
Creating Sound and Reversible Configurable Processes
Models using CoSeNets

D.M.M. Schunselaar?, H.M.W. Verbeek?, W.M.P. van der Aalst?, and H.A. Reijers?

Eindhoven University of Technology,
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

{d.m.m.schunselaar, h.m.w.verbeek, w.m.p.v.d.aalst,
h.a.reijers}@tue.nl

Abstract. All Dutch municipalities offer the same range of services, and the pro-
cesses delivering these services are quite similar. Therefore, these municipalities
can benefit from configurable process models. This requires the merging of ex-
isting process variants into configurable models. Unfortunately, existing merging
techniques (1) allow for configurable process models which can be instantiated
to unsound process models, and (2) are not always reversible, which means that
not all original models can be obtained by instantiation of the configurable pro-
cess model. In this paper, we propose to capture the control-flow of a process by
a CoSeNet: a configurable tree-like representation of the process model, which
is sound by construction, and we describe how to merge two CoSeNets into an-
other CoSeNet such that the merge is reversible. Initial experiments show that
this approach does not influence complexity significantly, i.e. it results in similar
complexities for the configurable process model compared to existing techniques,
while it guarantees soundness and reversibility.

1 Introduction

Within the CoSeLoG project, we have 10 municipalities offering essentially the same
set of services. The process models supporting these services are very similar, due to
legislation and standardisation, but are different, due to couleur locale and local de-
cision making. The goal of the project is to support the different process models via
configurable process models.

Configurable process models are process models with configuration options. The
user has the possibility to configure the configurable process model by making configu-
ration choices for options. These configurations are used to deduce the process models
from the configurable process model (instantiation), by taking the different choices for
the configuration options into account. Obtaining a configurable process model can be
done via the merger of process models. Merging a set of process models should be such
that the behaviour of a configurable process model is (an over-approximation of) the
union of allowed behaviour from the different process models.

We require that every instantiation of the configurable process model yields a sound
process model [1]. Furthermore, to support the different municipalities, we want that
? This research has been carried out as part of the Configurable Services for Local Governments

(CoSeLoG) project (http://www.win.tue.nl/coselog/).

the configurable process models are reversible [2], i.e. the models used for obtain-
ing the configurable model should be instantiations of the configurable model. Both
requirements should not impact the complexity of the resulting configurable process
model significantly, in comparison to the state-of-the-art. Applying existing techniques
to obtain configurable process models from the CoSeLoG process models resulted in
configurable process models which can be instantiated to unsound process models, and
some techniques are not reversible.

To counter the aforementioned problems with existing techniques, and adhering to
the set requirements, we propose to capture the process models in tree-like representa-
tions of block-structured process models, which are sound by construction (see [3] for
a comparison between block-structured and graph-structured process models). Since
there is a straightforward transformation from this tree-like representation to, for in-
stance, Petri nets, we can use the classical notion of soundness.

The configurable variant of these process models is captured in CoSeNets, a tree-
like representation of configurable process models. Instantiating a CoSeNet always
yields sound process models, furthermore, the merge of two CoSeNets is always re-
versible. In order to show that the complexity is not significantly impacted, an em-
pirical comparison is presented between our approach and existing techniques. This
empirical evaluation shows that the complexity is comparable to, or better than existing
techniques, using a subset of the processes used in [4].

This paper is structured as follows: Sect. 2 lists the relevant related work. In Sect. 3,
the CoSeNets are explained. We explain the merger of CoSeNets in Sect. 4. In Sect. 5,
we show a comparison between our approach and existing approaches. Finally, Sect. 6
contains the conclusions and future work.

2 Related Work

A number of configurable process modelling languages has been proposed. These mod-
elling languages can be subdivided into two categories, i.e. imperative and declar-
ative. Declarative languages constrain the allowed behaviour, i.e. everything is al-
lowed unless stated otherwise. An example of a configurable declarative process mod-
elling language is Configurable Declare [5]. Imperative languages are the opposite of
declarative languages, imperative languages specify the allowed behaviour, i.e. noth-
ing is allowed unless stated otherwise. C -SAP WebFlow , C -BPEL, C -YAWL [6],
and C -EPC [7] are examples of imperative configurable process modelling languages.
These configurable modelling languages do not always have to yield sound process
models when being instantiated [8,9].

A number of merging techniques have been defined in literature. Gottschalk [6]
elaborates on the merger of process models into a single configurable process model
(e.g. EPCs). All requirements are met, however, one has to perform a postprocessing
step to transform the process model into a sound process model.

Li et al. [10] present an approach for creating a new reference model based on
models mined from a log. These models represent the different variations of a reference
model. Li et al. only consider “AND” and “XOR” operators. Furthermore, they want
to minimise a distance measure between the reference model and the mined models,

2

Table 1: Comparing the different merging techniques, note that the soundness property
of Gottschalk [6] is after some postprocessing.
Approach Gottschalk [6] Li et al. [10] Mendling et

al. [11]
La Rosa et

al. [12]
Sun et al. [13]

Soundness X 7 7 7 7

Reversibility X 7 7 X 7

where distance is defined as the number of insertions, deletions, and moving activities
within the process model. By allowing the insertion of activities, the reference model
cannot be configured to obtain the input models, i.e. in our approach, it is not allowed
to insert activities.

In the paper by Mendling et al. [11], an approach is presented to merge the different
views on a process model. This approach does not yield configurable models, i.e. the
output is an EPC and not a C-EPC. Furthermore, soundness is not guaranteed by their
approach.

La Rosa et al. [12] present an approach for merging a set of EPCs into a single C-
EPC. Although this approach allows for the deduction of the input models, it does not
guarantee the deduction of sound process models.

Sun et al. [13] focus on merging block-structured process models. They, however,
provide a merge for disjoint process fragments, while in this paper we focus on the
merge of variants of the same process. Due to the merge of disjoint process fragments,
some activities are marked as redundant and removed from the resulting model, which is
undesirable as it does not allow for the deduction of the input models. Finally, their ap-
proach does not allow for configurations, i.e. the resulting model is a non-configurable
process model.

Table 1 lists the different merging approaches and their adherence to our require-
ments.

3 CoSeNet and metrics

Here, we introduce our new representations of process models and configurable pro-
cess models, i.e. process models and CoSeNets. Furthermore, the metrics used for the
experimental evaluation are elaborated on.

3.1 Process model

For our purposes, a process model is captured as a tree-like representation of a block-
structured process model. However, we allow for sharing subprocesses, i.e. some sub-
trees might have multiple incoming edges to support reuse. Therefore, we use Directed
Acyclic Graphs (DAGs) to represent process models.

Fig. 1 depicts a process model with its corresponding Petri net. The top node in the
process model denotes the root and is a sequence node (→). The sequence node has 5
children, i.e. three activity nodes (A and twice D) and two operator nodes: XOR (X)

3

A

B

C

D D

B

C

A

B C

D

Fig. 1: A process model with the corresponding Petri net

and AND (∧). Actually, the sequence operator has 5 VOID nodes as children, however,
they are merely used for separating multiple edges between two nodes and do not have
any semantics. A sequence executes its children in the order in which they occur, thus
A is the first and the second D is the last. The XOR operator node denotes an exclusive
choice between any of its children, and the AND operator node denotes the parallel
execution of its children. Apart from the sequence, AND, and XOR, we currently sup-
port the OR operator node, i.e. one can execute any number of children but at least
one and the deferred choice, i.e. the choice based on events instead of data. Further-
more, we support the loop construct. We support two types of loops, i.e. LOOPXOR and
LOOPDEF. The difference between both loops is the kind of choice to exit the loop or to
redo the loop, it is either a XOR or a DEF. The loop construct consists of three children,
a do child, a redo child, and an exit child. The do child is the root of the subgraph
representing the body of the loop. After having executed the do subgraph, there is a
choice (exclusive or deferred) to either execute the subgraph rooted at the redo child
and, afterwards, execute the do subgraph again, or to execute the subgraph rooted at the
exit child and exit the loop construct. For sake of brevity, we use LOOP as a shorthand
for both LOOPXOR and LOOPDEF.

