = RID(id) and SID(id ′′) = RID(id ′′) = 0, for all other id ′′ 6= id
(i.e., restrict communication of event e to communication with id);

• otherwise e|id := ⊥ (i.e., event e is undefined for instance id).

The set E|id = {e|id | e ∈ E , e|id 6= ⊥} is the set of all events related to instance id . The
interaction case of σ is the sequence σ containing all events E|id ordered by < of L, i.e.,
e < f implies e|id < f |id .

The interaction log of Pi w.r.t. L is the set L|Pi := {σ | σ ∈ Li} containing the
interaction case of each case of Pi in L.

For example, the interaction cases σo1 of σo1 and σo2 of σo2 of the order proclet
presented in Section 2.2 are

σo1 : 〈(accept, q1, [], [o1]), (accept, q2, [], [o1]), (add CD, o1, [q1], []),
(add CD, o1, [q2], []), (order, o1, [], []), (ship, o1, [], [q1, q2]), (processed, q1, [o1], []),
(processed, q2, [o1], []), (close, o1, [], [])〉

σo2 : 〈(accept, q2, [], [o2, o2]), (add CD, o2, [q2], []), (add CD, o2, [q2], []), (order, o2, [], []),
(notify, o2, [], [q2]), (notified, q2, [o2], []), (ship, o2, [], [q2]), (processed, q2, [o2], []),
(close, o1, [], [])〉.

Note that in comparison to the original cases of Section 2.2, environment events of
order such as accept changed the sets of expected senders and intended recipients,
e.g., (accept, q2, [], [o1, o2, o2]) became (accept, q2, [], [o1]). The abstracted proclet system
quote⊕ quote can replay these interaction cases.

4.4 The Decomposition is Correct

Decomposing a proclet system P = P1⊕ . . .⊕Pn into abstracted proclet systems Pi⊕Pi

and replaying the interaction log of Pi on Pi ⊕ Pi, for each i = 1, . . . , n equivalently
preserves the fitness of P w.r.t. the given instance-aware event log L.

Recall from Section 2.3.3 that L is replayed on P by ordering all events of L in a single
case σ.

Definition 13 (Global case). Let L = ({L1, . . . , Ln}, <) be an instance-aware log. Let
E be the set of all events in all cases in L. The global case of L is the instance-aware
case σL that contains all events E ordered by <.

22

With this notion, we can relate the replay behavior of the complete proclet system
P = P1 ⊕ . . .⊕ Pn to the replay behavior of the abstracted proclet systems Pi ⊕ Pi.

Theorem 1. Let P = P1 ⊕ . . .⊕ Pn be a proclet system and let L be an instance aware
log. The global case σL can be replayed on P iff for all i = 1, . . . , n, and each case σ ∈ Li,
the interaction case σ can be replayed on Pi ⊕ Pi.

The first step to prove the correctness of the decomposition is a small lemma. From
Definition 12 follows that we obtain each interaction case σid of an instance id of a
proclet Pi also by projecting σ onto events that occur in id or exchange messages with
id .

Lemma 1. Let L = ({L1, . . . , Ln}, <) be an instance-aware log, let σL be the global case
of L. Let Pi be a proclet of a proclet system P = P1 ⊕ . . . ⊕ Pn, i ∈ {1, . . . , n}, and let
σ ∈ Li be a case of an instance id of Pi.

Let E be the set of all events in all cases in L, and let E|id = {e|id | e ∈ E , e|id 6= ⊥}
be the set of all events related to instance id, as defined in Def. 12.

The sequence σL|id obtained from σL by replacing each event e in σL with e|id and
then removing all undefined events ⊥ is the interaction case σL|id = σ of σ.

Proof. The proposition follows straight from Def. 12 and Def. 13.

With leverage this lemma to configurations of the global case σL and of each interaction
case σL|id .

Lemma 2. Let σL = 〈e1, e2, e3, . . . , en−1, en〉 be a global case that can be replayed on P.

Let K0 . . .Kn−2
en−1−−−→ Kn−1

en−→ Kn be the run of P up to en.

