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Abstract. Product Lifecycle Management (PLM) systems are widely
used in the manufacturing industry. A core feature of such systems is
providing support for versioning of product data. As workflow function-
ality is increasingly used in PLM systems the possibility emerges that
versioning policies as encapsulated in process models are inconsistent
with respect to their actual lifecycles. In this paper we define compliance
of object versioning lifecycles with respect to process models and provide
a solution to automatically checking whether compliance holds.

1 Introduction

Facing the manufacturing industry are challenges dealing with achieving cus-
tomer satisfaction and staying ahead of the competition. To achieve a competi-
tive edge innovative IT solutions can be leveraged, e.g. to facilitate collaboration
and to improve product development as well as product improvement. Among
such IT solutions are Product Lifecycle Management (PLM) systems [31] which
play a pivotal role in managing product data in an electronic manner. The main
functionality offered by such systems concerns the management of product data
and the management of processes. Functionality for management of product data
in a PLM tends to build on the functionality offered by Product Data Manage-
ment (PDM) [30] systems, which preceeded PLM systems. Version control is at
the core of product data management. According to [12], version control mech-
anisms are concerned with support for design reuse and concurrent design.

Version control mechanisms make a predefined set of object version opera-
tions available (e.g. check in, check out, release). The application of these version
operations may change the state of the objects to which they are applied. These
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state changes may be subject to constraints, which are enforced by the version
control mechanism. Design concurrency issues can thus be addressed by main-
taining the state of objects and restricting the application of version operations
on objects that are in a certain state as well as by maintaining access privi-
leges for the various users of the system. For example, an object that has been
checked-out by some user cannot be modified by other users of the system till it
has been checked-in again.

Contemporary PLM systems typically use workflow technology to provide
support for process management. Many common business processes in the man-
ufacturing industry, e.g. in areas such as accounting, engineering design, product
release, process planning, and production control, involve the use of object ver-
sion operations. The use of these operations in the context of tasks is subject
to access control restrictions. In addition to that, the order in which these op-
erations may be used may be governed by a lifecycle model wherein it can be
specified that certain operations can only be applied when the object is in a cer-
tain state. As ordering relations between version operations are also implicitly
enforced by the ordering relations between tasks in the workflow model, compli-
ance issues may rear their head. Specifically, on the process side, one can specify
for tasks which version operations are permitted during the execution of these
tasks and how they may progress the state of objects, while on the access control
side the access privileges of users are stored and control is maintained over the
order in which object version operations may be applied. The order of tasks may
thus contradict the order in which version operations may be applied. Determin-
ing whether this is the case is nontrivial however, as task ordering relations can
be complex.

The focus of this paper is to comprehensively address the issues involved in
determining compliance between product data management and process man-
agement in PLM systems. First a formal definition of compliance between a
versioning-aware workflow model on the one hand and object versioning lifecy-
cles on the other hand is given (Section 2). Subsequently, an approach based
on a well-known analysis technique from the field of workflow management for
automatically determining compliance, is outlined, and the correctness of this
approach is then proven (Section 3). Based upon the formal foundation, a tool
that implements the proposed approach is presented (Section 4). This tool is used
to apply the approach to a number of real-life models in order to provide some
insight into its potential practical applicability (Section 5). Section 6 discusses
the related work and Section 7 concludes the paper.

2 Fundamentals

In this section background information on version management and workflow
management is provided in order to be able to precisely characterise the problem
and its proposed solution.
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2.1 Version Management

Version management (or version control) [39, 13, 51, 6] is widely used in the man-
agement of engineering data [49, 25, 48, 14]. Version management is concerned
with maintaining different versions of objects and configurations and with pro-
viding support for operations on these versions. The scope of object version
management is a single object, e.g. a specific car design, while configuration ver-
sion management deals with the ways component designs can be combined to
create more complex design artifacts. As many business processes supported by
PLM systems are concerned with version operations on objects only, we will not
discuss configuration version management any further.

In the field of engineering-data management, there may be multiple versions
of a design object (see for example Figure 1(a)). A version of a design object
represents a meaningful stage in its evolution. Traditionally, versions are classi-
fied as revisions or variants. Revisions are versions that are ordered sequentially
in time and which represent improvements to or changing requirements with re-
spect to earlier versions. Variants on the other hand are versions that may exist
concurrently and represent design alternatives within the same revision.

A revision can be successfully completed when the design object is checked
and approved by a designated authority. In this case a new revision number
is created and the design object can be officially released. During the design
process, design objects may be submitted to supervisors for approval. If there
are errors, a new variant is created (with a new variant number) that requires
further attention of a designer. The variants thus reflect the design history of an
object design before its official release.

The evolution of versions of an object design can be represented by means of
a graph. This is illustrated in Figure 1(b) and Figure 1(c), which show a linear
version graph and a tree version graph respectively. The latter type of graph
does not only show the history of the various revisions, as the former type of
graph does, but also the various variants that were produced as part of these
revisions.

version 1.0

version 1.1

version 1.2

version 1.0

version 1.1 version 1.n

version 1.n.kversion 1.n.1

(b) linear version graph

(c) tree version graph

(a) a designed object

Design 

object

……

version

……

version 1.1.mversion 1.1.1
……

……

Fig. 1. A design object and two types of version graphs.

There are various operations that can be performed on versions of a design
object. In [12] a number of operations on design objects and versions are distin-
guished, these operations include:
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(1) Operations where versions are created, modified or deleted. Versions can be
created afresh, through copying an already existing version, or by synthesis-
ing data present in a database and not used in any existing design object.
Examples of such operations are check-in, check-out, release. A check-in op-
eration leads to a new variant number, while a release operation leads to a
new revision number.

(2) Operations where a version can be frozen (freeze) or thawed (thaw). A frozen
version cannot be modified till it is (explicitly) thawed.

State transition diagrams are a technique used to capture versioning of design
objects in engineering-data management [49]. Transitions reflect the possible
applications of version operations and may change the state of a design object.
When a design object is in a certain state, only those version operations can be
applied that are linked to transitions that have this state as the source state.
The application of a version operation associated with a certain transition takes
the design object from the source state of this transition to its target state.

Through the use of a state transition diagram an ordering on the application
of version operations can be imposed. For example, one can enforce that a check-
in operation can only be applied to a design object that has been checked out
or that an object can be released only when it has been checked in beforehand.

The following definition formalises the notion of a state transition diagram
in the context of the versioning of design objects. In the remainder of the paper
we will often abbreviate ‘design object’ to ‘object’.

Definition 1 (Object versioning lifecycle). An object versioning lifecycle L
for an object is a finite state automaton (S, V, δ, s0, G) where:

– S is a finite non-empty set of object states,
– V is the set of version operations,
– δ : S × V → S is the state transition function,
– s0 ∈ S is the initial state, and
– G ⊆ S is the set of final (accepting) states.

As mentioned before, examples of version operations are: create, check-in, check-
out, release, scrub, retain, delete, thaw, freeze, etc. Also, we introduce some no-
tations. If δ(s, v) = s′, we write s

v→ s′. If σ = v1v2...vn is a sequence of version
operations that move the object from state s to s′, we write s

σ→ s′.

2.2 Workflow Management

In workflow management one is concerned with providing support for the exe-
cution of business processes. The correct application of workflow management
may save time and money and may make it easier to demonstrate compliance
with e.g. best practices or legislation. A workflow management system routes
work, when it becomes available, to authorised resources (could be people but
also software applications) for execution and provides these resources with the
information required to perform this work (and keeps relevant information for
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future tasks that results from the conduct of this work). For a comprehensive
overview of workflow management, the reader is referred to [5].

In [2], Wil van der Aalst argued that Petri nets provide a suitable formalism
for the modelling of workflows. He introduced a subclass of Petri nets, referred
to as workflow nets, as well as the notion of soundness in order to determine
correctness of workflow nets. In order to be make this paper self-contained we
will provide formal definitions for these notions.

Definition 2 (Petri net [27]). A Petri net N is a tuple (P, T, F ) where P is
a finite set of places, T is a finite set of transitions such that P ∩ T = ∅, and
F ⊆ (P × T ) ∪ (T × P ) is the flow relation.

For each node x, i.e. a place or a transition, its pre-set, denoted as •x, is the set
of nodes which are input of x, i.e. •x = {y|(y, x) ∈ F}, while its post-set, x•, is
the set of nodes which are output of x, i.e. x• = {y|(x, y) ∈ F}.

A marking of a Petri net is an assignment of tokens to its places. A marking
represents a state of the net.

Definition 3 (Marking). Let N = (P, T, F ) be a Petri net, a marking M of
N is a function from its places to the set of natural numbers, i.e. M : P → N.

A marking can be written as a linear combination of places, e.g. M = 6p1 +
0p2 +3p3. For convenience we only list places that contain tokens so marking M
is written as 6p1 +3p3. By treating markings as multisets we can apply multiset
operations such as union and difference. For a Petri net N = (P, T, F ) we can
compare markings. A marking M is greater than a marking M ′, M > M ′, iff
for all p ∈ P : M(p) > M ′(p). In a similar vein one can define M ≥ M ′ and
M < M ′.

Definition 4 (Petri net with an initial marking). A Petri net system P is
a Petri net (P, T, F ) with a designated initial marking M0, P = (P, T, F,M0).

Transitions can change the marking of a Petri net if they are enabled.

Definition 5 (Enabled transition). Let M be a marking of Petri net N =
(P, T, F ), transition t is enabled in M , denoted M [t>, iff for every place p ∈
•t : M(p) > 0, or more succinctly •t ≥ M .

Definition 6 (Firing a transition). Let M be a marking of Petri net N =
(P, T, F ), and t a transition that is enabled in M , i.e. M [t>. Firing transition t

yields a marking M ′ defined by: M ′ = M −•t+ t•. We denote this as M
t→ M ′.

Let σ = t1 . . . tn be a sequence of transitions (not all transitions need to be
different) and M be a marking in which t1 is enabled. For all 1 ≤ i < n, firing ti
yields a marking Mi in which ti+1 is enabled, and firing tn yields marking M ′,
i.e. M

t1→ M1 . . .Mn−1
tn→ M ′, then we write M

σ→ M ′. We write M
∗→ M ′ to

indicate that a transition sequence σ exists such that M
σ→ M ′. For convenience,

we allow σ to be the empty transition sequence, in which case M = M ′.
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Definition 7 (Reachable marking). Let N = (P, T, F,M0) be a Petri net
system. M is a reachable marking of N iff M0

∗→ M .

The reader is referred to [27, 1, 53] for an overview of Petri nets.

Definition 8 (Workflow net [1]). A workflow net (WF-net) is a Petri net
(P, T, F ) which has a designated and unique source place i, i.e. i ∈ P and •i = ∅,
and a designated and unique sink place o, i.e. o ∈ P and o• = ∅. It is a require-
ment that every place and transition is on path from source place i to sink place o.

The notion of soundness formalises the notion of correctness of a workflow net
with respect to control-flow. It was originally proposed in [1], and later refined
in [44]. The Woflan tool [46] can check whether a workflow net is sound or not
based on the refined soundness notion.

Definition 9 (Soundness, adapted from [44]). A workflow net (P, T, F ) is
sound iff it satisfies all of the three following conditions:

1. proper completion. Every reachable marking, that marks o only marks o, i.e.
for all M with i

∗→ M , if M ≥ o then M = o.
2. option to complete. From every reachable marking a marking can be reached

that marks o, i.e. for all M with i
∗→ M , there exists a marking M ′, M

∗→
M ′, such that M ′ ≥ o.

3. no dead tasks. For every transition there exists a reachable marking that
enables it, i.e. for every transition t ∈ T there exists a reachable marking
M , i.e. i

∗→ M , such that M [t >.

2.3 Compliance: An Illustrative Example

In order to illustrate the issue of compliance between a process model and object
lifecycles, we provide an example specified in the TiPLM system8. The TiPLM
system is a kind of PLM system which is used in more than 100 large enterprises
in Mainland China.

Figure 2 shows a process model for designing and reviewing engineering draw-
ings specified in terms of the notation used by the TiPLM system. The key steps
of this process include tasks Design, Verify, Review, Approve, and Release. After
engineering drawings are designed, they are checked step by step. If a drawing
does not pass a check, it needs to be modified by the Design task.

During the execution of the various tasks in the process model, certain object
version operations may need to be performed. We first provide a brief overview
of the lifecycle of an object.

If the object does not exist, the operation create is executed and the object
is created. The object’s state is then Checked-out. In the Checked-out state,
a designer can generate 2D drawings or 3D models. Upon completion of this
work, the object can be checked in by performing the check-in operation. The
object is then checked into the database and it is in the state Checked-in. If a
8 http://www.thit.com.cn/chanpinshijie/TiPLM.htm
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AND-join/AND-split

XOR-join/AND-split

XOR-join/CON-split

Start Task End

Legend

Fig. 2. Design and Review Process of Engineering Drawings.

subsequent task, such as Verify or Approve, rejects the current version of the
design object, the object is checked out and its state changes from Checked-in to
Checked-out. When the object is in this state, it can be modified by the designer.
Upon completion of the changes, a new variant number is assigned automatically.
When the task Release is executed the state of the object becomes Released and
the revision number of the version is automatically increased. In that case, the
object can be made available to other departments (sections 1 to 5 in the process
model). The corresponding object lifecycle model is shown in Figure 3.
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op
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Fig. 3. A Sample Object Lifecycle Model.

The various tasks in the process model may have objectives that can be
formulated in terms of the object lifecycles of the objects involved. For example,
the task Design moves an object from its initial state to the state Checked-in (in
case it did not yet exist) or from the state Checked-in through the state Checked-
out back to the state Checked-in (in case it needed to be modified). Formally
speaking, one can thus assign a set of state pairs to a task each reflecting a valid
entry and exit state for the object for that task.

In contemporary PLM systems, object version management support through
workflows cannot be viewed independently from access control considerations.
Through the application of access control it is specified which tasks are allowed
to perform which operations on data (and these include version operations).
The assignment of version operations for our sample process model is shown in
Table 1.

To further illustrate the setting of access control permissions consider two
screenshots of the TiPLM system shown in Figure 4. The top screenshot shows
property settings for the task Design, while the bottom screenshot shows how
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Table 1. Access control privileges for tasks in process model of Figure 2

Task Allowed object version operations

Design create, check-in, check-out

Release release

other tasks –

access permissions can be set for various objects for this task. For an object, the
permission setting can be inherited from its parent object (this is represented by
the left column with tick boxes). A cross in the corresponding box means that
the operation cannot be applied by the parent object, hence it is also forbidden
for the child object. A tick in that box means that the operation can be applied
by the parent object and hence also by the child object. The right most column of
tick boxes can be used to override privileges set for parent objects. For the same
object, putting ticks in both boxes or crosses in box boxes is in fact redundant.