A process model Ns = (A, NA, NO, NV , r, `A, `O, c) where:

– A is a set of activities,
– NA is the set of activity nodes,
– NO is the set of operator nodes,
– NV ⊆ NO is the set of void nodes,
– N = NA ∪ NO,
– NA and NO are mutually disjoint,
– r ∈ N is the root,
– `A ∈ NA → A maps activity nodes onto activities,
– `O ∈ NO → {XOR, OR, AND, DEF, SEQ, LOOPXOR, LOOPDEF, VOID} maps

operator nodes onto operator types,
– c ∈ (NO → N+

V) ∪ (NV → N+) gives the non-empty list of children for an
operator node.

– π : N × N∗ 9 N gives the element in a given list located at a given index (if it
exists),

– Rc = {(n, n′) ∈ (NO × NV) ∪ (NV × N) | n′ ∈ c(n)},
– (N,Rc) is a DAG with root r

4

Definition 1 (Proper process model). A process model (Ns = (A, NA, NO, NV , r, `A, `O, c))
is proper if and only if it adheres to the following properties:

1. Every loop nodes has exactly 3 children
2. Every deferred choice node only has sequence nodes (starting with an activity node)

or activity nodes as children
3. For the redo and exit subgraphs of a LOOPDEF the same constraints hold as for the

children of a deferred choice

Or more formally:

∀o ∈ NO : `O(o) = LOOP : |c(o)| = 3 (1)
∀o ∈ NO, n ∈ c(o) : `O(o) = DEF :

(n ∈ NO ∧ `O(n) = SEQ ∧ π(1, c(n)) ∈ NA) ∨ (n ∈ NA) (2)
∀o ∈ NO, i ∈ {2, 3} : `O(o) = LOOPDEF ∧ n = π(i, c(o)) :

(n ∈ NO ∧ `O(n) = SEQ ∧ π(1, c(n)) ∈ NA) ∨ (n ∈ NA) (3)

3.2 CoSeNet

A CoSeNet is an extension of the process model we discussed hitherto. Fig. 2 depicts
(a) the process model from Fig. 1 extended with some extra annotations and nodes, and
(b) a second CoSeNet which we want to merge with (a). The stop sign denotes that this
branch can be blocked , i.e. prevent the execution of this subgraph. Hiding a particular
branch, i.e. substituting the branch by a silent transition (τ), is denoted with the orange
arrow. Finally, we have added a placeholder node (dashed circle) to offer the user to
select a subgraph to replace this placeholder node. In this example, the user can select
to substitute the placeholder node by the activity node B, E or by the subgraph rooted
at the OR operator node. Fig. 1 can be obtained from (a) by not blocking the blockable
void node, not hiding the hideable void node, and replacing the placeholder node by
activity node B.

As mentioned before, a CoSeNet is an extension of a process model, in the sense
that it adds extra information, i.e. every process model is a valid CoSeNet. We define
a CoSeNet D = (A, NA, NO, NV , NP , r,NH , NB , `A, `O, c, R) as follows, note that
we omitted some parts of the process model from the explanation of the CoSeNet:

– NP is the set of placeholder nodes,
– N = NA ∪ NO ∪ NP ,
– NA, NO, and NP are mutually disjoint,
– r ∈ N is the root,
– NH ⊆ NV is the set of hideable nodes,
– NB ⊆ NV is the set of blockable nodes,
– R ⊆ NP × N defines the replacement options, (n, n′) ∈ R means that n can

be replaced by n′,
– R is a total relation,
– < ∈ N × N × N → B defines the order in the lists, n <o n

′ if and only if
o ∈ NO and c(o) =< ..., n, ..., n′, ... >,

5

A

B C

D

E

F G

A

B C

H

E

F J

I

(a) (b)

Fig. 2: Two CoSeNets we want to merge

– c∗(n) is the transitive closure of c for a node n ∈ NO (c∗ : NO → 2N), i.e.
c(n) ⊆ c∗(n) ∧ (∀n′ ∈ c∗(n) : n′ ∈ NO : c(n′) ⊆ c∗(n)),

– suc : NO → 2N (the successors of a node n) is defined as: suc(n) = c∗(n),
– pre : NO → 2N (the predecessors of a node n) is defined as: pre(n) = {n′ | n ∈

c∗(n′)},
– (N,Rc ∪ R) is a DAG with root r

Definition 2 (Proper CoSeNet). A CoSeNet (D = (A, NA, NO, NV , NP , r,NH , NB , `A, `O, c, R))
is proper if and only if it adheres to the following properties:

1. Every loop nodes has exactly 3 children
2. Every deferred choice node only has sequence nodes (starting with an activity node)

or activity nodes as children
3. For the redo and exit subgraphs of a LOOPDEF the same constraints hold as for the

children of a deferred choice

Or more formally:

∀o ∈ NO : `O(o) = LOOP : |c(o)| = 3 (1)
∀o ∈ NO, n ∈ c(o) : `O(o) = DEF :

(n ∈ NO ∧ `O(n) = SEQ ∧ π(1, c(n)) ∈ NA) ∨ (n ∈ NA) (2)
∀o ∈ NO, i ∈ {2, 3} : `O(o) = LOOPDEF ∧ n = π(i, c(o)) :

(n ∈ NO ∧ `O(n) = SEQ ∧ π(1, c(n)) ∈ NA) ∨ (n ∈ NA) (3)

3.3 Metrics

In order to compare our approach with existing approaches (specifically, La Rosa et
al. [12] and Gottschalk [6]) w.r.t. complexity, we use the complexity metrics used in [4].
We elaborate briefly on the used metrics. For a more complete discussion, we refer the
reader to [4,14,15,16].

6

ancestor

descendant

mapped
node

mapped
node

preceding
sibling

succeeding
sibling

A B A 6= B

x y x 6= y

(a) (b) (c)

Fig. 3: Restrictions on a proper CoSeMap.

Control-Flow Complexity (CFC) [15] computes for every operator a weight based
on the number of outgoing edges. The CFC for a process model is the summation of the
weights for the individual operators in that process model.

The density of a process model [14] is defined as the amount of edges in the model
divided by the total amount of edges possible in that model.

With the Cross-Connectivity (CC) metric [16], one first computes the weight of the
different nodes (connectors and tasks) in the process model (based on the amount of
outgoing edges). Afterwards, the weight of the edge between two nodes is deduced
from the weight of the nodes the edge is connected to. From this, the maximal weight
for the paths between two nodes u and v is computed, where a path is a sequence of
edges. Finally, the summation of heaviest paths between all pairs of nodes, is divided by
the total amount of edges possible in a directed graph with N nodes (i.e. N · (N − 1)).