Let σ = σL|id = 〈f1, f2, . . . , fm〉 be the interaction case of an instance id of a proclet

P holds. Let K ′0 . . .K
′
m−2

fm−1−−−→ K ′m−1
fm−−→ Km be the run of P ⊕ P up to fm.

The configurations K ′m = (I ′,m′S ,m′C) reached by σ and Kn = (I,mS ,mC) coincide
on id:

1. id ∈ I and id ∈ I ′,

2. for all places s ∈ SP in proclet P , mS(s)(id) = m′S(s)(id), and

3. for all channels c = (p, q) ∈ C s.t. p or q is a port of P , [(id ′, id ′′) ∈ mC(c) | id ′ =
id ∨ id ′′ = id] = [(id ′, id ′′) ∈ m′C(c) | id ′ = id ∨ id ′′ = id].

Proof. We prove the lemma by induction on the length n of the global case σL.

Consider the prefix σ′ = 〈f1, . . . , fr〉 of σ that does not contain the last event en|id , i.e.,
the last event en of σL is not part of σ′. By inductive assumption, 〈e1, e2, e3, . . . , en−1〉
can be replayed on P reaching configuration Kn−1 and σ′ can be replayed on P ⊕ P
reaching configuration K ′ s.t. Kn−1 and K ′ coincide on id .

If σ′ = σ, i.e., en|id = ⊥ is not part of σ, then σ can be replayed on P ⊕ P (by
inductive assumption), K ′ = K ′m, and hence the resulting configurations K ′m and Kn

23

coincide because en does not consume an id -colored token or a message sent to/received
from id (by Def. 12 and Def. 10).

Otherwise, σ = 〈f1, f2, . . . , fr, en|id 〉 where σ′ = 〈f1, f2, . . . , fr〉 reaches configuration
K ′ = K ′m−1. Let en = (t, id ′,RID ,SID). We distinguish three cases:

1. id = id ′, i.e., en occurs in id . Thus, en|id = en. As K ′m−1 and Kn−1 coincide
on id , transition t is enabled in id at Kn−1 w.r.t. RID and SID iff t is enabled
in id at Kn−1 w.r.t. RID and SID (by Def. 9). From Def. 10 then follows that

Kn−1
en−→ Kn and K ′m−1

en|id−−−→ K ′m are steps of P and P ⊕ P , and Kn and K ′m
coincide on id .

2. id ∈ RID , i.e., en sends messages to id and en|id = (t, id ′,SID ′,RID ′) where
RID(id) = RID ′(id) (Def. 12). Moreover, t is a transition that produces messages
into a channel reaching proclet P . Hence t is a transition of P and unrestricted
in P ⊕ P . Thus, t is enabled at K ′m−1 of P ⊕ P , and the steps Kn−1

en−→ Kn

and K ′m−1
en|id−−−→ K ′m produce the same number of messages to id in channel c (by

Def. 10). So Kn and K ′m coincide on id .

3. id ∈ SID , i.e., en expects messages from id and en|id = (t, id ′,SID ′,RID ′) where
SID(id) = SID ′(id) (Def. 12). Moreover, t is a transition that consumes messages
from a channel c leaving proclet P . As K ′m−1 and Kn−1 coincide on id , the channel
c contains the same number of messages sent from id in both configurations. Thus,

t is enabled at K ′m−1 of P ⊕ P , and the steps Kn−1
en−→ Kn and K ′m−1

en|id−−−→ K ′m
consume the same number of messages sent by id from channel c (by Def. 10). So
Kn and K ′m coincide on id .

This proves the induction hypothesis that configurations of the global case σL and the
configurations of each interaction case σL|id of a proclet instance id coincide on id .

As a consequence, we obtain the following corollary.

Corollary 1. Let σL be a global case that can be replayed on P. Then for each proclet
P of P, and each instance id of P , the interaction case σL|id of id can be replayed on
P ⊕ P .

We can now prove Theorem 1.

Proof of Theorem 1. (⇒) Let σL be a global case that can replayed on P. Then Corol-
lary 1 already states that each interaction case σL|id of a proclet instance id of a proclet
P of P can be replayed on P ⊕ P .

