
Do My Constraints Constrain Enough? —
Patterns for Strengthening Constraints

in Declarative Compliance Models

Dennis M. M. Schunselaar, Fabrizio M. Maggi ∗, and Natalia Sidorova

Eindhoven University of Technology, The Netherlands.
d.m.m.schunselaar@student.tue.nl, {f.m.maggi, n.sidorova}@tue.nl

Abstract. LTL-based declarative process models are very effective when
modelling loosely structured processes or working in environments with
a lot of variability. A process model is represented by a set of constraints
that must be satisfied during the process execution. An important ap-
plication of such models is compliance checking: a process model defines
then the boundaries in which a system/organisation may work, and the
actual behaviour of a system, recorded in an event log, can be checked
on its compliance to the given model.

A known pitfall in specifying such a set of constraints is allowing for more
behaviour than the intended one. Consider, for instance, a model with a
constraint specifying that an invoice must be eventually followed by a
payment: if invoice never occurs in the event log at all, the behaviour
is considered as compliant, while it is vacuously-compliant. Is this the
behaviour we intended to model? Is this the right idea of compliance
we had in mind? Undoubtedly, only the process designer who modelled
that process can answer these questions. In this paper, we provide the
designer with patterns that, applied to the model, trigger posing the
right questions and define options for strengthening the constraints. Our
patterns are inspired by vacuity detection techniques working on a sin-
gle trace. We take the log point of view instead to check whether the
constraints of a compliance model constrain enough.

Keywords: Linear Temporal Logic, Declare, Vacuity detection, Com-
pliance checking

1 Introduction

While imperative process modelling languages such as BPMN, UML ADs, EPCs
and BPEL, are very useful when it is necessary to provide strong support to
the process participants during the process execution, they are less appropriate
for environments characterised by high flexibility and variability. Consider, for
instance, a physician in a hospital, who needs a high level of flexibility to take

∗ This research has been carried out as a part of the Poseidon project at Thales under
the responsibilities of the Embedded Systems Institute (ESI). The project is partially
supported by the Dutch Ministry of Economic Affairs under the BSIK program.



into account individual characteristics of a patient. At the same time, there
are some general regulations and guidelines she has to follow. In such cases,
declarative process models are more effective than the imperative ones [1,10].
Instead of explicitly specifying all the possible sequences of activities in a process,
declarative models implicitly specify the allowed behaviour of the process with
constraints, i.e., rules that must be followed during execution. In comparison to
imperative approaches, which produce “closed” models (what is not explicitly
specified is forbidden), declarative languages are “open’: everything what is not
forbidden is allowed. In this way, models offer flexibility and still remain compact.

Recent works have shown that declarative languages based on LTL (Linear
Temporal Logic) [11] can be fruitfully applied in the context of process discov-
ery [6] and compliance checking [5,7]. In [8,9], the authors introduce an LTL-
based declarative process modelling language called Declare. Declare is char-
acterised by a user-friendly graphical representation and a formal semantics
grounded in LTL. A Declare model is a set of Declare constraints, which are
defined as instantiations of Declare templates. Templates are abstract entities
that define parameterised classes of properties. The example in Figure 1 shows
the representation of the response template �(A⇒ ♦B) in Declare and its pos-
sible instantiation in a process for renting apartments, where parameters A and
B take the values Plan final inspection and Execute final inspection. This con-
straint means that every action Plan final inspection must eventually be followed
by action Execute final inspection.

Due to the focus ruling out the forbidden behaviour, Declare is very suitable
for defining compliance models that are used for checking that the behaviour of
a system (e.g., recorded in an event log of the system) complies certain regu-
lations. The compliance model dictates the rules for the execution of a single
instance of a process, and the expectation is that all the instances follow the
model. For example, the constraint after planning a final inspection, eventually
the inspection must be executed will be satisfied on a process trace, if the plan-
ning of the final inspection was followed by the execution of this inspection, or
if a final inspection was not executed at all. Note that the execution of the fi-
nal inspection might be not required in every process execution; however, when
specifying such a constraint, an expert normally expects that the final inspec-
tion is planned in at least one execution. Therefore, it is important to make a
difference between constraint satisfaction in the expected way: there is at least
one inspection planned and it is then followed by the execution of this inspec-
tion, and vacuous satisfaction, when no inspection was ever planned at all, which
often signals a problem in the system behaviour.

Vacuous satisfaction can also be related to a general tendency of the designers
to underspecification. While in imperative languages, designers tend to forget
incorporating some possible scenarios (e.g., related to exception handling), in
declarative languages, designers tend to forget certain constraints, which might
be the constraint that every process execution contains the planning of the final
inspection.

2



Fig. 1. Response template in Declare and its possible instantiation

In this paper, we start from the existing results in the field of vacuity de-
tection [2,3] and provide a number of compliance patterns in order to help the
process designer understand in which sense the system behaviour captured in an
event log satisfies a compliance model. We achieve that by applying to the origi-
nal model our patterns that allow to strengthen the compliance model “as much
as possible” in order to show where the compliance requirements are vacuously
satisfied. We extend the method of [3] in order to take into account the context
of compliance checking, where constraints are evaluated not just on single traces
but on sets of traces coming from an event log.