4 Merge

When merging two CoSeNets into a single CoSeNet it is important to know which
nodes from the original CoSeNets may be merged into a single node. For this reason,
we introduce the concept of a node mapping between both original CoSeNets, called
a CoSeMap: Only if a node from one CoSeNet is mapped onto a node of the other
CoSeNet, then these nodes may be merged into a single node. For the sake of sim-
plicity, we assume a one-to-one correspondence between nodes, and a CoSeMap corre-
sponds to an injective function to and from the nodes in both CoSeNets (for the sake of
convenience, we assume a CoSeMap to be symmetrical).

As a CoSeNet corresponds to a DAG, the CoSeNet that results from a merge should
not contain any cycles. Cycles may appear in the resulting CoSeNet if an ancestor node
of a mapped node in one CoSeNet is mapped onto a descendant node of the node that
the mapped node is mapped onto in the other CoSeNet (see Fig. 3(a)). Second, for a
resulting sequence node a correct ordering of its children should be feasible, which is
impossible if any preceding sibling of a mapped child in one CoSeNet is mapped onto
a succeeding sibling of the node the mapped child is mapped onto in the other CoSeNet
(see Fig. 3(b)). It makes no sense to map a node from one type (activity, operator,
placeholder) to a node of another type, or to map an activity node to another activity
node with a different label (see Fig. 3(c)). Finally, we only allow the mapping of LOOP

7

nodes if and only if all nodes related to the LOOP nodes are mapped. I.e. the root of the
do subgraph, redo subgraph, and the root of the exit subgraph. For these reasons, we
require a CoSeMap to be proper:

1. No ancestor node is mapped onto a descendant node;
2. No preceding child is mapped onto a succeeding child for any sequence node;
3. All nodes are mapped onto nodes from the same type and with the same label, if

activity nodes;
4. Loop nodes are mapped onto each other if all children are mapped in order, i.e. no

preceding child is mapped onto a succeeding child.

Prior to formally defining a proper CoSeMap, we first introduce formally the CoSeMap.

Definition 3 (CoSeMap). Let D be the set of all possible CoSeNets, let NA be the set
of all activity nodes in D, let NO be the set of all operator nodes in D, and let NP be
the set of all placeholder nodes in D, then a CoSeMap is defined as: CoSeMap ⊆
(NA × NA) ∪ (NO ×NO) ∪ (NP × NP), s.t. the elements in the domain of
CoSeMap are from the same CoSeNet, the elements from the codomain are from the
same CoSeNet, the intersection of the domain and codomain is empty, and we have a
functional injection.

Definition 4 (Proper CoSeMap). Let M be the universe of CoSeMaps, D the uni-
verse of CoSeNets, then a proper CoSeMap (m ∈ M) between any D,D′ ∈ D
(D = (A, NA, NO, NV , NP , r,NH , NB , `A, `O, c, R) ,
D′ = (A′, N ′A, N ′O, N ′V , N ′P , r′, N ′H , N ′B , `′A, `′O, c′, R′)) is a CoSeMap which ad-
heres to the following properties:

(∀o ∈ NO, o
′ ∈ N ′O , n ∈ pre(o), n′ ∈ suc′(o′) : (o, o′) ∈ m : (n, n′) 6∈ m) (1)

(∀o ∈ NO, o
′ ∈ N ′O : (o, o′) ∈ m ∧ `O(o) = SEQ :

(∀n, n1 ∈ c(o) , n′, n′1 ∈ c′(o′) : n 6= n1 ∧ n′ 6= n′1 ∧
n <o n1 ∧ (n, n′) ∈ m ∧ (n1, n

′
1) ∈ m : n′ <′o′ n

′
1)) (2)

(∀o ∈ NO, o
′ ∈ N ′O : (o, o′) ∈ m : `O(o) = `′O(o′))∧

(∀a ∈ NA, a
′ ∈ N ′A : (a, a′) ∈ m : `A(a) = `′A(a

′)) (3)
(∀o ∈ NO, o

′ ∈ N ′O : (o, o′) ∈ m ∧ `O(o) = LOOP :

(π(1, c(o)), π′(1, c′(o′))) ∈ m ∧
(π(2, c(o)), π′(2, c′(o′))) ∈ m ∧
(π(3, c(o)), π′(3, c′(o′))) ∈ m) (4)

Given a proper CoSeMap between them, two CoSeNets can be merged in a straight-
forward way, called the CoSeMerge:

1. All nodes from the first CoSeNet are added to the resulting CoSeNet.
2. All unmapped nodes from the second CoSeNet are added to the resulting CoSeNet.
3. All edges from the first CoSeNet are added to the resulting CoSeNet.
4. All edges that involve some unmapped node from the second CoSeNet are added

to the resulting CoSeNet, but only after any mapped node is replaced by the node
it is mapped onto from the first CoSeNet.

8

5. Configuration options for VOID nodes from the second CoSeNet that involve only
mapped nodes are added (if needed) to a corresponding VOID node from the first
CoSeNet. Furthermore, some extra configuration options have to be added (see
further, for the exact details).

6. A new root node is added to the resulting graph, which is a placeholder node with
both root nodes as children. If both root nodes are mapped onto each other, the new
root node will only have an edge to the root of the first CoSeNet.

Please note that edges from a sequence/loop node to a child are added in such a way
that the order in which the children occur of both original sequence nodes are taken into
account. More formally, we can define the CoSeMerge as follows, given two CoSeNets
(D = (A, NA, NO, NV , NP , r,NH , NB , `A, `O, c, R) ,
D′ = (A′, N ′A, N ′O, N ′V , N ′P , r′, N ′H , N ′B , `′A, `′O, c′, R′)) and a CoSeMap (map), the
resulting CoSeNet (D′′ = (A′′, N ′′A, N ′′O, N ′′V , N ′′P , r′′, N ′′H , N ′′B , `′′A, `′′O, c′′, R′′)) is de-
fined as follows:

A′′ = A ∪ A′

N ′′A = NA ∪ {map−1(n′) | n′ ∈ N ′A}
N ′′O = NO ∪ {map−1(n′) | n′ ∈ N ′O}
N ′′V = NV ∪ {map−1(n′) | n′ ∈ N ′V }
N ′′P = NP ∪ {map−1(n′) | n′ ∈ N ′P } ∪ {p}
r′′ = p

N ′′H = NH ∪ {map−1(n′) | n′ ∈ N ′H} ∪
{n | ∃o ∈ N : (o, o′) ∈ map ∧ `O(o) ∈ {SEQ, LOOP} ∧ n ∈ c(o) : map1(n) 6∈ c′(o′)} ∪
{map−1(n′) | ∃o′ ∈ N ′ : (o, o′) ∈ map ∧ `O(o) ∈ {SEQ, LOOP} ∧ n′ ∈ c′(o′) : map−1(n′) 6∈ c(o)}

N ′′B = NB ∪ {map−1(n′) | n′ ∈ N ′B} ∪
{n | ∃o ∈ N : (o, o′) ∈ map ∧ `O(o) 6∈ {SEQ, LOOP} ∧ n ∈ c(o) : map1(n) 6∈ c′(o′)} ∪
{map−1(n′) | ∃o′ ∈ N ′ : (o, o′) ∈ map ∧ `O(o) 6∈ {SEQ, LOOP} ∧ n′ ∈ c′(o′) : map−1(n′) 6∈ c(o)}

`′′A = `A ∪ {(n′, `′A(n′)) | n′ ∈ N ′A ∧ map−1(n′) = n′}
`′′O = `O ∪ {(n′, `′O(n′)) | n′ ∈ N ′O ∧ map−1(n′) = n′}
c′′ = {(n, c(n)) | map1(n) = n} ∪
{(n′,mergeLists([], c′(n′),map)) | map−1(n′) = n′} ∪
{(n,mergeLists

(
c(n), c′

(
map1(n)

)
,map

)
) | map1(n) 6= n ∧ `O(n) 6∈ {SEQ, LOOP}} ∪

{(n,mergeListsseq
(
c(n), c′

(
map1(n)

)
,map

)
) | map1(n) 6= n ∧ `O(n) ∈ {SEQ, LOOP}}

R′′ = R ∪ {(map−1(n′),map−1(n′′)) | (n′, n′′) ∈ R′} ∪ {(p, r), (p,map−1(r′))}

Where we use the following helper functions. map−1 and map1 are used to get the
mapped node, if it exists, in the other model.