(⇐) Let σL be a global case that cannot be replayed on P. Let σ′L be the largest prefix
of σL that still can be replayed, reaching configuration K. Let e = (t, id ,SID ,RID) be
the first event after σ′L that cannot be replayed in P, i.e., t is not enabled in id at K
w.r.t. SID and RID .

Proposition: t is not enabled at the end of the interaction case σ′L|id of instance id .

24

Let K ′ be the configuration reached at the end of σ′L|id ; K and K ′ coincide on id by
Lemma 2. According to Def. 9, there are three possible reasons for t not being enabled:

1. t is not enabled at K because one of its pre-places does not contain enough tokens
in instance id . Lemma 2 implies that, t of P is not enabled at K ′, and σ′L|id cannot
be replayed on P ⊕ P .

2. t is not enabled at K because there are insufficiently many messages in the channel.
Like in the preceding case, Lemma 2, implies that K ′ contains the same number
of messages. As all ports of proclet P remain the same, t is also not enabled at K ′

of P ⊕ P .

3. t is not enabled at K because RID is not valid, i.e., the number of intended
recipients violates the port constraint if the port p of proclet P to which t is
attached. This port p is the same in P ⊕ P , so RID is not valid in t either and t
is not enabled at K ′.

Thus, the case σ′L|id cannot be replayed on P ⊕ P , where id is an instance of proclet
P .

25

5 Conformance Checking Techniques for
Artifacts

The previous transformations of abstracting a proclet’s environment and extracting in-
teraction cases allow us to isolate a single proclet instance for conformance checking
w.r.t. the proclet and its associated channels. In other words, we reduced artifact con-
formance to the problem of checking whether the proclet system P ⊕ P can replay the
interaction log L|P , where each case in L|P only refers to exactly on proclet instance.
Thus, the problem can be fed into existing conformance checkers.

Our conformance checker leverages the technique described in [3]. As this technique
only takes Petri nets and classical cases (without instance-aware events) as input, the
conformance checking problem of P ⊕ P w.r.t. L|P needs to be further reduced to a
conformance checking problem on Petri nets w.r.t. a normal, non-instance aware log.

1. Our reduction translates the proclet ports into Petri net patterns that have the
same semantics. Replacing each port of P in P ⊕ P with its respective pattern
yields a Petri net NP that equivalently replays the interaction cases L|P ; the details
of this translation are given in Section 5.1.

2. Classical conformance checking techniques are not aware of interaction cases (Def. 12).
In particular, it is unaware that event e = (a, id ′, [id , id], []) sends two messages
from instance id ′ to instance id . For this reason, each interaction case needs to be
transformed in a classical case (without instances) in a way that guarantees that
messages sent to id and sent from id are preserved. We show this transformation
in Section 5.2.

5.1 Mapping from Proclets to Reset Nets

The transformations of abstracting a proclet’s environment (Section 4.2) and extracting
interaction cases (Section 4.3) allow to isolate a single proclet instance for conformance
checking. Yet, the formal model is still a proclet which cannot be fed into existing
conformance checking techniques as these are not aware of the proclet’s ports in their
semantics. This section provides a translation of Pi⊕P i, the proclet Pi with its abstract
environment P i, to a reset net Ni so that Ni conforms to a trace σid iff P ⊕P conforms
to σid .

The translation primarily provides a semantics for proclet ports in terms of inhibitor-
reset nets (or IR-nets), an extension of Petri nets with inhibitor arcs and reset arcs. A
reset arc allows to consume all tokens in a place instead of just one; an inhibitor arc
prevents the occurrence of a transition if the connected place has a token.

26

We first define inhibitor-reset nets and their semantics, then present a set of translation
patterns that give for each combination of cardinalities and multiplicities of a port p a
corresponding reset net pattern, and then show how to apply these patterns in a small
example.

Definition 14 (Reset net). An inhibitor reset net (or IR-net) N = (S, T, F, I, R,m0) is
a Petri net (S, T, F) extended by a set I ⊆ (P × T) of inhibitor arcs, a set R ⊆ (P × T)
reset arcs, and an initial marking m0 : S → N that assigns each place s a natural number
m0(s) of tokens.

