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Abstract. The field of process mining provides a collection of tech-
niques and tools that aim to support the extraction of information out
of event logs. This information may provide businesses insight into ac-
tual execution and performance of these business processes and may help
identify ways of improving these processes. While the quality of the re-
sults of the application of mining algorithms depends on the degree of
completeness of the event log (some even assuming that the logs are
complete), it is necessary to evaluate completeness of an event log in an
objective manner. Pragmatically speaking, the degree of completeness of
an event log can be measured by estimating 1) the ratio of trace classes
observed in the log versus the total number of trace classes, and 2) the
coverage of behaviour observed (as a probability that captures how likely
it is that a subsequent trace has already been observed). Based on some
reasonable assumptions, we characterise the problem of estimating the
degree of completeness of a log as a particular occurrence of the species
estimation problem. Although this problem is still open in statistics, a
number of methods for determining approximate solutions are available.
Among these methods we provide a recommendation for those methods
that are most appropriate in the context of process mining based on a
number of experiments, both with real and with artificially generated
event logs. In addition, a number of potential applications of (solutions
to) the log completeness estimation problem are discussed.

1 Introduction

Business Process Management (BPM) is concerned, among others, with pro-
viding support for (re)design, deployment, and analysis of business processes.
Process mining can be seen as a subfield of BPM providing a powerful collection
of techniques for deriving information from event logs [31]. Two classical appli-
cations of process mining are model discovery, where the objective is to derive a
process model from an event log ([16]), and conformance checking, where actual
process behaviour, captured in an event log, is compared to expected process be-
haviour, captured in a process model. Over time the field of process mining has
evolved, and broadly speaking, application of the techniques developed may pro-
vide valuable insight into operational performance of business processes and may
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help identify opportunities for their improvement. Overviews of various mining
algorithms can be found in some papers ([35,33,38]). An open source platform,
ProM, exists which provides support for many of these algorithms and which
has been used in industrial applications ([37]).

Although many problems in the field of process mining have been solved in a
satisfactory manner, unsolved problems remain and these present impediments
to advancement of the field ([35]). One of these problems, which has received
very little attention in the literature, deals with completeness of the event logs.

Generally speaking, the quality of results mined from a given event log de-
pends on the algorithm used and on the amount of information present in this
log. Mining algorithms can be classified into several categories as argued in [38].
The first of these categories of consists of algorithms which assume the event
log to be globally complete, i.e. all possible behaviour should have been recorded
in the log. The second category contains those algorithms that make specific
assumptions on completeness but do not require all possible behaviour to be
captured, i.e. they require the log to be locally complete. The third category
consists of algorithms where the quality of the result correlates with the degree
of completeness of the event log, but no assumptions on completeness are made
at all. Instead, for these algorithms, the more complete a log is, the better the
result.

For the first category of algorithms it is necessary to be able to determine
whether or not an event log indeed contains all possible behaviour. For the
second category, it is important to say whether or not a log is complete with
respect to the specific assumptions, while for the third category of algorithms,
any information on completeness is relevant for predicting the applicability of
that algorithm.

This then leads to the question: how can one determine global or local com-
pleteness of an event log in an objective manner?

Naturally the completeness of an event log depends on the type of information
one is interested in. For example, one may wish to mine organizational structures
or temporal information about task or case completions. In this paper the focus
is on mining of control-flow dependencies, in other words, determining which
tasks exist and what their relative execution order is. The objective of mining
such dependencies is to obtain a process model of which the (repeated) execution
could have led to the event log. Model discovery has been widely studied and
was among the first applications of process mining.

Having established a focus on control-flow dependencies, the next issue to
address is how to measure or estimate the degree of completeness of an event log
with respect to control-flow information. To address this issue we need to agree
on 1) the unit of information, and 2) the metrics that characterise the degree
of completeness. For the unit of information a logical choice is the concept of
a trace. While different definitions of this concept are possible, e.g. the various
moments of choice could be preserved as part of a trace ([22]), here we simply
see a trace as a sequence of actions which constitute a successful completion
of a process instance. Taking the notion of trace as unit of information, the



extent to which all possible trace occurrences of a workflow model (grouped in
terms of trace classes) have been observed in an event log corresponds to the
degree of global completeness of the log ([38]). Some process mining algorithms
(e.g. [42,27,2,39]), require as input event logs that are globally complete. As
regards metrics for characterising the degree of completeness of a log, the ratio
of observed trace classes versus the total number of trace classes is an obvious
candidate. This metric by itself may have a significant drawback however, as it
does not take into account the occurrence probability of these classes. Clearly,
we should take into account what the likelihood is that a newly observed trace
corresponds to an already observed trace class when considering the degree of
completeness of a log. This likelihood is referred to as the coverage probability,
which constitutes the second metric that we will use when characterising the
degree of completeness of an event log (in case the first metric’s value is low).

As we do not have access to the process model that was used to generate
the event log, we require a probabilistic approach to determining the degree
of completeness of the log. In order to do this, we will articulate a number
of underlying assumptions, which we believe to be reasonable. Based on these
assumptions we will demonstrate that the problem of estimating the degree of
completeness of an event log can be characterised as the problem of estimating
the number of species on the basis of a finite number of observations. This
species estimation problem has received a great deal of attention in the field of
statistics ([6,19]).