9

Definition 5 (map−1). Let NN be the universe of nodes, then map−1 : NN → NN is
defined as follows:

map−1(n′) = n if ∃n : (n, n′) ∈ map

= n′ if ¬∃n : (n, n′) ∈ map

Definition 6 (map1). Let NN be the universe of nodes, then map1 : NN → NN is
defined as follows:

map1(n) = n′ if ∃n′ : (n, n′) ∈ map

= n if ¬∃n′ : (n, n′) ∈ map

Set is needed to transform a list into a set.

Definition 7 (Set). LetNN be the universe of nodes, then Set : N ∗N → 2NN is defined
as follows:

Set([]) = {}
Set(n ++ as) = {n} ∪ Set(as)

mergeLists is used to merge two lists into a single list given a CoSeMap. mergeListsset
has to be used because a node might be mapped to a node in the other list but it might
also be mapped onto a different node (not in the other list). If a node is mapped onto
a node in the other list, it is not added, else it is added. The CoSeMap itself does not
contain enough information to deduce this, hence we need to build a set containing the
nodes in the first list.

Definition 8 (mergeLists). Let NN be the universe of nodes, letM be the universe of
CoSeMaps, then mergeLists : N ∗N ×N ∗N ×M→ N ∗N is defined as follows:

mergeLists(as, as′,map) = mergeListsset(as, as
′,map,Set(as))

mergeListsset merges two lists into a single list but it does not consider the order,
hence we cannot use it for the sequence nodes. When the first list has been processed
completely, we process the second list. The elements of the second list are added if and
only if they are not mapped onto a node in the other list (we use the set for this).

Definition 9 (mergeListsset). Let NN be the universe of nodes, letM be the universe
of CoSeMaps, then mergeListsset : N ∗N × N ∗N × M × 2NN → N ∗N is defined as
follows:

mergeListsset([], [],map, S) = []

mergeListsset(n ++ as, as′,map, S) = n ++ mergeListsset(as, as
′,map, S)

mergeListsset([], n
′ ++ as′,map, S) = map−1(n′) ++ mergeListsset([], as

′,map, S) if map−1(n′) 6∈ S

= mergeListsset([], as
′,map, S) if map−1(n′) ∈ S

10

To merge two lists of children for a sequence/loop node, we cannot simply con-
catenate the first list with the second list. Therefore, we need a seperate function, and
similar to the mergeLists a list containing the elements present in the second list is
added. This list is used in mergeListsseq′ .

Definition 10 (mergeListsseq). LetNN be the universe of nodes, letM be the universe
of CoSeMaps, then mergeListsseq : N ∗N ×N ∗N ×M→ N ∗N is defined as follows:

mergeListsseq(as, as
′,map) = mergeListsseq′(as, as′,map,Set(as′))

mergeListsseq′ iterates through both lists simultaneous. If the head elements of both
lists are mapped onto each other, then we add the head elements of the first list and we
progress in both lists. We only progress in the first list if the head element of that list is
not mapped on any node in the second list. Finally, if a node from the first list is mapped
onto a node from the second list, but it is not the head element of the second list, we
progress in the second list (until we encounter the element to which the head element
of the first list is mapped to). This way of merging both lists requires the constraint on
the CoSeMap that two sequence/loop nodes can be mapped onto each other if and only
if their children are mapped in the right order.

Definition 11 (mergeListsseq′). Let NN be the universe of nodes, let M be the uni-
verse of CoSeMaps, then mergeListsseq′ : N ∗N × N ∗N ×M× 2NN → N ∗N is defined
as follows:

mergeListsseq′([], [],map, Sas′) = []

mergeListsseq′(as, [],map, Sas′) = as

mergeListsseq′([], n′ ++ as′,map, Sas′) = map−1(n′) ++ mergeListsseq′([], as′,map, Sas′)

mergeListsseq′(n ++ as, n′ ++ as′,map, Sas′) = n ++ mergeListsseq′(as, as′,map, Sas′) if (n, n′) ∈ map

= n ++ mergeListsseq′(as, n′ ++ as′,map, Sas′) if map1(n) 6∈ Sas ′

= map−1(n′) ++ mergeListsseq′(n ++ as, as′,map, Sas′) otherwise

Applying our CoSeMerge on two CoSeNets (N1 and N2), it is easy to see that N1

can be instantiated from the resulting CoSeNet, as all nodes and edges from N1 are
present in the resulting CoSeNet: After having removed all other nodes and edges, and
after having removed the new root placeholder node and configuration options that were
only present in N2, the resulting graph is identical to N1. For N2 this is a bit harder, as
some nodes and arcs from this net are not present in the resulting CoSeNet. However, it
is clear that only those nodes and edges are left out for which an alternative exists inN1.
Thus, after having removed all other nodes and arcs, and the new root placeholder node
and configuration options only present in N1, the CoSeNet is identical to N2. Hence,
both N1 and N2 can be instantiated from the resulting CoSeNet, which means that the
merge is reversible.

In the remainder of this paper, we will describe two different ways to construct
a proper CoSeMap. The first way yields a CoSeMap that only maps activity nodes,

11

A

B C

D

E

F G

H

J

I

Fig. 4: Merging the models from Fig. 2 using an activity CoSeMap

A

B C

D

E

F G

A

B C

H

E

F J

I

Fig. 5: An extended CoSeMap (horizontal dashed lines) for merging the CoSeNets from
Fig. 2

which is called an activity CoSeMap. The second way takes an activity CoSeMap as
starting point, and extends this map by mapping activity nodes and placeholder nodes
bottom-up as long as any child nodes are mapped onto each other. The resulting map
is called an extended CoSeMap. An activity CoSeMap maps only activity nodes; it
is computed by taking all pairs of activity nodes with the same label. Note that we
assume that a CoSeNet does not contain two activity nodes with the same label. If a
CoSeNet contains two activity nodes with the same label, we can combine these into
a single activity node. Fig. 4 shows the resulting CoSeNet after having merged both
CoSeNets from Fig. 2 using an activity CoSeMap. An extended CoSeMap takes an
activity CoSeMap as a starting point, but extends this CoSeMap with operator nodes
and placeholder nodes (if possible) in such a way that the number of mapped nodes is
maximised. The basic strategy for constructing the extended CoSeMap is to map one
node onto another node (of the same type) if some child of the first node is mapped onto

12

E

F JG

B C

A D H I

Fig. 6: Merging the models from Fig. 5 using the extended CoSeMap from Fig. 5

some child of the second node. As a result, the construction of this CoSeMap works in
a bottom-up way, as initially we only have activity nodes that are mapped onto each
other, which reside at the bottom of a CoSeNet. Note that it is possible that we have to
choose between alternative ways to extend a current partial extended CoSeMap. Hence,
given an activity map there could be multiple extended CoSeMaps. If this is the case, we
arbitrarily choose one of the alternatives. Fig. 5 shows a possible extended CoSeMap
for merging both CoSeNets from Fig. 2 and Fig. 6 shows the result after having merged
these CoSeNets using this CoSeMap.

