
Cost-Based Conformance Checking using the A∗ Algorithm

A. Adriansyah, B.F. van Dongen, W.M.P. van der Aalst
Department of Mathematics and Computer Science

Technische Universiteit Eindhoven
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Email: {a.adriansyah,b.f.v.dongen,w.m.p.v.d.aalst}@tue.nl

Abstract—The growing complexity of processes in many or-
ganizations stimulates the adoption of business process analysis
techniques. Typically, such techniques are based on process
models and assume that the operational processes in reality
conform to these models. However, experience shows that
reality often deviates from hand-made models. Therefore, the
problem of checking to what extent the operational process
conforms to the process model is important for process man-
agement, process improvement, and compliance.

In this paper, we present a robust replay analysis technique
that is able to measure the conformance of an event log for a
given process model. The approach quantifies conformance and
provides intuitive diagnostics (skipped and inserted activities).

Our technique has been implemented in the ProM 6
framework. Comparative evaluations show that the approach
overcomes many of the limitations of existing conformance
checking techniques.

Keywords-Business process management, fitness analysis,
conformance checking, process mining, business process anal-
ysis

I. INTRODUCTION

As business processes become more complex and change
frequently, reliable process models become more important.
Such models are used to document business processes or to
configure the information system. Moreover, process models
are used to analyze processes, e.g., to check conformance or
to evaluate the performance of business process redesigns.

However, many studies show that models often deviate
from reality (cf. [10]–[12]). Process models can be obsolete,
outdated, idealized, or simply disconnected from reality [14].
Hence, before any sort of analysis is applied to process mod-
els, it is imperative to know how well reality conforms to
the model and vice versa. Legislation such as the Sarbanes-
Oxley Act, Basel II, and HIPAA, illustrate the importance
of a good alignment between the real process and its model.
Moreover, many organizations seek a balance between flexi-
bility (people can deviate from the standard way of working)
and control (deviations need to be monitored and acted
upon if needed). Therefore, the importance of conformance
checking is increasing.

Conformance checking measures how “good” a model
of a process is with respect to an event log that records
the executions of the process. In this paper, we focus on
the fitness dimension of conformance [12], [16]. Fitness

measures the extent process models capture the observed
behavior as recorded in event logs. Given a process model
and a sequence of activities from a log showing the execution
of a process instance, the fitness of a trace is high (i.e. good)
if the same sequence of activities (or a very similar one) is
allowed by the model.

Event logs may not necessarily contain all the activities
executed– logging everything might be costly and affect
the performance of process executions. Still, the unlogged
activities can influence process behavior. Identifying such
unobservable activities in event logs is important in mea-
suring fitness, as mistakes in doing so may lead to false-
negative results.

Given a process model and an event log, deviations in
the fitness dimension manifest as either skipped or inserted
activities. Skipped activities refer to activities that should
be performed according to the model, but do not occur in
the log. In contrast, inserted activities refer to activities that
occur in the log, but should not happen according to the
model.

In reality, the severity of skipping/inserting activities may
depend on characteristics of the activity, e.g., some activities
may be skipped without severe problems while the insertion
of an important activity may lead to significant problems.
Take for example a typical process of handling insurance
claims in an insurance company, shown as a Petri net in
Fig. 1. In cases where the amount of claim is relatively
small, “check documents” or “check cause” activities are
often skipped. Nevertheless, the severity of skipping these
activities is less than the severity of skipping essential
activities, such as “send money”. Another example; in cases
where the claimed amount is large, double checking on the

start

register

check cause

decide

inform rejection archive

check documents
inform acceptance

end

send money

Figure 1. A Petri net describing an insurance claim handling process

claims is often performed, which leads to inserted executions
of “check documents” or “check cause” not possible in the
model. Although multiple executions of the two activities
are also deviations, their severity to the overall process is
small compared to multiple executions of “send money”.

Classical techniques that measure fitness (e.g. [12]) penal-
ize conformance for existence of either skipped or inserted
activities. However, heuristics often result in incorrect esti-
mations of fitness. Moreover, they do not consider the dif-
ferent severities of skipping/inserting the different activities.
As a result, the fitness does not correspond to the perceived
degree of conformance.

In this paper, given a process model and an event log, we
propose a cost-based replay technique that measure fitness
and taking into account the cost of skipping and inserting
individual activities. The technique is based on the A∗

algorithm and can be tailored to answer specific questions
(e.g. Does the log conforms to the model? Which activities
are often skipped? Are there any inserted activities in the
log?). Section II introduces the basic concepts needed to
understand this paper. The idea to measure fitness based on
skipped and inserted activities is provided in Section III.
We propose an A∗-based approach to measure the fitness in
Section IV. Experimental results are discussed in Section VI,
and related work is discussed in Section VII. Section VIII
concludes the paper.

II. BASIC CONCEPTS

Our fitness calculation uses the A∗ algorithm [5], an
algorithm originally invented to find a shortest path between
two nodes in a directed graph with arc costs. Hence, we
formalize a graph with arc costs and related concepts.

IN denotes the set of natural numbers. We write A for
the universe of activity names, A ⊆ A for a set of activities,
and τ 6∈ A for unobservable activities (i.e., activities in the
model not recorded in the event log).

Let T be a set. For (finite) sequences of elements over a
set T we use the following notation: The empty sequence
is denoted with ε; a non-empty sequence is given by listing
its elements between angled brackets. A concatenation of
sequences σ1 and σ2 is denoted with σ1 · σ2 and we use <
to denote shorter sequences, i.e. σ1 < σ2 if and only if there
is a sequence σ3 6= ε with σ2 = σ1 · σ3. T ∗ denotes the set
of all finite sequences over T and T+ = T ∗ \ {ε}. We refer
to the i-th element of a sequence σ as σi and we use |σ|
to represent the length of the sequence σ. The projection
of a sequence σ ∈ T ∗ on Q ⊆ T is denoted as σ↓Q, e.g.,
〈a, a, b, c〉↓{a,c} = 〈a, a, c〉. We say that σ is a prefix of σ′

if and only if σ < σ′.
A bag m over P is a mapping m : P → IN . We use

+ and − for the sum and the difference of two bags and
=, <, >,≤,≥ for comparison of bags, which are defined in
the standard way. We overload the set notation, writing ∅ for
the empty bag and ∈ for the element inclusion. We write e.g.

m = 2[p] + [q] for a bag m with m(p) = 2, m(q) = 1, and
m(x) = 0 for all x 6∈ {p, q}. As usual, |m| stands for the
total number of elements in bag m (e.g. |2[p] + [q]| = 3).

Definition II.1. (Directed graph with arc cost) A directed
graph with arc costs is a tuple G = (V, W, ζ) where V is
a set of nodes, W ⊆ V × V is a set of directed arcs, and
ζ : W → IN is a function assigning non-negative costs to
arcs.

Let v ∈ V , we denote the set of successor nodes of node
v as v

G•= {v′ ∈ V | (v, v′) ∈ W} and the predecessor
nodes of node v as G• v = {v′ ∈ V | (v′, v) ∈ W}. We omit
the superscript G if the context is clear.