The contribution of this paper is the precise characterisation of the event
log completeness problem in terms of a particular occurrence of the species
estimation problem and the subsequent empirical evaluation of a number of
existing methods for approximating solutions to the species estimation problem
in terms of their suitability for solving the event log completeness problem.

The remainder of this paper is organized as follows. Section 2 describes ba-
sic concepts needed to define the problem and to describe our approach, while
Section 3 presents a number of assumptions for solving the problem. Section 4
presents the metrics for evaluating the completeness of event logs and formalizes
the log completeness problem of event logs. Section 5 shows how the complete-
ness estimation problem can be characterized as a particular occurrence of the
species estimation problem, and lists some of the characteristics of the complete-
ness estimation problem. Section 6 provides an overview to various approaches
to solving this problem. In Section 7 an extensive empirical evaluation of these
approaches is conducted, both using real and artificially created event logs. Sec-
tion 9 discusses related work and section 10 concludes the paper and outlines
potential future work.

2 Background

In this section a number of basic definitions are presented that are used to
precisely characterise the problem of determining log completeness.



A task is an activity to be performed in the context of a business process. A
process model provides an abstraction of a business process capturing its tasks
and all possible execution orders of these tasks in a formal manner. A process
instance, sometimes referred to as a case ([34]), represents the actual execution of
a business process. A trace is the result of the successful completion of a process
instance and consists of a sequence of events, where each event corresponds to
the execution of a task ([34]).

The following definitions capture some of these concepts in a precise manner
and they are almost the same as those presented in [35].

In this paper, our starting point is a set of tasks that are being executed
in real life. We assume that we know all possible tasks involved in a process in
advance and we assume the log ranges over these tasks. Furthermore, all events in
the log should be ordered, typically using the time at which they were recorded.

Definition 1 (Log). Let T be a finite set of tasks. We define L = (E,C, γ, τ,>)
as an event log over T , where E is a set of events, C is a set of case identifiers,
γ : E → C a surjective function relating events to cases, τ : E → T a function
relating events to tasks and >⊆ E × E a total ordering on events.

The execution of instances of various process models manifests itself through the
corresponding traces whose events are recorded in process logs.

Definition 2 (Trace). Let T be a finite set of tasks and L = (E,C, γ, τ,>) a
log over T . For all cases c ∈ C, we define the trace σc = {e ∈ E | γ(e) = c} as
all events relating to case c. Since the events in E are totally ordered, the events
in σc are also totally ordered.

As stated before, the event log completeness problem requires the identifica-
tion of the various trace classes in a log, so that traces that essentially represent
the same behaviour can be grouped together.

Definition 3 (Trace equivalence). Let T be a finite set of tasks and L =
(E,C, γ, τ,>) a log over T . Furthermore, let c1, c2 ∈ C be two case identifiers
and σc1 , σc2 the corresponding traces. We say that σc1 and σc2 are equivalent
denoted by σc1 ≡ σc2 if and only if for all e1 ∈ σc1 and e2 ∈ σc2 it holds that
(#e∈σc1

e < e1 = #e∈σc2
e < e2) =⇒ τ(e1) = τ(e2) and |σc1 | = |σc2 |.

Definition 3 states that two traces σc1 and σc2 are equivalent if and only if their
lengths are equal and every event of the first trace refers to the same task as the
corresponding event of the second trace, i.e. the one having the same position if
put in a sequence based on the ordering relation.

Clearly, the trace equivalence relation defined above forms an equivalence
relation and we will refer to the corresponding equivalence classes as trace classes.
Sometimes we will refer to two equivalent traces as being the same and we
will refer to a trace σ occurring n times in an event log L if and only if the
corresponding trace class has n elements.

Definition 4 (Global completeness of an event log). Let T be a finite set
of tasks, P a process model over T and L a log over T . We say that L is globally



complete if and only if the number of trace classes in the log according to the ≡
relation equals the number of all possible execution orders of T in P .

It should be pointed out that a process model’s behaviour cannot be fully char-
acterised through its trace classes. This is due to the fact that the notion of trace
used is limited and does not preserve moments of choice, but also because no
currently existing process mining algorithm is capable of discovering all workflow
control-flow patterns ([38]).

3 Assumptions

In this section the assumptions, based on which the log completeness problem
can be precisely characterised, are made explicit. Each assumption is described
in detail and it is argued that the assumption is reasonable, why it is needed,
and what would go wrong if the assumption was not made.

Assumption 1 Given a log, the total number of all possible trace classes is
finite.

On the one hand, if the number of possible trace classes is infinite, given an
event log (which always has a finite size), the ratio of observed trace classes to
all possible trace classes is always zero, which indicates that it is impossible to
discover the workflow model through its event logs without additional hypothe-
ses, e.g. the existence of loops. On the other hand, every man-made system will
stop at some stage in the future, including running workflow management sys-
tems, hence always only a finite number of trace classes will be observed. It is
therefore reasonable to assume that the number of possible trace classes is finite.

Assumption 2 The event log is noise-free.

Noise in an event log represents incorrect information, e.g. an event being missed
or accidentally duplicated in the log, or the starting times of two events being
mixed-up. Noise is often caused by hardware failures or by software bugs and
the detection and remedy of these problems could lead one to also clean-up the
event logs involved. The presence of noise in process logs still poses formidable
problems for process mining. Some research in this area has been conducted
and the common solution to dealing with noise is to use filtering techniques (see
e.g. [29,43]). A trace or a task relationship is treated as noise if its occurrence
frequency is lower than some specified threshold. The most challenging part of
this solution is how to reach consensus on the right threshold.