We depict an inhibitor arc with a filled circle instead of an arrow head, and a reset arc
with a double arrow head as shown in Fig. 5.1. Note that a place s and a transition t may
be connected by a normal arc (s, t) ∈ F as well as a reset arc (s, t) ∈ R. Connecting s
and t with a normal arcs and an inhibitor arc is also allowed, but would be contradictory
as we defined next.

The semantics of an IR-net is essentially the semantics of a Petri net where a transition
t is only enabled if no place s with an inhibitor arc (s, t) contains a token; a reset arc
(s, t) additionally removes all tokens in s when t occurs.

Definition 15 (Semantics of a reset net). Let N = (S, T, F, I, R,m0) be a reset net and
let m : S → N be a marking of N . Transition t ∈ T is enabled iff m(s) > 0, for each
(s, t) ∈ F , and m(s) = 0, for each (s, t) ∈ I. If t is enabled, t can occur defining the step

m
t−→ mt of N that reaches the successor marking mt of m as follows:

1. compute an intermediate marking m′ with m′(s) = m(s) − 1 if (s, t) ∈ F \ R,
m′(s) = 0 if (s, t) ∈ R, and m′(s) = m(s) otherwise; and

2. set mt(s) = m′(s) + 1 if (t, s) ∈ F , and mt(s) = m′(s) otherwise.

A sequential run of N is a sequence m0
t1−→ m1

t2−→ m2
t3−→ . . . of steps of N starting in

the initial marking m0.

Inhibitor reset net patterns for ports. Figures 5.1 and 5.2 define an IR-net pattern
for each possible port of a proclet. Each respective pattern replaces the port p attached
to a transition with label x when translating Pi ⊕ P i to a reset net Ni.

The patterns are constructed in a modular way. Each patterns replaces port p by a
place p. In addition, each row and each column of Figures 5.1 and 5.2 defines a distinctive
feature to express the cardinality constraint c and the multiplicity constraint m of p,
respectively. The features are combined to define the semantics of p. The respective
features are the following.

Input ports and output ports define multiplicity constraints in the same way.

• m = 1 requires action x to occur exactly once. Thus, all transitions with label x
get a new shared pre-place sx that is initially marked with one token. This token
must be consumed which is expressed by the inhibitor arc from sx to the final
transition of the proclet, i.e., the token must be consumed to let final occur.

27

• m = ? requires action x to occur at most once. Thus, all transitions with label x
get a new shared pre-place sx that is initially marked with one token. If the token
is not consumed (no x occurred), then the final action will remove this token via
the reset arc.

• m = + requires action x to occur at least once. Thus, all transitions with label x
get a new shared post-place sx that needs to be marked (x occurs) to enable the
final action. The final action will remove all produced tokens to clean up the net.

• m = ∗ makes no constraints regarding occurrences of x.

The cardinality constraints govern how many messages to send or to receive and hence
are formalized slightly differently in the patterns. We begin with the patterns for input
ports shown in Fig. 5.1.

• c = 1 requires action x to consume one message, which translates to a simple arc
from place p to each transition attached to the port.

• c = ? allows action x to occur with or without consuming a message from p. Thus,
the pattern for c = 1 is extended by a new transition with label x that does not
consume from p.

• c = + requires action x to consume all messages from p (and at least one such
message). Thus, the pattern for c = 1 is extended by a reset-arc from p to each
transition attached to the port.

• c = ∗ allows action x to occur by consuming an arbitrary number of messages from
p, which is expressed by a reset arc from place p to each transition attached to the
port.

The patterns for output ports shown in Fig. 5.2 are symmetric with the directions of
the arcs attached to place p being reversed. However, this implies inverting the notion
of the reset arcs which removes an arbitrary number of tokens into an arc that produces
an arbitrary number of tokens. The graphical representation of Fig. 5.2 is only a short
hand notation for a pattern shown in Fig. 5.3. According to these patterns, a single
“inverse reset arc” from transition t to place p is replaced by a new intermediate post-
place pt of t and two internal transitions. The first internal transition allows to produce
an arbitrary number of tokens on p as it has pt in its pre- and post-set. The second
internal transition consumes from pt and produces on the original post-place s of t. The
pattern for an “inverse reset arc” from t to p together with a normal arc from t to p
defines an additional arc from the second internal transition to p which ensures that
at least on message will be produced. Fig. 5.3 to the right shows for the example of
c = +,m = + how to combine this pattern with the other patterns defined in Fig. 5.2.