A path from v to v′ ∈ V is a sequence of edges
〈(v1, v2), (v2, v3), . . . , (vn−1, vn)〉 ∈ W+ where v1 = v ∧
vn = v′ holds. By v

GÃ v′ we denote that a path from v to v′

exists (we omit the superscript G if the context is clear). We
say that G is an acyclic graph if ∀v∈V v 6Ã v. The set of all
possible paths from v to v′ is denoted by B(v, v′) ⊆ W ∗.
We also define a path cost function ζB : W ∗ → IN that
returns the cost of a path where ζB(σ) =

∑|σ|
i=1 ζ(σi).

Definition II.2. (The A∗ algorithm) Let G = (V, W, ζ) be
a directed graph with distances associated to arcs. Let vsrc ∈
V be a source node and let Vtrg ⊆ (V \ {vsrc}) be a set of
target nodes in G. The A∗ algorithm returns a path pa ∈
B(vsrc, vtrg) with the smallest distance from the source
node to one of the target nodes where vtrg ∈ Vtrg . Hence,
∀vtrg∈Vtrg @pa′∈(B(vsrc,vtrg)\{pa}) ζB(pa′) < ζB(pa) holds.
The target node vtrg is also called the preferred target node.

The algorithm works by iteratively exploring successors
of nodes, starting from the source node vsrc. Let v ∈ V
be a node in G and let pa ∈ B(vsrc, v) be the path with
the smallest distance so far from vsrc to v, the algorithm
relies on an evaluation function f(v) = g(v) + h(v), where
g : V → IN is a function that returns the smallest distance of
paths from the source node vsrc to v (so far), and h : V →
IN is a heuristic function that underestimates the distance of
path from any node to its preferred target node vtrg ∈ Vtrg .

To determine which visited node whose successors are
going to be explored in the next iteration, the algorithm
calculates the distance of every node whose successors
haven’t been explored yet, using an evaluation function
f : V → IN . Then, it selects the one that has the minimal
distance. The iteration stops under two conditions: either a
node that is a member of Vtrg is selected as the node to
be explored in the next iteration (implies that we get the
solution path), or there is no other nodes to be explored
(implies that no path to any target nodes exists).

As long as the heuristic function h returns a value
that underestimates the distance of a path from a node
to its preferred target node and the evaluation function is
increasing with the increasing number of visited nodes, the
A∗ algorithm is guaranteed to find a path with the smallest
distance [5].

2

Measuring fitness requires an event log and a process
model. We formalize event logs, process models, and related
concepts as follows:

Definition II.3. (Event logs) An event log over a set of
activities A is defined as LA = (E, C, α, β,Â), where:
• E is a finite set of events,
• C is a finite set of cases (process instances),
• α : E → A is a function relating each event to an

activity,
• β : E → C is a surjective function relating each event

to a case.
• Â⊆ E × E imposes a total ordering on the events in

E. We write e2 Â e1 as a shorthand to (e2, e1) ∈ Â.
In the definition of event logs, we explicitly assume a

total ordering on events for sake of simplicity. Typically,
events in a log are ordered based on timestamps. However,
in many real-life cases, the granularity of these timestamps
is limited to days, or hours, thus leading to events that
appear to happen “at the same time”. Our approach can be
extended to handle the situation where the Â relation is a
partial order rather than a total order. However, due to the
added complexity to the formalizations, the technical details
of these results are omitted in the paper.

In reality, cases are executed independently from each
other. For example, in an insurance company, the way a
claim is handled does not directly influence how other claims
are handled. Therefore, events of a case are often treated
independently from events of other cases. Let c ∈ C be a
case identifier. With Ec, we denote the events of case c, i.e.
Ec = 〈e1, . . . , e|Ec|〉 where ∀e∈E(β(e) = c) ⇔ (e ∈ Ec),
furthermore ∀1≤i<j≤|Ec| ei Â ej .

A process model typically describes a set of activities that
have to be performed and their ordering. Many languages are
used to model business process, like EPC and BPMN1. In
this paper, we use Petri nets [9] to model processes, however,
our approach is applicable to any kind of model, as long as
it can be decided if a given execution is a valid one (there
is no need to be able to decide which activities can occur
in the future, only if a given activity could have occurred at
a given point in time).

Definition II.4. (Petri net) A Petri net N over a set of
activities A is a tuple N = (P, T, F, π), where P and T
is a set of places and transitions, respectively, F ⊆ (T ×
P) ∪ (P × T) is a set of directed arcs connecting places
and transitions, π : T → A ∪ {τ} is a function mapping
transitions to either activities or τ (unobservable activities),
such that ∀a∈A∃t∈T π(t) = a. Note that any net N is also
a directed graph (P ∪ T, F, ζ) where ∀fw∈F ζ(fw) = 1.

A marking m of N is a bag over P , indicating the state
of N . A transition t ∈ T can be executed (i.e. fired) from
marking m if and only if m ≥ •t. Firing transition t resulted

1Business Process Modeling Notation, see http://www.bpmn.org/

A B X Y C

τ

Figure 2. a Petri net for running example

in a new marking m′ where m′ def= m− •t + t•. We denote
this relation between m and m′ as m

t−→ m′. A set of
runs of N from marking m0 is a set of all sequences of
transitions R ⊆ T ∗ where for all 〈t1, . . . , tn〉 ∈ R, m0

t1−→
m1,m1

t2−→ m2, . . . , mn−1
tn−→ mn hold.

III. IDEAL COST-BASED REPLAY

Given an event log LA = (E, C, α, β,Â) and a Petri net
N = (P, T, F, π) with initial marking m0, events of case c ∈
C fit the net if the sequence of activities that is constructed
by mapping each event of the case c to an activity can also
be constructed by mapping each transition of a run of the
net to an activity. We define formally a fitting set of events
of a case as follows:

Definition III.1. (Perfect fit) Let N = (P, T, F, π) be a
Petri net over a set of activities A with an initial marking
m0. Let R ⊆ T ∗ be the set of all possible runs of N starting
in m0. Let LA = (E, C, α, β,Â) be an event log over A.
Let c ∈ C be a case and let Ec be the sequence of events
of case c.

Ec fits N if there exists a run σ ∈ R such that π(σ)↓A =
α(Ec), where we lift the use of α and π to sequences2.

Take for an example a Petri net in Fig. 2. Both cases E1
c =

〈A,B, C〉 and E2
c = 〈A,B, X, Y,C〉 perfectly fit the net

according to Def. III.1. The case E3
c = 〈A,B,X, C〉, does

not fit to the model, since any run in the model will contain
Y after X . In case the log is partially ordered, the possible
runs should be compared against all sequentializations of the
partially ordered case.

Unfortunately, in practice, knowing whether a case is devi-
ating or not is not useful for further analysis. In cases where
deviations occur, such as the case E3

c , it is more important
to know the extent of the deviations, and furthermore why
they occur.

To measure the extent of deviations, fitness is best mea-
sured on a per-event basis. From Section I, we know that
there are two possible causes of deviations: skipping or
inserting activities. Therefore, the ideal fitness calculation
should penalize fitness value based on the existence of each
of these two types of deviations. However, identifying such
activities is not trivial. Consider the net in Fig. 2 and the
case E3

c . The case can be interpreted as one of the following:
X is inserted in the event log, Y is skipped in the model,

2Let σ = 〈σ1, . . . , σn〉 be a sequence over some set S and let
f : S → R be a function from S to some set R, then f(σ) =
〈f(σ1), . . . , f(σn)〉.