It seems reasonable to assume that event logs are not polluted as long as
there are no general and feasible ways of identifying noise in event logs, since
the number of possible trace classes may be usually overestimated based on a
noise-polluted log and thus to underestimate the actual degree of completeness
of the log.

Assumption 3 Traces of a process model appear randomly and independently.



In a process-aware information system deployed in a large organisation, there
are typically many instances of process models running concurrently. Instances
of a process model may be initiated by a variety of stakeholders and may come
about under a variety of circumstances. By observing the execution log, it cannot
be determined with absolute certainty what the next trace will be, based on
already observed traces. It seems reasonable to assume that traces are produced
randomly and independently.

If the appearance of new traces depended on the already observed traces, we
have to deal with correlated traces. Such traces should be treated as different
appearances of the same trace as they can be (partially) derived from existing
traces. If we cannot deduce how traces correlate with each other we may over-
estimate the number of existing trace classes and thus underestimate the degree
of completeness of event logs.

Assumption 4 Any trace of a process model appears with a constant but un-
known probability. While constant for a particular trace class, this probability
may vary across the various trace classes.

A trace class represents a particular application scenario of a process model.
When a process-aware information system has been running for years, the same
scenario may appear periodically. As time goes by the occurrence frequency of
the various traces becomes relatively stable and in the long run a trace may be
perceived to appear with a constant probability, which we will refer to as its
occurrence probability.

If this assumption is not satisfied, we cannot solve the problem of determining
the degree of completeness of an event log in a mathematical way without further
information about occurrence frequencies of traces.

4 Problem Definition

In this section, we first examine in more depth why global completeness is an
important notion in process mining. Then, we consider again the issue of metrics
that can be used for the log completeness problem, and finally, we characterise
this problem precisely in terms of the species estimation problem using the as-
sumptions articulated in the previous section.

4.1 Why global completeness?

While different control-flow mining algorithms may require different kinds of
input information, their purpose is the same, to derive a process model capturing
the control-flow dependencies that are reflected in event logs. The essence of
control-flow information is captured by the tasks that occur in the various events
in an event log and their execution order in the various process instances. A new
execution order of tasks always appears in a new trace. Although a new trace
may not contain any new control-flow dependencies between tasks, a complete



set of traces always covers a complete set of dependency relationships. The more
different traces the event log contains, the more one can derive potentially about
the actual control-flow dependencies between these tasks.

In [38], an overview of mining algorithms is presented. For each algorithm,
it is examined whether a log needs to be complete in order for the algorithm to
correctly discover the underlying process model. Many of the powerful process
mining algorithms examined in [38] require global completeness. All language-
based region algorithms explicitly specify the requirement that all possible traces
need to be present in an event log ([27,2,39]). The most powerful abstraction-
based algorithm according to the analysis in [38] is the α++ algorithm ([42]).
The analysis in [38] bears out that this algorithm can reconstruct all common
control-flow constructs but not duplicate tasks, and also not invisible tasks (such
tasks are used for routing purposes, for example in workflow models based on
Petri nets). A successful outcome of the application of the α++ algorithm de-
pends on whether all causal relationships between tasks, i.e. whether a certain
task at runtime will ultimately always be followed by some other task, can be dis-
covered. This implies that the event log has to be globally complete. State-based
algorithms (e.g. [24]) require the construction of a state-transition diagram from
an event log in order to produce an outcome. They therefore implicitly recon-
struct a state space and for this state space to be accurate, the event log needs
to be globally complete.

In summary, global completeness of event logs is a prerequisite for the ap-
plication of a number of process mining algorithms to operate correctly. Addi-
tionally, global completeness of a log implies local completeness of the log. This
means that being able to determine whether a log is globally complete may also
be helpful for those algorithms that require local completeness, as it provides a
sufficient though not necessary precondition.

4.2 Metrics of global completeness

When considering the question of the degree of completeness of an event log an
obvious indicator is the number of trace classes observed versus the total number
of trace classes. This ratio may thus be considered an intuitive metric. We will
refer to this metric as the observed trace classes (OTC) ratio.

The OTC ratio when used by itself may have a significant drawback in case
the number of trace classes has a very low occurrence probability. Consider
for example the case, where three out of five possible trace classes have been
observed in an event log. If the combined occurrence probability of the missing
two trace classes is less than one percent, then clearly, the log can be considered
quite complete in the sense that there is a high probability that the occurrence
of a new trace will correspond to a trace class that has already been observed.
The situation would be quite different if the two missing trace classes had a
combined probability of 50 percent as in that case frequently occurring behavior
has not been captured in the log and the log is thus less complete than the log
in the previous scenario. This example makes it clear that using the OTC ratio



by itself, in cases where the ratio is low, may not gave a sufficient enough insight
into the degree of completeness of an event log.

Thus, we propose to complement the OTC metric with another metric that
captures the degree to which behaviour, weighted in terms of its occurrency fre-
quency, has already been observed. This metric can alternatively be characterised
as the coverage probability, or CV probability for short, which is the likelihood
that a new trace will already have been observed in the log. It should be pointed
out that realistic workflow models usually incorporate ways of dealing with a va-
riety of exceptions (some with a very low probability) and thus they may contain
a high number of trace classes with a low occurrence probability. It is therefore
expected that the OTC ratio would, as a rule, need to be complemented by the
CV probability. J. Bunge et al. even believe that the CV probability is a better
metric than the OTC ratio ([6] p. 370).