(a) dialog box of task properties

(b) dialog box of operation permission setting

From left to right: Property, Executor, 

Monitor, Successor Node, Execute

when Activated, Execute Manually, 

Execute when Completed, Description

From left to right: Object type, 

Operation permission assignment, 

Inherit permission status from parent 

object,  Authorize permission

From top to bottom: Item, Form, Product, 

Manufacturing process management, 

Statistics report template, Document, 

Project management

From top to bottom: browse, 

download, print, check-out, release, 

rollback, upgrade, update, scrub, 

cancel scrub, source is not read-

only, add data from external source, 

add data from internal source, delete 

data

Task Properties Dialog

Proceed to next task 

if there is no object

Allow transfer of work

OK Cancel

Task name

Task execution 

time frame

Time units

Permissions setting

Permissions Setting Dialog

Refresh

From left to right: OK, Cancel, Apply

Design

Day

Box is ticked, crossed, or blank (editable): 

- operation permitted (ticked) or not 

permitted (crossed) which overwrites 

the inherited permission status

- if blank, then the same as inherited 

permission status

Box is ticked or crossed (not editable):

- operation permitted (ticked) or not 

permitted (crossed) as inherited 

from the parent object

- by default, i.e. for top level object, 

operation is not permitted

From left to right: Set by default, 

Authorize permissions to all 

operations, unauthorize permissions 

to all operations

Fig. 4. Screenshots illustrating assignment of version operation privileges to tasks in
the TiPLM system.
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While the access control mechanism ensures data security by preventing the
execution of unauthorised (version) operations during task execution, there is
no consideration of the order in which version operations need to be performed.
Hence in a PLM system we may have a situation where 1) a process model
dictates the order in which tasks need to be executed, 2) the access control
mechanism governs the use of version operations during the execution of tasks,
and 3) an object versioning lifecycle controls when certain version operations can
be applied. The amalgamation of these three models may lead to problems. Some
of these problems may be of a syntactical nature, e.g. some version operations
used in an object versioning lifecycle are not used by any task, while some
problems may be of a semantical nature, e.g. the flow of version operations as
prescribed by an object versioning lifecycle may contradict the possible sequences
of version operations as can be derived from the ordering of tasks in the process
model.

As an example of the latter case, consider the following assignment of ver-
sion operations to tasks: task Design is allowed to perform operations create and
check-in, tasks Verify and Review are allowed to perform operation check-out,
and task Release is allowed to perform the release operation. In this case, the
following scenario causes a problem. Imagine the task Design executes the ver-
sion operations create and check-in taking the object to state Checked-in. The
subsequent Verify task then executes the check-out operation and afterwards
the object is in state Checked-out. If the next task is the task Review no version
operation can be performed as the check-out operation expects the object to
be in the state Checked-in and if this is followed by the task Review we are in
fact in a deadlock as this task can only perform the release operation which also
expects the task to be in the state Checked-in and no tasks following from this
task can bring the object in this state.

Whether there are semantic problems due to contradictions in the specifica-
tion of process models, access control privileges, and object lifecycle models may
not be trivial to determine as a result of the fact that control-flow dependencies
between tasks may be complex in nature. The topic of this paper is to examine
what kinds of syntactic and semantic problems may occur in PLM systems when
combining product data and process managament, to formally characterise these
problems, and to provide a solution for automatically determining whether they
are present in a specification.

3 Compliance Checking

In this section we propose a formal approach for conducting compliance check-
ing between process models and object versioning lifecycles. We firstly define a
versioning-annotated process. It specifies a process model, an object versioning
lifecycle, and access control privileges, in a way that certain tasks in the process
model are annotated with the object version operations prescribed in the ac-
cess control privileges. We then formally characterise syntactical and semantical
properties of versioning-annotated processes, and accordingly define the notions
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of syntactical compatibility and behavioural compliance. These two notions are
used to determine if a versioning-annotated process is compliant with an asso-
ciated object versioning lifecycle. Finally, we present a solution for automatical
reasoning about the compliance properties of versioning-annotated processes.

3.1 Versioning-Annotated Process

We define versioning-annotated processes in the form of annotated workflow
nets. The definition captures process specifications, in the form of workflow nets
(Definition 8), object versioning lifecycles, in the form of state transition dia-
grams (Definition 1), and task annotations, in the form of access privileges and
object-state pairs.

Definition 10 (Versioning-annotated workflow net). A versioning-annotated
workflow net (VWF-net) is a tuple (P,L, R, Q) where:

– P = (P, T, F ) is a process model specified as a workflow net,
– L = (S, V, δ, s0, G) is an object versioning lifecycle,
– R : T → 2V is a function assigning version operations to process tasks,
– Q : T → 2S×S is a function assigning object-state pairs to process tasks,

which specifies that for each state pair (s, s′) ∈ Q(t) the object can move
from s to s′.

For each (s, s′) ∈ Q(t), s is referred to as a pre-state of t, i.e. state of the object
before task t is carried out, and s′ a post-state of t, i.e. state of the object
after task t is carried out. The set of object-state pairs associated with a task
may be derived from its objective(s), which, though not formally stated, may be
determined on the basis of its name and its input and output data.

Remark 1. The information about an object that a task can work on, and the set
of version operations that the task can perform on the object, can be obtained
from the access control settings specified for that task. Therefore this information
is readily available.

Remark 2. In PLM systems (e.g. TiPLM) a task is allowed to work on multiple
objects. As there is no interference between these objects, we can perform the
compliance checking of a versioning-annotated process taking into account each
object in isolation. Therefore, for compliance checking purposes, it is valid to
consider just one object in Definition 10.

Example. Figure 5 depicts an illustrative example of a VWF-net which is ab-
stracted from a design and review process of engineering drawings mentioned in
the previous subsection. Note that in object versioning lifecycle L version opera-
tion v5 labels two state transitions which can be uniquely identified as (s1, v5, s4)
and (s2, v5, s4). Also, in process model P transitions t1, t3, t4, t5 have empty an-
notations (i.e. they are annotated with an empty set of version operations and
an empty set of object-state pairs). These transitions model those tasks that do
not perform any version operations on the object involved in the corresponding
versioning-annotated process definition.
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Task annotations:

task/s version operations (R) state pairs (Q)

t1, t3, t4, t5 ∅ ∅
t2 {v1, v2} {(s0, s2)}
t6 {v2, v3} {(s2, s2)}
t7 {v4, v5} {(s2, s3), (s2, s4)}

Fig. 5. An illustrative example of a VWF-net.

3.2 Syntactical Compatibility

A versioning-annotated process (V W ) is the result of combining a business pro-
cess (P), an object versioning lifecycle (L), and a version operations and object-
state pairs assignment. The amalgamation of these components may lead to
problems. We observed that some of these problems are due to the particular
assignment of version operations as captured in versioning annotations. For ex-
ample, assume there exists a version operation (v) in object versioning lifecycle
L such that an object cannot reach any final state in L without carrying out
v. The versioning-annotated process V W will deadlock if v is not assigned to
any task in business process P regardless of the process behaviour. These prob-
lems are independent of the dynamic behaviour (or semantics) of a process, and
thus are of a syntactical nature. Below we characterise the possible syntactical
problems in versioning-annotated processes.

Definition 11 (Compatible versioning annotation). Let V W = (P,L, R, Q)
be a VWF-net where L = (S, V, δ, s0, G). V W is annotated in a way compatible
with object versioning lifecycle L if and only if it satisfies all of the six following
conditions:

– empty annotation consistency. A task has an empty annotation if and only
if it carries out no version operations, i.e. for all t ∈ T , R(t)=∅ ⇔ Q(t)=∅.

– version operation assignment completeness. The tasks altogether should be
able to perform all possible version operations in the object versioning life-
cycle, i.e. V =

⋃
t∈T R(t).
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– local object path existence. A task, by performing the assigned version op-
erations, is able to move an object from its pre-state to post-state in all the
assigned state pairs, i.e. for all t ∈ T and for all (s, s′) ∈ Q(t), there is a
sequence of version operations σ ∈ R(t)∗ such that s

σ→ s′.

– no locally assigned dead version operation. A task is able to perform, at
least once, every assigned version operation, i.e. for all t ∈ T and for all
v ∈ R(t), there exists a sequence of version operations σ ∈ R(t)∗ and an
object-state pair (s, s′) ∈ Q(t), such that s

σ→ s′ and v is part of sequence σ.

– no dead object state transition. Any transition in the object versioning life-
cycle is possible in the context of a certain task, i.e. for all s, s′ ∈ S and
v ∈ V such that s

v→ s′, there exists t ∈ T with v ∈ R(t), a sequence of
version operations σ ∈ R(t)∗, and an object-state pair (s, s′) ∈ Q(t), such
that s

σ→ s′ and v is part of sequence σ.

– global object path existence. The tasks altogether should be able to move the
object from its initial state to one of the final states, i.e. let (S,

⋃
t∈T Q(t))

be a directed graph, there exists a path from s0 to an s ∈ G in this graph.

The six conditions are used to check syntactical compatibility of a versioning-
annotated process. Note that the first, the third, the fourth and the fifth condi-
tion apply to individual tasks (i.e. local check), while the other two conditions
apply to all the tasks in the process as a whole (i.e. global check). Again, the
checking is based on the annotations of tasks only, that is, the behaviour of the
tasks (e.g., the order of task executions) is not taken into account at this stage.

Example. We apply the above syntactical compatibility checking to the VWF-net
shown in Figure 5. The result shows that the object state transition leading from
s1 to s4 and labelled v5 in object versioning lifecyle L can never be performed
in the context of any of the tasks in process P. The problem can be fixed by
either 1) removing the dead object state transition from the object versioning
lifecyle (if the problem is related to the lifecycle) or 2) adding a state pair that
covers the dead object state transition to an appropriate task in the process
model (if the problem is related to the version operations assignment to tasks
in the process). In this example, we assume that the object versioning lifecycle
L is wrong, and thus remove the dead object state transition (s1, v5, s4) from L.
The revised VWF-net then holds a compatible versioning annotation.

3.3 Behavioural Compliance

We continue to examine semantical problems with a versioning-annotated pro-
cess. As mentioned before, these problems may be due to the fact that, for
example, the possible sequences of version operations that can be derived from
the ordering of tasks in business process P contradicts the flow of version op-
erations as prescribed by object versioning lifecycle L. We first define execution
semantics of a VWF-net based on the definition of execution semantics of a
WF-net as given in Section 2.
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Definition 12 (Marking of VWF-net). Let V W = (P,L, R, Q) be a VWF-
net, a marking of V W is a pair (M, s) where M is a marking of WF-net P and
s is a state of the object in its versioning lifecycle model L.

Given that WF-net P has a unique source place i and a unique sink place o and
L = (S, V, δ, s0, G), the initial marking of V W can be written as (i, s0) and a
final marking of V W can be written as (o, sf ) where sf ∈ G.

Definition 13 (Enabled transition in VWF-net). Let (M, s) be a marking
of VWF-net (P,L, R, Q), transition t is enabled in (M, s), denoted (M, s)[t>,
if and only if the two following conditions are both fulfilled:

(1) t is enabled in M , i.e. M [t>, and
(2) Q(t) = ∅ or otherwise there exists s′ ∈ S such that (s, s′) ∈ Q(t).

Definition 14 (Firing a transition in VWF-net). Let (M, s) be a marking
of VWF-net (P,L, R, Q) and t an enabled transition in (M, s), i.e. (M, s)[t>. If
firing t in M leads to M ′ in P (i.e. M

t→ M ′), then firing (t, σ) in (M, s) leads

to (M ′, s′), written (M, s)
(t,σ)−→ (M ′, s′), where

– if Q(t) = ∅: s = s′ and σ = null,
– otherwise: (s, s′) ∈ Q(t), σ ∈ R(t)∗ and s

σ→ s′.

Let (M, s) be a marking in which t1 is enabled and firing (t1, σ1) leads to (M1, s1).
For all 1 ≤ i < n, firing (ti, σi) yields a marking (Mi, si) in which ti+1 is enabled,
and firing (tn, σn) yields a marking (M ′, s′). That is,

(M, s)
(t1,σ1)−→ (M1, s1) . . . (Mn−1, sn−1)

(tn,σn)−→ (M ′, s′)

where ti ∈ T and σi ∈ R(ti)∗ ∪ {null} (i = 1, ..., n). We write (M, s) ∗→ (M ′, s′)
to indicate that there exists a firing sequence α = (t1, σ1) . . . (tn, σn) such that
(M, s) α→ (M ′, s′). For convenience, we allow α to be an empty firing sequence,
in which case M = M ′ and s = s′.

Definition 15 (Reachable marking of VWF-net). Let V W = (P,L, R, Q)
be a VWF-net, i the source place of P, and s0 the initial state of L (i.e. (i, s0)
is the initial marking of V W ). (M, s) is a reachable marking of V W if and
only if (i, s0)

∗→ (M, s). Mvw = {(M, s)|(i, s0)
∗→ (M, s)} is the set of reachable

markings of V W .

As inspired by the soundness properties of a WF-net (see Definition 9), we
specify the behavioural compliance of a VWF-net V W = (P,L, R, Q) as that
there are no deadlocks during the execution of V W (i.e. the net has the option to
complete), there are no dead tasks and no task has unused versioning annotations
in V W , and that once the sink place of the process WF-net P is marked there
are no more tokens left in P regardless of the state of L (i.e. V W has proper
completion).
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Definition 16 (Behavioural compliance). Let V W = (P,L, R, Q) be a VWF-
net where P = (P, T, F ) is a WF-net and L = (S, V, δ, s0, G) is an object ver-
sioning lifecycle. V W is compliant with L if and only if it satisfies all of the
four following conditions:

– proper completion. For every reachable marking, if it marks o and a final
state of L, then it only marks o and that state of L, that is, for all (M, sf )
with sf ∈ G such that (i, s0)

∗→ (M, sf ), if M ≥ o then M = o.

– option to complete. From every reachable marking a marking can be reached
that marks o and a final state of L, that is, for all (M, s) with (i, s0)

∗→
(M, s), a marking (M ′, sf ) with (M, s) ∗→ (M ′, sf ) exists, such that M ′ ≥ o
and sf ∈ G.

– no dead tasks. For every task in P there exists a reachable marking that
enables it, that is, for all t ∈ T , there is a reachable marking (M, s), i.e.
(i, s0)

∗→ (M, s), such that (M, s)[t>.

– no unused versioning annotations. Every task t with a non-empty versioning
annotation in P should satisfy:
(1) for every state pair (s, s′) ∈ Q(t), there is a reachable marking (M, s),

i.e. (i, s0)
∗→ (M, s); and

(2) for every version operation v ∈ R(t), there is a sequence of version
operations σ ∈ R(t)∗ and an object-state pair (s, s′) ∈ Q(t) such that
s

σ→ s′ and v is part of sequence σ (i.e. the “no locally assigned dead
version operation” condition in Definition 11).