We have evaluated our approach on an event log from a Dutch rental agency.
Starting from an input compliance model defined by a domain expert we applied
our approach and diagnosed the options for strengthening the constraints of the
compliance model with respect to the log.

The remainder of the paper is structured as follows: we discuss related work
in Section 2. In Section 3, we provide an informal introduction to the Declare
language based on the Declare model describing a process for cancellation of
a rental contract of an apartment rental company that we use as a running
example. In Section 4, we propose patterns for strengthening compliance models.
Section 5 discusses our methodology for transforming a given compliance model
into a strong compliance model. In Section 6, we show an application of our
approach to a real-life example. Section 7 concludes the paper.

2 Related Work

In Table 1, we briefly introduce the standard LTL operators and their (informal)
semantics [11], which are used in Declare templates.

In this paper, we start from the notions of vacuity and interesting witness
first introduced in [2] for CTL* formulas. Since CTL* is a superset of LTL (which
we are interested in in the context of Declare), we can apply these notions in
our work. According to [2], a path π is an interesting witness for a formula ϕ if
π satisfies ϕ non-vacuously, which means that every subformula ψ of ϕ affects
the truth value of ϕ in π. In [2], the authors presented an approach for vacuity
detection for w-ACTL, a subset of Action Computational Tree Logic (ACTL),
which is, in turn, a subset of CTL. In [12], the authors present an approach for
vacuity detection in CTL formulas. They do not provide, however, an operative
algorithm to be applied to LTL specifications.

3



Table 1. The LTL operators and their meaning.

Operator Meaning

©ϕ ϕ holds in the next position of a path.

�ϕ ϕ holds always in the subsequent positions of a path.

♦ϕ ϕ holds eventually (somewhere) in the subsequent positions of a path.

ϕUψ ϕ holds in a path at least until ψ holds. ψ must hold in the current or
in a future position.

In [3], the authors introduce an approach for vacuity detection in temporal
model checking for LTL; they provide a method for extending an LTL formula
ϕ to a new formula witness(ϕ) that, when satisfied, ensures that the origi-
nal formula ϕ is non-vacuously true. In particular, witness(ϕ) is generated by
considering that a path π satisfies ϕ non-vacuously (and then is an interesting
witness for ϕ), if π satisfies ϕ and π satisfies a set of additional conditions that
guarantee that every subformula of ϕ does really affect the truth value of ϕ in π.
These conditions correspond to the formulas ¬ϕ[ψ ← ⊥], for all the subformulas
ψ of ϕ, obtained from ϕ by replacing ψ by false or true, depending on whether
ψ is in the scope of an even or an odd number of negations. Then, witness(ϕ)
is the conjunction of ϕ and all the formulas ¬ϕ[ψ ← ⊥] with ψ subformula of ϕ:

witness(ϕ) = ϕ ∧
∧
¬ϕ[ψ ← ⊥]. (1)

This approach can in principle be applied to Declare. Indeed, in [6], it is
applied for vacuity detection in the context of process discovery. However, the
algorithm introduced in [3] can generate different results for equivalent LTL for-
mulas. Consider, for instance, the following equivalent formulas (corresponding
to the Declare alternate response template):

ϕ = �(A⇒ ♦B) ∧�(A⇒©((¬AUB) ∨�(¬B))) , and

ϕ′ = �(A⇒©(¬AUB)).

When we apply (1) to ϕ and ϕ′, we obtain that witness(ϕ) 6= witness(ϕ′):

witness(ϕ) = false,

witness(ϕ′) = ϕ′ ∧ ♦(¬© (¬AUB)) ∧ ♦(A) ∧ ♦(A ∧ ¬© (B)).

In compliance models, LTL-based declarative languages like Declare are used
to describe requirements to the process behaviour. In this case, each LTL rule
describes a specific constraint with clear semantics. Therefore, we need a univocal
(i.e., not sensitive to syntax) and intuitive way to diagnose vacuously compliant
behaviour in an LTL-based process model.

Another issue in the approach proposed by [3] is that for two LTL formulas
f and g, the composite formula

ϕ = f ∨ g

4



is never non-vacuously true. This is definitely counterintuitive, because one
would expect that ϕ is non-vacuously true if f is non-vacuously true or g is
non-vacuously true, when considering vacuous satisfaction in the context of one
single trace.

The notion of vacuous satisfaction, as introduced in [2,3], is designed for
formulas that hold on a given path in an uninteresting way. In the context of
a log (a set of traces), we would expect that f ∨ g is non-vacuously true if
there is a trace in the log where f is non-vacuously true and there is a trace in
the log where g is non-vacuously true. Consider, for example, the formula ϕ =
�(Agree on self made changes? ⇒ ♦(Plan final inspection ∨ Adjust floor plan)).

When we apply (1) to this formula, we obtain that witness(ϕ) is:

ϕ ∧ ♦(Agree on self made changes? ∧ ♦(Plan final inspection)) ∧
♦(Agree on self made changes? ∧ ♦(Adjust floor plan)).

This formula is too strong in the context of a log, since we will not have in every
trace Agree on self made changes? followed by both Plan final inspection and Adjust
floor plan. In our approach, we will “weaken” this condition by requiring that
each term of the conjunction must be valid, separately, on different traces. In
addition, the original formula must be also always valid. This yields the following
two formulas:

ϕ ∧ ♦(Agree on self made changes? ∧ ♦(Plan final inspection)), and
ϕ ∧ ♦(Agree on self made changes? ∧ ♦(Adjust floor plan)).

each of which is expected to hold independently on some trace of the log to
justify that the original formula is non-vacuously satisfied.