Naturally, the OTC ratio and the CV probability are not independent. When
the OTC ratio increases, so does the CV probability. On the other hand, in
the case of unbalanced logs, i.e. logs resulting from workflows with many trace
classes with low occurrence probabilities, the OTC ratio may be low, but the
CV probability will be high.

4.3 Problem Formulation

Having established two metrics in the previous section, we can now formally
capture the log completeness estimation problem.

Problem 1 (Completeness problem). Given a set of tasks T , an event log L over
T of an unknown workflow P (which was used to produce the traces recorded in
L), 1) what is the ratio between the number of observed trace classes in L versus
the total number of trace classes in P , and 2) what is the coverage probability,
i.e. the probability that a new trace of the workflow has already been observed?

As we require the use of a process model, which is unknown, in the formulation
of the problem, it is clear that we are dealing with an estimation problem.

5 Problem Characterisation

Based on the assumptions in Section 3, the problem of determining the degree
of completeness of an event log can be recast as the problem of guessing for an
urn with an unknown but finite number of marbles, how many different colours
these marbles may have and how many marbles there are of each colour. The
only input to the guessing problem is a number of selections of marbles where
it was recorded what the colour of the marble was before it was put back in
the urn ([26]). Here a marble in the urn is equivalent to a trace of a workflow
model. Marbles with the same colour are equivalent to traces belonging to the
same trace classes. Although the exact numbers of marbles in different colours
are unknown, the numbers are static and so are their ratios. Similarly, although
the occurrence probabilities of trace classes are unknown, the probabilities are



constant according to Assumption 4. The most important part of the guessing
problem is the sampling method, i.e. marbles are chosen randomly and inde-
pendently and they are put back in the urn afterwards. This corresponds to
the generation of traces of a workflow model according to Assumption 3. Sum-
marising, the problem of guessing the numbers of marbles of different colours
corresponds to being able to determine the degree of completeness of an event
log.

This marble-guessing problem constitutes a particular occurrence of the so-
called species estimation problem, wherein the number of species of a population,
based on a finite sample, needs to be estimated. This is a well-known problem
in the field of statistics ([6,19]). Hence, by characterising the log completeness
problem as a particular manifestation of the species estimation problem, we may
benefit from the vast body of knowledge, notably the multitude of approximation
methods, that exists for solving this well-established statistical problem.

There are a number of different dimensions that relate to the species esti-
mation problem. Specific choices for each of these dimensions create particular
instances of the problem (these dimensions, articulated in the form of ques-
tions, are discussed in [6]). The dimensions in [6] are the size of the population
(e.g. whether the population is finite or infinite), the sampling methods (e.g.
Bernouilli, multinomial or Poisson), whether there is prior knowledge about the
distribution of the population (e.g. whether it is known that all instances occur
with an equal probability or whether their occurrences are governed by a par-
ticular curve), and the objective (e.g. estimating the total number of species or
the probability that a new species is encountered in the next draw).

The log completeness estimation problem, as it is defined in section 4, can
be seen as a particular manifestation of an instance of the species estimation
problem with a finite population, Bernoulli sampling, and where estimating both
the exact number of species and the probability of seeing a previously unobserved
species are objectives.

Approaches to solving the species estimation problem can be divided into
two categories ([6]). One category is based on data analysis, which covers ex-
trapolation of curves (e.g. species accumulation curve) and fitting a truncated
distribution to the observed species abundance (e.g. lognormal fit). These ap-
proaches are referred as non-sampling-based approaches in ([11]). Approaches
using extrapolation based on previously observed samples suffer from the fact
that there is no commonly agreed upon theoretical basis ([15] p. 107), while ap-
proaches using distribution fit assume that sample occurrences are governed by
specific distributions ([6] p. 369, [15] p. 108). The other category is based on sam-
pling theory and probabilistic theory. This category of approaches can be further
classified into four groups according to [19] depending on the modelling method
(the variables used and the way they are used in the estimation formula): 1) ap-
proaches which aim to provide a formal model capturing the current sample, 2)
approaches which aim to characterise future drawings by (implicitly) assuming
that these will be closely aligned with the sample, 3) approaches which model
potential distributions of the occurrence probabilities of various species (this is



the starting point of Bayesian methods), and 4) approaches that combine the
latter two approaches.

However, it has been proven in [21] that no unbiased estimator exists if it
is unknown whether the sample size is larger than the population size of the
species with the highest occurrence. This implies that an approach may work
well for a certain type of distribution but not for another type of distribution ([17]
p. 198). According to [6] (p. 370), Good even believes it is usually impossible
to estimate the total number of species. We therefore choose an experimental
approach through the conduct of an in-depth comparison of a number of available
estimators applied to a collection of log files, both real and artificially created
ones.

The characteristics of the log completeness estimation problem exclude some
approaches used for the species estimation problem as suitable candidates for
solution methods:

– Since no a priori occurrence distribution of trace classes is assumed for
the problem of event log completeness, approaches depending heavily on
the presence of specific occurrence distributions are not considered to be
suitable. For example, approaches requiring that occurrence distributions of
trace classes are known (e.g. [23,18]), and approaches based on parametric
models which assume that the occurrence distributions belong to a specific
distribution family. Other examples are approaches proposed to estimating
the vocabulary size of an author ([3]) because the frequency of words in
literary works complies with Zipf’s distribution ([1]), while the occurrence
distribution of trace classes is unknown.