5 Experimental evaluation

In the previous sections, we have shown that CoSeNets can only be instantiated to
sound process models. Furthermore, the merge ensures that the merged CoSeNet is
reversible. In this section, we want to show that these attractive properties of soundness
and reversibility do not incur a penalty on the complexity of the configurable process
model.

The implementation of the construction of an activity CoSeMap, the construction
of an extended CoSeMap, and the merge have been implemented as ProM 6 plug-ins1.
The construction of an activity CoSeMap is a straightforward implementation of string
comparison on the activity labels. The construction of an extended CoSeMap is com-
puted via linear programming. Linear programming is used since we have an maximi-
sation problem, i.e. we want that our extended CoSeMap is maximal. If our extended
CoSeMap is maximal, it allows us to share as much subgraphs as possible which re-
duces the duplication of subgraphs, thus the complexity of the configurable process

1 http://www.promtools.org/prom6/

13

Table 2: Combined: The complexities of the different models using different merging
techniques
Municipality GBA 1 GBA 2 GBA 3 MOR WOZ

MunA 5 21 11 42 12
MunB 3 29 11 23 8
MunC 2 38 28 29 14
MunD 3 35 18 24 11
MunE 6 25 26 25 25
MunF 3 21 9 44 15
MunG 5 21 9 20 15
MunH 5 29 11 18 11
MunI 3 41 9 28 11
MunJ 3 29 8 25 26

Activity CoSeMap 56 435 209 397 223
Extended CoSeMap 39.8 (±4.3) 126.3 (±10.6) 172.9 (±23.2) 262.4 (±18.9) 134.1 (±13.6)
La Rosa et al. 146.6 (±12.9) 781.3 (±42.7) 412.7 (±16.5) 937.8 (±34.3) 707.1 (±34.9)
Gottschalk 80 317 210 - 335

model. After the merge, the CoSeNet is converted into a YAWL [17] model, which can
be analysed in a fixed version of ProM 5.22. Noteworthy facts of this conversion are
that it treats a placeholder node as an XOR operator node, that it will reuse the YAWL
fragment that corresponds to an operator node if possible, but that it will not reuse the
YAWL fragment that corresponds to an activity node.

We compare our approach to the approaches from Gottschalk [6] and La Rosa et
al. [12]. As the process models used in [4] were not well-structured, we could not use
these process models directly and had to modify them for our analysis.

Table 2 lists the values for the various complexity measures for the individual pro-
cess models as well as for the merged process model. In case an approach yields a
non-deterministic result, the average µ and standard deviation σ of 10 results are listed
as “µ(±σ)”. “Activity CoSeMap” and “Extended CoSeMap” respectively represent
the merger with an activity CoSeMap and with an extended CoSeMap. The Syner-
gia toolset3, implements the merge by La Rosa et al. [12]. Finally, “Gottschalk” is the
implementation of the EPC-merge by Gottschalk in ProM 5.24 [6].

From Table 2, one can see that the complexities of the different approaches vary sig-
nificant, i.e. ranging from roughly a factor 2 (GBA 1) up to roughly a factor 6 (GBA 2).
Complexity metrics allow us to compare processes in an objective manner. In general,
a higher complexity for an approach means a worse approach than an approach which

2 http://win.tue.nl/coselog/files/ProM-CoSeLoG-20110802.zip, which corresponds to ProM 5.2
with some bugs in the algorithms to compute the various metrics have been fixed.

3 http://www.processconfiguration.com/
4 http://promtools.org/prom5/

14

yields models with a lower complexity (Occam’s Razor). See [14], for an extensive
evaluation of the different metrics. The complete set of results is listed in Appendix A.

Placing the 10 models next to each other (which corresponds to the “Activity CoSeMap”
approach, as our conversion to YAWL will not reuse YAWL fragments that correspond
to activity nodes, as mentioned earlier) can be seen as a base case. We do not want
that the complexity of the configurable process model is significantly greater than the
sum of the complexities of the individual models. If this is the case, e.g. La Rosa et
al. [12], then (1) their approach might optimise for different quality dimensions, (2)
their approach is more tailored towards more complex process models, i.e. the over-
head incurred for merging two activities might be s.t. it becomes the dominant factor in
the complexity analysis, or (3) a different reason can explain this result which requires
further research. As an example of the latter, we have noted that it is a bad idea to reuse
YAWL fragments that correspond to activity nodes, as this would introduce lots of rout-
ing tasks, which in turn would result in bad complexity metrics. Apparently, duplicating
such small fragments introduces less complexity than sharing a single fragment. For the
example at hand in combination with the extended CoSeMap approach, this would re-
sult in a unified complexity of about 130 for GBA 1. Possibly, this also explains the
relatively high complexity of the La Rosa et al. approach, as this approach sometimes
reuses even very small fragments.

The approach of Gottschalk [6] is in some cases comparable (w.r.t. complexity) to
our approach (e.g. GBA 3), but yields in some cases significantly worse complexities
(e.g. GBA 2) or is not computable (e.g. MOR). In general, Gottschalk performs similar
to the Activity CoSeMap.

All in all, it can be concluded that, at least with this set of models, we achieve
a comparable (or even lower) complexity w.r.t. existing techniques. Hence, it seems
possible to obtain sound and reversible process models without paying a too expensive
price for this, as actually there might not be a price to pay at all.

6 Conclusion

Existing techniques allow for the instantiation of unsound process model from a con-
figurable process model. Furthermore, some techniques are not reversible. Our solu-
tion successfully addresses both problems. Soundness is addressed by considering tree-
like representations of process models and CoSeNets. Our defined merge takes care of
the reversibility property. When merging CoSeNets into a single CoSeNet, the original
CoSeNets are instantiations of the resulting CoSeNet.

Apart from defining our solution theoretically, we also applied our solution on the
process models from the CoSeLoG project. This shows that the complexity of our ap-
proach is similar to/lower than the approach by Gottschalk and La Rosa et al. Thus, the
guarantee of soundness and reversibility does not incur a penalty on the complexity of
the configurable process models.

However, there is still room for improvement. This paper is, therefore, to be con-
sidered as a starting point. There are numerous ways in which we want to continue the
development of this new approach. Below we elaborate on some of them.

15

Future work This research has been started to support the processes of the munici-
palities. Therefore, we intend to extend our CoSeMerge and CoSeMaps, e.g. different
process models have different granularity (see the work of Weidlich et al. [18]). Fur-
thermore, as noted in the experimental evaluation, some quality dimensions have not
(yet) been addressed. We intend to define these quality dimensions on our CoSeNets.

We want to extend CoSeNets with resources and data, in order to fully support the
processes of the municipalities.