3 Declare

Declare is characterised by a user-friendly graphical front-end and is based on
a formal LTL back-end. These characteristics are crucial for two reasons. First
of all, Declare is understandable for end-users and suitable to be used by stake-
holders with different backgrounds. For instance, Declare has been already effec-
tively applied in a project for maritime safety and security [5,6,7] where several
project members did not have any formal background. Secondly, being based on
a formal semantics, Declare is verifiable. This characteristic is important for the
implementation of tools to check the compliance of process behaviour to Declare
models (see, e.g., [5]).

Figure 2 shows an example of a Declare model that describes a process for
cancellation of a rental contract of a rental agency, which we use to explain the
main characteristics of the language. The process involves five events, depicted
as rectangles (e.g., Plan final inspection) and three constraints, shown as arcs
between the events (e.g., not succession). In our example, prior to agreeing on any
self made changes by the tenant, the company must create a rental cancellation
form on which it can be specified whether the company agrees or disagrees with

5



the self made changes. This is indicated by the precedence constraint. After
agreeing or disagreeing on the self made changes the company either plans a
final inspection (to determine whether the tenant has reverted or mended her
self made changes), or adjusts the floor plan to reflect the current situation after
the self made changes. Also, if they partially agree on the changes made by the
tenant, it is possible to both adjust the floor plan and plan a final inspection.
This is indicated by the branched response, which says that if Agree on self
made changes? occurs, Plan final inspection or Adjust floor plan have to occur
after. Finally, the company cannot plan a final inspection after having created
a confirmation letter (stating that no problem was encountered), as indicated
by the not succession between the two events Create confirmation letter and Plan
final inspection.

Declare provides templates that can be subdivided into four groups: existence,
relation, negative relation, and choice. For the full overview of Declare templates
we refer the reader to [8,9]. When being instantiated in a model, a template pa-
rameter in a Declare constraint is replaced by one or several activities. When
two or more activities are used for one parameter, we say that this parameter
branches. The response constraint in Figure 2 is an example of a branched re-
sponse constraint �(A ⇒ ♦B), where parameter A is replaced by Agree on self
made changes? and parameter B is branched on Plan final inspection and Adjust
floor plan. This means that if Agree on self made changes? occurs in a trace, it
must be eventually followed by Plan final inspection or Adjust floor plan. In case
of branching, the parameter is replaced (a) by a multiple arcs to all branched
activities in the graphical representation and (b) by a disjunction of branched
activities in the LTL formula. The LTL semantics for the example above is:

�(X ⇒ ♦(Y ∨ Z))

where X is Agree on self made changes? and Y and Z are Plan final inspection
and Adjust floor plan respectively.

Each individual Declare constraint can be written as an LTL formula talking
about the connected events. Using CL, CF, P, Ag and Ad to respectively denote
Create confirmation letter, Create rental cancellation form, Plan final inspection,
Agree on self made changes? and Adjust floor plan events in Figure 2, we obtain
CF ⇒ (¬♦P) for the not succession constraint, (♦Ag) ⇒ (¬Ag U CL) for the
precedence constraint, and Ag⇒ ♦(P∨Ad) for the (branched) response constraint
in the renting agency model.

The semantics of the whole model is determined by the conjunction of these
formulas. Note that, when operating on business processes, we reason on finite
traces. Therefore, we assume that the semantics of the Declare constraints is
expressed in FLTL [4], a variant of LTL for finite traces.

4 Approach

In the remainder of the paper, we use the following notation: for a set A =
{a1, · · · , an} of formulas ai, we write A for the disjunction over the elements of

6



Fig. 2. An example of a Declare model

A, i.e., A =
∨

a∈A a. Similarly, we write B for the disjunction
∨

b∈B b over the
elements of B = {b1, · · · , bm}. We also indicate with W an event log and with
t ∈ W a trace in W . Moreover, we assume that the activities we consider are
atomic.

From the algorithm for vacuity detection described by (1), we define a vacuity
detection condition as follows:

Definition 1. Given a (branched) Declare constraint ϕ, a vacuity detection
condition of ϕ is a formula ¬ϕ[ψ ← ⊥] with ψ being a subformula of ϕ.

In the context of compliance checking, we do not reason in terms of single paths
but in terms of event logs that are composed of multiple traces. Therefore, when
applying (1) to a branched Declare constraint, instead of verifying the conjunc-
tion of all the vacuity detection conditions on every single trace, we adopt a more
“permissive” approach. In particular, we require that for each vacuity detection
condition, there exists a trace on which the condition holds. According to [3],
the algorithm described by (1) can be applied in a user-guided mode by limiting
the evaluation of witness(ϕ) only to a subset of vacuity detection conditions. We
choose these subsets differently for different Declare templates by considering
the vacuity detection conditions that give significant results from the point of
view of each specific template.

As final output of our approach we want to adjust a given model incorpo-
rating the result of the vacuity check. If there is a vacuity detection condition
¬ϕ[ψ ← ⊥] that is not satisfied on any trace in the considered log, we conclude
that part ψ of the model is not relevant for the entire log. To reflect that in the
compliance model we, therefore, remove that part. In most cases, this part is a
particular branch of the original constraint.