From Definition 10, we can see that a VWF-net (V W ) extends a WF-net (P)
with an object versioning lifecycle model, and thus it follows that the behavioural
compliance of V W is influenced to some extent by the soundness properties of
P. This relationship is explored in the following proposition.

Proposition 1. Let V W = (P,L, R, Q) be a VWF-net, where P = (P, T, F ) is
a WF-net and L = (S, V, δ, s0, G) is an object versioning lifecycle.

(a) If (i, s0)
∗→ (M, s) for some s ∈ S in V W , then i

∗→ M in P.
(b) If P does not have the weak option to complete, then V W does not have the

option to complete. As defined in [52], P has the weak option to complete iff
there is a reachable marking M with M ≥ o.

(c) If P has a dead task, then V W has a dead task.
(d) If P has proper completion, then V W has proper completion.

Proof. (a) In V W , since (i, s0)
∗→ (M, s), there is a firing sequence (t1, σ1) ... (tn, σn)

such that (i, s0)
(t1,σ1)−→ (M1, s1) ... (Mn−1, sn−1)

(tn,σn)−→ (M, s). Then, from Defi-
nitions 13 and 14, it follows that i

t1→ M1 ... Mn−1
tn→ M , i.e. i

∗→ M , in P.
(b) By contradiction. Assume that V W has the option to complete. Let

sf ∈ G, for each (M, s) ∈ MV W , (M, s) ∗→ (M ′, sf ) and M ′ ≥ o. As a result,
(i, s0)

∗→ (M ′, sf ), and from (a), it follows that i
∗→ M ′ in P, i.e. P has the weak
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option to complete. This contradicts the fact that P does not have the weak
option to complete. Hence, the statement holds.

(c) In P, let t ∈ T be a dead task, then for all M with i
∗→ M , t is not

enabled in M . From (a), it follows that for each (M, s) ∈MV W in V W , we have
i
∗→ M in P. Then, from Definitions 13, it follows that t is not enabled in any

reachable marking in V W , i.e. t is also a dead task in V W .
(d) By contradiction. Assume that V W does not have proper completion. In

V W , let sf ∈ G, there is a (M, sf ) ∈MV W such that M > o. From (a), it follows
that i

∗→ M in P, and given M > o, P does not have proper completion. This
contradicts the fact that P has proper completion. Hence, the statement holds.

3.4 Versioning Compliance Checking

Compliance checking between a versioning-annotated process and its associated
object versioning lifecycle comprises both the syntactical compatibility checking
and the behavioural compliance checking. Let V W = (P,L, R, Q) be a VWF-
net capturing a versioning-annotate process. Proposition 1 characterises how
the soundness properties of the WF-net P influence the compliance properties
of the corresponding VWF-net V W . To be on the safe side, we assume that P
is a sound WF-net before we conduct the compliance checking of V W . Also, in
practice the WF-net P is always created separately from any object versioning
lifecycle and before the VWF-net V W is constructed, and hence it is reasonable
to conduct a soundness checking of P on its own.

Then, for the compliance checking of a versioning-annotated process, the syn-
tactical compatibility checking is conducted first, because most syntactical prob-
lems, if undetected, will lead to semantical problems. Once the process passes
syntactical compatibility checking, it will then go through behavioural compli-
ance checking. Syntactical checking is straightforward. We focus on behavioural
compliance checking and propose an approach involving three steps: firstly, we
convert a VWF-net to a (normal) WF-net; secondly, we conduct soundness ver-
ification on this WF-net; and finally, based on the soundness verification results
of the WF-net, we reason about the behavioural compliance between the orig-
inal VWF-net and the associated object versioning lifecyle. Below, we define
well-formed VWF-nets for behavioural compliance checking.

Definition 17 (Well-formed VWF-net). A VWF-net V W = (P,L, R, Q)
is well-formed if and only if P is a sound WF-net and V W has a compatible
versioning annotation.

Model Transformation Let V W = (P,L, R, Q) be a well-formed VWF-net,
we propose the following steps for transforming V W to a WF-net WV W :

1. Transform L to a Petri net NL. The basic idea is to convert object states
in L into places, object state transitions (labelled with version operations)
in L to transitions. The resulting Petri net NL has one source place (which
models the initial state in L) and one or more sink places (which correspond
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to the set of final states in L).

2. Refine NL to N ′
L based on the version operations annotation in V W . When a

version operation (v) is assigned to multiple tasks in process P, each of these
tasks should be able to carry out that version operation independently. To
capture this requirement, we introduce in N ′

L multiple copies of transitions
that model the state transitions labelled with v, each dedicated to one of the
tasks to which v is assigned.

3. Transform P to a new WF-net WP where each transition with a non-empty
versioning annotation is split into a sequence of starting transition, executing
place, and completing transition. This is to facilitate the modelling of such a
transition carrying out the assigned version operation(s) during its execution.

4. Refine WP to W ′
P based on the object-state pairs annotation in V W . When

a task (t) is linked to multiple object-state pairs, it means that during an
execution of t the object can move from a pre-state to a post-state in any,
but only one, of these state pairs. To capture this requirement, we introduce
in W ′

P multiple copies of starting and completing transitions of task t to
model respectively the individual pre-states and post-states in the object-
state pairs assigned to task t.

5. Combine N ′
L in Step 2 and W ′

P in Step 4 into one WF-net WV W . The two
nets are connected as follows. Firstly, the places (modelling object states) in
N ′
L are connected with the starting or completing transitions of tasks in W ′

P ,
capturing the fact that such a task can only be started (or completed) when
the object is in a valid pre-state (or post-state). Secondly, the executing
places of tasks in W ′

P are connected with the transitions (modelling object
state transitions) in N ′

L, capturing the fact that version operations are car-
ried out during the execution of those tasks to which the operations are
assigned. For both connections we use bi-directional arcs to capture the be-
haviour of checking if a condition holds (i.e. the object is in a valid state,
or a task is being executed). Finally, we introduce a source place to connect
N ′
L and W ′

P in the beginning, and a sink place to connect them at the end.

6. Add mutex place to control the access to the object for carrying out version
operations by only one task at a time. The mutex place gets marked once
the process is ready to start, and unmarked once the process is completed.
For every task that has a non-empty annotation, the starting (x) transition
takes away the token from the mutex place and the completing (y) transition
releases the token to the mutex place.

Now we formalise the above rules for transforming a VWF-net to a WF-
net. One thing that should be noted is in an object versioning lifecycle, multiple
object state transitions may be labelled with the same version operation. For ex-
ample, in the object versioning lifecycle in Figure 5 version operation v5 labels
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two object state transitions (s1, v5, s4) and (s2, v5, s4). Hence, when a version
operation v appears in the annotation of a task t and v labels more than one
object state transition, it is necessary to check if each of these state transi-
tions (s, v, s′) is possible in the context of task t. This is captured by predicate
ValidStateTrans(t, (s, v, s′)) in the following definition.

Definition 18 (Transformation from VWF-net to WF-net). Let V W =
(P,L, R, Q) be a well-formed VWF-net where P = (P, T, F ) is a WF-net and
L = (S, V, δ, s0, G) is an object versioning lifecycle. Given the following nota-
tions:

– T∅ = {t ∈ T |R(t) = ∅} is the set of tasks with an empty versioning annota-
tion (i.e. any t ∈ T\T∅ has a non-empty versioning annotation),

– for any t ∈ T\T∅, PrS(t)={s ∈ S|∃s′∈S [(s, s′) ∈ Q(t)]} is the set of pre-
states and PoS(t)={s ∈ S|∃s′∈S [(s′, s) ∈ Q(t)]} the set of post-states in the
object-state pairs assigned to t, and

– predicate ValidStateTrans(t, s, v, s′) holds if there is an object-state pair
(s1, s2) ∈ Q(t) and two sequences of version operations σ1, σ2 ∈ R(t)∗ such
that s1

σ1→ s
v→ s′ σ2→ s2.

VWF-net V W can be transformed to WF-net WV W = (S, T ,F) where W is the
transformation constructor and:

S = S ∪ P ∪ {et|t ∈ T\T∅} ∪ {iW , oW} ∪ {µ}
T = T∅ ∪X ∪ Y ∪ Z ∪H ∪ {b} where

- X = {xs
t |t ∈ T\T∅ ∧ s ∈ PrS(t)},

- Y = {ys
t |t ∈ T\T∅ ∧ s ∈ PoS(t)},

- Z = {zt
(s,v,s′)|t ∈ T\T∅ ∧ v ∈ R(t) ∧ValidStateTrans(t, (s, v, s′))},

- H = {hs|s ∈ G}
F = (F ∩ (P × T∅ ∪ T∅ × P )) ∪

{(p, xs
t )|t ∈ T\T∅ ∧ p ∈ •t ∧ s ∈ PrS(t)} ∪

{(ys
t , p)|t ∈ T\T∅ ∧ p ∈ t• ∧ s ∈ PoS(t)} ∪

{(xs
t , et)|t ∈ T\T∅ ∧ s ∈ PrS(t)} ∪ {(et, y

s
t )|t ∈ T\T∅ ∧ s ∈ PoS(t)} ∪

{(s, xs
t )|t ∈ T\T∅ ∧ s ∈ PrS(t)} ∪ {(xs

t , s)|t ∈ T\T∅ ∧ s ∈ PrS(t)} ∪
{(s, ys

t )|t ∈ T\T∅ ∧ s ∈ PoS(t)} ∪ {(s, ys
t )|t ∈ T\T∅ ∧ s ∈ PoS(t)} ∪

{(et, z
t
(s,v,s′))|t ∈ T\T∅ ∧ v ∈ R(t) ∧ValidStateTrans(t, s, v, s′)} ∪

{(zt
(s,v,s′), et)|t ∈ T\T∅ ∧ v ∈ R(t) ∧ValidStateTrans(t, s, v, s′)} ∪

{(s, zt
(s,v,s′))|t ∈ T\T∅ ∧ v ∈ R(t) ∧ValidStateTrans(t, s, v, s′)} ∪

{(zt
(s,v,s′), s

′)|t ∈ T\T∅ ∧ v ∈ R(t) ∧ValidStateTrans(t, s, v, s′)} ∪
{(µ, xs

t )|t ∈ T\T∅ ∧ s ∈ PrS(t)} ∪ {(ys
t , µ)|t ∈ T\T∅ ∧ s ∈ PoS(t)} ∪

{(iW , b)} ∪ {(b, i)} ∪ {(b, s0)} ∪ {(b, µ)} ∪
{(s, hs)|s ∈ G} ∪ {(o, hs)|s ∈ G} ∪ {(µ, hs)|s ∈ G} ∪ {(hs, oW)|s ∈ G}

Example. We apply the above rules to transforming the VWF-net in Figure 5 to
a WF-net. Note that to pass the syntactical compatibility checking, the object
state transition (s1, v5, s4) is removed from object versioning lifecycle L before
the transformation. The resulting WF-net is shown in Figure 6.
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Fig. 6. A WF-net converted from a well-formed VWF-net as revised from the one in
Figure 5 by removing the object state transition (s1, v5, s4) from L.

Soundness Verification and Reasoning Since a well-formed VWF-net com-
prises a sound WF-net and such a WF-net has proper completion, from Propo-
sition 1(d), it follows that a well-formed VWF-net has proper completion.

Lemma 1. A well-formed VWF-net has proper completion.

We now focus on checking the other three behavioural compliance properties
of a VWF-net: option to complete, no dead tasks, and no unused versioning
annotations. Consider a well-formed VWF-net V W . We observe that the state
space of V W is similar to that of WV W . Thus, we examine if it is possible to
establish a bisimulation equivalence relation between these two state spaces. If
we can establish such a relation, we can then derive more properties from that,
e.g., the above behavioural compliance properties.

A bisimulation relation is etablished between labelled transition systems
(LTSs). An LTS is a structure consisting of states with transitions, labelled
with actions, between them. Thus, we will treat the state spaces of V W and
WV W as LTSs. The basic definitions of LTSs can be found in many references
(e.g. [43, 42]). We adopt the one from [42] as it defines the set of final states
which is necessary in specifying the notion of option to complete for an LTS.

Definition 19 (Labelled Transition System [42]). A Labelled Transition
System (LTS) is a 5-tuple (Q,A,→, q0, Ω) where
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– Q is a set of states,
– A is a set of action labels,
– →⊆ (Q× (A ∪ {τ})×Q) is a transition relation, where τ /∈ A is the silent

action,
– q0 ∈ Q is the initial state, and
– Ω ⊆ Q is the set of final states.

Definition 20 (Semantical notations of an LTS, adapted from [43]). Let
L = (Q,A,→, q0, Ω) be an LTS. Let q, q′ ∈ Q, we write the following semantical
notations for L :

– L: q
α→ q′, if a transition labelled α ∈ A∪ {τ} changes the state of L from q

to q′, i.e. (q, α, q′) ∈→.
– L: q

ε=⇒ q′, if there is a path from q to q′ which consists of an arbitrary
number n of τ -steps (n ≥ 0), i.e. q = q′ or ∃q′′∈Q[L: q ⇒ q′′ τ→ q′].

– let β = a1...an (where a1, ..., an ∈ A) be a sequence of non-silent action/s,

then L: q
β

=⇒ q′, which denotes q ⇒ q1
a1→ q′1 ⇒ ... ⇒ qn

an→ q′n ⇒ q′ (where
q1, q

′
1, ..., qn, q′n ∈ Q), that is, a path from q to q′ passing through a sequence

of actions that reduces to β after leaving out the silent ones.

Definition 21 (Reachability in an LTS). Let L = (Q,A,→, q0, Ω) be an
LTS. For any q, q′ ∈ Q, if there exists a sequence of actions ψ ∈ A∗ such that
L: q

ψ
=⇒ q′, then q′ is reachable from q, which can be denoted as L: q

∗→ q′. A
state q ∈ Q is a reachable state if and only if L: q0

∗→ q.

Definition 22 (Option to complete for an LTS). An LTS L = (Q,A,→, q0,
Ω) has the option to complete if and only if for every reachable state q ∈ Q, there
exists a final state qf ∈ Ω such that L: q

∗→ qf .

Definition 23 (Dead action in an LTS). Given an LTS L = (Q,A,→, q0,
Ω), a ∈ A is a dead action if and only if for any reachable state q ∈ Q, there
does not exist any state q′ ∈ Q such that L: q

a→ q′.

Based on the above definitions of an LTS and its semantics, we now define
the LTS (LV W ) of a well-formed VWF-net (V W ). The LTS LV W shows the
internal steps between every two subsequent markings of the VWF-net V W and
as a result it captures all the intermediate states. Our purpose is to determine
the three compliance properties - option to complete, no dead tasks, and no
unused versioning annotations - of the VWF-net V W through determining the
behavioral properties, option to complete and no dead actions, of its labelled
transition system LV W .