– Approaches assuming sampling without replacement are ignored. Sampling
on a finite population without replacement means that a marble sampled
later has a different occurrence probability from that of a marble of the
same class previously sampled. Marbles are therefore not sampled in an
independent manner which does not comply with Assumption 3.

– Approaches based on data analysis are ignored as these approaches are not
compatible with the uncertain nature inherent to estimation problems. As
argued before, the problem of determining the degree of log completeness is
an estimation problem and the result is correct with a certain probability.

6 Approaches

Based on the analysis of characteristics of the completeness problem, we found
a number of estimators as candidate approaches for solving the problem. Our
experiments will be carried out using these approaches.

6.1 Conventions

We assume an event log with n traces and o trace classes. The number of traces
classes which occur i times in the log is given by ni (where 0 ≤ i ≤ n). The



estimations of the number of all possible trace classes, the occurrence probability
of observed trace classes, and the probability of a new trace class appearing are
denoted by N̂ , Ĉ, and Û respectively. Obviously Ĉ + Û = 1 and thus if Ĉ is
known then Û is known and vice versa. The OTC ratio, which we denote as r,
is given by r = o/N̂ . As N̂ is the key factor in calculating this ratio, we focus
on N̂ rather than r in this section.

6.2 Boender and Rinnooy Kan’s Estimator

Boender and Rinnooy Kan [5] proposed a Bayesian approach, in which the num-
ber of species and their occurrence probabilities are assumed to be random vari-
ables. The occurrence distribution is initially set to the uniform distribution.
The a posteriori distribution is then calculated using Bayes’ Theorem given a
sample. Based on the a posteriori distribution, the estimators for the total num-
ber of classes and the probability of the next sample being a new species are
computed as follows:

ÛBRK =
o(o+ 1)

n(n− 1)
(n ≥ o+ 2) (1)

N̂BRK = o
n− 1

n− o− 2
(n ≥ o+ 3) (2)

Although Bayes’ Theorem guarantees that the initial distribution, however it is
chosen, will converge to the correct distribution when the sample is large enough,
the accuracy of these estimators may still be questionable as we do not know
whether any given sample is large enough or not.

6.3 Turing and Good’s Estimator

On assumption H stating that there is a occurrence distribution which governs
the sampling, Good [20] proved that

E(qr|H) =
r + 1

n+ 1

En+1(nr+1|H)

En(nr|H)

where E(qr|H) is the expectation of the occurrence probability of a species oc-
curring r times in the sample, and En(nr|H) is the expectation of the number of
species occurring r times in the log with size n. By approximating EN+1(nr+1|H)
and EN (nr|H) with the values nr+1 and nr respectively or with these values
smoothed (in case of division by zero), Good proposed an estimator ÛTG with
smoothing, inspired by A.M. Turing, hence the name Turing and Good’s Esti-
mator.

ÛTG =
n1
n+ 1

(3)



On the assumption that all trace classes are equally likely, an estimator for N̂
can be produced.

N̂TG =
o

ĈTG
=

o

1− n1

n+1

(4)

From ÛTG, it is clear that the number of estimated unobserved species approx-
imates the number of species that occur once only. It can be observed that this
estimator is a bit coarse as only n1 is used.

6.4 Maximum Likelihood Estimation(MLE)

When all trace classes occur with equal probability, Lewontin and Prout [25]
proposed a Maximum likelihood estimator N̂MLE , which can be approximated
by solving equation (5).

o = N̂MLE

(
1− e−n/N̂MLE

)
(5)

Once N̂MLE has been estimated, it is straightforward to estimate the coverage
probability, ĈMLE , since all trace classes are governed by a uniform distribution.

ĈMLE =
o

N̂MLE

(6)

The estimator N̂MLE will underestimate the total number of all possible trace
classes when the occurrence of trace classes are not uniformly distributed. When
the size of the log is much smaller than the number of all possible trace classes,
it is highly possible that each observed trace class occurs only once in the log.
This estimator can work for such kinds of logs and this is the reason we have
chosen this estimator as a candidate.

6.5 Jackknife Estimation

By extending the trivial estimator of N̂trivial = o and on the assumption that
ô − N =

∑∞
i=1

ci
n where ci is a(n) (unknown) constant, Burnham et al. [7]

proposed an estimator N̂Jk =
∑o
i=1 aikni by means of the jackknife approach,

which is a linear combination of the ni. Given different values for the order k,
we can get a series of estimators.

N̂Jk =
1

k!

k∑
i=0

(−1)i
(
k
i

)
(n− i)kN̂n−i (7)

N̂n−i = o−
(
n
i

) i∑
r=1

(
n− r
i− r

)
nr (8)

The larger k is, the smaller the estimation bias and the bigger the variance.
Burnham et al. in [8] proposed a method to select an appropriate k for a given
sample. The weakness of these estimators is that the assumption is very rigid
for some distributions ([6] p. 369).



6.6 Gandolfi and Sastri’s Estimator

Gandolfi and Sastri [19] reviewed a number of available estimators and proposed
a Bayesian-based estimator N̂GS .

N̂GS =
o ∗ n
o− n1

+
o ∗ n1
o− n1

γ2, (9)

where 0 ≤ γ2 =
−o−n+n1+

√
5o2+2o(n−3n1)+(n−n1)2

2n ≤ 1. Four types of estimators
were listed in Section 5 and this estimator is of the fourth kind. Experiments
on some real data sets with nonuniform populations show that the estimator
works best compared to the other estimators examined, since it benefits from
both Bayes’ theorem and sampling theory [19].