Considering that our goal is to strengthen the original model “as much as
possible” towards the behaviour presented in an event log, we define a hierar-
chy of templates as depicted in Figure 3. We use the following abbreviations
for the Declare templates: “RE” responded existence, “CE” co-existence, “R” re-
sponse, “P” precedence, “S” succession, “AR” alternate response, “AP” alternate
precedence, “AS” alternate succession, “CR” chain response, “CP” chain prece-
dence, “CS” chain succession,“I” is the init template, implying the precedence
one; “ABS”, “EXA” and “EXI” stand for absence, exactly and existence respec-
tively; “NCE”, “NS” and “NCS” stand for not co-existence, not succession and
not chain succession respectively, and, finally, “CHO” and “ECHO” denote choice

7



CS CPCR

ASAR AP

S PR

CERE

EXA

ABS

EXI

I NCE

NS

NCS

CHO ECHO

Fig. 3. The hierarchy of the different templates

and exclusive choice respectively. The names of the templates suggest their mean-
ing, and their semantics is defined later in this section. An arrow from a node x
to a node y means that x implies y.

In this way, we consider each constraint of the original model and, if a stronger
(according to this hierarchy) constraint holds non-vacuously on every trace of
the log, we report that it is possible to strengthen the original model by replacing
this constraint by the stronger one.

Considering the aforementioned observations, we can define the compliance
pattern of a Declare constraint:

Definition 2. Given a log W and a branched Declare constraint ϕ, the com-
pliance pattern of ϕ in W is a set composed of four conditions:

1. all the activities involved in ϕ occur in W ;

2. ϕ holds on every trace of W ;

3. for each element of a selection of vacuity detection conditions of ϕ, there is
a trace in W on which this element holds (user-guided application of (1));

4. no stronger constraint holds non-vacuously.

Furthermore, we define the notion of strong compliance as follows:

Definition 3. Given a log W and a Declare constraint ϕ, W is strongly com-
pliant to ϕ if all the conditions of the corresponding compliance pattern of ϕ are
satisfied in conjunction on W .

In the remaining subsections, we describe the compliance patterns of the
existence and relation templates. We do not show the negative relation and
choice templates for the sake of brevity. Moreover, for the latter two templates
(1) does not give significant results and the application of the compliance pat-
terns can be reduced to the evaluation of items 1, 2 and 4 of Definition 2.

8



4.1 Existence templates

Our compliance patterns for the existence templates are listed in Table 2. Since
the condition

∀a ∈ A ∃t ∈W : t |= ♦a

must be always valid, we omit it in the table. For each template, the first line of
the pattern shows the original LTL semantics that must hold for every trace in
the log. For the init template, the additional condition is obtained by applying
the approach for vacuity detection (1). On the other hand, when applying (1)
to the existence, absence, and exactly templates, we obtain that for every a ∈ A
there has to be a trace such that a occurs at least nr times in that trace. We do
not consider these conditions in the proposed version of the compliance patterns
because they are too strong and difficult to apply to real cases. However, we
want to ensure that in all these cases a stronger template does not hold.

In particular, if we want to ensure that existence(nr ,A) is strongly compliant,
we need to specify a condition guaranteeing that existence(nr ,A) cannot be
replaced by existence(nr + 1,A). Moreover, we also need a second condition to
ensure that existence(nr ,A) cannot be replaced by exactly(nr ,A).

Similarly, if we want to ensure that absence(nr ,A) is strongly compliant, we
must verify a condition specifying that absence(nr ,A) cannot be replaced by
absence(nr − 1,A). A second condition guarantees that absence(nr ,A) cannot
be replaced by exactly(nr − 1,A).

Finally, when exactly(nr ,A) holds, it is always strongly compliant, since there
is no template stronger than exactly(nr ,A).

Assume that we have the following constraint in our model: absence(3, {Plan
final inspection, Adjust floor plan}), i.e., the amount of times we can plan a final
inspection or adjust a floor plan is at most 3. Applying the compliance patterns
to this constraint yields the following conditions that need to be valid on the
log:

∀t ∈W : t |= ¬existence(3, {Plan final inspection,Adjust floor plan})
∃t ∈W : t |= existence(2, {Plan final inspection, Adjust floor plan})
∃t ∈W : t |= absence(2, {Plan final inspection, Adjust floor plan})

4.2 Relation templates

Our compliance patterns for the relation templates are listed in Tables 3 and 4.
The conditions

∀a ∈ A ∃t ∈W : t |= ♦a, and

∀b ∈ B ∃t ∈W : t |= ♦b

must be always satisfied and we omit them in the tables. We also omit in the
tables the conditions that ensure that, for each constraint, no stronger constraint

9



Table 2. Compliance patterns for existence templates.