3

or C is inserted in the log (removing results in a ”good”
prefix).

As mentioned in Section I, the cost of skipping and
inserting activities can be different for individual activities.
Therefore, we assume the existence of cost functions that
return the cost of skipping as well as inserting activities. We
define cost function κi : A → IN that returns non-negative
cost of inserting extra activities in the log, and another cost
function κs : A ∪ {τ} → IN that returns non-negative cost
of skipping transitions in the model (including the unlabeled
ones). These functions need to be determined by process
experts.

When identifying the deviations between cases in the log
and processes, we assume that we are interested in the actual
execution of which the costs of deviation are minimal. Thus,
suppose that the cost functions for activities involved in the
net in Fig. 2 are defined as follows: κi(A) = κi(B) =
κi(Y) = 1, κi(C) = 10, κi(X) = 5, κs(A) = κs(B) =
κs(X) = 1, κs(Y) = 3, κs(C) = 10, κs(τ) = 0. For
case E3

c , the cost of either inserting X or inserting C is
higher than the cost of skipping Y (i.e. κi(X) > κs(Y)
and κi(C) > κs(Y)), hence the deviation in the case most
likely occurred because activity Y was skipped (hence the
case should have been 〈A,B, X, Y,C〉).

Considering cost functions and both skipped and inserted
activities, we define our fitness metric as follows:

Definition III.2. (Cost-based fitness metric) Let N =
(P, T, F, π) be a Petri net over a set of activities A with an
initial marking m0. Let R ⊆ T ∗ be the set of all possible
runs of N starting in m0. Let LA = (E, C, α, β,Â) be an
event log over A. Let c ∈ C be a case and let Ec be the
sequence of events of case c. Let κs and κi be the cost
functions for skipping and inserting activities respectively.

Assuming that skipped activities in the case are identified
as a bag As over A ∪ {τ}, and all inserted activities,
manifested as events, are identified as a set Ei ⊆ Ec, we
define a fitness f as one minus the ratio between the total
cost of having inserted/skipped activities and the total cost
of considering all events as inserted activities, i.e.

f = 1−
∑

a∈As
As(a)× κs(a) +

∑
e∈Ei

κi(α(e))∑
e∈Ec

κi(α(e))

The intuition behind the metric is that fitness value should
decrease as more activities are inserted/skipped. In the worst
case, given a process model and a set of events of a case,
all of the events can be considered as inserted activities.
The cost of such extreme case is used to normalize our
fitness metric. Note that due to the absence of information
about skipped activities in the log, one can assume as many
skipped activities as allowed by the model. In case there is a
large number of skipped activities, (e.g., in a loop executed
repeatedly) f may become negative. However, the “best
run” has a value between 0 and 1.

The cost functions κs and κi defined above are an
important contribution of this paper. By providing the user
with options to change these parameters, the user can specify
what he thinks is more problematic. For example, by giving
relatively low costs to skipping activities, the user can
specify that an activity that should be executed in the model
but cannot be found in the log should be considered as
being executed anyway, while a high value indicates that
this transition indeed did not happen.

The fitness metric defined in Def. III.2 assumes that
skipped and inserted activities are known in advance. In this
paper, we are interested in finding inserted/skipped activities
that give minimal cost such that the highest possible fitness
value is obtained. We describe our approach to identify such
activities in Section IV.

IV. IDENTIFY SKIPPED AND INSERTED ACTIVITIES

A case in an event log fits a Petri net if each events
performed in the case can be mimicked by firing a transition
in the net that refers to the same activity as the event, either
directly from the current state of the net or indirectly after
firing sequence of τ -labeled transitions from the current
state. Skipped activities should only be introduced when
according to the model, a transition that should be able
to mimic an event cannot be fired without firing non-τ -
labeled transitions. Only in cases where the cost of skipping
activities is higher than the cost to assume that an event
under consideration is inserted, we consider the event to
represent an inserted activity.

Therefore, finding both skipped and inserted activities in
a given case can be formulated as a problem of constructing
the best matching instance of a given net based on the events
of the case. A set of events of a case fits a Petri net (i.e. all
events can be generated by the net) if and only if there is an
instance of the net matching the events in which each non-
τ transition instance represents an event and partial order
between events is honored by transition instance. We use
the standard definition of an instance of Petri net (sometimes
referred to as occurrence net [8]) since a run of a net does
not capture causal dependencies and concurrencies. This is

A B

A B X Y C

τPetri net

(i)

(iii)

(ii)
Instances of the net

A B

τ

A B X Y

Figure 3. Examples of instances of a given Petri net

4

a standard concept in Petri nets, therefore we simply use it
without explaining it in detail.

Definition IV.1. (Instance of Petri net) Let N =
(P, T, F, π) be a Petri net over a set of activities A with
an initial marking m0. Let I = (PI ,TI ,FI , ρ, %,m′

0) be a
tuple where PI is a set of place instances, TI is a set of
transition instances, FI ⊆ (PI × TI) ∪ (TI × PI) is a set
of edge instances, ρ : PI → P is a function mapping place
instances to places in P , % : TI → T is a function mapping
transition instances to transitions in T , and m′

0 is a bag of
PI that indicates the initial marking of I .

I is an instance of N if and only if the following holds:
• For all (x, y) ∈ FI , if x ∈ PI then (ρ(x), %(y)) ∈ F ,

else (%(x), ρ(y)) ∈ F ,
• For all ti ∈ TI , ρ induces a bijection from •ti to •%(ti)

and from ti• to %(ti)•
• ∀pi∈PI m′

0(pi) ≤ 1 ∧ | • pi| ≤ 1 ∧ |pi • | ≤ 1
• For all pi ∈ PI , •pi = ∅ if and only if m′

0(pi) = 1,
• ∀p∈P

∑
pi∈PI,ρ(pi)=p m′

0(pi) = m0(p)
• The transitive closure of FI is irreflexive, i.e. it is a

partial order over PI ∪ TI

Note that when we consider Petri net instances, we gener-
ally consider their equivalence classes, i.e. two instances are
equivalent if their exists a graph isomorphism that respects
the mapping functions. Furthermore, we use ↓ to denote the
projection of an instance onto a subset of its transitions, i.e.
I ↓ TI ′ with TI ′ ⊆ TI is the same Petri net as I , but
without the transition instances not in TI ′, without the arcs
connected to these transitions and without any disconnected
places.

Fig. 3 shows some possible instances of the Petri net given
in Fig. 2. As shown in Fig. 3, there are no conflicts/choices
in an instance. Places and transitions need to be on a path
starting on one of the initially marked places.

When a set of events is replayed on a Petri net, we
iteratively construct instances from its prefixes. For each pair
consisting of a prefix and a constructed instance, we match
events in the prefix (possibly partial) to transition instances
that refer to the same activities. Matched events correspond
to firings of transitions. Events in the prefix without any
match indicate inserted activities because they happened in
reality, but should not happen according to the net. Non-τ -
labeled transition instances in the Petri net instance that are
not associated with any events represent skipped activities
as they should be performed according to the net, but were
not performed in reality.