6.7 First Estimator of Chao

Chao [9] proposed an estimator N̂Chao1 for the case where (o, n1, n2) carries
most information of the sample, i.e. the total number of species which occur
more than 2 times in the given log is much smaller than o.

N̂Chao1 = o+
n21
2n2

. (10)

The above estimator would not work when n2 = 0. Thus Chao proposed a bias-
corrected version as follows.

N̂Chao1 = o+
n1(n1 − 1)

2(n2 + 1)
. (11)

The approach demonstrated encouraging results for real data [9]. Colwell et
al. [15] believed that the estimator deserves consideration since it is usually the
case that the low frequency species, i.e. those occurring 1 or 2 times, provide
most of the information in a sample.

6.8 Second Estimator of Chao

Chao [10] proposed a variation of the N̂Chao1 estimator, which yet requires o to
be large and pi (the probabilities for the various species occurring) to be small.
Colwell [14] proposed another bias-corrected estimator, N̂Chao2, for the N̂Chao1
estimator as follows.

N̂Chao2 = o+
n21

2(n2 + 1)
− n1n2

2(n2 + 1)2
. (12)



6.9 Chao and Lee’s Estimators

Chao and Lee [12] proved that N ≈ E(o)
E(C)+E(n1)

E(C) γ
2, where E(.) is the expectation

of a random variable and γ is the coefficient of the variance of the potential
occurrence distribution of trace classes [12].

E(o), E(C), and E(n1) in the approximation formula, depend on the un-
known occurrence distribution of trace classes and are approximated by o, 1 −
n1/o, and n1 respectively. There are two approaches in [12] to estimating γ, each
leading to a different estimator, N̂CL1 and N̂CL2.

N̂CL1 =
o ∗ n
o− n1

− o ∗ n1
o− n1

γ̂21 , (13)

N̂CL2 =
o ∗ n
o− n1

− o ∗ n1
o− n1

γ̂22 , (14)

where

γ̂21 = max

(
o ∗ n
o− n1

∑ j(j − 1)nj
o(o− 1)

− 1, 0

)
, and (15)

γ̂22 = max

(
γ̂21(1 + n1

∑ j(j − 1)nj
(o− n1)(o− 1)

), 0

)
. (16)

These two estimators are considered to be the preferred choice in the absence of
information about the sampling method and the population structure [6].

6.10 The Abundance-based Coverage Estimator (ACE)

In [13], Chao extended the work of [12], and proposed an Abundance-based
Coverage Estimator (ACE). The most interesting part of the estimator is that
it seperates the species into two groups according to the given log: rare species
whose occurrence frequencies are less than 11 and abundant species whose oc-
currence frequencies are at least 11.

ĈACE = 1− n1
nrare

= 1− n1∑10
j=1 j ∗ nj

, (17)

N̂ACE =
∑
j>10

nj +
nrareNrare
nrare − n1

+
nraren1
nrare − n1

γ̂2rare, (18)

where

γ̂2rare = max

nrareNrare
nrare − n1

10∑
j=1

j(j − 1)nj
n2rare

− 1, 0

 .

This estimator emphasises low frequency species which are believed to be im-
portant for estimating the number of unobserved species. Not separating the
long-tailed data (i.e. with a large number of rare species) will cause positively
biased estimates ([11] p. 8).



6.11 Tools

There are a number of tools available for the species estimation problem, such
as Estimats4, SPADE5 and ws2m6. The former two tools are still under active
development and cover most estimators available, while ws2m has not been up-
dated since 2004. We implemented the selected estimators mentioned in this
section ourselves since neither a data format for event logs nor the OTC ratio
is directly supported by these tools. In addition, some Bayesian estimators are
not supported by these tools either.

There is a package, SPECIES (Species Richness Estimation), for the open
source statistical software program R7, which needs some programming work to
use the estimators supported. Hence, we also chose not to use this package.

7 Experiments

In this section, we compare the estimators discussed in Section 6 in a qualitative
way. We apply all estimators on a number of event logs, both artificial and
real-life, to get insights into their performance, both in situations where traces
occurrences are uniformly distributed as well as when they are not. Our work
focuses on the accuracy rather than the precision, i.e. we present the mean square
errors of comparing the estimated values to the true values for the simulated
data.

7.1 Estimating the Event Classes on Artificial Logs

For our experiments, we use an example model describing the process within a
travel agency. In Figure ??, the model is depicted. When a customer books a
trip, he first gets registered in the system. Then, one, two or three hotels are
booked and in parallel either a plane or a bus ticket is reserved. Afterwards, the
trip costs are calculated and then two types of insurances may be purchased,
namely trip insurance and cancellation insurance. Finally, the insurance costs
are added to the total sum and the payment is made by the customer. This
leads to 4 decision points in the process, i.e. the choice between a bus and a
plane, the choice between one, two or three hotel bookings, the option to take
travel insurance and the option to take cancellation insurance.