Template Pattern

existence(1, A) ∀t ∈W : t |= ♦(A)
∃t ∈W : t |= ¬existence(2,A)
∃t ∈W : t |= existence(2,A)

existence(nr , A) ∀t ∈W : t |= ♦(A ∧©(existence(nr − 1,A)))
∃t ∈W : t |= ¬existence(nr + 1,A)
∃t ∈W : t |= existence(nr + 1 ,A)

absence(nr , A) ∀t ∈W : t |= ¬existence(nr ,A)
∃t ∈W : t |= existence(nr − 1,A)
∃t ∈W : t |= absence(nr − 1,A)

exactly(nr , A) ∀t ∈W : t |= existence(nr ,A)∧
absence(nr + 1,A)
true

init(A) ∀t ∈W : t |= A
∀a ∈ A : ∃t ∈W : t |= a

must hold non-vacuously on the log: they can be directly derived from the hi-
erarchy in Figure 3. For each template, the first line of the pattern shows the
original LTL semantics that must hold on every trace of the log. The additional
conditions are obtained by applying (1) to the original semantics. Due to space
restrictions we will only elaborate on the deduction of some compliance patterns.

Table 3. Compliance patterns for relation templates without order.

Template Pattern

responded existence(A,B) ∀t ∈W : t |= ♦(A)⇒ ♦(B)
∀b ∈ B : ∃t ∈W : t |= ♦(A) ∧ ♦(b)

co-existence(A,B) ∀t ∈W : t |= reponded existence(A,B) ∧
reponded existence(B ,A)
∀b ∈ B : ∃t ∈W : t |= ♦(A) ∧ ♦(b)
∀a ∈ A : ∃t ∈W : t |= ♦(B) ∧ ♦(a)

Responded existence Applying (1) to responded existence(A,B), we replace a
b ∈ B by false in the LTL formula ♦(A) ⇒ ♦(B) (Note that b is in the scope
of an even number of negations). We obtain ¬(♦(A) ⇒ ♦(B[b ← false])). This
formula is equivalent to ♦(A) ∧ ¬♦(B[b← false]). Combining this formula with
the original formula yields

♦(A) ∧ ♦(b).

The condition of the compliance pattern of responded existence(A,B) is the com-
bination of the conditions we obtain by replacing each b ∈ B by false in the
original formula.

10



Table 4. Compliance patterns for relation templates with order.

Template Pattern

response(A,B) ∀t ∈W : t |= �(A ⇒ ♦(B))
∀b ∈ B : ∃t ∈W : t |= ♦(A ∧ ♦(b))

precedence(A,B) ∀t ∈W : t |= ¬BUA ∨�(¬B)
∀a ∈ A : ∃t ∈W : t |= (¬BUa) ∧ ♦(B)
∃t ∈W : t |= ¬init(A)

succession(A,B) ∀t ∈W : t |= response(A,B) ∧
precedence(A,B)
∀b ∈ B : ∃t ∈W : t |= ♦(A ∧ ♦(b))
∀a ∈ A : ∃t ∈W : t |= (¬BUa) ∧ ♦(B)
∃t ∈W : t |= ¬init(A)

alternate response(A,B) ∀t ∈W : t |= �(A ⇒ ♦(B))∧
�(A ⇒©(¬AUB))
∀b ∈ B : ∃t ∈W : t |= ♦(A ∧ ♦(b))
∀b ∈ B : ∃t ∈W : t |= ♦(A ∧©(¬AUb))

alternate precedence(A,B) ∀t ∈W : t |= (¬BUA ∨�(¬B))∧
�(B ⇒ ©(¬BUA ∨�(¬B)))
∀a ∈ A : ∃t ∈W : t |= (¬BUa) ∧ ♦(B)
∀a ∈ A : ∃t ∈W : t |= ♦(B ∧©(¬BUa))

alternate succession(A,B) ∀t ∈W : t |= alternate response(A,B) ∧
alternate precedence(A,B)
∀b ∈ B : ∃t ∈W : t |= ♦(A ∧ ♦(b))
∀b ∈ B : ∃t ∈W : t |= ♦(A ∧©(¬AUb))
∀a ∈ A : ∃t ∈W : t |= (¬BUa) ∧ ♦(B)
∀a ∈ A : ∃t ∈W : t |= ♦(B ∧©(¬BUa))

chain response(A,B) ∀t ∈W : t |= �(A ⇒©B)
∀b ∈ B : ∃t ∈W : t |= ♦(A ∧©(b))

chain precedence(A,B) ∀t ∈W : t |= �(©B ⇒ A)
∀a ∈ A : ∃t ∈W : t |= ♦(©(B) ∧ a)

chain succession(A,B) ∀t ∈W : t |= chain response(A,B) ∧
chain precedence(A,B)
∀b ∈ B : ∃t ∈W : t |= ♦(A ∧©(b))
∀a ∈ A : ∃t ∈W : t |= ♦(a ∧©(B))

11



Response When we replace a b ∈ B in the LTL formula of response(A,B) by
false, we obtain ¬�(A ⇒ ♦(B[b← false])). This is equivalent to ♦(A∧¬♦(B[b←
false])). Considering that the original formula must be true, we can conclude that
every a ∈ A is not followed by any b′ ∈ B \ {b} is equivalent to every a ∈ A is
followed by b. This implies that

♦(A ∧ ♦(b)).

When we replace every b ∈ B by false in the original formula, we have the
condition of the pattern for response(A,B).