Given a prefix of a case, an instance of a Petri net with a
function matching events in the prefix to transition instances
is said to be matching the prefix.

Definition IV.2. (Instance matching a prefix) Let LA =
(E, C, α, β,Â) be an event log over a set of activities A.
Let c ∈ C be a case identifier. Let Ec be the sequence
of events of case c. Let E′ be a prefix of Ec. Let N =

A B

Prefix E’ = <A,B> Prefix E’ = <A,B>

(i) (ii)

(iii)

A B

(iv)

A B X

A B X Y(v) C

A B X Y C

τ

Event log LA = (E, C, αααα, ,), case c ∈∈∈∈ C,
Events of c, defined as Ec = <A,B,X,C>

Petri net

skipped

inserted

Prefix E’ = <A,B,X>

A B

τ

C

Prefix E’ = <A,B,X,C>inserted

Prefix E’ = <A,B,X,C>

skipped

LEGEND
Skipped activities
Inserted activities
Valid activities

Figure 4. Example of matching instances, given a Petri net and a set of
events of a case

(P, T, F, π) be a Petri net over A with initial marking m0,
and let I = (PI ,TI ,FI , ρ, %,m′

0) be an instance of N .
Let µ : E′ 9 TI be a partial function mapping events to
transition instances such that µ induces a bijection from its
domain (Dom(µ) ⊆ E′) to its range (Rng(µ) ⊆ TI). We
say I matches E′ with match µ if and only if:

1) ∀e1,e2∈Dom(µ) µ(e1)
IÃ µ(e2) ⇒ e2 6Â e1, i.e. the or-

dering of events is in the prefix is respected in the
instance, and

2) ∀e∈Dom(µ) %(µ(e)) ∈ {t ∈ T | π(t) = α(e)}, i.e.
each event mapped by µ in the prefix is mapped to a
transition that corresponds to the activity represented
by this event.

We use (IE′ , µ) to denote a tuple consisting of an arbitrary
instance I that matches prefix E′ with match µ, and we use
=E′ to denote the (possibly infinite) set of all tuples that
consists of an instance matching prefix E′ and its match (i.e.
(IE′ , µ) ∈ =E′). µ is a partial function. For convenience we
write µ(e) = ⊥ to indicate that e is not in the domain of µ.

Take for example several instances of a Petri net that
match a set of events of a case in Fig. 4, each with its
own matching function µ that (partially) maps the events
to transition instances. Transition instances that have events
mapped to them are shaded. As shown by matching instances
(i) and (ii), matching functions may partially map events to
transition instances. In instance (i), both events in the prefix
〈A,B〉 are mapped to the transition instances A and B. In
instance (ii) however, the second event is not mapped to the
second transition instance, i.e. the event B is identified as

5

Prefix = <>
Prefix = <A> Prefix = <> Prefix = <A>

A B
Prefix = <A,B>

A B
Prefix = <A,B>

A
Prefix = <A,B>

...

...

insert A
A as a valid event

according to model
start node

Prefix = <A,B,X,C>
A B X Y C

Prefix = <A,B,X,C> target nodetarget node

skip A

B as a valid event according to model skip B
insert B

Arc with cost

A B C

A A

LEGEND<prefix of a case > Node, representing an instance matching a prefix
<information>

Instance with event mapped to it Arc, with information how it is constructed

Figure 5. Example of a search by the A∗ algorithm

being an inserted activity and the transition instance B is
identified as a skipped activity.

Matching instances may reveal different reasons for de-
viations (if there are any). Matching instance (iii) shows no
deviations for the current prefix, while in instance (iv), the
whole case is considered in which event X is identified as
being an inserted activity. In instance (v), again the whole
case is considered, but now the transition instance Y is
skipped, while X is no longer an inserted activity.

To determine which of the instances is most likely describ-
ing the occurring deviations in a given case, we utilize the
cost functions of skipping activities κs and inserting extra
activities κi. The idea is that we construct an instance that
has the least cost of deviations. For example, if the cost of
skipping activity Y (i.e. κs(Y)) is less than inserting activity
X (i.e. κi(S)), then instance (v) is the best fitting instance,
otherwise instance (iv) is.

So far, we have defined the notion of fitness and we
have shown both how to quantify fitness and how to locate
deviations if we have an instance matching a prefix. In
the next section, we present our A∗ based algorithm for
constructing the best matching instance.

V. CONSTRUCTING THE BEST MATCHING INSTANCE

Since our aim is to construct a matching instance for any
given case, we first prove that such an instance always exists,
not only for every instance, but also for every prefix of an
instance.

Lemma V.1. (Matching instance exists for any prefix) Let
LA = (E, C, α, β,Â) be an event log over set of activities
A. Let c ∈ C be a case identifier, let Ec be the sequence
of events of case c, and let E′ ⊆ Ec be a prefix. Let N =
(P, T, F, π) be a Petri net over A with initial marking m0,
and let I = (PI, TI, FI, ρ, %,m′

0) be an instance of net N .
We show that (I, µ) ∈ =E′ for any µ with Dom(µ) = ∅.

Proof. The proof for this is trivial. If Dom(µ) = ∅, there is
no transition in the instance representing events. So, both
requirements of matching instance in Definition IV.2 are
satisfied. ¤

We identify a Petri net instance that best matches our
case using the A∗ approach. Before we introduce the formal
technique, Fig. 5 illustrates our approach roughly in using
the Petri net and the set of events example in Fig. 4.

We associate a directed graph in the A∗ problem domain
with an acyclic search space graph to seek the best matching
instance, given a set of events of a case and a net. Nodes in
the search space graph represent instances of the given net
matching a prefix of the case.

In the A∗ problem domain, the graph structure is typically
known in advance, but in our technique, it is constructed dur-
ing replay. Given a case Ec to be replayed on a net, we start
by constructing the search space graph consisting of only an
instance matching the empty set (i.e. the instance consisting
only of places that are initially marked as indicated by the
start node in Fig. 5).

6

Based on the instance, we construct other instances as
successors in the graph. A successor is again a matching
instance such that:
• it has one matching transition instance more than its

predecessor, in which case one transition instance is
added to the net and the prefix is extended with a
corresponding event or

• it has one inserted activity more, i.e., the net stays the
same, but the prefix contains one more event, or

• it has one skipped activity more, i.e., the net has
one more transition instance but the prefix remains
the same. Note that more than one transition can be
enabled, hence there may be more than one successor
in the graph with an added skipped activity.

The steps above are repeated until one of the nodes in
the graph with the shortest distance from the start node is
actually a target node, i.e. a node of which the prefix is the
entire case.

The distance between two adjacent nodes depends on the
difference between these nodes in the number of events
mapped by the matching function and the number of un-
mapped non-τ -labeled transitions. Furthermore, the heuristic
function h required by the A∗ algorithm, is defined as the
number of events in the same case that do not belong to the
current prefix.

In order to obtain the distances associated to the arcs, we
use the notion of costs again, where costs are defined on
nodes and the distance between two nodes is the difference
in costs.