Definition 24 (Predicate POSSIBLE). Let V W = (P,L, R, Q) be a well-
formed VWF-net, where P = (P, T, F ) is a WF-net and L = (S, V, δ, s0, G)
is an object versioning lifecycle. M is a marking of P and (i, s0) is the initial
marking of V W . Then:
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– Possible(M, t, s) holds if 1) M [t> and 2) an object-state pair (s1, s2) ∈
Q(t) and two sequences of version operations σ1, σ2 ∈ R(t)∗ exist such that
(i, s0)

∗→ (M, s1) and s1
σ1→ s

σ2→ s2.
– Possible(M, t, s, s′, v) holds if 1) M [t>, 2) v ∈ R(t), and 3) an object-state

pair (s1, s2) ∈ Q(t) and two sequences of version operations σ1, σ2 ∈ R(t)∗

exist such that (i, s0)
∗→ (M, s1) and s1

σ1→ s
v→ s′ σ2→ s2.

Definition 25 (LTS of VWF-net V W ). Let V W = (P,L, R, Q) be a well-
formed VWF-net, where P = (P, T, F ) is a WF-net and L = (S, V, δ, s0, G) is
an object versioning lifecycle. The LTS of VWF-net V W , referred to as LV W ,
is (Qvw,Avw,→vw, qvw

0 , Ωvw) where

– Qvw = {(M, s)|(i, s0)
∗→ (M, s)} ∪

{(M̂↑t, s)|t ∈ T\T∅ ∧Possible(M̂+•t, t, s)}
– Avw = {t|t ∈ T∅} ∪

{(t, s)|t ∈ T\T∅ ∧ s ∈ PrS(t) ∪ PoS(t)} ∪
{(t, v)|t ∈ T\T∅ ∧ v ∈ R(t)},

– →vw= {((M, s), t, (M ′, s))|t ∈ T∅ ∧M
t→ M ′} ∪

{((M̂↑t, s), t′, (M̂ ′↑t, s))|t′ ∈ T∅ ∧ M̂
t′→ M̂ ′} ∪

{((M, s), (t, s), ((M−•t)↑t, s))|t ∈ T\T∅ ∧M [t> ∧ s ∈ PrS(t)} ∪
{((M̂↑t, s), (t, v), (M̂↑t, s′))|t ∈ T\T∅∧Possible(M̂+•t, t, s, s′, v)} ∪
{((M̂↑t, s), (t, s), (M̂+t•, s))|t ∈ T\T∅ ∧ (M̂+•t)[t> ∧ s ∈ PoS(t)}

– qvw
0 = (i, s0), and

– Ωvw = {o} ×G.

Remark 3. For t ∈ T\T∅, M̂↑t represents an intermediate marking in which t
is being executed, that is, after the tokens in the input places of t (•t) being
consumed and before the tokens in the output places of t (t•) being produced.

Based on the above definition, the following proposition specifies the corre-
spondence between a firing step in a well-formed VWF-net and a firing sequence
in the LTS of the VWF-net. Recall that Mvw is the set of reachable markings of
a VWF-net V W (see Definition 15).

Proposition 2. Let V W = (P,L, R, Q) be a well-formed VWF-net, where P =
(P, T, F ) is a WF-net and LV W = (Qvw,Avw,→vw, qvw

0 , Ωvw) be the LTS of
V W . Then:

(a) Mvw ∪ {(M̂↑t, s)|t ∈ T\T∅ ∧Possible(M̂+•t, t, s)} = Qvw;

(b) for any (M, s), (M ′, s′) ∈ Mvw, (M, s)
(t,null)−→ (M ′, s′) in V W if and only if

LV W : (M, s) t→ (M ′, s′) (where s = s′), for some t ∈ T∅ where M
t→ M ′;

(c) for any (M, s), (M ′, s′) ∈ Mvw, (M, s)
(t,v1...vn)−→ (M ′, s′) in V W if and only

if LV W : (M, s)
(t,s)→ ((M−•t)↑t, s) (t,v1)→ ((M−•t)↑t, s1)...

(t,vn)→ ((M−•t)↑t, s′)
(t,s′)→ (M ′, s′), for some t ∈ T\T∅ where M

t→ M ′, (s, s′) ∈ Q(t), v1, ..., vn ∈
R(t), and s

v1→ s1 ...
vn→ s′. By using a short-hand notation ωt

(s,σ,s′) =
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(t, s)(t, v1)...(t, vn)(t, s′) where σ = v1...vn (i.e. σ ∈ R(t)∗ and s
σ→ s′), the

above firing sequence in LV W can be written as LV W : (M, s)
ωt

(s,σ,s′)−→ (M ′, s′).

The following proposition specifies the correspondence between the state
reachability of a well-formed VWF-net and that of the LTS of the VWF-net.

Proposition 3. Let V W = (P,L, R, Q) be a well-formed VWF-net, where P =
(P, T, F ) is a WF-net, and LV W = (Qvw,Avw,→vw, qvw

0 , Ωvw) be the LTS of
V W . Then:

(a) For any (M, s), (M ′, s′) ∈ Mvw, (M, s) ∗→ (M ′, s′) in V W if and only if
LV W : (M, s) ∗→ (M ′, s′).

(b) For any (M̂↑t, si) ∈ Qvw\Mvw, there exist (M, s), (M ′, s′) ∈ Mvw such that
LV W : (M, s) ∗→ (M̂↑t, si) and LV W : (M̂↑t, si)

∗→ (M ′, s′).
(c) Every state qvw ∈ Qvw is a reachable state.

Proof. (a) (⇒) In V W , given (M, s), (M ′, s′) ∈Mvw, if (M, s) ∗→ (M ′, s′), there

is a firing sequence (M, s)
(t1,σ1)−→ (M1, s1) ...

(tn,σn)−→ (M ′, s′). Let (Mi−1, si−1)
(ti,σi)−→

(Mi, si) be any firing step within the above sequence.
– If ti ∈ T∅, then σi = null. Based on Proposition 2(b), there exists in LV W

a firing step LV W : (Mi−1, si−1)
ti→ (Mi, si) (and si−1 = si).

– If ti ∈ T\T∅, then σi ∈ R(ti)∗ and si−1
σi→ si. Based on Proposition 2(c),

there exists in LV W a firing sequence LV W : (Mi−1, si−1)
ω

ti
(si−1,σi,si)−→ (Mi, si).

This means that every firing step in V W has a corresponding firing step/sequence
in LV W . Hence, if (M, s) ∗→ (M ′, s′) in V W , then LV W : (M, s) ∗→ (M ′, s′).

(⇐) In LV W , given (M, s), (M ′, s′) ∈Mvw, if LV W : (M, s) ∗→ (M ′, s′), there
is a firing path LV W : (M, s) δ1→ (M1, s1) ...

δn→ (M ′, s′), where 1) M
t1→ M1...

tn→
M ′ for some t1, ..., tn ∈ T , and 2) let LV W : (Mi−1, si−1)

δi→ (Mi, si) be any firing
step/sequence in the path, and ti ∈ {t1, ..., tn}, then

δi =

{
ti (ti ∈ T∅)
ωti

(si−1,σi,si)
(ti ∈ T\T∅, (si−1, si) ∈ Q(ti), σi ∈ R(ti), si−1

σi→ si)

If LV W : (Mi−1, si−1)
ti→ (Mi, si), then (Mi−1, si−1)

(ti,null)−→ (Mi, si) in V W

(based on Proposition 2(b)). Otherwise, if LV W : (Mi−1, si−1)
ω

ti
(si−1,σi,si)−→ (Mi, si),

then (Mi−1, si−1)
(ti,σi)−→ (Mi, si) in V W (based on Proposition 2(c)). This means

that given the above firing path from (M, s) to (M ′, s′) in LV W , there ex-
ists a corresponding firing sequence from (M, s) to (M ′, s′) in V W . Hence, if
LV W : (M, s) ∗→ (M ′, s′), then (M, s) ∗→ (M ′, s′) in V W .

(b) For any (M̂↑t, si) ∈ Qvw\Mvw, based on the fact Possible(M̂+•t, t, si),

there is (M̂+•t, s) ∈ Mvw where s
σ→ si

σ′→ s′ for some (s, s′) ∈ Q(t) and
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σ, σ′ ∈ R(t)∗. Assume σ = v1...vi and σ′ = vi+1...vn. From Definition 25, it

follows that LV W : (M̂+•t, s) (t,s)→ (M̂↑t, s) (t,v1)→ ...
(t,vi)→ (M̂↑t, si)

(t,vi+1)→ ...
(t,vn)→

(M̂↑t, s′) (t,s′)→ (M̂+t•, s′). Based on Proposition 2(c), we have (M̂+•t, s) (t,σσ′)−→
(M̂+t•, s′) in V W , and therefore (M̂+t•, s′) ∈Mvw.

(c) This follows directly from (a) and (b).

The following lemma specifies how to reason about the property of option to
complete for a well-formed VWF-net and its LTS.

Lemma 2. Let V W = (P,L, R, Q) be a well-formed VWF-net, where P =
(P, T, F ) is a WF-net and L = (S, V, δ, s0, G) is an object versioning lifecycle,
and LV W = (Qvw,Avw,→vw, qvw

0 , Ωvw) be the LTS of V W . V W has the option
to complete if and only if LV W has the option to complete.

Proof. (⇒) There are two cases in examining the states of LV W .

(1) Let (M, s) ∈ Mvw. Since V W has the option to complete, (M, s) ∗→ (o, sf )
holds for some sf ∈ G in V W . From Proposition 3(a), it follows that LV W :

(M, s) ∗→ (o, sf ).
(2) Let (M̂↑t, si) ∈ Qvw\Mvw. From Proposition 3(c), LV W : (i, s0)

∗→ (M̂↑t, si).
From Proposition 3(b), there is a (M ′, s′) ∈Mvw such that LV W : (M̂↑t, si)

∗→
(M ′, s′). Since (M ′, s′) ∗→ (o, sf ) holds for some sf ∈ G in V W , from
Proposition 3(a), it follows that LV W : (M ′, s′) ∗→ (o, sf ). Hence, LV W :

(M̂↑t, si)
∗→ (o, sf ).

(⇐) From Proposition 3(a), LV W : (i, s0)
∗→ (M, s) for every (M, s) ∈ Mvw.

Since LV W has the option to complete, LV W : (M, s) ∗→ (o, sf ) holds for some
sf ∈ G. Again, from Proposition 3(a), it follows that (M, s) ∗→ (o, sf ) in V W .

The following lemma specifies how to reason about the properties of no dead
tasks and no unused versioning annotations for a well-formed VWF-net, and the
property of no dead actions for the corresponding LTS.

Lemma 3. Let V W = (P,L, R, Q) be a well-formed VWF-net, where P =
(P, T, F ) is a WF-net and L = (S, V, δ, s0, G) is an object versioning lifecycle,
and LV W = (Qvw,Avw,→vw, qvw

0 , Ωvw) be the LTS of V W . There are no dead
tasks and no task has unused versioning annotations in V W if and only if there
are no dead actions in LV W .

Proof. According to Definition 16, there are no dead tasks in V W if and only if
for all t ∈ T , there is a (M, s) ∈ Mvw such that (M, s)[t>. No task has unused
versioning annotations in V W if and only if for every t ∈ T\T∅:

(1) for each (s, s′) ∈ Q(t), there is a (M, s) ∈Mvw such that (M, s)[t>; and
(2) t has no locally assigned dead version operations.
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Since V W is a well-formed VWF-net, it has a compatible versioning annotation,
in which there are no locally assigned dead version operations to each task.

From Definition 23, there are no dead actions in LV W if and only if for all
a ∈ Avw, there exist (M, s), (M ′, s′) ∈ Qvw such that LV W : (i, s0)

∗→ (M, s) and
LV W : (M, s) a→ (M ′, s′).

To facilitate the proof, we write the set of actions of LV W (given in Defini-
tion 25) as follows:

Avw =
⋃

t∈T∅

{t} ∪
⋃

t∈T\T∅
(

⋃

(s,s′)∈Q(t)

{(t, s), (t, s′)} ∪ {(t, v)|v ∈ R(t)} )

(⇒) We consider two cases in examining the actions in LV W .

(1) For each t ∈ T∅ in V W , there is a (M, s) ∈ Mvw such that M [t>, and t

corresponds to action t ∈ Avw. Let M
t→ M ′, then (M, s)

(t,null)−→ (M ′, s)

in V W . From Proposition 2(b), LV W : (M, s) t→ (M ′, s). Hence, for each
t ∈ T∅, the corresponding action t can fire.

(2) For each t ∈ T\T∅ in V W , there is (M, s) ∈ Mvw such that (M, s)[t> for
each (s, s′) ∈ Q(t), and t corresponds to the set of actions:

At
vw =

⋃

(s,s′)∈Q(t)

{(t, s), (t, s′)} ∪ {(t, v)|v ∈ R(t)}

We use a short-hand notation R(s,s′)(t) to represent the set of version op-
erations {v1, ...vn} ⊆ R(t) such that s

v1→ ...
vn→ s′ for (s, s′) ∈ Q(t). Let

M
t→ M ′, then (M, s)

(t,v1...vn)−→ (M ′, s′) in V W . From Proposition 2(c),

LV W : (M, s)
(t,s)→ ((M−•t)↑t, s) (t,v1)→ ...

(t,vn)→ ((M−•t)↑t, s′) (t,s′)→ (M ′, s′),
where all the actions {(t, s), (t, s′)}∪{(t, v)|v ∈ R(s,s′)(t)} fire (in sequence).
Then, for all (s, s′) ∈ Q(t), the following set of the actions can fire:

Ât
vw =

⋃

(s,s′)∈Q(t)

{(t, s), (t, s′)} ∪
⋃

(s,s′)∈Q(t)

{(t, v)|v ∈ R(s,s′)(t)}

Given that V W has no locally assigned dead version operations, R(t) =⋃
(s,s′)∈Q(t) R(s,s′)(t), and thus At

vw = Ât
vw. Hence, for each t ∈ T\T∅, all

the corresponding actions a ∈ At
vw can fire.

(⇐) By contradiction. Assume that V W has a dead task or a task in V W
has unused versioning annotations. This leads to two cases.