If we apply, for example, this pattern to response({Agree on self made changes?},
{Plan final inspection, Adjust floor plan}), we obtain the following set of condi-
tions that need to hold in the log:
∀t ∈W : t |= �(Agree on self made changes?⇒

♦(Plan final inspection ∨ Adjust floor plan));
∃t ∈W : t |= ♦(Agree on self made changes? ∧ ♦(Plan final inspection));
∃t ∈W : t |= ♦(Agree on self made changes? ∧ ♦(Adjust floor plan)).
In addition, Agree on self made changes?, Plan final inspection and Adjust floor
plan must occur at least in one trace. Also, every constraint stronger than re-
sponse({Agree on self made changes?}, {Plan final inspection, Adjust floor plan})
must not hold non-vacuously in the log.

Precedence If we apply (1) to the LTL formula of precedence(A,B) and replace
a ∈ A by false, we obtain the condition ¬((¬BU(A[a← false]))∨�(¬B)) that is
equivalent to ¬(¬BU(A[a← false]))∧¬�(¬B)). Similarly to the response(A,B),
given that the original LTL formula holds, we have

(¬BUa) ∧ ♦(B).

When we replace every b ∈ B in the original formula by true, we obtain the
condition ¬(falseUA) ∨ �(false). This is equivalent to ¬A, which means that
there exists a trace where no a ∈ A occurs at the first position.

Applying this pattern to precedence({Register rental cancellation, Create rental
cancellation form}, {Agree on self made changes?}) yields the following set of con-
ditions that need to hold in the log:
∀t ∈W : t |= (¬Agree on self made changes?U(Register rental cancellation∨
Create rental cancellation form)) ∨�(¬Agree on self made changes?);
∃t ∈ W : t |= (¬Agree on self made changes?URegister rental cancellation) ∧
♦(Agree on self made changes?);
∃t ∈ W : t |= (¬Agree on self made changes?UCreate rental cancellation form) ∧
♦(Agree on self made changes?);
∃t ∈W : t |= ¬init(Register rental cancellation ∨ Create rental cancellation form).
Activities Register rental cancellation, Create rental cancellation form and Agree on
self made changes? must occur at least once in the log. In addition, in every trace
in the log, each constraint stronger than precedence({Register rental cancellation,
Create rental cancellation form}, {Agree on self made changes?}) must not hold
non-vacuously.

12



Alternate response Like in [3], we say that a conjunction is non-vacuously true
if the conjuncts are non-vacuously true. Therefore, considering that the LTL se-
mantics for alternate response(A,B) is response(A,B)∧�(A ⇒©(precedence(B ,
A))), we can use, as the first condition of the compliance pattern of alter-
nate response(A,B), the condition derived for response(A,B). We then need
to generate a condition to guarantee that the remaining part of the formula
is non-vacuously true. Replacing in �(A ⇒ ©(precedence(B ,A))) each b ∈ B
by false, we obtain ¬(�A ⇒ ©(¬AUB[b ← false])). This is equivalent to
♦(A ∧ ¬© (¬AUB[b ← false])). Combining this formula with the original for-
mula yields

♦(A ∧©(¬AUb)).

Chain response Applying (1) to chain response(A,B), we replace in �(A ⇒
©(B)) each b ∈ B by false. We have ¬�(A ⇒©(B[b← false])) that is equivalent
to ♦(A∧¬© (B[b← false])). Combining this formula with the original formula
yields the condition

♦(A ∧©(b)).

Take, for example, the constraint chain response({Plan final inspection}, {Execute
final inspection, Cancel final inspection}). Applying this compliance pattern, we
have:
∀t ∈W : t |= �(Plan final inspection⇒
©(Execute final inspection ∨ Cancel final inspection));

∃t ∈W : t |= ♦(Plan final inspection ∧©(Execute final inspection));
∃t ∈W : t |= ♦(Plan final inspection ∧©(Cancel final inspection)).
Moreover, Plan final inspection, Execute final inspection and Cancel final inspection
must occur at least in one trace and chain succession({Plan final inspection},
{Execute final inspection, Cancel final inspection}) must not hold non-vacuously
in the log.

5 Methodology

We present now a methodology for the application of the patterns from Section 4
in order to transforming an existing compliance model into a strongly compliant
one.

Algorithm 1 lists the steps needed to be executed to obtain a strongly compli-
ant model Moutput starting from a given compliant model Minput . A constraint
is strongly compliant if there are no stronger constraints that are non-vacuously
true. Therefore, we perform a top-down approach, i.e., we start with the strongest
constraints being candidates for strengthening according to the hierarchy defined
in Figure 3 and weaken them until we find a set of non-vacuously satisfied con-
straints. The first step of the algorithm replaces every constraint in Minput by the
strongest possible constraint with respect to the hierarchy as defined in Figure 3.
When strengthening a constraint, we immediately remove branches on activities

13



Algorithm 1: Transforming a compliant model to strongly compliant
Strengthen(Minput)
Input: Minput a model
Output: Moutput a strongly compliant model
(1) foreach Constraint c in Minput

(2) substitute c by the strongest constraint w.r.t. the hierar-
chy and add it to M ′input

(3) while M ′input is not empty
(4) Mtemp ← an empty model
(5) foreach constraint c in M ′input
(6) if c is precedence(A, B) and init(A) holds non-

vacuously then
(7) add init(A) to Moutput

(8) else
(9) if cp = precedence(A, B) ∈ C and init(A) holds

non-vacuously then
(10) add init(A) to Moutput

(11) add all c′ ∈ C \{cp} which hold non-vacuously
to Moutput and add the remaining constraints
in C \ {cp} to Mtemp

(12) else if each c′ ∈ C holds non-vacuously then
(13) add c to Moutput

(14) else if some c′ ∈ C hold non-vacuously then
(15) add all c′ ∈ C which hold non-vacuously to

Moutput and add the remaining constraints in
C to Mtemp

(16) else if no c′ ∈ C holds non-vacuously then
(17) substitute c by its weaker notion and add it

to Mtemp

(18) replace M ′input by Mtemp

(19) return Moutput

that do not occur in the log. If all the branches of a branched parameter have
been removed, we remove the constraint from the model.