Definition V.2. (Cost of a matching instance) Let LA =
(E, C, α, β,Â) be an event log over a set of activities
A. Let c ∈ C be a case identifier, and let Ec be the
sequence of events of case c. Let E′ be a prefix of Ec. Let
N = (P, T, F, π) be a Petri net over A with initial marking
m0, and let (IE′ , µ) ∈ =E′ be a tuple of an instance of N
matching E′ with match µ. IE′ = (PI, TI, FI, ρ, %, m′

0).
Let κs and κi be cost functions for skipping and inserting
activities respectively.

We denote transition instances that are not mapped to any
event as TIs = TI \ Rng(µ) and denote a set of events that
are not mapped to any transitions as Ei = E′ \Dom(µ). We
define a cost function δn : =E′ → IN where

δn((IE′ , µ)) =
∑

ti∈TIs

κs(π(%(ti))) +
∑

e∈Ei

κi(α(e))

The cost function δn has a close relation with the cost-
based fitness metric defined in Def. III.2. The set of skipped
transition instances is the same as the bag of skipped
activities, hence δn defines the nominator of the fraction.

Using the costs of two matching instances, we can define
the distance between them as follows.

Definition V.3. (Distance between matching instances) Let
LA = (E,C, α, β,Â) be an event log over a set of activities

A. Let c ∈ C be a case identifier, and let Ec be the sequence
of events of case c. Let E′, E′′ be two prefixes of Ec. Let
N = (P, T, F, π) be a Petri net over A with initial marking
m0, let I and I ′ be two instances of N , and let (I, µ) ∈ =E′

and (I ′, µ′) ∈ =E′′ be two tuples of instances matching E′

with match µ and E′′ with match µ′ respectively.
We define the distance between (I, µ) and (I ′, µ′) as:

δ((I, µ), (I ′, µ′)) = δn((I ′, µ′))− δn((I, µ)) + |E′′| − |E′|
The number of events of each prefix is also added as part
of the distance definition as the value of the function δ is
influenced by the number of events in each prefix. Note that
it is easy to see that the function δ is transitive.

Although we defined the distance between any two match-
ing instances, our approach only considers instances that
differ either by one transition, or by one event in the prefix.
Therefore, we define a partial order on matching instances
as follows:
Definition V.4. (Partial order between instances) Let
LA = (E, C, α, β,Â) be an event log over a set of activities
A. Let c ∈ C be a case identifier, and let Ec be the
sequence of events of case c. Let E1, E2 be two prefixes
of Ec. Let N = (P, T, F, π) be a Petri net over A with
initial marking m0, let I1 = (PI1, T I1, F I1, ρ1, %1,m

1
0)

and I2 = (PI2, T I2, F I2, ρ2, %2,m
2
0) be two instances of

N . Let (I1, µ1) ∈ =E1 and (I2, µ2) ∈ =E2 be two tuples of
instances matching E1 with match µ1 and E2 with match
µ2 respectively.

We define a partial order between matching instances
(I1, µ1) and (I2, µ2), denoted by (I1, µ1) I (I2, µ2) if and
only if
• E2 = E1 · e and there exist ti ∈ TI2 \ TI1 with

TI2 = TI1 ∪ {ti}, µ2(e) = ti, ∀e′∈E1 µ1(e′) = µ2(e′)
and I1 = I2 ↓ TI1, i.e. a transition that corresponds to
an event is added at the end of the instance, or

• E2 = E1 and there exist ti ∈ TI2 \ TI1 with
TI2 = TI1 ∪ {ti}, ∀e∈E2 µ1(e) = µ2(e) and I1 = I2 ↓
TI1, i.e. one skipped activity is added to the end of the
instance, or

• E2 = E1 · e and ∀e∈E2 µ1(e) = µ2(e) and µ1(e) = ⊥
and I1 = I2, i.e. one inserted activity is identified at
the end of the instance.

Finally, we formalize our search space and heuristic
function using this partial order on matching instances.
Definition V.5. (Search space graph and heuristic func-
tion) Let LA = (E, C, α, β,Â) be an event log over a set
of activities A and let N = (P, T, F, π) be a Petri net over
A with initial marking m0. Let c ∈ C be a case, and let Ec

be the events of case c. Let κs and κi be cost functions for
skipping and inserting activities respectively. We define a
search space graph of replaying Ec on N as G = (V, W, ζ)
with heuristic function h : V → IN (see Def. II.2) as
follows:

7

• V is a (possibly infinite) set nodes, defined as V =⋃
E′≤Ec

=E′

• W = {(v1, v2) ∈ V × V | v1 I v2} is a set of arcs.
• h : V → IN is a heuristic cost function that estimates

the least cost of any paths from a node to its preferred
target node. Let E′ ≤ Ec be a prefix of events and let
v ∈ V . We define h(v) = |Ec| − |E′|, i.e. the number
of events in case c still not used to construct v.

• For all (v1, v2) ∈ W holds that ζ((v1, v2)) = δ(v1, v2).
The source vsrc ∈ V and target nodes Vtrg ⊆ V are defined
as follows:
• vsrc = (({p ∈ m0}, ∅, ∅, ρ, %, m′

0), µ), i.e. =〈〉 =
{vsrc}, and

• Vtrg = =Ec
is a set of all instances matching Ec and

their matching functions .

To guarantee that the A∗ algorithm will actually find
one of the target nodes from the source node, we need to
prove three things: (i) at least one target node is reachable,
(ii) the heuristic function gives an underestimation of the
distance to the target nodes, and (iii) the evaluation function
is monotonously increasing. The first is trivial, as the target
node where each event is considered a inserted activity is
reachable by adding the inserted activities incrementally (i.e.
following part 3 of Def. V.4). Furthermore, if the heuristic
function underestimates the distance to the target nodes and
all distances are non-negative then due to the transitivity of
the function δ the evaluation function will be monotonously
increasing.

Lemma V.6. (Non-negative cost of arc) Let LA =
(E, C, α, β,Â) be an event log over a set of activities A,
Let c ∈ C be a case and let Ec be the events of case c. Let
G = (V,W, ζ) be a search space and let (v1, v2) ∈ W be
an edge in the search space. We show that ζ((v1, v2)) ≥ 0,
i.e. that δ(v1, v2) ≥ 0.

Proof. From Def. V.5, we know there exists
E1 ≤ Ec and E2 ≤ Ec, such that v1 =
((PI1, T I1, F I1, ρ1, %1,m1), µ1) ∈ =E1 and
v2 = ((PI2, T I2, F I2, ρ2, %2,m2), µ2) ∈ =E2 . From
Def. V.4, we know that |E2| ≥ |E1|. Furthermore, from
Def. V.4, we know that |TI2| ≥ |TI1|, i.e. either one event
was added to the prefix, or one transition instance was
added to the net or both. Since the functions µ1 and µ2 are
the same on the domain TI1 (Def. V.4), we know that the
sets TIs and Ei used in the cost of a matching instance
can only have increased by adding a skipped transition
(i.e. TI1 ⊂ TI2 and E1 = E2) or an inserted activity (i.e.
E1 < E2 and TI1 = TI2). Therefore, δn(v2) ≥ δn(v1) and
since |E2| ≥ |E1| we know that δ(v1, v2) ≥ 0. ¤
Theorem V.7. (Heuristic function gives underestimation)
Let LA = (E,C, α, β,Â) be an event log over a set of
activities A, Let c ∈ C be a case and let Ec be the events of
case c. Let G = (V, W, δ) be a search space and let v′, vtrg ∈

V be two nodes in the search space, such that v′ Ã vtrg

and vtrg ∈ Vtrg . We show that h(v′) ≤ ζ((v′, vtrg)).