References

1. van der Aalst, W.M.P.: Verification of Workflow Nets. In: Proceedings of the 18th Interna-
tional Conference on Application and Theory of Petri Nets, Springer (1997) 407–426

2. La Rosa, M., Dumas, M., Uba, R., Dijkman, R.M.: Business Process Model Merging: An
Approach to Business Process Consolidation. Technical Report 38241, Queensland Univer-
sity of Technology, Brisbane, Australia (2009)

3. Kopp, O., Martin, D., Wutke, D., Leymann, F.: The Difference Between Graph-Based and
Block-Structured Business Process Modelling Languages. Enterprise Modelling and Infor-
mation Systems 4(1) (2009) 3–13

4. Vogelaar, J.J.C.L., Verbeek, H.M.W., Luka, B., van der Aalst, W.M.P.: Comparing Business
Processes to Determine the Feasibility of Configurable Models: A Case Study. In: BPM
2011 Workshops, Part II. Volume 100 of LNBIP., Springer (2012) 50–61

5. Schunselaar, D.M.M.: Configurable Declare. Master’s thesis, Eindhoven University of Tech-
nology, The Netherlands (2011)

6. Gottschalk, F.: Configurable Process Models. PhD thesis, Eindhoven University of Technol-
ogy, The Netherlands (2009)

7. Rosemann, M., van der Aalst, W.M.P.: A Configurable Reference Modelling Language.
Information Systems 32(1) (2007) 1–23

8. van der Aalst, W.M.P., Lohmann, N., La Rosa, M.: Ensuring Correctness During Process
Configuration Via Partner Synthesis. To Appear (2012)

9. van der Aalst, W.M.P., Lohmann, N., La Rosa, M., Xu, J.: Correctness Ensuring Process
Configuration: An Approach Based on Partner Synthesis. In: Business Process Management.
Volume 6336 of Lecture Notes in Computer Science. Springer (2010) 95–111

10. Li, C., Reichert, M., Wombacher, A.: Discovering Reference Models by Mining Process
Variants Using a Heuristic Approach. In: Business Process Management. Volume 5701 of
Lecture Notes in Computer Science. Springer (2009) 344–362

11. Mendling, J., Simon, C.: Business Process Design by View Integration. In: Business Process
Management Workshops. Volume 4103 of Lecture Notes in Computer Science., Springer
(2006) 55–64

12. La Rosa, M., Dumas, M., Uba, R., Dijkman, R.M.: Merging Business Process Models. In:
On the Move to Meaningful Internet Systems: OTM 2010. Volume 6426 of Lecture Notes in
Computer Science. Springer (2010) 96–113

13. Sun, S., Kumar, A., Yen, J.: Merging Workflows: A New Perspective on Connecting Business
Processes. Decision Support Systems 42(2) (2006) 844–858

14. Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification, Error
Prediction, and Guidelines for Correctness. Springer (2008)

15. Cardoso, J.: Control-flow Complexity Measurement of Processes and Weyuker’s Proper-
ties. In: 6th International Enformatika Conference, Transactions on Enformatika, Systems
Sciences and Engineering. Volume 8. (2005) 213–218

16

16. Vanderfeesten, I.T.P., Reijers, H.A., Mendling, J., van der Aalst, W.M.P., Cardoso, J.: On a
Quest for Good Process Models: The Cross-Connectivity Metric. In: CAiSE. Volume 5074
of Lecture Notes in Computer Science., Springer (2008) 480–494

17. ter Hofstede, A.H.M., van der Aalst, W.M.P., Adams, M., Russell, N., eds.: Modern Business
Process Automation: YAWL and its Support Environment. Springer (2010)

18. Weidlich, M., Dijkman, R.M., Mendling, J.: The ICoP Framework: Identification of Corre-
spondences between Process Models. In: CAiSE. Volume 6051 of Lecture Notes in Com-
puter Science., Springer (2010) 483–498

A Results

Table 3: GBA 1: The complexities of the different models using different merging tech-
niques
Municipality CFC Density CC Unified

MunA 4 0.417 0.085 5
MunB 3 0.500 0.223 3
MunC 2 1.000 0.193 2
MunD 3 0.417 0.197 3
MunE 5 0.267 0.101 6
MunF 3 0.417 0.206 3
MunG 5 0.300 0.118 5
MunH 4 0.417 0.085 5
MunI 3 0.417 0.206 3
MunJ 3 0.417 0.151 3

Activity CoSeMap 45 0.040 0.015 56
Extended CoSeMap 34.3 (±4.1) 0.038 (±0.004) 0.054 (±0.007) 39.8 (±4.3)
La Rosa et al. 142.1 (±17.3) 0.026 (±0.001) 0.006 (±0.000) 146.6 (±12.9)
Gottschalk 70 0.039 0.009 80

17

Table 4: GBA 2: The complexities of the different models using different merging tech-
niques
Municipality CFC Density CC Unified

MunA 15 0.096 0.028 21
MunB 19 0.076 0.021 29
MunC 25 0.054 0.018 38
MunD 24 0.058 0.021 35
MunE 17 0.085 0.024 25
MunF 15 0.096 0.029 21
MunG 15 0.096 0.028 21
MunH 19 0.076 0.021 29
MunI 28 0.048 0.019 41
MunJ 19 0.076 0.021 29

Activity CoSeMap 206 0.007 0.002 435
Extended CoSeMap 88.2 (±0.001) 0.017 (±0.001) 0.010 (±0.001) 126.3 (±10.6)
La Rosa et al. 676.2 (±160.4) 0.006 (±0.000) 0.001 (±0.000) 781.3 (±42.7)
Gottschalk 230 0.012 0.003 317

Table 5: GBA 3: The complexities of the different models using different merging tech-
niques
Municipality CFC Density CC Unified

MunA 9 0.136 0.071 11
MunB 10 0.156 0.056 11
MunC 22 0.062 0.033 28
MunD 16 0.082 0.055 18
MunE 20 0.058 0.039 26
MunF 8 0.156 0.087 9
MunG 8 0.167 0.088 9
MunH 9 0.156 0.054 11
MunI 8 0.167 0.088 9
MunJ 8 0.167 0.097 8

Activity CoSeMap 128 0.011 0.006 209
Extended CoSeMap 127.7 (±15) 0.012 (±0.001) 0.011 (±0.002) 172.9 (±23.2)
La Rosa et al. 290.3 (±32.5) 0.008 (±0.000) 0.003 (±0.000) 412.7 (±16.5)
Gottschalk 177 0.018 0.004 210

18

Table 6: MOR: The complexities of the different models using different merging tech-
niques, note that the approach by Gottschalk did not compute
Municipality CFC Density CC Unified

MunA 37 0.050 0.020 42
MunB 16 0.126 0.021 23
MunC 17 0.100 0.017 29
MunD 20 0.076 0.034 24
MunE 15 0.115 0.019 25
MunF 33 0.050 0.017 44
MunG 13 0.136 0.023 20
MunH 15 0.104 0.037 18
MunI 21 0.084 0.022 28
MunJ 15 0.115 0.019 25

Activity CoSeMap 212 0.008 0.002 397
Extended CoSeMap 187.1 (±10.5) 0.009 (±0.001) 0.006 (±0.000) 262.4 (±18.9)
La Rosa et al. 509.2 (±12.7) 0.005 (±0.000) 0.001 (±0.000) 937.8 (±34.3)
Gottschalk - - - -