(1) There is a dead task t, i.e. no (M, s) ∈ Qvw exists such that (M, s)[t>.
(a) If t ∈ T∅, it is mapped to an action t in LV W . Since LV W does not have

dead actions, there are (M, s), (M ′, s) ∈ Qvw such that LV W : (M, s) t→
(M ′, s). From Proposition 2(b), we have (M, s)

(t,null)−→ (M ′, s) in V W .
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(b) If t ∈ T\T∅, it is mapped to the set of actions At
vw. Since LV W does

not have dead actions, for each (s, s′) ∈ Q(t), there are (M, s), (M ′, s′) ∈
Qvw with M

t→ M ′ such that LV W : (M, s)
(t,s)→ ((M−•t)↑t, s) (t,v1)→

...
(t,vn)→ ((M−•t)↑t, s′) (t,s′)→ (M ′, s′) where v1, ..., vn ∈ R(s,s′)(t). Then,

from Proposition 2(c), we have (M, s)
(t,v1...vn)−→ (M ′, s′) in V W .

From both (a) and (b), we can draw the conclusion that in V W for every
t ∈ T , there is a (M, s) ∈Mvw such that (M, s)[t>. This however contradicts
the assumption statement. Hence, there are no dead tasks in V W if there
are no dead actions in LV W .

(2) A task t ∈ T\T∅ has unused versioning annotations. Versioning annotations
comprise state pairs and version operations. As a well-formed VWF-net,
V W does not have locally assigned dead version operations. Thus, if task t
has unused versioning annotations, they must include an unused state pair
(s, s′) ∈ Q(t) such that (M, s) is not a reachable state, i.e. (M, s) /∈Mvw. As
stated in the above case (1)(b), since LV W does not have dead actions, given
task t ∈ T\T∅ and state pair (s, s′) ∈ Q(t), we can reach the conclusion that

there are (M, s), (M ′, s′) ∈ Qvw such that (M, s)
(t,v1...vn)−→ (M ′, s′) in V W .

From Proposition 2(a), it follows that (M, s) ∈Mvw, which then contradicts
the assumption that (M, s) /∈ Mvw. Hence, no task has unused versioning
annotations in V W if there are no dead actions in LV W .

Similarly, we now define the LTS (LW) of the WF-net (WV W ) that is trans-
formed from a well-formed VWF-net (V W ). The LTS LW captures the state
space of the WF-net WV W . Our purpose is to reason about two soundness prop-
erties - option to complete and no dead transitions - of the WF-netWV W through
the two behavioural properties, option to complete and no dead actions of its
labelled transition system LW .

Definition 26 (LTS of WF-net WV W ). Let V W = (P,L, R, Q) be a well-
formed VWF-net where P = (P, T, F ) is a WF-net. WV W = (S, T ,F) is the
WF-net which results from the transformation of V W where T = T∅ ∪X ∪ Y ∪
Z ∪H ∪ {b}. WV W has a unique source place iW and a unique sink place oW .
The LTS of WF-net WV W , referred to as LW , is (Qw,Aw,→w, qw

0 , Ωw) where

– Qw = {M |iW ∗→ M},
– Aw = {t|t ∈ T∅} ∪

{(t, s)|t ∈ T\T∅ ∧ s ∈ PrS(t) ∪ PoS(t)} ∪
{(t, v)|t ∈ T\T∅ ∧ v ∈ R(t)},

– →w= {(M, t,M ′)|t ∈ T∅ ∧M
t→ M ′} ∪

{(M, (t, s),M ′)|(M xs
t→ M ′ ∧ xs

t ∈ X) ∨ (M
ys

t→ M ′ ∧ ys
t ∈ Y )} ∪

{(M, (t, v),M ′)|M
zt
(s,v,s′)−→ M ′ ∧ zt

(s,v,s′) ∈ Z} ∪
{(M, τ, M ′)|M b→ M ′ ∨ (M h→ M ′ ∧ h ∈ H)},
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– qw
0 = iW , and

– Ωw = {oW}.
Lemma 4. Let V W be a well-formed VWF-net. WV W has the option to com-
plete if and only if LW has the option to complete.

Proof. From Definition 26, it can be observed that the reachability graph of
WF-net WV W can be represented by the corresponding LTS LW by ignoring
the labels of actions. Hence, the lemma holds.

Lemma 5. Let V W = (P,L, R, Q) be a well-formed VWF-net where P =
(P, T, F ) is a WF-net and L = (S, V, δ, s0, G) is an object versioning lifecy-
cle. WV W = (S, T ,F), where T = T∅ ∪ X ∪ Y ∪ Z ∪ H ∪ {b}, which has
LW = (Qw,Aw,→w, qw

0 , Ωw) as its associated labelled transition system. WV W

does not have dead transitions if and only if LW does not have dead actions.

Proof. From Definition 18 and Definition 26, we observe the correspondence
between the transitions in WV W and the actions in LW , and write the set of
actions of LW as follows:

Aw =
⋃

t∈T∅

{t} ∪
⋃

xs
t∈X

{(t, s)} ∪
⋃

ys
t∈Y

{(t, s)} ∪
⋃

zt
(s,v,s′)∈Z

{(t, v)}.

Also, following observation from Definition 26, LW represents the reachability
graph of WV W and labels each state transition with a corresponding action or
treats it as a silent action.

(⇒) All the actions a ∈ Aw in LW are used to label the corresponding
transitions γ ∈ T inWV W . Hence, if each γ ∈ T inWV W is not a dead transition,
then each a ∈ Aw in LW is not a dead action.

(⇐) All the transitions γ ∈ T\(H ∪ {b}) in WV W are labelled with the
corresponding actions a ∈ Aw in LW . Hence, if each a ∈ Aw in LW is not a
dead action, then each γ ∈ T\(H ∪ {b}) in WV W is not a dead transition. Next,
in WV W , transition b can always fire in the initial marking iW , i.e. it is not
a dead transition. Now we consider H transitions. In WV W , for each h ∈ H,
there is a sf ∈ G such that o + sf + µ

h→ oW . As a well-formed VWF-net, V W
has compatible versioning annotations, and thus there are no dead object state
transitions (see Definition 11). Hence, for all (si, v, sf ) ∈ S×V ×G with si

v→ sf ,
there exist t ∈ T with v ∈ R(t), s ∈ S with (s, sf ) ∈ Q(t), and σ ∈ R(t)∗, such
that s

σ→ si
v→ sf . For each (s, sf ) ∈ Q(t), there is a y

sf

t inWV W , and since there
are no dead transitions in WV W , y

sf

t can fire resulting in marking o + sf + µ, in
which transition h is then enabled. Hence, each h ∈ H is not a dead transition.

As mentioned before, we observe that the state space of a well-formed VWF-
net V W is similar to that of the corresponding WF-net WV W . Thus, we hope to
check whether there is a bisimulation relation between the LTS of V W (LV W )
and the LTS of WV W (LW). Given the fact that LW has silent transitions, it
is logical to check whether a weak bisimulation relation can be established. The
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concept of weak bisimulation was first proposed in [26], and later on refined in
other references such as [43, 42]. Below, we adopt the definition of weak bisimu-
lation from [43] and add the condition on the final states as given in [42].

Definition 27 (Weak bisimulation, adapted from [43, 42]). Let L = (Q,A,→
, q0, Ω) and L̂ = (Q̂, Â,→′, q̂0, Ω̂) be two LTSs. The relation R ⊆ Q × Q̂ is a
weak simulation if and only if it satisfies the following three conditions:
(1) (q0, q̂0) ∈ R.
(2) for all q, q′ ∈ Q and q̂ ∈ Q̂ :

- if (q, q̂) ∈ R and L: q
τ→ q′, then (q′, q̂) ∈ R; and

- if (q, q̂) ∈ R and L: q
a→ q′ for some a ∈ A, then there is a q̂ ∈ Q̂ such

that L̂: q̂
a=⇒ q̂′ and (q′, q̂′) ∈ R.

(3) for all qf ∈ Ω, q̂ ∈ Q̂ : if (qf , q̂) ∈ R, then there is a q̂f ∈ Ω̂ such that
L̂: q̂

ε=⇒ q̂f and (qf , q̂f ) ∈ R.
If both R and R−1 are weak simulations, then R is a weak bisimulation, and L
and L̂ are weakly bisimilar over R, denoted by L 'R L̂.

The following proposition is derived from an equivalent definition to the
above definition of weak bisimulation as given in [43].

Proposition 4 (derived from [43]). Let L = (Q,A,→, q0, Ω) and L̂ = (Q̂, Â,→′

, q̂0, Ω̂) be two LTSs that hold a weak bisimulation relation R ⊆ Q× Q̂. For all

q, q′ ∈ Q and q̂ ∈ Q̂, if (q, q̂) ∈ R and L: q
ψ

=⇒ q′ for some ψ ∈ A∗, then there is

a q̂′ ∈ Q̂ such that L̂: q̂
ψ

=⇒ q̂′ and (q′, q̂′) ∈ R. Symmetrically, for all q̂, q̂′ ∈ Q̂
and q ∈ Q, if (q̂, q) ∈ R−1 and L̂: q̂

ψ
=⇒ q̂′ for some ψ ∈ Â∗, then there is a

q′ ∈ Q such that L: q
ψ

=⇒ q′ and (q̂′, q′) ∈ R−1.

Lemma 6. Let L = (Q,A,→, q0, Ω) and L̂ = (Q̂, Â,→′, q̂0, Ω̂) be two LTSs
and L 'R L̂. L has the option to complete if and only if L̂ has the option to
complete.

Proof. (⇒) By contradiction. Assume L̂ does not have the option to complete,
that is, there is a reachable state q̂ ∈ Q̂ such that for all q̂f ∈ Ω̂, L̂: q̂

∗9 q̂f .

For reachable state q̂, there is a ψ ∈ Â∗ such that L̂: q̂0
ψ

=⇒ q̂. Given the
weak bisimulation relation R, we have (q̂0, q0) ∈ R−1. From Proposition 4, there

is a q ∈ Q such that L: q0
ψ

=⇒ q and (q̂, q) ∈ R−1. Since L has the option to

complete, there is a qf ∈ Ω such that L: q
∗→ qf , i.e. L: q

ψ′
=⇒ qf for some

ψ′ ∈ A∗. Given that (q, q̂) ∈ R, from Proposition 4, there is a q̂′ ∈ Q̂ such that

L̂: q̂
ψ′

=⇒ q̂′ and (qf , q̂′) ∈ R. According to Condition (3) in Definition 27, there

is a q̂f ∈ Ω such that L̂: q̂′ ε=⇒ q̂f and (qf , q̂f ) ∈ R. Then we have L̂: q̂
ψ′

=⇒ q̂f ,

i.e. L̂: q̂
∗→ q̂f . This however contradicts the assumption that “L̂ does not have

the option to complete”. Hence, (⇒) part of the lemma holds.
(⇐) Given the weak bisimulation relation R, the proof for (⇐) part of the

lemma is symmetrical to that for the (⇒) part.
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Lemma 7. Let L = (Q,A,→, q0, Ω) and L̂ = (Q̂, Â,→′, q̂0, Ω̂) be two LTSs.
L 'R L̂ and A = Â. L does not have dead actions if and only if L̂ does not have
dead actions.

Proof. (⇒) By contradiction. Assume L̂ has a dead action a ∈ Â, that is, for all
reachable state q̂ ∈ Q̂, there does not exist a q̂′ ∈ Q̂ such that L̂: q̂

a→ q̂′.
Since L does not have dead actions and A = Â, a ∈ A is not a dead action

in L, and thus there are q, q′ ∈ Q and ψ ∈ A∗ such that L: q0
ψ

=⇒ q
a→ q′. Given

the weak bisimulation relation R, we have (q0, q̂0) ∈ R. From Proposition 4,

there is a q̂ ∈ Q̂ such that L̂: q̂0
ψ

=⇒ q̂ and (q, q̂) ∈ R, and subsequently, there
is a q̂′ ∈ Q̂ such that L̂: q̂

a→ q̂′ and (q′, q̂′) ∈ R. This however contradicts the
assumption that a is a dead action in L̂. Hence, (⇒) part of the lemma holds.

(⇐) Given the weak bisimulation relation R, the proof for (⇐) part of the
lemma is symmetrical to that for the (⇒) part.

Given the definitions of weak bisimulation, we now examine if there is a weak
bisimulation relation between the LTS of a well-formed VWF-net (LV W ) and
the LTS of the corresponding WF-net (LW).

Definition 28 (State space relation H). Let V W = (P,L, R, Q) be a well-
formed VWF-net, where P = (P, T, F ) is a WF-net and L = (S, V, δ, s0, G)
is an object versioning lifecycle. WV W is the WF-net transformed from V W .
Let LV W = (Qvw,Avw,→vw, qvw

0 , Ωvw) and LW = (Qw,Aw,→w, qw
0 , Ωw) be the

associated labelled transition systems of V W and WV W respectively. The state
space relation H ⊆ Qvw ×Qw can be defined as:

H = {((i, s0), iW)} ∪ {((o, sf ), oW)|sf ∈ G} ∪
{((M, s),M + s + µ)|(i, s0)

∗→ (M, s)} ∪
{((M̂↑t, s), M̂ + et + s)|t ∈ T\T∅ ∧Possible(M̂+•t, t, s)}

Theorem 1. Let V W = (P,L, R, Q) be a well-formed VWF-net, where P =
(P, T, F ) is a WF-net and L = (S, V, δ, s0, G) is an object versioning lifecycle.
WV W = (S, T ,F) is the WF-net transformed from V W , where T = T∅∪X∪Y ∪
Z ∪H ∪ {b}. Let LV W = (Qvw,Avw,→vw, qvw

0 , Ωvw) and LW = (Qw,Aw,→w

, qw
0 , Ωw) be the associated labelled transition systems of V W and WV W respec-

tively. The state space relation H ⊆ Qvw × Qw is a weak bisimulation, i.e.
LV W 'H LW .

Proof. First, we prove H ⊆ Qvw ×Qw is a weak simulation.

(1) ((i, s0), iW) ∈ H.
(2) For all qvw ∈ Qvw and qw ∈ Qw such that (qvw, qw) ∈ H, and Lvw: qvw

α→ q′vw

for some α ∈ Avw ∪ {τ} and some q′vw ∈ Qvw. If α = τ , then (q′vw, qw) ∈ H;
otherwise, if α ∈ A, then there is a q′w ∈ Qw such that Lw: qw

α=⇒ q′w and
(q′vw, q′w) ∈ H.

(2.1) qvw = (i, s0) and thus qw = iW .
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(a) α = t, with t ∈ T∅ and i[t>.

Let M ′=i−•t+t•, then LV W : (i, s0)
t→ (M ′, s0) and (M ′, s0) ∈ Qvw.

In WV W , iW
b→ i+s0 +µ, and since transition b is treated as a silent

action, we have LW : iW
τ→ i + s0 + µ. Given t ∈ T∅ and i

t→ M ′, we
have i+s0 +µ

t→ M ′+s0 +µ in WV W , which holds as a specific case
of (2.2)(a) with (M, s) = (i, s0). Since transition t ∈ T∅ is labelled

with action t in LW , we have LW : i + s0 + µ
t→ M ′ + s0 + µ. Hence,

it is true that LW : iW
t=⇒ M ′ + s0 + µ. Also, from Definition 28,

((M ′, s0),M ′ + s0 + µ) ∈ H.