Proof. From Def. V.5, we know there exists E′ ≤ Ec,
such that v′ ∈ =E′ and vtrg ∈ =Ec . The distance between
v′ and vtrg is defined as ζ((v′, vtrg)) = δ(v′, vtrg) =
δn(vtrg)− δn(v′)+ |Ec|− |E′|. From Lemma V.6, we know
that δn(vtrg) ≥ δn(v′) hence δ(v′, vtrg) ≥ |Ec|−|E′|. Since
h(v′) = |Ec|− |E′|, δ(v′, vtrg) ≥ h(v′), which then implies
h(v′) ≤ ζ((v′, vtrg)) ¤

This theorem shows that we can use an A∗-based ap-
proach for conformance checking. It is important to realize
that the search space defined in Def. V.5 is infinite in case
there are loops in the Petri net. If the costs of executing
such a loop is not greater than 0, then the A∗ algorithm
has to consider the infinite search space, hence it is not
guaranteed to terminate. Therefore, each loop should have
an activity with positive costs for skipping. As our approach
works based on costs, the selection of cost functions κi and
κs is essential. We present experiments where we compare
different values for these cost functions.

VI. EXPERIMENTS

We implemented the proposed fitness calculation ap-
proach as a ProM 6 plug-in 3 and performed experiments
using various cost parameter values for different goals. As
the costs of skipping/inserting individual activities require
specific knowledge about processes under consideration, in
our experiments we assume fixed costs for skipping and
inserting activities, i.e., we are not using domain knowledge
to limit the number of parameters in our experiments.
Furthermore, the costs of skipping a τ labeled transition
are assumed to be 0, since we do not have loops of such
transitions in the model.

3see http://www.processmining.org

START A

B

C

D

END

E

C F G

H

Figure 6. The Petri net for experiments.

8

Table I
EXPERIMENT RESULTS WITH VARIOUS COST RATIOS SHOWING CORRECT FITNESS VALUES OF 1.000 FOR FITTING CASES COMPARED TO THE

CLASSICAL FITNESS MEASUREMENTS [12] (BOLDED)

Skipped Number of τ ’s Inserted |Ec| Fitness (fix value of κi(a) : κs(a) forall a ∈ A)
fclassical [12]1:1 1:2 2:1 1:5 5:1

1 0 0 0 26 1.000 1.000 1.000 1.000 1.000 1.000
2 0 5 0 16 1.000 1.000 1.000 1.000 1.000 0.667
3 5 0 0 13 0.615 0.539 0.808 0.462 0.923 0.706
4 0 0 5 19 0.842 0.790 0.868 0.737 0.947 0.875
5 5 5 0 11 0.636 0.546 0.818 0.273 0.927 0.445
6 5 0 5 14 0.357 0.214 0.607 0.071 0.829 0.529

A. Comparison with classical fitness

The first set of experiments is conducted to identify
the influence of cost functions for inserted and skipped
activities on fitness values. We use the Petri net shown
in Fig. 6 with unobservable activities, duplicate transitions
(i.e. transitions representing the same activity), and complex
control-flow patterns such as the multi-choice pattern (OR-
split), milestone, and iterations. The results are compared to
the results of the classical fitness calculation described in
[12], as shown in Table I.

The results reported in Table I show that our approach
manages to give correct results in cases where no deviations
occur (e.g. case with id 1 and 2), even with the presence of
unobservable activities. This is an improvement over [12]
as this classical fitness calculation has problems to identify
unobservable activities (see case with id 2). However, in the
presence of deviations, our fitness values are sensitive to the
ratio between the cost of inserting and skipping activities.
For example, in the presence of 5 inserted activities and
5 skipped activities (i.e. case 6), the fitness value can be
either extremely low (0.071) or uninterestingly high (0.829),
depending on the ratio between costs of inserting/skipping
activities.

In general, fitness values are high when the costs of
skipping activities are considerably lower than the cost of
inserting activities. Our approach manages to find a sequence
of transitions (i.e. skipped activities) that enables a disabled
transition. Hence, events that should be identified as inserted
activities may be interpreted as an abundance of skips (event
though this is very unlikely). This leads to high fitness
values.

B. Influence of cost ratios

Given a model and cases with different number of de-
viations, good fitness measurements should give cases with
high number of deviations less fitness value than the ones
with less number of deviations. To see which cost config-
uration gives good fitness measurement in the presence of
deviations, we conducted a second set of experiments where
only one of the two types of deviations occur, using the
same model (Fig. 6). To get a controlled testing environ-
ment, experiments with deviating activities are performed
with relatively small number of events. The set of events

required for experiments with skipped activities is obtained
by generating a relatively small number of 25 events from
the model and delete the events randomly as many as the
desired number of skipped activities. Similarly, the set of
events to conduct experiments with inserted activities is
obtained from 10 events, generated from the model, and then
add activities as many as the number of inserted activities
needed. For each experiment with a case, we also calculate
the ratio between deviating events and the number of events
in the case as baseline. The results of the experiments are
shown in Fig. 7 and 8.

Our fitness measurement approach produces good results
in the experiments where the cost of skipping activities is
higher than the cost of inserting activities (e.g. experiments
with κi(a) : κs(a) equal to either 1 : 2 or 1 : 5). With
such cost settings, fitness values are close to the baseline
values and tend to decrease as the number of deviations
increases. However, there are few exceptions on experiments
with skipped activities, where fitness increases along with
the increasing number of skipped activities (see Fig. 7).
These exceptions occur because our measurement approach
is guaranteed to find the biggest fitness value. Rather than
identifying skipped activities that penalize fitness severely
(due to cost settings), marking some events as inserted
activities gives higher fitness in such exception cases.

Setting the costs such that inserting activities is more
costly than skipping activities always give high fitness val-
ues, because it allows the approach to find skipped activities
that enable unfireable transitions. The bigger the cost of
skipping compare to the cost of inserting activities, the
higher the fitness due to less penalty for skipping activities.

C. Real-life experiments

The third set of experiments is conducted to see whether
the approach can handle real-life cases. We use four pairs of
model and real-life log from a municipality in the Nether-
lands, describing process executions of handling building
permission applications (“Bouwvergunning”), handling ob-
jections (“BezwaarWOZ” and ”Bezwaar”), and giving out
copies of documents (“Afschriften”). The models used are
shown in Fig. 9 to Fig.12.