The patterns for input ports have an additional inhibitor arc from the place p rep-
resenting the port to the final transition. This arc expresses that no messages for a
particular proclet instance remain pending in the channel when the instance finishes its
life-cycle. For output ports, pending messages are checked in the proclet at the other
end of the channel, as this is responsible for consuming incoming messages.

28

+ * 1 ?

c

m
1

?
+

*

+
,1

+
,?

+
,+

+
,*

*,
1

*,
?

*,
+

*,
*

1
,1

1
,?

1
,+

1
,*

?
,1

?
,?

?
,+

?
,*

X
X

X
X

X
X

X
X

X
X

X

F
IN

A
L

F
IN

A
L

F
IN

A
L

F
IN

A
L

X X

X
X

X X X

X
X

F
IN

A
L

F
IN

A
L

F
IN

A
L

F
IN

A
L

F
IN

A
L

F
IN

A
L

F
IN

A
L

F
IN

A
L

F
IN

A
L

F
IN

A
L

F
IN

A
L

F
IN

A
L

Figure 5.1: Patterns for translating a transition with label x attached to an input port
p to reset nets.

29

+ * 1 ?

c

m
1

?
+

*

+
,1

+
,?

+
,+

+
,*

*,
1

*,
?

*,
+

*,
*

1
,1

1
,?

1
,+

1
,*

?
,1

?
,?

?
,+

?
,*

X
X

X
X

X
X

X
X

X
X

X

F
IN

A
L

F
IN

A
L

F
IN

A
L

F
IN

A
L

X X

X
X

X X X

X
X

F
IN

A
L

F
IN

A
L

F
IN

A
L

F
IN

A
L

F
IN

A
L

F
IN

A
L

F
IN

A
L

F
IN

A
L

Figure 5.2: Patterns for translating a transition with label x attached to an output port p
to reset nets. The patterns with cardinality + and ∗ use a short-cut notation
(arc with two arrow heads) to express the sending of multiple messages;
Fig. 5.3 defines the short-cut notation.

30

X p

s

X p

s

X p

s

X p

s

+,... *,... +,+

X p

FINAL

X

FINAL

p

shortcut

complete pattern

shortcut

complete pattern

shortcut

complete pattern

Figure 5.3: Shortcuts used in the translation of output ports (Fig. 5.2) to modeling
sending multiple message.

Applying the reset net patterns, an example. The following example illustrates the
transformation of a proclet Pi with its abstract environment P i to a reset net Ni.

1. First, translate Pi to a net Ni using the patterns shown in Figures 5.1, 5.2, and
5.3.

2. Then extend Ni by the transitions of P i and new arcs as follows. If transition t of
P i is attached to a port q with a channel (q, p) of Pi ⊕ P i, then add an arc from
t to the place p of Ni that represents the input port p of Pi. Conversely, if t is
attached to a port with a channel (p, q) of Pi⊕P i, then add an arc from the place
p of Ni that represents the output port p of Pi to transition t.

The resulting net Ni conforms to the same traces as Pi⊕P i. Figure 5.4 shows the result
of translating quote⊕quote of Fig. 2.1 to an IR-net Nquote. The dashed boxes in Fig. 5.4
are only used to illustrate the origin of the respective places and arcs, they have no
semantic meaning.

5.2 Mapping Interaction Cases to Cases of Inhibitor-Reset
Nets

Classical conformance checkers, such as the one we want to use to solve interaction con-
formance of artifacts [3], take as input a Petri net (or an inhibitor reset net in our case),
and a classical case being a plain sequence of event types σ ∈ Σ∗ (see Def. 1). Section 5.1
translated a proclet with its environment P ⊕ P to an IR-net NP . Correspondingly, we
have to translate each interaction case of P (being a sequence of instance-aware events)
to a classical case (being a sequence of event types).