(b) α = (t, s0), with t ∈ T\T∅ and (i, s0)[t>.

Let M̂=i−•t, then LV W : (i, s0)
(t,s0)−→ (M̂↑t, s0) and (M̂↑t, s0) ∈ Qvw.

Again, LW : iW
τ→ i+s0 +µ. Given t ∈ T\T∅ and (i, s0)[t>, we have

i + s0 + µ
x

s0
t→ M̂ + et + s0 in WV W , which holds as a specific case

of (2.2)(b) with (M, s) = (i, s0). Since transition xs0
t is labelled with

action (t, s0) in LW , we have LW : i+s0 +µ
(t,s0)−→ M̂ +et +s0. Hence,

it is true that LW : iW
(t,s0)=⇒ M̂ + et + s0. Also, from Definition 28,

((M̂↑t, s0), M̂ + et + s0) ∈ H.

(2.2) qvw = (M, s) and thus qw = M + s + µ.

(a) α = t, with t ∈ T∅ and M [t>.

Let M
t→ M ′, then LV W : (M, s) t→ (M ′, s) and (M ′, s) ∈ Qvw.

Given t ∈ T∅, firing t only changes marking M in V W , and based on
the transformation rules, task t and its surrounding arcs and places

in V W remain the same in WV W . Thus, we have LW : M + s + µ
t→

M ′ + s + µ. Also, ((M ′, s),M ′ + s + µ) ∈ H.

(b) α = (t, s), with t ∈ T\T∅ and (M, s)[t>.

Let M̂=M−•t, then LV W : (M, s)
(t,s)−→ (M̂↑t, s) and (M̂↑t, s) ∈ Qvw.

Given t ∈ T\T∅, based on the tranformation rules, t is split into
a sequence of x transition, et place, and y transition in WV W . The
mapping is shown in Figure 7. Since (M, s)[t>, when WV W is in
marking M + s + µ, transition xs

t can fire. Upon firing, xs
t consumes

the tokens in the input places of task t (i.e. •t) and the token in
the mutex place µ, and marks place et (indicating task t is being
executed). The object state s remains unchanged. Thus, we have

LW : M + s + µ
(t,s)−→ M̂ + et + s. Also, ((M̂↑t, s), M̂ + et + s) ∈ H.

(2.3) qvw = (M̂↑t, s) and qw = M̂ + et + s.

In this case, t ∈ T\T∅, let M = M̂ +•t then M [t>, and there are s1, sn ∈
S where (s1, sn) ∈ Q(t) and σ, σ′ ∈ R(t)∗ such that s1

σ→ s
σ′→ sn.
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Fig. 7. From V W to WV W : Mapping of task t with state pair (s1, sn) ∈ Q(t) where

s1
v1...vn−1−→ sn and v1, ..., vn−1 ∈ R(t).

(a) α = (t, v), with s 6= sn and v = head(σ′).

There is a s′ ∈ S such that s
v→ s′, and thus LV W : (M̂↑t, s) (t,v)−→

(M̂, s′) and (M̂, s′) ∈ Qvw. In WV W , transition zt
(s,v,s′) is enabled

in marking M̂ + et + s (see Figure 7). Since the firing of transition
xs1
t marks place et while it unmarks the mutex place µ, no e places

except et are marked. Thus, when WV W is in marking M̂ + et + s,
zt
(s,v,s′) is the only transition that can fire and consume the token

in s. Firing zt
(s,v,s′) only changes object states, leading to marking

M̂ + et + s′. Since transition zt
(s,v,s′) in WV W is labelled with ac-

tion (t, v) in LW , we have LW : M̂ + et + s
(t,v)−→ M̂ + et + s′. Also,

(M̂↑t, s′), M̂ + et + s′) ∈ H.

(b) α = (t, s), and s = sn.

Let M ′=M̂+t•, then LV W : (M̂↑t, s) (t,s)−→ (M ′, s) and (M ′, s) ∈ Qvw.
In WV W , transition ys

t is enabled as long as the et and s places are
marked, and thus can fire in marking M̂ +et+s (see modelling of ysn

t

in Figure 7). Firing ys
t unmarks place et and marks the output places

of task t (i.e. t•) (changing marking M̂ +et to M ′), and also releases
the token to the mutex place µ. The object state s remains marked.
Since transition ys

t in WV W is labelled with action (t, s) in LW , we

have LW : M̂ +et+s
(t,s)−→ M ′+s+µ. Also, ((M ′, s),M ′+s+µ) ∈ H.

(c) α = t′, with t′ ∈ T∅ and (M − •t)[t′>.

Let M̂
t′→M̂ ′, then LV W : (M̂↑t, s) t′→ (M̂ ′↑t, s) and (M̂ ′↑t, s) ∈ Qvw.

Since firing task t′ ∈ T∅ only changes marking M̂ , we have LW :

M̂ + et + s
t′→ M̂ ′ + et + s. Also, (M̂ ′↑t, s), M̂ ′ + et + s) ∈ H.

(3) qvw = (o, sf ) and thus qw = o + sf + µ, where sf ∈ G.

This implies that α = τ . In WV W , o + sf + µ
hsf→ ow, and since transition

hsf
is treated as a silent action, we have LW : o + sf + µ

τ→ ow. Also, from
Definition 28, ((o, sf ), oW) ∈ H.
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SinceH satisfies all three conditions in Definition 27, it is a weak simulation.

Next, we prove H−1 ⊆ Qw ×Qvw is a weak simulation. From Definition 28,

H−1 = {(iW , (i, s0))} ∪ {(oW , (o, sf ))|sf ∈ G} ∪
{(M + s + µ, (M, s))|(i, s0)

∗→ (M, s)} ∪
{(M̂ + et + s, (M̂↑t, s))|t ∈ T\T∅ ∧M [t> ∧Possible(M̂+•t, t, s)}

(1) (iW , (i, s0)) ∈ H−1.
(2) For all qw ∈ Qw and qvw ∈ Qvw such that (qw, qvw) ∈ H−1, and Lw: qw

α→ q′w
for some α ∈ Aw ∪ {τ} and some q′w ∈ Qw. If α = τ , then (q′w, qvw) ∈ H−1;
otherwise, if α ∈ Aw, then there is a q′vw ∈ Qvw such that Lvw: qvw

α=⇒ q′vw

and (q′w, q′vw) ∈ H−1.

(2.1) qw = iW and thus qvw = (i, s0).
This implies that α = τ . In WV W , iW

b→ i+ s0 +µ, and thus LW : iW
τ→

i + s0 + µ. Also, (i + s0 + µ, (i, s0)) ∈ H−1.

(2.2) qw = M + s + µ and thus qvw = (M, s).

(a) α = t, with t ∈ T∅ and M [t>.
In WV W , transition t ∈ T∅ is not connnected with any object state
s or the mutex place µ, and thus firing t only changes marking M .
Also, t and its surrounding arcs and places are the same as in V W .

Let M
t→ M ′, we have LW : M + s + µ

t→ M ′ + s + µ. Next, from

Definition 25, if t ∈ T∅ and M
t→ M ′, then LV W : (M, s) t→ (M ′, s).

Also, (M ′ + s + µ, (M ′, s)) ∈ H−1.

(b) α = (t, s), with t ∈ T\T∅ and (M, s)[t >.
In WV W , transition t ∈ T\T∅ is split into a sequence of x transition,
et place, and y transition (see Figure 7). Since (M, s)[t> in V W ,
transition xs

t is enabled in marking M + s+µ in WV W , and upon its
firing, the marking changes to (M − •t) + et + s. Let M̂ = M − •t,
we have LW : M + s + µ

(t,s)−→ M̂ + et + s. Next, given t ∈ T\T∅ and

(M, s)[t>, from Definition 25, we have LV W : (M, s)
(t,s)−→ (M̂↑t, s).

Also, (M̂ + et + s, (M̂↑t, s)) ∈ H−1.

(2.3) qw = M̂ + et + s and thus qvw = (M̂↑t, s).
In this case, t ∈ T\T∅, let M = M̂ +•t then M [t>, and there are s1, sn ∈
S where (s1, sn) ∈ Q(t) and σ, σ′ ∈ R(t)∗ such that s1

σ→ s
σ′→ sn.

(a) α = (t, v), with s 6= sn and v = head(σ′).
There is a s′ ∈ S such that s

v→ s′. In WV W , given s 6= sn,
when both et and s are marked, zt

(s,v,s′) is the only transition that
can fire and change the object state from s to s′ (see Figure 7).
Also, firing a z transition only changes object states. Thus, we have
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LW : M̂ +et+s
(t,v)−→ M̂ +et+s′. Next, based on Definition 25, we have

LV W : (M̂↑t, s) (t,v)−→ (M̂↑t, s′). Also, (M̂ + et + s′, (M̂↑t, s′)) ∈ H−1.

(b) α = t, with s = sn.
In WV W , when s = sn, transition ys

t is enabled in marking M̂ +et+s

(see ysn
t in Figure 7). Let M ′ = M̂ + t•, then M

t→ M ′, and firing
ys
t unmarks place et and marks the output places of task t, and

also releases the token to the mutex place µ. The object state s re-
mains marked. The marking changes to M ′ + s + µ. Thus, we have

LW : M̂ + et + s
(t,s)→ M ′ + s + µ. Next, based on Definition 25, we

have (LV W : M̂↑t, s) (t,s)−→ (M ′, s)). Also, (M ′+s+µ, (M ′, s)) ∈ H−1.

(c) α = t′, with t′ ∈ T∅ and M̂ [t′>.

Let M̂
t′→ M̂ ′, given t′ ∈ T∅, we have LW : M̂ + et + s

t′→ M̂ ′+ et + s.

Based on Definition 25, we have LV W : (M̂↑t, s) t′→ (M̂ ′↑t, s). Also,
(M̂ ′ + et + s, M̂ ′↑t, s)) ∈ H−1.

(3) qw = o + sf + µ and thus qvw = (o, sf ), where sf ∈ G.

This implies that α = τ . InWV W , o+sf +µ
hsf→ oW , thus LW : o+sf +µ

τ→ oW
where transition hsf

is treated as a silent action. Also, (oW , (o, sf )) ∈ H−1.

H−1 satifies all three conditions in Definition 27 and is a weak simulation.

Since both H and H−1 are weak simulations, H is a weak bisimulation, i.e.
the theorem holds.

Based on the above, we can now reason about the behavioural compliance
properties of a well-formed VWF-net V W using the soundness properties of the
corresponding WF-net WV W .

Lemma 8. A well-formed VWF-net V W has the option to complete if and only
if WV W has the option to complete.

Proof. From Lemma 2, it follows that V W has the option to complete if and
only if LV W has the option to complete. From Theorem 1, LV W 'H LW , and
thus from Lemma 6, it follows that LV W has the option to complete if and only
if LW has the option to complete. Next, from Lemma 4, it follows that LW has
the option to complete if and only if WV W has the option to complete. Hence,
V W has the option to complete if and only if WV W has the option to complete,
i.e. the lemma holds.

Lemma 9. A well-formed VWF-net V W does not have dead tasks and no task
has unused versioning annotations if and only if WV W does not have dead tran-
sitions.

Proof. From Lemma 3, it follows that V W does not have dead tasks and no task
has unused version operations if and only if LV W does not have dead actions.
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Next, from Theorem 1, LV W 'H LW . As we have Avw = Aw (see Definitions 25
and 26), from Lemma 7, it follows that LV W does not have dead actions if and
only if LW does not have dead actions. From Lemma 5, it then follows that LW
does not have dead actions if and only if WV W does not have dead transitions.
Hence, V W does not have dead tasks and no task has unused versioning an-
notations if and only if WV W does not have dead transitions, i.e. the lemma
holds.

Theorem 2. A well-formed VWF-net V W = (P,L, R, Q) is compliant with the
object versioning lifecycle L if and only if WV W = (S, T ,F) is a sound WF-net.

Proof. From Definition 16, VWF-net V W is compliant with the object versioning
lifecycle L if and only it satisfies four conditions: (1) proper completion, (2)
option to complete, (3) no dead tasks, and (4) no unused versioning annotations.

From Definition 9, WF-net WV W is sound if and only it satisfies three condi-
tions: (1) proper completion, (2) option to complete, and (3) no dead transitions.

From Lemma 8 and Lemma 9, it follows that V W satisfies conditions (2) to
(4) if and only if WV W satisfies conditions (2) and (3).

Below, we prove that V W has proper completion if and only if WV W has
proper completion (i.e. condition (1) for both nets). From Definition 16, when
VWF-net V W has proper completion, for all (MP , sf ) ∈ MV W with sf ∈ G,
if MP ≥ o then MP = o. From Defintion 9, when WF-net WV W has proper
completion, for all Mw with iW

∗→ Mw, if Mw ≥ oW then Mw = oW .
(⇒) By contradiction. Assume that WV W does not have proper completion,

i.e. let sf ∈ G, there is a marking (o+M ′)+sf +µ with iW
∗→ (o+M ′)+sf +µ,

such that (o + M ′) + sf + µ
h→ oW + M ′ for some h ∈ T . From Definition 26, it

follows that (o + M ′) + sf + µ ∈ Qw in LW . From Definition 28, there is a state
(o + M ′, sf ) ∈ Qvw in LV W such that ((o + M ′) + sf + µ, (o + M ′, sf )) ∈ H−1.
From Proposition 2(a), it follows that (o + M ′, sf ) ∈MV W in V W . This means
that there is a marking (MP , sf ) ∈ MV W with sf ∈ G such that MP > o in
V W , which contradicts the fact that V W has proper completion. Hence, V W
has proper completion only if WV W has proper completion.

(⇐) By contradiction. Assume that V W does not have proper completion,
i.e. let sf ∈ G, there is a marking (o + M, sf ) ∈ MV W . From Proposition 2(a),
it follows that (o + M, sf ) ∈ Qvw in LV W . From Definition 28, there is a state
(o+M)+sf +µ ∈ Qw in LW such that ((o+M, sf ), (o+M)+sf +µ) ∈ H. From
Definition 26, it follows that iW

∗→ (o + M) + sf + µ in WV W . In WV W , when
both the sink place o of P and a final state sf of L are marked, the transition hsf

can fire, and upon its firing, it unmarks the places o, sf and µ, and marks the
sink place oW of WV W , resulting in marking oW + M . This means that there is
a marking Mw with iW

∗→ Mw in WV W such that Mw > oW , which contradicts
the fact that WV W has proper completion. Hence, V W has proper completion
if WV W has proper completion.

Finally, in summary, Figure 8 provides a sketch of the structure of the proof
that we have conducted in this section to reach the conclusion in Theorem 2.
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Fig. 8. Structure of the proof for Theorem 2.