The complexity of the process models are ranging from
low to moderate. All processes contain unobservable activ-

9

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6

1
activities/#even
ts)
1:1

1:2

2:1

1:5

5:1

Number of skipped activities

Fit
ne

ss
 va

lu
e

: = 1:1

: = 1:2

: = 2:1

: = 1:5

: = 5:1

baseline

Figure 7. Experiment results showing that fitness values tend to decrease as the number of skipped activities increases

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6
Number of inserted activities

Fi
tn

es
s v

al
ue

: = 1:1

: = 1:2

: = 2:1

: = 1:5

: = 5:1

baseline

Figure 8. Experiment results showing that fitness values tend to decrease as the number of inserted activities increases

ities. These activities are shown as the transitions labeled
with prefix “tr” and colored black. In all models, there is no
pair of transitions that represent exactly the same activity.
“BezwaarWOZ”, ”Bezwaar”, and “Bouwvergunning” pro-
cess models are state machines [9]. The “Bezwaar” process
model has the most unobservable activities among the four
models, and the “Afschriften” model is the simplest of all
as it has the least number of both transitions and places.

From our previous experiment, we know that setting the
cost of inserting to be lower than the cost of skipping
activities provides a better fitness metric. Therefore, we use
the value 1:3 as the ratio between inserting and skipping
activities to measure fitness. Experiment settings and results
are shown in Table II. The results are compared to the results
of the classical fitness calculation described in [12].

In most cases, our approach provides less fitness values
than the ones provided by classical fitness measurements.

In cases where an activity cannot be executed due to lack
of tokens, the classical fitness measurements put missing
tokens that allow the execution the activity. Transitively,
these missing tokens may in the end enable sequence of
activities that should not even be possible, thus high fitness
value is obtained.

Only in the experiments with “Afschriften” log that our
fitness measurement gives higher values than the classical
fitness measurement. This happens because our metric does
not penalize fitness for not terminating properly. Thus, our
fitness measurement is more suitable to measure fitness in
cases where the completeness of process executions are not
guaranteed. In addition, no performance issues were found
as fitness calculations were done within seconds.

In all experiments using the classical conformance anal-
ysis, it is rather difficult to reveal the cause of deviations,
as missing/remaining tokens exist in almost every places.

10

BV02
Voorbereiden

BV04 Advies
Split

BV06 CCT

BV06 Milieu

BV06
Brandweer

BV06 Toets
ontv

BV08 Advies
Join

BV10
Antwoord

BV12
Incompleet

BV16 Toets
Inhoud

BV18
Aanhouden

BV19 Jurist
inhoud

BV17
Welstand

BV22 Voorber
besch

BV20 Jurist
besch

BV24 Afwerk
besch

BV25 Besch
Split

BV26
Belastingen

BV26
Financien

BV27
Nummering

BV26 Vergund

BV27
Geweigerd

BV34 Besch
Join

BV36 WOZ

BV29 Gereed
controle

BV28 Gestart

BV27 1jr geen
bouw

BV29 toets
controle

BV30
Welstand cont

BV38 BuZa BV40
Kadaster CCT

tr32

tr57

start end

Figure 9. Process model of the “Bouwvergunning” log

domain:heus1 BZ02
Verdelen

BZ04 Intake BZ08 Inhoud

BZ30
Intrekken

BZ09
Secretaris

BZ10
Agenderen

BZ12
Hoorzitting

BZ14 Voorstel BZ16 Wacht
Besluit

BZ18 Termijn
Beroep

BZ28
Administratie

BZ20 Beh.
Beroep

BZ22 Wacht
Beroep

BZ05 Wachten

tr30

tr62tr67

tr72
tr75

tr89 tr91 tr93

tr95

tr96 tr99 tr101

start end

Figure 10. Process model of the “Bezwaar” log

OZ04
Incompleet

OZ02
Voorbereiden

OZ06 Stop
vordering

OZ08
Beoordelen

OZ10 Horen

OZ12
Hertaxeren

OZ14 Plan
taxeren

OZ16
Uitspraak

OZ18 uitspr.
wacht

OZ15 Zelf
uitspraak

OZ09 Wacht
Beoord

OZ20
Administratie

OZ24 Start
vordering

OZ30 Termijn
beroep

OZ32 Beh.
beroep

OZ34 Wacht
beroep

tr39

tr70

start

end

Figure 11. Process model of the “BezwaarWOZ” log

Fig. 13 shows the process model of “Bezwaar WOZ” pro-
cess, projected with missing and remaining tokens obtained
from classical conformance fitness analysis. Places with red
border color indicates the places with missing/remaining
tokens. As shown in the figure, the border of almost all
places in the original model are colored red.

We obtain better diagnostics for analysis of the cause
of deviations than the classical fitness measurement that
relies on manual analysis. For example, we take one of
the cases that have extremely low fitness values (0.00) in
log “BezwaarWOZ”. The fitness value is provided when
the cost of inserting:skipping activities is 1:3 (see Fig. 14).

As shown in the left side of Fig. 14, all events in the
case are identified as inserted activities. To see what causes
such low fitness value, we decrease the cost of skipping an
activity such that ratio between inserting:skipping activities
becomes 1:1. With such ratio, two skipped activities are
revealed: “Voorbereiden” and “Horen”. These two activities
are supposed to be executed early in the case. By increasing
the cost of inserting an activity such that the ratio between
the cost of inserting and skipping activities becomes 3:1,
we identified one more activity that is skipped: “Uitspraak
wacht”. By tuning the cost parameters such that the cost
of skipping activities is less than the cost of inserting

11

AG02
Voorbereiden

AG10 BS
derden

AG08 GBA
afnemer

AG04 BS
betrokkene

AG04 GBA
betrokkene

AG09 Wacht
afnemer

AG05 Wacht
betrokken

tr8start end

Figure 12. Process model of the “Afschriften” log

Table II
FITNESS VALUE FROM EXPERIMENTS ON REAL-LIFE LOGS AND MODELS

Log #Cases #Events #Events per case Process model Fitness (κi(a) : κs(a) = 1 : 3)
fclassical [12]min max avg #places #trans. min max avg. fitness / case

Bezwaar 65 683 6 20 10 15 27 0.00 1.00 0.76 0.86
BezwaarWOZ 1981 11278 1 17 5 12 18 0.00 1.00 0.55 0.74

Bouwverg. 714 9116 1 32 12 23 33 0.00 1.00 0.46 0.66
Afschriften 370 742 1 5 2 11 8 1.00 1.00 1.00 0.50

activities, one can obtain results that reveal possible causes
of deviations and exploit the information for further analysis
(e.g. if an activity is often skipped, process model should
also allow such skipping). We also manage to identify
unobservable activities and provide them for diagnostics. For
process models with many unobservable activities such as
the “Bezwaar” model (see Fig. 10), such diagnostics are
essential.

VII. RELATED WORK

The notion of conformance has appeared in many dif-
ferent contexts, such as business process compliance [13],
auditing [15], security, and process mining. Conformance
comprises of several orthogonal dimensions, such as fitness,
precision, generalization, and structural [12], [16]. From
all dimensions of conformance, fitness is one of the most
important dimensions and therefore typically measured first.
If fitness value between a given model and process execution
is low, not much useful information can be obtained from
measuring conformance on other dimensions.

Many of existing fitness metrics are created to evaluate
process discovery techniques. There are already various
metrics proposed related to the fitness dimension [1], [2],
[4], [6], [7], [12]. A comprehensive lists of these metric are
provided in [16]. Fitness is measured on different level of
granularity. Our proposed metric penalize fitness only for
individual execution of activity that is not fit.