31

order order

accept

processed

notified un-
availability

add CD

add CD

order at
supplier

ship
available

notify un-
available

close

Figure 5.4: The result of translating quote⊕ quote of Fig. 2.1 to an IR-net Nquote.

The particular difference is the number of messages being generated by the environ-
ment P for P . A transition t of the proclet P that is attached to a port p with cardinality
+ or ∗ can produce several messages for P , i.e., t can replay an instance-aware event
e = (t, id ′, [id , id], []) which produces two messages for id . After the translation to NP ,
the same transition can only replay the classical event e′ being an occurrence of t, pro-
ducing only one message for id .

To preserve the number of messages generated by t in P , we transform each interaction
case σ of P into a classical case σP by replacing each event e = (t, id ′,SID , []) with
SID(id)-many events describing occurrences of t. In other words, replace e by a sequence
t . . . t of length SID(id). For example, the interaction case σo2 (Sect. 4.3) is transformed
to 〈accept, accept, add CD, add CD, order, notify, notified, ship, processed, close〉.

5.3 Replay Techniques for Inhibitor-Reset Nets

After converting the proclets into Petri Nets NP1 , . . . , NPn and translating their interac-
tion cases as mentioned above, our conformance checker applies the technique of [3] to
check how good the net NPi replays L|Pi , for each i = 1, . . . , n separately. Technically,
the checker finds for each interaction case σ ∈ L|Pi an execution σ′ of NPi that is as
similar as possible to t. If NPi cannot execute σ, then σ is changed to an execution σ′

of NPi by inserting or removing actions of NPi . The more σ′ deviates from σ, the less
NPi fits σ. The fitness of NPi on σ is defined by a cost-function that assigns a penalty
on σ′ for each event that has to be added or removed from σ to obtain σ′. The most
similar σ′ is found by efficiently exploring the search space of finite sequences of actions
of NPi guided by the cost function [3]. The fitness of NPi w.r.t. LPi is the average fitness
of NPi w.r.t. all cases in LPi .

The fitness of the entire proclet system P1 ⊕ . . . ⊕ Pn w.r.t. L is the average of the

32

fitness of each Pi to its interaction cases L|Pi .
To illustrate the misconformances that can be discovered with this technique, assume

that in the process execution of Fig. 2.2, case q1 did not contain an accept event. This
would lead to the following interaction case of o1:

〈(accept, q2, [], [o1, o2, o2]), (add CD, o1, [q1], []),
(add CD, o1, [q2], []), (order, o1, [], []), (ship, o1, [], [q1, q2]), (processed, q1, [o1], []),
(processed, q2, [o1, o2], []), (close, o1, [], [])〉.

Our conformance checker would then detect that the cardinality constraint + of the
input port of add CD would be violated: only one message is produced in the channel,
but two occurrences of add CD are noted, each requiring one message.

33

6 Operationalization in ProM

The interaction conformance checker is implemented as a software plug-in of ProM, a
generic open-source framework and architecture for implementing process mining tools
in a standard environment [18]. The interaction conformance checker plug-in takes as
input the proclet system model and the projection of the log with respect to a proclet of
interests (e.g., the order proclet) and, by employing the techniques described in Section 4,
returns an overview of the deviations between the cases in the log and the proclet system
model.

As input for our initial experiments, we generated synthetic event logs using CPN
Tools (http://cpntools.org) and we manually created the projections to the respective
artifacts. The proclet system was hard-coded in ProM and we implemented generic
conversions from proclet systems (called artifact models in ProM) to Petri net-based
versions of proclets with their environments. More details are given in the report [6].

For the interaction conformance, an existing conformance checker was used [2], which
is capable of replaying logs on Petri nets that include reset- and inhibitor arcs which are
needed for expressing the replay semantics of proclets.

Figure 6.1(a) shows how the model of the CD shop example is visualized in ProM,
where every light-gray rectangle is a proclet. Visible transitions are represented as empty
squares, whereas small filled rectangles are the invisible transitions.