In order to generate log files, we simulated three variants of this model and
for each variant, we produced 50 log files containing 1000 cases (i.e. in total we
produced 50,000 cases per variant). The three variants differed in the probabili-
ties used to make the choices. In Table 1, we show the probabilities used in the
three variants. Theoretically, ignoring the chosen time distributions, this model
allows for 72 possible traces. However, timing constraints are such that the last

4 http://viceroy.eeb.uconn.edu/estimates
5 http://chao.stat.nthu.edu.tw
6 http://eebweb.arizona.edu/diversity/
7 www.r-project.org

http://viceroy.eeb.uconn.edu/estimates
http://chao.stat.nthu.edu.tw
http://eebweb.arizona.edu/diversity/
www.r-project.org


of three hotel bookings will only be completed after a bus or a plane ticket have
been booked and hence only 64 trace classes can be seen in practice.

Table 1. The parameters for three variants of our model

Variant Bus/Plane 1/2/3 yes/no yes/no
hotels travel insurance cancellation insurance

Balanced .5 / .5 .5 / .25 / .25 .5 / .5 .5 / .5
Unbalanced .6 / .4 .3 / .21 / .49 .7 / .3 .4 / .6
Extremely
unbalanced

.9 / .1 .05 / .0475 / .9025 .9 / .1 .05 / .95

Fig. 1. Estimators on variant with balanced choices.



Fig. 2. Estimators on variant with unbalanced choices.

We conducted several experiments in the following way. For each log, we
considered the first n traces (with n ranging from 1 to 1000). Then, we esti-
mated the total number of trace classes and the coverage. We performed these
experiments for all of the 50 logs per variant and we obtained both the average
of the estimated values, as well as the mean square error. The full results are
presented in Figure 1 for the balanced model, Figure 2 for the unbalanced model
and Figure 3 for the extremely unbalanced model. In each of the figures 1 to
3, we depicted the actual number of observed classes, the number of possible
classes and the two parametric estimators TG and MLE as dotted lines.

In figure 1, no estimator gives a significantly better result than any other,
i.e. all estimators except for J4 and J5 eventually come close to estimating the
actual value of 64 trace classes. However, the Chao1 estimator (Section 6.7) and
the J2 and J3 estimators (Section 6.5) perform the best.

In Figure 2, J2 and J3 again perform very well. However, now the CL1
estimator discussed in Section 6.9 outperforms the Chao1 estimator. This is



Fig. 3. Estimators on variant with extremely unbalances choices.

not surprising, as the Chao1 estimator gives an estimated lower bound for the
number of classes, while the CL1 estimator improves on that by correcting for
the downward bias introduced by other estimators in the case that classes appear
with non-equal probabilities [6].

In Figure 3, it is clear that the CL1 estimator outperforms all others. This
validates the claim in [12] that: “the proposed estimators for non-equiprobable
cases are generally biased downward due to the underestimation of [γ]”.

Overall, our experiments on artificial logs suggest that both the Jackknife
estimators J2 and J3 are generally good estimators for logs with balanced be-
havior, but once behavior becomes more unbalanced, the CL1 estimator becomes
better. However, it should be noted that determining the parameter k for the
Jackknife estimation is not trivial and all Jk estimators behave rather erradi-
cally, i.e. adding a single trace to the log can yield very different estimations.
Therefore, we favor the CL1 estimator.



7.2 Estimating the Coverage on Artificial Logs

Besides estimating the total number of trace classes, some estimators also provide
estimates for the coverage, i.e. the fraction of classes observed. For the parametric
estimators TG and MLE, this number is derived directly from the estimation
of the number of classes, or vice versa. In figures 4 to 6, we depicted the four
coverage estimators we used on our artificial logs. In each of the figures, we also
indicated the actual coverage.

From figures 4 to 6 it is clear that none of the estimators actually give a good
estimate of the coverage. Most estimators overestimate the coverage. Only the
ACE estimator provides a better estimate, mainly because this estimator takes
into account the sample variance of the number of observations in each class if
there are less than 10 observations in that class.

It is important to realize however that if the log size grows to the situation
where all observed trace classes appear more than 10 times, the addition of a
single new class will change the ACE estimate from 100% to 0%. Therefore,
some care should be taken when using the ACE estimator for coverage and in
Section 7.3, we use both the ACE and BRK for coverage, as these are the only
two non-parametric estimators.

Fig. 4. Estimators on variant with bal-
anced choices.

Fig. 5. Estimators on variant with un-
balanced choices.

7.3 Application to Real life Logs

We applied the best estimators to a collection of real-life logs with different
degrees of variability. Some details of the logs are given in Table 2. These logs
are taken from a Dutch municipality and they contain events from four different



Fig. 6. Estimators on variant with extremely unbalanced choices.

administrative processes. Table 2 also shows the estimated number of classes by
the CL1 estimator as well as the estimated coverage by the ACE estimator and
the BRK estimator.

Table 2. Four real-life logs

Number Number Distinct Observed Estimated Estimated Estimated
Log of of activities trace classes coverage coverage

traces events classes (CL1) (ACE) (BRK)

Statements 374 1,116 7 8 18 88.24 % 99.95 %
Objections 127 863 15 65 642 46.39 % 73.19 %
Housing Tax 1,982 12,726 17 201 988 73.46 % 98.97 %
Building per. 2,058 11,105 31 424 85,959 44.96 % 95.74 %

The first log contains events relating to the municipality giving out state-
ments and this is a simple administrative process. The CL1 estimater estimates
the total number of trace classes to be 18 (the result is rounded to the nearest
integer), while the ACE estimates the coverage to be 88.24%. In other words,
these estimates indicate that there are still 11 unobserved trace classes, but that



these only make up 11.76% of the total behavior, while the BRK estimator even
estimates them to only make up 0.05% of the total behavior.