We consider the work on the classical conformance
checking with a metric based on the number of missing,

remaining, produced, and consumed tokens, proposed by
Rozinat et al. [12] as a benchmark. The approach have been
tested against several real-life case studies (e.g. [10], [11]).
However, the proposed fitness is sensitive to the structure of
the model. Furthermore, it is shown that in the presence of
duplicate transitions/unobservable activities, heuristics may
lead to incorrect results. Experiment results in Section VI
show that our approach manage to provide correct results in
the presence of duplicate transitions/unobservable activities.

Our work in this paper is closely related to the work
of Cook et al. (see [2], [3]). To our knowledge, the work
propose one of the most early fitness-related measurements
that consider the severity of deviations based on event logs.
Given a model and an execution of a process, the approach
in [2] measures conformance by comparing an event stream
generated by the model and an event stream that is derived
from the execution. Fitness is measured in terms of string
edit distance (SSD) and non-linear string distance metric
(NSD) that can be weighted per-activity. The problem that is
still unsolved in [2] is the selection of heuristic estimator that
guarantee the minimum cost goal. In this paper, we solve the
problem by proposing admissible heuristics that guarantees
optimal result (see Thm. V.7). However, we do not cover
fitness measurement in cases where process executions are
assumed to be completed.

Goedertier et al. [6] measure fitness using two different
metrics that are complementary to each other: behavioral
recall and behavioral specificity. Given a set of events of a

12

Figure 13. Excerpt of the “BezwaarWOZ” model, projected with missing and remaining tokens obtained from classical conformance analysis [12]

Fitness = 0.33

Horen

Voorbereiden
tr39

Hertaxeren

Administratie
Administratie

Start vordering

Cost of inserting an activity = 1,
Cost of skipping an activity = 1

Uitspraak

Uitspraak

Fitness = 0.00

Uitspraak

Hertaxeren
Administratie

Start vordering

Cost of inserting an activity = 1,
Cost of skipping an activity = 3

Fitness = 0.67
Cost of inserting an activity = 3,
Cost of skipping an activity = 1

Uitspraak

Administratie
Horen

Voorbereiden
tr39

Hertaxeren

Uitspraak wacht

Administratie

Start vordering

Uitspraak

Uitspraak

Administratie

Skipped activities Inserted activities Unobservable activities Valid activitiesLEGEND

Figure 14. Analysis with different cost values to reveal the cause of deviations in a real-life case

case and a process model, behavioral recall measures the
ratio between the events that can be replayed according
to the model compared to the total number of events.
In contrast, behavioral specificity measures the ratio of
negative events (generated from existing traces) that cannot
be replayed according to the model. Since negative events
are generated and logs may be incomplete, some negative
events need not be negative and many other negative events
may not be generated, making the approach interesting, but
also ad-hoc. Our proposed metric, given in Def. III.2 is close
to behavioral specificity, except that we also consider the
severity of skipping/inserting activities.

VIII. CONCLUSION

In this paper, we provide a robust cost-based technique to
replay event logs on process models that is not only capable
to deal with unobservable activities, but can also identify
both skipped activities in process models and inserted activ-
ities in event logs.

As the work in this paper is based on a general framework
using the A∗ approach that guarantees to identify the best
fit of a case in a Petri net, it provides a solid basis for

benchmarking and further analysis based on replay, such as
process conformance and performance analysis.

Finally, the benefit of always finding the best possible
sequence of transitions to fire given the cost parameters
comes at the cost of computational complexity, but real-life
experiments show practical applicability.
Acknowledgements. This research is funded by the
European Community’s Seventh Framework Programme
FP7/2007-2013 under grant agreement no 257593 (ACSI).

REFERENCES

[1] A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst.
Towards Robust Conformance Checking. In Proceedings
of the 6th Workshop on Business Process Intelligence (BPI
2010), 2010.

[2] J.E. Cook, C. He, and C. Ma. Measuring Behavioral Corre-
spondence to a Timed Concurrent Model. In Software Main-
tenance, 2001. Proceedings. IEEE International Conference
on, pages 332 –341, 2001.

[3] J.E. Cook and A.L. Wolf. Software Process Validation:
Quantitatively Measuring the Correspondence of a Process
to a Model. ACM Transactions on Software Engineering and
Methodology (TOSEM), 8:147–176, April 1999.

13

[4] A.K. Alves de Medeiros, A.J.M.M. Weijters, and W.M.P.
van der Aalst. Genetic Process Mining: an Experimental
Evaluation. Data Mining and Knowledge Discovery, 14:245–
304, 2007. 10.1007/s10618-006-0061-7.

[5] R. Dechter and J. Pearl. Generalized Best-first Search
Strategies and the Optimality of A*. Journal of the ACM
(JACM), 32(3):505–536, 1985.

[6] S. Goedertier, D. Martens, J. Vanthienen, and B. Baesens.
Robust Process Discovery with Artificial Negative Events.
The Journal of Machine Learning Research, 10:1305–1340,
2009.

[7] G. Greco, A. Guzzo, L. Pontieri, and D. Sacca. Discovering
Expressive Process Models by Clustering Log Traces. IEEE
Trans. on Knowl. and Data Eng., 18:1010–1027, August
2006.

[8] K.L. McMillan and D.K. Probst. A Technique of State
Space Search based on Unfolding. Formal Methods in System
Design, 6:45–65, 1995. 10.1007/BF01384314.

[9] T. Murata. Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77(4):541–580, August 2002.

[10] A. Rozinat, I.S.M. de Jong, C.W. Günther, and W.M.P. van der
Aalst. Conformance Analysis of ASML’s Test Process.
In Proceedings of the Second International Workshop on
Governance, Risk and Compliance (GRCIS’09), volume 459,
pages 1–15. CEUR-WS.org, 2009.

[11] A. Rozinat, I.S.M. de Jong, C.W. Günther, and W.M.P. van der
Aalst. Process Mining Applied to the Test Process of Wafer
Steppers in ASML. IEEE Transactions on Systems, Man and
Cybernetics - Part C, 39:474–479, 2009.

[12] A. Rozinat and W. M. P. van der Aalst. Conformance
Checking of Processes Based on Monitoring Real Behavior.
Information Systems, 33:64–95, March 2008.

[13] W.M.P. van der Aalst. Business Alignment: using Process
Mining as a Tool for Delta Analysis and Conformance
Testing. Requirements Engineering, 10:198–211, November
2005.

[14] W.M.P. van der Aalst. Process Mining: Discovery, Confor-
mance and Enhancement of Business Processes. Springer
Verlag, 2011. ISBN:978-3-642-19344-6.

[15] W.M.P. van der Aalst, K.M. van Hee, J.M. van der Werf, and
M. Verdonk. Auditing 2.0: Using Process Mining to Support
Tomorrow’s Auditor. Computer, 43:90–93, March 2010.

[16] J. D. Weert, M. D. Backer, J. Vanthienen, and B. Baesens.
A Critical Evaluation Study of Model-log Metrics in Process
Discovery. In Proceedings of the 6th Workshop on Business
Process Intelligence (BPI 2010), 2010.

14