The result of the conformance checking is shown in Figure 6.1(b). For clarity, we show
a log with only two cases, one conforming case one deviating case. Every row identifies
a different case in which the execution replay is represented as a sequence of wedges.
Every wedge corresponds to (a) a “move” in both the model and the log, (b) just a
“move” in the model (skipped transition), or (c) just a “move” in event log (inserted
event).

For a case without any problems, i.e., just moves of type (a), fitness is 1. The first
case in Figure 6.1(b) has fitness 1. Note that the conformance checker identified some
non-labeled transitions to have fired (indicated by the black triangles). These are the
transitions necessary to model cardinality of the ports. The second case shows a lower
conformance. The conformance checker identifies where the case and the model disagree
and, using a color coding, it shown exactly what type of deviation occurs. This infor-
mation allows us to understand to what extent the model used to express the process
fits the actual performance experienced in reality and where deviations are shown.

34

http://cpntools.org

(a) The model of the CD shop example

(b) The conformance results for the order proclet

Figure 6.1: Screenshots in ProM

35

7 Related Work

There are many metrics that quantify the extent a given process execution conforms to
a given model. These range from näıve metrics that simply count the fraction of cases
that can be fully executed in a model [19, 9] to more advanced metrics looking at a more
fine-grained level. A comprehensive list of existing conformance metrics can be found in
[15].

The more advanced conformance metrics are able to reflect the fact that in some traces
only parts are deviating [19, 11], but also pinpoint where deviations occur [14], while
taking into account the fact that models may contain behavior that is unobservable
by nature [3]. This allows these metrics to be applied in the context of many process
modeling languages, including proclets.

Several BPM researchers have investigated compliance at the model level [8]. These
approaches do not take the observed behavior into account.

36

8 Conclusion

In this paper, we considered the problem of determining whether different artifacts inter-
act according to their specification. We take the emerging paradigm of artifact-centric
processes as a starting point. Here, processes are composed of interacting artifacts, i.e.,
data objects with a life-cycle. The paradigm allows for the modeling of many-to-many
relationships and complex interactions.

Conformance checking techniques have been focusing on checking the conformance of
one instance in isolation. In this paper, we lift the question to artifact-centric processes.
We use proclets—one of the first artifact-centric notations—to investigate the problem.

In this paper, we showed that the problem of interaction conformance can be decom-
posed into a number of sub-problems for which we can use classical conformance checking
techniques. More specifically, we show that we can look at each artifact in isolation if we
include it’s environment which consists of single transitions of the surrounding proclets.
The approach is supported by ProM and could also be applied to other artifact-centric
notations.

Future Work. In future work, we plan to extend this research in several directions.
Firstly, we aim at an automatic extraction of interaction cases from recorded executions
of an information system. The approach presented in this report needs to be imple-
mented. However, in some cases, the behavioral information is not stored separate logs,
one log per artifact, but only in the database that supports the process. The goal is
to develop techniques for manual and automatic extraction of cases from structured
databases. Another extension is to adapt further conformance metrics (Sect. 7) to the
artifact setting.

A complimentary to technique to obtain accurate descriptions of processes executed in
reality is process mining [1, 17]; it automatically discovers a process model from recorded
system executions. The open problem that we want to address is to leverage process
mining techniques from the classical setting of isolated process instances to the artifact
setting of interacting and overlapping instances.

37

Bibliography

[1] W.M.P. van der Aalst, H.A. Reijers, A.J.M.M. Weijters, B.F. van Dongen, A.K.
Alves de Medeiros, M. Song, and H.M.W. Verbeek. Business Process Mining: An
Industrial Application. Information Systems, 32(5):713–732, 2007.

[2] A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst. Conformance Checking
using Cost-Based Fitness Analysis. Technical report, BPMcenter.org, 2011. BPM
Center Report (submitted).

[3] Arya Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst. Towards Robust
Conformance Checking. In BPM’10 Workshops, 2010. LNBIP to appear.