Table 7: WOZ: The complexities of the different models using different merging tech-
niques
Municipality CFC Density CC Unified

MunA 10 0.136 0.062 12
MunB 7 0.196 0.089 8
MunC 11 0.096 0.071 14
MunD 10 0.136 0.068 11
MunE 20 0.071 0.031 25
MunF 12 0.115 0.042 15
MunG 12 0.115 0.043 15
MunH 10 0.136 0.076 11
MunI 10 0.136 0.076 11
MunJ 21 0.067 0.031 26

Activity CoSeMap 133 0.011 0.005 223
Extended CoSeMap 97.4 (±10.4) 0.015 (±0.001) 0.012 (±0.001) 134.1 (±13.6)
La Rosa et al. 472.1 (±40.3) 0.006 (±0.000) 0.001 (±0.000) 707.1 (±34.9)
Gottschalk 250 0,013 0,002 335

19

a

p

αp
a = ωp

a

Y p
a = Ya

αp
a = ωp

a

Y p
a (Ya does not exist)

a

p

`A(a)

`A(a)

Activity, single parent

Activity, multiple parents

Fig. 7: Semantic conversion of an activity node to a YAWL fragment.

B Conversion to Yawl

B.1 Introduction

This appendix presents the conversion from a CoSeNet to a YAWL model used through-
out this paper. First, it presents a conversion that nicely captures the CoSeNet semantics,
called the semantic conversion. Second, it argues that this semantic conversion cannot
be used to compute the values for the complexity metrics, as these values are just too
high. Third, it presents a conversion that better fits the complexity metrics, but which
has some semantic deficiencies, called the metrics conversion. This metrics conversion
is used throughout this paper, as the goal of this paper is to compare complexity metric
values, and not the semantics.

B.2 Semantic conversion

Figures 7 to 16 show the semantic conversion of a CoSeNet to a YAWL fragment.
A YAWL fragment corresponds to a coherent fragment containing YAWL tasks and
YAWL conditions in such a way that it starts with a YAWL task (called the α-task) and
ends with a YAWL task (called the ω-task). In the end, an input condition and an output
condition are added to the fragment that corresponds to the root node of the CoSeNet,
which gives us the root YAWL net.

Note that a shared CoSeNet node (nodes with multiple parent, that is, nodes with
multiple incoming arcs) are converted into a separate YAWL subnet, and that every
call on this shared node is converted into a YAWL composite task that decomposes to
this subnet. As a result, different invocations of one shared node correspond to different
instantiations of the corresponding subnet, which will be nicely separated by the YAWL
engine (that is, different invocations of the same subnet will not get mixed).

Figure 17 shows (the root net of) the result of this conversion when applied to the
CoSeNet as shown by Figure 6. Note that the shared VOID nodes are converted into
subnets and composite tasks.

B.3 Discussion

To compute the complexity metric values for a YAWL model, the model first needs to
be converted into an EPC (Event-driven Process Chain). Unfortunately, the subnets as

20

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

and

Y n
c1

Y n
c2

Y n
cN

Yn

· · ·

p

αp
n = ωp

n, decomposes to Yn

Y n
c1

Y n
c2

Y n
cN

Y p
n = Yn

· · ·

αp
n ωp

n

Y p
n

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

and

p

and operator, single parent

and operator, multiple parents

Fig. 8: Semantic conversion of an AND-operator node to a YAWL fragment.

Model Merge 1 Merge 2 Merge 3 Merge 4 Merge 5 Merge 6 Merge 7 Merge 8 Merge 9 Merge 10

GBA1 56 53 46 43 61 62 50 56 72 70
GBA2 2853∗ 2897∗ 4633∗ 1760 1227 2055∗ 2540∗ 3224∗ 2162∗ 1859∗

GBA3 3275∗ 6158∗ 3143∗ 12197∗ 2729∗ 3899∗ 10503∗ 19151∗ 36827∗ 5135∗

MOR 21234∗ 24920∗ 26583∗ 13259∗ 21189∗ 20425∗ 19078∗ 44540∗ 16120∗ 15402∗

WOZ 574 462 598 496 537 552 390 1855∗ 587 502

Table 8: Obtained complexity metric values when using the semantic conversion, where
values with an asterisk are based on the CFC and Density only, as the CC could not be
computed.

21

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

def

Y n
c1

Y n
c2

Y n
cN

Yn

· · ·

p

αp
n = ωp

n, decomposes to Yn

Y n
c1

Y n
c2

Y n
cN

Y p
n = Yn

· · ·

αp
n ωp

n

Y p
n

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

def

p

def operator, single parent

def operator, multiple parents

Fig. 9: Semantic conversion of a DEF node to a YAWL fragment.

22

n

c1 c2 c3

Dc1 Dc2 Dc3

loopdef

Y n
c1

Y n
c2

Y n
c3

Yn

p

αp
n = ωp

n, decomposes to Yn

Y n
c1

Y n
c2

Y n
c3

Y p
n = Yn

Y p
n

n

c1 c2 c3

Dc1 Dc2 Dc3

loopdef

p

loopdef operator, single parent

loopdef operator, multiple parents

αp
n = αn

c1

ωp
n = ωn

c3

Fig. 10: Semantic conversion of a LOOPDEF fragment to a YAWL fragment.

23

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

loopxor

Yn

p

αp
n = ωp

n, decomposes to Yn

Y p
n = Yn

Y p
n

n

c1 c2 c3

Dc1 Dc2 Dc3

loopxor

p

loopxor operator, single parent

loopxor operator, multiple parents

Y n
c1

Y n
c2

Y n
c3

αp
n = αn

c1

ωp
n = ωn

c3

Y n
c1

Y n
c2

Y n
c3

Fig. 11: Semantic conversion of a LOOPXOR fragment to a YAWL Fragment.

24

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

or

Y n
c1

Y n
c2

Y n
cN

Yn

· · ·

p

αp
n = ωp

n, decomposes to Yn

Y n
c1

Y n
c2

Y n
cN

Y p
n = Yn

· · ·

αp
n ωp

n

Y p
n

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

or

p

or operator, single parent

or operator, multiple parents

Fig. 12: Semantic conversion of an OR node to a node to a YAWL fragment.

25

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

Y n
c1

Y n
c2

Y n
cN

Yn

· · ·

p

αp
n = ωp

n, decomposes to Yn

Y n
c1

Y n
c2

Y n
cN

Y p
n = Yn

· · ·

αp
n ωp

n

Y p
n

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

p

placeholder, single parent

placeholder, multiple parents

Fig. 13: Semantic conversion of a placeholder node to a YAWL Fragment.

26

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

seq

Y n
c1

Y n
c2

Y n
cN

Yn

· · ·

p

αp
n = ωp

n, decomposes to Yn

Y n
c1

Y n
c2

Y n
cN

Y p
n = Yn

· · ·

Y p
n

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

seq

p

αp
n = αn

c1

ωn
cN = ωp

n

seq operator, single parent

seq operator, multiple parents

Fig. 14: Semantic conversion of a SEQ node to a YAWL Fragment.

27

n

c

Dc

Y n
c

Yn

p

αp
n = ωp

n, decomposes to Yn

Y n
c

Y p
n = Yn

Y p
n

n

c

Dc

p

void

void

αp
n = αn

c ωn
c = ωp

n

void operator, single parent

void operator, multiple parents

Fig. 15: Semantic conversion of a VOID node to a YAWL Fragment.