4 Tool Support

In this section, we present our tool development efforts to enable version com-
pliance checking of process models. Figure 9 provides an overview of the tool
architecture. Our main objective is to provide a VWF-net viewer that possesses
both syntactical checking and behaviour compliance checking capabilities. We
made use of a well-known, open-source process mining framework (ProM) [4] and
developed our tool as a ProM 6 analysis plug-in9. There are five components to
this tool: namely, versioning-annotated WF-net viewer, a syntactical compat-
ibility checker, a WF-net transformer, a soundness checker and a behavioural
compliance interpreter. Among these components, the WF-net transformer, the
soundness checker and the behavioural compliance interpreter together consti-
tute the behavioural compliance checker. The soundness checker is provided by
an existing ProM plug-in called Woflan that can be used to verify the soundness
property of a WF-net [45]. This plug-in is also used to ensure that the WF-net
that is used as the input for a VWF-net is sound.

9 The ProM framework can be downloaded from http://prom.win.tue.nl/research/

wiki/prom/start
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Fig. 9. An overview of the tool structure.

4.1 The XML format for VWF-nets

The concept of versioning-annotated workflow nets (VWF-nets) forms the basis
for our compliance checking framework. A VWF-net is generated using the in-
formation from PLM systems regarding a business process, the object versioning
lifecycles of the objects used in the process together with task versioning anno-
tations. Since each PLM system uses its own formats for describing the process,
object versioning lifecycles and task annotations, we developed a generic XML
format for VWF-nets (see Figure 10) that is platform-independent. As a result,
relevant information from different PLM systems can be translated into this
XML format first for compliance checking purposes.

VWF-net

    Attributes

WF-net

net

    Attributes

name

transition      

1...∞

place

1...∞

arc

1...∞

ObjectLifecycle

Lifecycle

Object     

    Attributes

State

1...∞

 StateTransition

1...∞

targetRef

sourceRef name guard event

VersioningAnnotation

1...∞

TransitionRef Operations

StatePairs

1...∞

prestate

poststate

0...∞

Fig. 10. An XML schema of a versioning-annotated workflow net (VWF-net).

The root node of a VWF-net is labelled as a VWF-net, representing a work-
flow net with versioning annotations. Each VWF-net contains a WF-net, an Ob-
jectLifecycle and an arbitrary number of VersionAnnotation elements as child
elements. The WF-net element represents a workflow process modelled as a Petri
net with the notions of transitions, places and arcs that connect the two. The
format of WF-net and its sub-elements are in accordance with the Workflow
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Net standard provided in [1]. The ObjectLifecycle element contains an Object el-
ement and a Lifecycle element, which describe an object handled in a workflow
and the object’s versioning lifecycle respectively. For the purpose of extensibility,
we adopted the XML format of the Java Finite State Machine framework10 for
the Lifecycle element. We made use of State and StateTransition elements (with
attributes name, sourceRef and targetRef ) to store the information about an ob-
ject versioning lifecycle. A VersioningAnnotation element describes the object’s
versioning assignment for a task. The StatePairs element captures the pre-state
and post-state of objects when task is executed. Figure 11 describes an excerpt
of the XML document for the VWF-net shown in Figure 5.

Fig. 11. An excerpt of the XML document for the VWF-net shown in Figure 5.

4.2 Constructing a VWF-net

A VWF-net includes three parts: WF-net, object versioning lifecycle and task
versioning annotation information (including task versioning assignment infor-
mation and task object-state pairs). Among these, the WF-net is derived au-
tomatically using the TiWorkflow model convertor. Task versioning assignment
information is also encoded automatically by an extractor that was developed
to extract the versioning assignment information from the TiPLM database.
The object versioning lifecycle information and task object-state pairs are then
manually added.

Below, we illustrate how the information from TiPLM systems is encoded in
a VWF-net. This implementation is intended to serve as a reference for mapping
data from other PLM systems.

1. Translating a TiWorkflow to a WF-net

10 http://unimod.sourceforge.net/fsm-framework.html
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We developed a TiWorkflow convertor to translate a TiWorkflow model into
a WF-net based on the translation algorithm provided by Zha et.al [54].
This convertor is deployed into TiPLM system as a plug-in. The translation
algorithm only focuses on the control flow aspects of a workflow model (i.e.,
it does not take the business objects and related data into account).
We now briefly present how this is achieved. The elements of a TiWorkflow
model are divided into three types: task nodes, links and routing nodes. Ex-
ample task nodes are shown in Figure 12(a). In a TiWorkflow definition,
nodes can be connected directly by a link. In a Petri net, two transitions
cannot be connected directly, so a place is inserted between such transitions.
A sequence of transitions with links models the execution of a task node,
as shown in Figure 12(b). In addition, task routing is implemented by rout-
ing nodes in a TiWorkflow definition. There are six types of routing nodes,
as shown in Figure 12(c). If we abstract from a condition expression as a
Boolean function, a CON-join becomes an XOR-join, and a CON-split be-
comes an XOR-split. The Petri net semantics for the four kinds of routing
nodes are shown in Figure 12(d). The detailed mapping semantics from a
TiWorkflow to a WF-net can be found in [54]11

(a)

Start

End

Task

(b)

Start Task End

AND-join/AND-split

AND-join/CON-split

XOR-join/AND-split

CON-join/AND-split XOR-join/CON-split

CON-join/CON-split

I.

II.

III.

IV.

(c)

AND-join/AND-split

I.

AND-join/OR-split

II.

XOR-join/AND-split

III.

XOR-join/XOR-split

IV.

(d)

Fig. 12. Semantics of TiWorkflow Elements.

2. Annotating a WF-net with task versioning assignment
For task versioning assignment, we developed a versioning assignment extrac-
tor. The function of the extractor is twofold: (1) to extract the versioning
assignment information from all assigned data operations (e.g. download,
browse, read, write, check-in) in the TiPLM database, and (2) to transform
the extracted versioning assignment information to the XML format defined
in Section 4.1.

3. Deriving object versioning lifecycles and object-state pairs
Product data management in a TiPLM system provides the overall object
versioning lifecycle of a business object. Many standardised business pro-
cesses (e.g., accounting, engineering design process, change process) in a
PLM system are required to transform these business objects from one valid

11 In [54] the terms OR-split and OR-join are used rather than XOR-split and XOR-
join. As the semantics of these constructs are that of exclusive splits and joins re-
spectively, we choose the latter terms.
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state to another based on the corresponding object versioning lifecycle. The
object versioning lifecycle for a certain process can often be derived from the
overall object versioning lifecycle. In addition, task object-state pairs refine
the above interrelationship further by specifying the relationship at the task
level instead of the process level. Task object-state pairs represent the ex-
pected business object states before a task is carried out and afterwards. For
instance, in the engineering design processes, the expected state of the object
before the Design task carried out is Initial or Checked-in while the expected
state of the object after the Design task is completed is Checked-out.
All this information can be derived in consultation with domain experts in
the TiPLM systems. Currently, the object versioning lifecycle information
and task object-state pairs are encoded manually in a VWF-net. In the
future, this could be improved by extending the versioning-annotated WF-
net viewer with an intuitive user interface that allows domain experts to
supply the object versioning lifecycle and annotated task object-state pairs
information directly.

4. Displaying the resulting VWF-net
In order for users to view a VWF-net, we implemented a plug-in in ProM that
allows a VWF-net in an XML format to be imported. The main functions
of this component are to create a VWF-net object in ProM based on the
imported XML file and to display the three parts of a VWF-net. Figure 13
shows the screenshot of the VWF-net from Figure 5.

4.3 Syntactical Compatibility Checker

This component supports the syntactical compatibility checking for VWF-nets.
It implements the six syntactical conditions checks defined in Definition 11 (e.g.,
empty annotation consistency, version operation assignment completeness, local
object path existence, no locally assigned dead version operation, no dead object
state transition and global object path existence). Figure 14 provides a screenshot
of the syntactical compatibility checking results for the erroneous VWF-net in
Figure 5. When there are no more syntactical errors in a VWF-net, the VWF-net
is then transformed into the corresponding WF-net for behavioural compliance
checking.

4.4 WF-net Transformer

This component supports the transformation of a VWF-net into a WF-net so
that we can carry out further behavioural compliance checking using the Woflan
plug-in. The implemented tranformations are in accordance with the transfor-
mation rules defined in Section 3. The upper part of Figure 15(a) shows the
WF-net resulting from the transformation of the syntactical correct version of
the VWF-net in Figure 5.



38 Zhaoxia Wang et al.

(a) business process model

(b) object versioning lifecycle

(c) task versioning annotation

Fig. 13. A screenshot of the VWF-net in Figure 5.

4.5 Soundness Checker

For the purpose of behavioural compliance checking, we made use of an existing
ProM plug-in called Woflan [45]. Woflan can be used to verify the soundness
property of a WF-net and provides detailed diagnostic information for unsound
workflow nets. In Section 3, we proved the behavioural relationship between the
versioning-annotated workflow net and the transformed WF-net. Thus, we can
use the soundness verification results from the transformed WF-net to reason
about the behavioural compliance properties of the original VWF-net.

The interactions between our compliance checker plug-in and the Woflan
plug-in are as follows. The compliance checker uses the interface provided by
Woflan to carry out the soundness analysis of the transformed WF-net. Woflan
returns a WoflanDiagnosis object for the WF-net that contains the analysis
results (i.e., the results of the proper completion, option to complete and no dead
tasks properties). It should be noted that Woflan checks soundness of WF-net in
the following order: firstly the proper completion property is checked, secondly
the no dead tasks property is checked and finally the option to complete property
is checked. If all steps succeed, then the net is sound. If one fails, the net is not
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Fig. 14. Results of the syntax check for the VWF-net shown in Figure 5.

sound and the verification process ends. In such cases, the results of the later
properties will be unknown. Thus, if the net is not sound and the property
option to complete is not satisfied, we can not determine whether the no dead
tasks property is satisfied. However, if the net is not sound and the no dead
tasks property is not satisfied, the option to complete property is not checked
and the result is unknown. Hence, this property should be checked again after
the problem of no dead tasks is fixed.

The lower part of Figure 15(a) shows the analysis result of the transformed
WF-net for the revised VWF-net shown in Figure 5. The soundness result of the
transformed WF-net states that the net is not sound as the no dead tasks prop-
erty is not satisfied. The result for the option to complete property is unknown
in this case.

4.6 Behavioural compliance interpreter

When checking the behavioural compliance of a well-formed VWF-net (V W ),
error messages reported by Woflan refer to the WF-net (WV W ). To use such
messages as feedback for the Versioning-annotated WF-net viewer (see Figure 9),
they need to be interpreted in terms of the original VWF-net. This functionality
is provided by the behavioural compliance interpreter component.

Firstly, if WV W does not have the option to complete, then V W does not
have the option to complete. Woflan reports all possible transitions and markings
in which firing a transition in a corresponding marking prevents the process
from completion in WV W . In this case, the behavioural compliance interpreter
maps the reported markings and transitions in WV W back to the corresponding
markings and tasks in V W .
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(a) The results of soundness checking of the transformed WF-net

(b) The results of behavioural compliance checking of the VWF-net

Fig. 15. Screenshots for behavioural compliance verification for the revised VWF-net
of Figure 5 (without state transition (s1, v5, s4) in the lifecycle of o1).

Secondly, when there are dead transitions in WV W , there are dead tasks
and/or tasks that have unused versioning annotations in V W . If a dead transition
in WV W corresponds to a task in V W , such a task has an empty versioning
annotation, in which case, the behavioural compliance interpreter can report
the task directly. Otherwise, if a dead transition in WV W is an X, Y, or Z
transition, such a transition is part of the mapping of a task that has a non-
empty versioning annotation in V W . In this case, the behavioural compliance
interpreter checks if the corresponding task in V W is a dead task or if it has
unused versioning annotations.

Figure 15(b) shows the interpreted results of the behavioural compliance
interpreter for the revised VWF-net shown in Figure 5: there is a dead task, T6,
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and there are unused versioning annotations, (s1, v2, s2) and (s2, v3, s1), assigned
to task T6

12.

5 Experiments

In this section, we illustrate the applicability of our approach to a real PLM
system by carrying out experiments that are based on process models and object
versioning information found in the TiPLM system.

5.1 Data Collection

We collected 48 design processes, the object versioning lifecycle information as
well as the corresponding versioning assignment information from the THsoft
InfoTech company13. This company develops the TiPLM system which is widely
used in Mainland China (well over 100 companies in the manufacturing industry
in China adopted the TiPLM system). In order to sustain development and
research, this company maintains domain-specific process model templates and
also possesses a collection of deployed business process models.

As a first step, these 48 TiPLM process models were mapped to WF-nets us-
ing the TiWorkflow converter contained in the TiPLM system. We then anonymised
the models and selected those processes, that were determined to be sound14.
There were 42 such models and these were used as input models for our experi-
ments.

Next we used a versioning assignment extractor that was specially written
for this purpose to extract the object versioning assignment information from
the TiPLM system. It should be mentioned that in the TiPLM system, a task
can work on more than one data object (i.e., a task can be assigned operations
on more than one object). However, there are no interdependencies between
these objects. Thus, we perform compliance checking with respect to each ob-
ject in isolation. For each business object handled in a process, a VWF-net is
constructed which annotates the derived WF-net with versioning lifecycle and
versioning assignment information. There are altogether 142 business objects
handled in the selected process models.

Finally, we interviewed domain experts from THsoft InfoTech company (in-
cluding the technical director, a senior consultant and an implementation man-
ager) to determine appropriate assignment of object-state pairs to tasks. These
assignments were then incorporated into the corresponding VWF-nets. Thus,
the total number of VWF-nets used in the experiments is 142. These anonymised
VWF-nets can be downloaded from http://www.yawlfoundation.org/research/
compliance.
12 One way to ensure compliance is to change the alternative relationship between T2

and T6 into a sequential one.
13 http://www.thit.com.cn
14 We used the Woflan [45] plug-in in ProM [4] to verify the soundness property of

these models.
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5.2 Tool Application

Using the collection of 142 VWF-nets, we used the versioning compliance checker
that is implemented and integrated in the ProM framework to check versioning
compatibility. We first performed syntactical checking on all 142 VWF-nets.
Figure 16 shows one such VWF-net which is an engineering part-list designing
and auditing process with the anonymised versioning lifecycle of the business
object TIPART. Figure 17 shows the results from the syntactical checks carried
out for the net in Figure 16. When syntactical errors were detected, we discussed
these errors with the domain experts to find a way to remedy them. After all
syntactical errors were found and fixed, we carried out behavioural compatibility
checks. Figure 18(a) shows the analysis result of the transformed WF-net from
Figure 16. Figure 18(b) describes the interpreted compliance results of the VWF-
net from the Woflan soundness results in Figure 18(a).