The algorithm relies on the following notion of a composed constraint:

Definition 4. A composed constraint ϕ is a constraint that can be obtained by
the conjunction of some other constraints, which we call components of ϕ.

In Algorithm 1, we write C for the set of the components of constraint c (C =
{c} if c is not composed). For instance, for c = chain succession(A,B) we have
C = {chain response(A,B), chain precedence(A,B)}, for c = co-existence(A,B)
we have C ={responded existence(A,B), responded existence(B,A)}, and for ϕ =
alternate response(A,B), C = {alternate response(A,B)}.

For each constraint present in the model, we first check whether it is of the
type precedence(A,B) and init(A) holds non-vacuously. If so, we add the init(A)
to the output model. If the constraint is not of the type precedence(A,B) or

14



init(A) does not hold non-vacuously, we check whether (a) precedence(A,B) is
in C and init(A) holds non-vacuously, or (b) all constraints in C hold non-
vacuously, or (c) a subset of the constraints in C holds non-vacuously, or (d) all
constraints in C do not hold non-vacuously.

In the first case, we add the init and all non-vacuously satisfied constraints
from C to the output model. The remaining constraints of C are added to the
temporary model Mtemp to be processed in the next iteration. In the second case,
we add the constraint to the output model since in this case the constraint holds
non-vacuously. In the third case, we add the subset of non-vacuously satisfied
constraints in C to the output model and we add the remaining constraints in
C to the temporary model to be processed in the next iteration. Consider, for
instance, an alternate succession constraint where only the component alternate
response is non-vacuously satisfied. In this case, we add the alternate response
component to Moutput and we keep the alternate precedence for future iterations.
In the fourth case, we add the weaker constraint (following the hierarchy defined
in Figure 3) to the temporary model.

When we check whether a constraint holds non-vacuously, we also remove
vacuously satisfied branches. We also remove a constraint from the model if we
have to weaken it but a weaker constraint does not exist. For instance, for a
precedence constraint according to the hierarchy in Figure 3 a weaker constraint
does not exist.

6 Case study

We present now a case study provided by a Dutch apartment rental agency in the
form of a event log recording process executions of a process for the cancellation
of the rental contract by a tenant. After the tenant chooses to give notice, the
rental agency has to perform inspections to determine that the apartment is in
a proper state. Based on these inspections, further actions might be needed.

We start from an input compliance model defined by a domain expert (de-
picted in Figure 4). To increase readability, we have added identifiers to refer to
the different activities.

Given an input model and a log, the question we want to pose is: Does this
compliance model correctly reflect the behaviour of the process represented in the
log, assuming that the behaviour complies the model? Note that we only want to
facilitate the answering of this question for the domain expert. The final answer
is up to the user, who can decide in which parts the strongly compliant model
that our approach generates provides her with relevant information.

Starting from the model in Figure 4, we apply the methodology from Sec-
tion 5.

We first replace all constraints by the strongest constraints with respect to
the hierarchy introduced in Figure 3. In particular, we replace the precedence
constraint and all the response constraints by chain succession constraints. More-
over, we replace not succession by not co-existence. We also verify that each
activity occurs at least once in the log. The activity Create rental cancellation

15



Fig. 4. Input model

never occurs in the log, so we can remove the constraint response(7, 8) from the
model.

After that, for all constraints, we check which of them hold non-vacuously on
the log. To do this we use the LTL Checker plug-in of ProM1. The LTL Checker
allows us to verify the validity of an LTL formula on a log. We use it to verify
the validity of the conditions of a compliance pattern.

The not co-existence constraint holds on the log. This is enough to add this
constraint to our output model. Indeed, this constraint is always non-vacuously
true and there is no constraint stronger than not co-existence. The other con-
straints do not hold, so we replace them by the composed constraints alternate
succession. All alternate succession constraints added after the previous step do
not hold: both the alternate response component and the alternate precedence
component of each alternate succession constraint do not hold. Therefore we re-
place the alternate succession constraints by succession constraints.

The succession constraints are also composed constraints. If we first consider
succession(3, {4, 5, 6}), we need to have that response(3, {4, 5, 6}) and prece-
dence(3, {4, 5, 6}) must hold non-vacuously. On the log, response(3, {4, 5, 6})
holds non-vacuously if we remove the branch on activity 6, so we add response(3,
{4, 5}) to the output model. Moreover, precedence(3, {4, 5, 6}) does not hold, so
we add this constraint to the temporary model to verify it in the next iteration.
We also split succession({0, 1}, 3) into response({0, 1}, 3) and precedence({0,
1}, 3). We have that the init(0) holds non-vacuously, so we add init(0) to the
output model. Moreover, response({0, 1}, 3) does not hold and we add it to the
temporary model.