28

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

xor

Y n
c1

Y n
c2

Y n
cN

Yn

· · ·

p

αp
n = ωp

n, decomposes to Yn

Y n
c1

Y n
c2

Y n
cN

Y p
n = Yn

· · ·

αp
n ωp

n

Y p
n

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

xor

p

xor operator, single parent

xor operator, multiple parents

Fig. 16: Semantic conversion of an XOR node to a node to a YAWL fragment.

Fig. 17: Semantic conversion of the CoSeNet from Figure 6, shown in the YAWL Editor.

29

a

p

αp
a = ωp

a

Y p
a = Ya

αp
a = ωp

a

Y p
a (Ya does not exist)

a

p

`A(a)

`A(a)

Activity, single parent

Activity, multiple parents

Fig. 18: Metrics conversion of an activity node to a YAWL fragment.

Model Merge 1 Merge 2 Merge 3 Merge 4 Merge 5 Merge 6 Merge 7 Merge 8 Merge 9 Merge 10

GBA1 39 40 34 34 42 42 35 40 48 44
GBA2 127 138 148 120 109 122 117 134 122 126
GBA3 160 175 200 172 144 141 194 184 211 148
MOR 246 266 272 251 273 240 229 288 272 287
WOZ 130 117 126 124 127 136 125 165 148 143

Table 9: Obtained complexity metric values when using the metrics conversion.

introduced by the semantic conversion get lost in this YAWL-to-EPC conversion, as
any composite task will simply be replaced by a separate copy of the entire subnet.
This leads to loss of information in the resulting EPCs, and in complexity metric values
which are just too high, which is shown by Table 8.

Clearly, these complexity values are way off the scale. Apparently, when the goal is
to compute the complexity metric values, it is a very, very bad idea to create a separate
copy of a subnet every time it is used. Therefore, we need a conversion that handles the
shared nodes differently, a conversion that results in a YAWL model that converts to an
EPC that uses the same, shared, EPC fragment for a shared node every time it is used.
For this reason, we introduce here a second conversion, called the metrics conversion,
which does this. However, note that the goal of his metrics conversion is only to obtain
a YAWL model for which a sensible complexity metric value can be computed. If the
goal is to obtain the semantic of the CoSeNet, the semantic conversion should be used.

B.4 Metrics conversion

Figures 18 to 27 show the metrics conversion of a CoSeNet to a YAWL fragment. In-
stead of using a subnet and composite tasks, this conversion uses a shared synchronised
fragment. The α task starts the shared fragment, and partially enables the corresponding
ω task. When the shared fragment is done, it puts a token in the extra condition, which
will fully enable any partially enabled ω-task. As a result, one of these ω-tasks will be
executed.

30

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

and

Yn

· · ·

p Y p
n = Yn

· · ·

αp
n ωp

n

Y p
n

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

and

p

and operator, single parent

and operator, multiple parents

αp
n ωp

n

Y n
c1

Y n
c2

Y n
cN

Y n
c1

Y n
c2

Y n
cN

Fig. 19: Metrics conversion of an AND-operator node to a YAWL fragment.

31

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

def

Y n
c1

Y n
c2

Y n
cN

Yn

· · ·

p

Y n
c1

Y n
c2

Y n
cN

Y p
n = Yn

· · ·

αp
n ωp

n

Y p
n

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

def

p

def operator, single parent

def operator, multiple parents

αp
n ωp

n

Fig. 20: Metrics conversion of a DEF node to a YAWL fragment.

32

n

c1 c2 c3

Dc1 Dc2 Dc3

loopdef

Y n
c1

Y n
c2

Y n
c3

Yn

p

Y n
c1

Y n
c2

Y n
c3

Y p
n = Yn

Y p
n

n

c1 c2 c3

Dc1 Dc2 Dc3

loopdef

p

Note that a loop node requires an exit node to terminate

loopdef operator, single parent

loopdef operator, multiple parents

αp
n ωp

n

αp
n = αn

c1

ωp
n = ωn

c3

Fig. 21: Metrics conversion of a LOOPDEF fragment to a YAWL fragment.

33

n

c1 c2 c3

Dc1 Dc2 Dc3

loopxor

Y n
c1

Y n
c2

Y n
c3

Yn

p

Y n
c1

Y n
c2

Y n
c3

Y p
n = Yn

Y p
n

n

c1 c2 c3

Dc1 Dc2 Dc3

loopxor

p

Note that a loop node requires an exit node to terminate

loopxor operator, single parent

loopxor operator, multiple parents

αp
n ωp

n

αp
n = αn

c1

ωp
n = ωn

c3

Fig. 22: Metrics conversion of a LOOPXOR fragment to a YAWL Fragment.

34

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

or

Yn

· · ·

p Y p
n = Yn

· · ·

αp
n ωp

n

Y p
n

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

or

p

or operator, single parent

or operator, multiple parents

αp
n ωp

n

Y n
c1

Y n
c2

Y n
cN

Y n
c1

Y n
c2

Y n
cN

Fig. 23: Metrics conversion of an OR node to a node to a YAWL fragment.

35

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

Y n
c1

Y n
c2

Y n
cN

Yn

· · ·

p

Y n
c1

Y n
c2

Y n
cN

Y p
n = Yn

· · ·

αp
n ωp

n

Y p
n

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

p

placeholder, single parent

placeholder, multiple parents

αp
n ωp

n

Fig. 24: Metrics conversion of a placeholder node to a YAWL Fragment.

36

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

seq

Y n
c1

Y n
c2

Y n
cN

Yn

· · ·

p

Y n
c1

Y n
c2

Y n
cN

Y p
n = Yn

· · ·

Y p
n

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

seq

p

αp
n = αn

c1

ωn
cN = ωp

n

seq operator, single parent

seq operator, multiple parents

αp
n ωp

n

Fig. 25: Metrics conversion of a SEQ node to a YAWL Fragment.

37

n

c

Dc

Y n
c

Yn

p

Y n
c

Y p
n = Yn

Y p
n

n

c

Dc

p

void

void

αp
n = αn

c ωn
c = ωp

n

void operator, single parent

void operator, multiple parents

αp
n ωp

n

Fig. 26: Metrics conversion of a VOID node to a YAWL Fragment.

38

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

xor

Y n
c1

Y n
c2

Y n
cN

Yn

· · ·

p

Y n
c1

Y n
c2

Y n
cN

Y p
n = Yn

· · ·

αp
n ωp

n

Y p
n

n

c1 c2 cN

· · ·Dc1 Dc2 DcN

xor

p

xor operator, single parent

xor operator, multiple parents

αp
n ωp

n

Fig. 27: Metrics conversion of an XOR node to a node to a YAWL fragment.

Fig. 28: Metrics conversion of the CoSeNet from Figure 6, shown in the YAWL Editor.

39

Figure 28 shows the result of this conversion when applied to the CoSeNet as shown
by Figure 6, and Table 9 shows the complexity metric values obtained when using the
metrics conversion.

The metrics conversion takes care that only a parent that actually started a shared
node can continue after the shared node has completed. However, if multiple parents
start a shared node simultaneously, then one parent could take the token of the other.
As a result, this conversion allows for some behaviour that should not be allowed. Nev-
ertheless, we think that this conversion is fair when it comes down to the complexity
metrics, as simply creating copies of shared nodes is a bad idea, as we saw earlier. For
this reason, we have used the metrics conversion throughout this paper.

40