[4] Alistair P. Barros, Gero Decker, Marlon Dumas, and Franz Weber. Correlation
patterns in service-oriented architectures. In FASE, volume 4422 of LNCS, pages
245–259. Springer, 2007.

[5] David Cohn and Richard Hull. Business artifacts: A data-centric approach to
modeling business operations and processes. IEEE Data Eng. Bull., 32(3):3–9,
2009.

[6] Dirk Fahland, Massimiliano de Leoni, Boudewijn van Dongen, and Wil van der
Aalst. Artifact process conformance checking. Technical report, Eindhoven - Tech-
nical University of Technology, March 2011.

[7] Christian Fritz, Richard Hull, and Jianwen Su. Automatic construction of simple
artifact-based business processes. In ICDT’09, volume 361 of ACM ICPS, pages
225–238, 2009.

[8] G. Governatori, Z. Milosevic, and S. W. Sadiq. Compliance Checking Between
Business Processes and Business Contracts. In EDOC 2006, pages 221–232. IEEE
Computer Society, 2006.

[9] G. Greco, A. Guzzo, L. Pontieri, and D. Sacca. Discovering Expressive Process
Models by Clustering Log Traces. IEEE Trans. on Knowl. and Data Eng., 18:1010–
1027, August 2006.

[10] Niels Lohmann and Karsten Wolf. Artifact-centric choreographies. In ICSOC 2010,
volume 6470 of LNCS, pages 32–46. Springer, December 2010.

[11] A.K. Alves de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Genetic
Process Mining: An Experimental Evaluation. Data Mining and Knowledge Dis-
covery, 14(2):245–304, 2007.

38

[12] A. Nigam and N.S. Caswell. Business artifacts: An approach to operational speci-
fication. IBM Systems Journal, 42(3):428–445, 2003.

[13] A. Rozinat, I.S.M. de Jong, C.W. Gunther, and W.M.P. van der Aalst. Conformance
Analysis of ASML’s Test Process. In GRCIS’09, volume 459 of CEUR-WS.org, pages
1–15, 2009.

[14] A. Rozinat and W.M.P. van der Aalst. Conformance Checking of Processes Based
on Monitoring Real Behavior. Information Systems, 33(1):64–95, 2008.

[15] Anne Rozinat, Ana Karla Alves de Medeiros, Christian W. Günther, A. J. M. M.
Weijters, and Wil M. P. van der Aalst. The Need for a Process Mining Evaluation
Framework in Research and Practice. In BPM’07 Workshops, volume 4928 of LNCS,
pages 84–89. Springer, 2007.

[16] Wil M. P. van der Aalst, Paulo Barthelmess, Clarence A. Ellis, and Jacques Wainer.
Proclets: A Framework for Lightweight Interacting Workflow Processes. Int. J.
Cooperative Inf. Syst., 10(4):443–481, 2001.

[17] B.F. van Dongen, A.K. Alves de Medeiros, and L. Wen. Process Mining: Overview
and Outlook of Petri Net Discovery Algorithms. ToPNOC, 2:225–242, 2009.

[18] H.M.W. Verbeek, Joos C.A.M. Buijs, Boudewijn F. van Dongen, and Wil M. P.
van der Aalst. ProM: The Process Mining Toolkit. In BPM Demos 2010, volume
615 of CEUR-WS, 2010.

[19] A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models from
Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering,
10(2):151–162, 2003.

39

	Introduction
	Artifacts
	Artifacts: An Example
	Recording Artifact Behavior: Instance-Aware Logs
	Proclets
	Syntax of Proclets
	Semantics of Proclets by an Example
	Formal Definitions - Semantics

	The Artifact Conformance Problem
	Solving Interaction Conformance
	Reducing Artifact Conformance to Existing Techniques
	Structural Viewpoint: a Proclet and its Environment
	Behavioral Viewpoint: Extending Cases to Interaction Cases
	The Decomposition is Correct

	Conformance Checking Techniques for Artifacts
	Mapping from Proclets to Reset Nets
	Mapping Interaction Cases to Cases of Inhibitor-Reset Nets
	Replay Techniques for Inhibitor-Reset Nets

	Operationalization in ProM
	Related Work
	Conclusion