We have now two constraints we want to verify: precedence(3, {4, 5, 6}) and
response({0, 1}, 3). Both do not hold in our log. However, precedence(3, {4, 5,
6}) cannot be weakened any further and is removed from the model. On the
other hand, response({0, 1}, 3) is weakened to a responded existence({0, 1}, 3)
and verified. Also responded existence({0, 1}, 3) does not hold and is removed
from the model.

1 www.processmining.org

16



Fig. 5. Output model

Table 5. The compliance of the different conditions on the log.

Constraint Compliance pattern conditions Valid

precedence({0, 1}, 2) all events should be in the log 3

∀t ∈W : t |= ¬2U(0 ∨ 1) ∨�(¬2) 3

∃t ∈W : t |= ¬2U0 ∧ ♦(2) 3

∃t ∈W : t |= ¬2U1 ∧ ♦(2) 3

∃t ∈W : t |= ¬init({0, 1}) 7

a stronger constraint should not hold non-vacuously 3

not succession(2, 4) all events should be in the log 3

∀t ∈W : t |= �(2⇒ ¬♦(4)) 3

¬∀t ∈W : t |= ¬(♦2 ∧ ♦4) 7

response(3, {4, 5, 6}) all events should be in the log 3

∀t ∈W : t |= �(3⇒ ♦(4 ∨ 5 ∨ 6)) 3

∃t ∈W : t |= ♦(3 ∧ ♦(4)) 3

∃t ∈W : t |= ♦(3 ∧ ♦(5)) 3

∃t ∈W : t |= ♦(3 ∧ ♦(6)) 7

a stronger constraint should not hold non-vacuously 3

response(7, 8) all events should be in the log 7

∀t ∈W : t |= �(7⇒ ♦(8)) 3

∃t ∈W : t |= ♦(7 ∧ ♦(8)) 7

a stronger constraint should not hold non-vacuously 7

The strongly compliant model we obtain is depicted in Figure 5. Here, all
constraints hold non-vacuously.

All the constraints from the input model and their compliance patterns are
listed in Table 5. For each pattern we have indicated whether every single con-
dition is valid on the log or not. The table shows that for each constraint in
the original model a part of the pattern is not valid on the log. For this reason,
each constraint of the original model must be modified to obtain the strongly
compliant model depicted in Figure 5.

7 Conclusion

In this paper we describe patterns for strengthening constraints in compliance
models specified in Declare in order to show which part of the behaviour is ac-
tually covered by the process executions recorded in the event log of the system,

17



and which (parts of) constraints are vacuously satisfied. We have shown on the
case study that we do need to make use of the constraints hierarchy we defined
to achieve the best results.

For the future work we plan to introduce quantitative measurements for vacu-
ity, which are interesting in the context of large logs. In this case a strengthened
model can show in which way most of the process executions satisfy the compli-
ance model, and which part of the behaviour is rather exceptional for the system
in question.

References

1. van der Aalst, W.M.P., Pesic, M., Schonenberg, M.H.: Declarative workflows: Bal-
ancing between flexibility and support. Computer science – research and develop-
ment 23, 99–113 (2009)

2. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in
temporal model checking. Form. Methods Syst. Des. 18, 141–163 (2001)

3. Kupferman, O., Vardi, M.Y.: Vacuity Detection in Temporal Model Checking.
International Journal on Software Tools for Technology Transfer 4(2), 224–233
(2003)

4. Lichtenstein, O., Pnueli, A., Zuck, L.D.: The Glory of the Past. In: Proc. of Logic
of Programs. pp. 196–218. Springer (1985)

5. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitoring
Business Constraints with Linear Temporal Logic: An Approach Based on Colored
Automata. In: Proc. of BPM (2011)

6. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declar-
ative process models. In: 2011 IEEE Symposium on Computational Intelligence
and Data Mining (2011)

7. Montali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst, W.M.P.: Monitor-
ing Business Constraints with the Event Calculus. Tech. Rep. DEIS-LIA-002-11,
University of Bologna (Italy) (2011)

8. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business pro-
cesses management. In: Eder, J., Dustdar, S. (eds.) Business Process Management
Workshops, Lecture Notes in Computer Science, vol. 4103, pp. 169–180. Springer
(2006)

9. Pesic, M., Schonenberg, M.H., van der Aalst, W.M.P.: Declare: Full support for
loosely-structured processes. In: Proceedings of the 11th IEEE International En-
terprise Distributed Object Computing Conference, 2007, EDOC 2007 (2007)

10. Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-
based workflow models: Change made easy. In: Proc. of the 2007 OTM Confeder-
ated international conference On the move to meaningful internet systems: CoopIS,
DOA, ODBASE, GADA, and IS - Volume Part I. Lecture Notes in Computer Sci-
ence, vol. 4803. Springer (2007)

11. Pnueli, A.: The temporal logic of programs. Foundations of Computer Science,
Annual IEEE Symposium on 0, 46–57 (1977)

12. Purandare, M., Somenzi, F.: Vacuum cleaning CTL formulae. In: Proceedings of
the 14th International Conference on Computer Aided Verification. pp. 485–499.
Springer-Verlag (2002)

18