(a) business process model

(b) object versioning life-
cycle

(c) task versioning annotation

Fig. 16. Display of an anonymised VWF-net from the TiPLM system.

5.3 Validation

In this subsection, we first present the results of the syntactical compatibility
checks followed by the results of the behavioural compliance checks.



Compliance between Workflows and Product Lifecycles 43

Fig. 17. The screenshot of the syntactical checking phase.

Syntactical compatibility checking results: There are six rules to check
syntactical compatibility of VWF-nets: namely, the empty annotation consis-
tency, the version operation assignment completeness, the local object path ex-
istence, the no locally assigned dead version operation, the no dead object state
transition, and the global object path existence.

The first rule, the empty annotation consistency, represents the necessary
preconditions for a valid VWF-net and we only continued to check the next
five syntactical rules when a VWF-net satisfied this rule. Table 2 shows the
results of syntactical checking for the first rule. We noted that 57 out of 142
VWF-nets (40%) fail this rule due to the fact that certain tasks have certain
version operations assigned to them but not object-state pairs (condition 1).
In addition to that, 122 VWF-nets out of 142 (86%) fail the first rule due to
the fact that tasks contained object-state pairs even though no corresponding
version operations were assigned (condition 2). For all these VWF-nets where the
first rule was violated, the following actions were taken. If the rule was violated
because a task had version operations assigned to it but no corresponding object-
state pairs (condition 1), we removed its version operations assignment. If on
the other hand the rule was violated because the task had object-state pair
information but did not have any version operations assigned to it, we added
required version operations to the task after discussions with the domain experts.
Table 3 shows the results from the remaining five rules. The table illustrates
these results in two groups: the group of results on the left is derived from
the original set of VWF-nets before they were modified based on the empty
annotation consistency check shown in Table 2. The group of results shown on
the right in Table 3 is derived from VWF-nets that were modified in order to
pass this check (in the way discussed before). Before VWF-nets were modified
to satisfy the conditions of the first rule, there were 113 (80%) VWF-nets that
did not pass the second rule, 127 (89%) for the third rule, 59 (42%) for the
fourth rule, and 15 (11%) for the fifth rule respectively. With the modified set
of VWF-nets that satisfy the first rule, the error ratios decreased significantly.
We found that only 19 VWF-nets (13%) failed the second rule, 4 (3%) the third
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(a) An excerpt of the Woflan soundness result for the transformed
WF-net

(b) Translated behavioural compliance results of the VWF-net

Fig. 18. The result of behavioural compliance checking.

rule, 19 (13%) the fourth rule and none of the VWF-nets failed the fifth and
sixth rules.

We now describe the actions taken to remedy violations of rules 2, 3 and 4.
As shown in Table 3, there are 19 (13%) VWF-nets that did not pass the version
operation assignment completeness check (Rule 2). This means that these models
cannot guarantee the evolution of a business object from its initial state to one of
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#Passed #Failed Error ratio

Rule1-1 85 57 40%

Rule1-2 20 122 86%

Table 2. Results from the syntactical checking (Rule 1).

Before remedied based on rule1 After remedied based on rule1

#Passed #Failed Error ratio #Passed #Failed Error ratio

Rule2 29 113 80% 123 19 13%

Rule3 15 127 89% 138 4 3%

Rule4 83 59 42% 123 19 13%

Rule5 127 15 11% 142 0 0%

Rule6 142 0 0% 142 0 0%

Table 3. Results from the syntactical checking (Rules 2-6).

#Passed #Failed Error ratio

Soundness 121 21 15%

Option to complete 128 14 10%

No dead tasks 135 7 5%

Table 4. Soundness result for transformed WF-nets.

#Passed #Failed Error ratio

Behavioural compliance 121 21 15%

Option to complete 128 14 10%

No dead tasks 135 7 5%

No unused versioning annotations 135 7 5%

Table 5. Compliance checking result for VWF-nets.

its final states. Thus, we added the missing versioning operations to appropriate
tasks (in some cases the domain experts were consulted for this purpose).

There are 4 (3%) VWF-nets that did not pass the local object path existence
(Rule 3). This means that additional version operations are needed to guarantee
the evolution of a business object from one of its pre-state to a corresponding
post-state when a task is executed. Thus, we added the missing operations to
corresponding tasks in the VWF-nets.

There are 19 (13%) VWF-nets that did not pass the no locally assigned dead
version operation (Rule 4). This means that there are some assigned version
operations which can not be performed when the corresponding task is executed.
Thus, we removed the redundant dead operations from the tasks.

Behavioural compliance checking results: The results from the behavioural
compliance checks are aimed at providing a better insight into the compatibility
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between process models and object versioning lifecycles. Behavioural compliance
of a VWF-net is determined through soundness checking of the corresponding
WF-net. A VWF-net is considered to be compliant with a given object version-
ing lifecycle if and only if the corresponding WF-net is sound. We used the
behavioural compliance interpreter component to report any errors found as a
result of the application of the soundness check to the WF-net back to the users
in terms of errors of the VWF-net.

The first behavioural compliance checking results were as follows: there were
21 (15%) unsound WF-nets among the 142 translated WF-nets (see Table 4).
Specifically, 14 (10%) WF-nets did not satisfy the option to complete rule and
7 (5%) WF-nets did not satisfy the no dead tasks rule. Accordingly, there were
21 (15%) non-compliant VWF-nets among the 142 VWF-nets (see Table 5).
Specifically, 14 (10%) VWF-nets did not satisfy the option to complete rule, 7
(5%) VWF-nets did not satisfy the no dead tasks rule, and 7 (5%) VWF-nets did
not satisfy the no unused versioning annotations rule (the last two collections
consisted of the same 7 VWF-nets).

For VWF-nets that violate the option to complete rule, it is possible to iden-
tify non-live tasks. For example, Figure 18 provides dead markings of a VWF-
net. Based on this information, we can identify tasks which can cause problems
at certain markings. After careful examination, we found a common cause for
the violation of the option to complete rule. That is, object-state pairs associ-
ated with the final state of an object were assigned to a task that is in a loop
structure. Thus, the final state of the object remains unsynchronised with the
final/end marking of the process. This is a very valuable finding that could not
be detected by analysing a process specification alone. One possible remedy for
such errors is to ensure that object-state pairs that contain assignments of final
states of objects are only associated with tasks that are not part of a loop struc-
ture. To ensure that our suggested remedy complies with the business semantics
of a process, we communicated our findings to the domain experts. Similarly,
for VWF-nets that violated the no dead tasks rule and the no unused versioning
annotation rule and provided this information to the domain experts. Based on
subsequent discussions with these domain experts, we corrected these errors and
performed syntactical and behavioural checks in an iterative manner until all
VWF-nets were found to be compliant.

During our interactions, the domain experts expressed interest in learning
more about our experiments. It is our expectation that when the tool can provide
automated support for object-state pair annotations and task assignments, the
tool can be used by domain experts to validate their process models before the
TiPLM system is deployed in an organisation.

6 Related Work

There is a substantial amount of literature in the field of access control and
also considerable attention has been paid to access control in a workflow context
(for example modifications of RBAC [34], Role-based Access Control, such as
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W-RBAC [47]and T-RBAC [11]). In a workflow system, tasks should only be
performed by authorised users and this is enforced through the application of
rules (e.g. ”..Task A can only be performed by resources that play the role R”).
Workflow management is a domain independent technology and not generally
concerned with controlling the application of version operations on design ob-
jects. Therefore, the problem addressed in this paper cannot be solved through
the application of classic workflow access control mechanisms.

There has been a great deal of interest in compliance checking of business
process models. There are two driving factors behind this interest. One of these
concerns the organisation and its environment and the need to be able to demon-
strate to this environment that certain best practices are followed or that certain
legislation is adhered to (e.g. the well-known Sarbanes-Oxley act). The other
factor concerns a need by the organisation itself, to obtain better insight into,
and control over, its own processes. The work in this paper falls in the latter
category. As stated in [33], compliance can be checked before-the-fact or after-
the-fact. Manual auditing of event logs constitutes an example of after-the-fact
compliance checking. The field of process mining provides tools for automated
support for checking of such logs. For example, in [3] LTL checkers are used to
automatically detect whether workflow logs violated certain rules. In [33] a fur-
ther distinction of before-the-fact compliance checking is made, namely whether
a process model is compliant by design or verified for compliance after design.
The work reported in [33] falls into the former category, as does work reported in
e.g. [16, 17, 22]. In these papers, regulations and policies drive business process
design or processes are even derived from them. The approach reported in [28]
proposes the addition of controls in business processes by making use of con-
trol patterns in order to detect violations at runtime. Our approach falls in the
category of before-the-fact compliance checking.

In order to keep ever evolving requirements and processes aligned, automated
support is required. In this regard two challenges are identified by [20]: 1) how
to capture compliance requirements, and 2) how to check compliance of such
requirements with respect to a process model.

As regards point 1, capturing compliance requirements, there is a substantial
body of work on normative specifications and a comprehensive treatment of
this area is outside the scope of this paper. It is perhaps worth pointing out
that Sergot et al. [36] already used logic programs to represent and reason over
regulations. More recently, Farrell et al. [7] investigated the use of Event Calculus
for monitoring contract compliance. In [18] FCL (Formal Contract Language)
is adopted to express regulation. As in our case there is no need to represent
complex compliance rules, we do not investigate the various formalisms and
approaches to representing compliance requirements any further.

As regards point 2, compliance checking in relation to a process model, a
number of approaches exist. Ghose and Koliadis [15] present an approach where
tasks in BPMN process models are annotated with effects and the propagation
of these effects can be studied, in order to determine whether there are contra-
dictions in a model. Their approach, however, is not intended for design time
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compliance checking, cannot handle loops in process models, and may suffer from
state space explosion. Chopra and Sing [10] consider compliance in the context of
multi-agent systems and they investigate whether an agent’s behaviour conforms
to a protocol. Workflow models, however, tend to be more expressive in terms
of control-flow dependencies that can be expressed among tasks, than languages
for the specification of protocols. The work described in [23, 24] introduces an-
notations of tasks that can express whether certain tasks should be considered
exclusive (i.e. their instances do not occur together in a trace) or co-dependent
(i.e. their instances always occur together in a trace). While this involves com-
pliance checking between a process model and annotations, these annotations
cannot directly be used to solve the versioning compliance problem as the latter
problem involves the investigation of more complex relations between tasks.

As pointed out in [20], approaches to compliance do not usually offer support
for the distinction between an obligation, a permission, and a prohibition. The
work in [19] incorporates support for these notions in terms of the language FCL
(Formal Contract Language). Governatori and Milosevic [19] point out that com-
pliance concerns the relationship between possible process states and normative
statements. While these approaches to compliance checking are very powerful
and could be used to establish versioning compliance, to use a compliance based
approach, one has to translate the object versioning lifecycle into a set of rules,
then compute the reachability graph for the process model, and finally examine
the traces of process model for compliance.

In some approaches, compliance checking does not involve annotations of
business process models. For example, BPMN-Q [8] can be used to express
queries over a repository of BPMN process models. Certain compliance require-
ments can thus be expressed as queries. In [21] BPEL specifications can be
checked with respect to certain compliance requirements through the applica-
tion of LTL and model checking. Concurrent Transaction Logic is used by Roman
and Kifer [32] to determine compliance between a workflow and a contract. None
of these approaches is directly suitable for checking versioning compliance.

There is a substantial amount of work that is concerned with the integration
of control-flow and data aspects for workflow specification. More recently, work
has started to emerge that is concerned with correctness of workflows that involve
data [40, 41]. This work treats data in a general sense and considers operations
such as create, delete, write, and read. It addresses questions as to whether any
task can attempt to read data before another task produced such data or whether
data is overwritten by a task without the data has been read first. It is not
concerned with compliance between tasks ordering relations in a workflow and
version operations in an object lifecycle captured as a state transition diagram.
In fact, engineering data is not treated as workflow data in our approach.

Artifact-centric modelling (see e.g. [9]) takes the construction of a business
artifact as a starting point rather than a process model. As such it is also con-
cerned with compliance between the lifecycle of an artifact and process models
that manipulate this artifact. Artifact-centric modelling is concerned with gen-
eral artifacts and includes considerations of their structure (something we ab-
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stract from in our paper). Due to the general nature of artifact-centric modelling,
compliance checking can be computationally expensive and it is not tailored to
object versioning.

Data management, access control management and process management are
all important for Product Lifecycle Management (PLM) systems. The main PLM
systems include Teamcenter [37], Winchill [29] and TiPLM [38] and all these sys-
tems provide workflow support (each using their own notation). Data manage-
ment of these PLM systems follows that of EDM (engineering data management)
systems which adopt versioning mechanisms (see [50] for more information about
EDM and versioning mechanisms). The versioning relations between versions of
business objects are captured in version graphs and the progression of particular
versions is based on the states that the object may pass through (this progression
being state-based is pointed out in [49]). For example, the Windchill and TiPLM
systems adopt state transition diagrams to describe the states of business objects
and potential state changes between these states, whereas states of business ob-
jects and possible state changes between these states are captured through rules
in Teamcenter. However, in these PLM systems access control in data manage-
ment and in process management are disconnected and compatability between
access control rules in these two areas is not guaranteed.

The question of how to manage access control mechanism within Product
Lifecycle Management (PLM) systems has also attracted some attention. Ac-
cording to Rangan et al. [31], current approaches to managing product data
access require the use of complex rules to provide data access rights by consid-
ering various factors including the type and the state of the business object, the
nature of the PLM process and the organisational context. In [35], Schuh et al.
state that many current PLM initiatives focus primarily on isolated aspects, such
as document management or parts classification, without the necessary holistic
approach to the whole product lifecycle and its underlying processes.

7 Conclusion

In this paper the issue of compliance between workflow management systems
and product lifecycle management systems was studied in detail. Syntactical
requirements for such compliance were formalised as well as semantical require-
ments, i.e. requirements that ensure desirable runtime behaviour. It was formally
demonstrated that the problem of determining behavioural compliance can be
solved through a transformation to workflow nets and using an established and
already implemented approach to determining soundness of these nets. Both the
syntactical and semantical requirements served as the basis for an analysis plug-
in that was developed for the ProM 6.0 framework. This plug-in was used to test
properties of a number of real-life models. The application of the plug-in to these
models showed the presence of a number of syntactical and semantical errors.
One common root cause for these errors that was identified was the inclusion in
loops of tasks that were intended to leave an object in a final state.
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Naturally there is scope for further work. Ideally, domain experts have access
to a single integrated tool that extracts all information from the PLM system and
then conducts the analysis. Corrections should then be automatically propagated
back to the PLM system. Analysis results can be improved if better support is
provided for associating object-state pairs with tasks in workflows.
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