The second log contains events about a general objection handling process
within the municipality, with the exception of housing tax objections. This pro-
cess is more involved than the statement process, i.e. there are more activities,
but it is about 3 times less frequent. The estimated number of trace classes by
the CL1 estimator is 642, while the coverage is estimated to be 46.39%, hence
we have observed less than half of the possible behavior.

The third log deals with objections to housing tax. This process is similar
in nature to the other objection process, but much more frequent. The CL1
estimates that there are 988 trace classes, of which 201 have been observed so
far. The coverage of these trace classes is estimated to be 73.46%.

Finally, the building permit log is a very complex process, with 424 trace
classes observed in only 2058 cases. The CL1 estimator therefore estimates that
there is a total of 85, 959 trace classes, but the observed classes are estimated to
cover 44.09% of the behavior.

The results of our estimators on the real life logs suggest that the log on state-
ments and housing tax provide sufficient information to start a process mining
experiment on, i.e. the log covers more than 70% of the possible behavior, even
though there are still many classes of traces that were not observed. Therefore,
one should be careful using process mining techniques that assume the event
log to be complete. The other two logs (objections and building permits) seem
to contain too little information to do process mining, or at least, reservations
should be made regarding the fact that the logged behavior is estimated to rep-
resent less than half of the possible behavior, and that the total number of trace
classes is at least 10 times more than the observed number.

8 Implementation

The work presented in this paper is implemented as a plug-in of ProM, a generic
open-source framework for implementing process mining tools in a standard
environment [37,40]. Figure 7 shows a screenshot of the implementation, showing
the coverage and trace classes estimates for the housing tax objection process of
Table 2.

In ProM, all estimators mentions in this paper have been implemented in
the “LogMetrics” package. After opening logs, the estimates can be made by
invoking the “estimate completeness” task on a number of logs. The result is an
object which can be visualized as a chart as shown in Figure 7, but the estimates
can also be exported to the csv format for further processing.

9 Related Work

In the area of process mining, the notions of event, event log, and trace have
been well defined ([36]). A typical definition of an event log covers the name of a



Fig. 7. Screenshot of ProM, showing the housing tax objection estimates.

task, a process instance and the execution order between tasks (e.g. [41]) because
these are the most important aspects for control-flow mining. This is referred to
as the required minimal information in [33]. While the completeness problem has
been mentioned in several papers (e.g. [36,28,32]), it has not been discussed in
detail. The issue of log completeness was first raised in [35]. The incompleteness
of logs is often seen as a kind of noise ([33]). Although many process mining
algorithms require the log to be complete, there are other algorithms such as
the genetic mining algorithm ([32]) that can work with incomplete logs. In [38],
completeness is one of the metrics used to evaluate process mining algorithms.
As the quality of mining results relies heavily on the degree of completeness of
event logs, an in-depth exploration of this notion, the topic of this paper, is
worthwhile.

The definition of completeness given in the literature varies depending on the
objective of a process mining algorithm ([38]). If an algorithm requires informa-
tion about relationships between tasks, the log is considered to be incomplete
if not all such relationships are present in the log. A typical definition is given
in [36] where the α-algorithm uses the >W relationship defined between tasks
and requires all possible pairs to appear in the log at least once. In this pa-



per a log is considered to be complete if at least one trace of all possible trace
classes is present in the log. The advantage of the definition is that it is general
with respect to the notion of global completeness and is therefore not tailored to
any specific algorithm that requires such completeness. The disadvantage of this
definition is that process models with loops have an infinite number of traces
theoretically. Fortunately in practice an algorithm that can recognise the pres-
encee of loops would reduce the number of trace classes to a reasonable level
during preprocessing stage of process mining.

The problem of completeness is similar to, but not the same as, the Coupon
Collecting Problem (refer to page 322 of [30])8 in the field of probability the-
ory. Both problems require one to determine the number of different elements
in an unknown collection through sampling with replacement. The difference
between these problems is that both the total number of coupon types and the
appearance probability of each coupon type are known in the Coupon Collecting
Problem, while neither the number of trace classes nor the occurrence probability
of each class is known in the completeness problem. Thus none of the solutions
(e.g. [18]) to the Coupon Collecting Problem can be applied to directly solve the
completeness problem.

10 Conclusions and Future Work

In this paper, we compared several estimators for estimating how much of the
potential behavior of an information system is captured by an event log. We
compared several estimators for the number of trace classes (i.e. the possible
number of different execution sequences) as well as several estimators for the
coverage (i.e. the fraction of the behavior that is covered by the log). In both
cases, we looked at parametric and non-parametric estimators.

To evaluate the estimators, we benchmarked them on three sets of simulated
logs, each with different characteristics, for which the actual coverage and the
actual number of trace classes is known. Then, we applied the best estimators
to some real-life datasets to asses the completeness thereof.

Our experiments show that even the best estimators generally over-estimate
the coverage while at the same time, on real-life datasets, the coverage is esti-
mated to be less than 50 %. This leads us to believe that it is generally a bad
decision to assume event logs to be even near complete.

The work presented in this paper can be extended in several directions. For
logs that result from the execution of models with loops the global completeness
estimation may not be very accurate as the estimators tend to underestimate the
actual degree of completeness. This is due to the fact that different iterations
of the body of a loop will lead to different trace classes (while such repeated
executions add less and less information). In order to overcome this weakness,
one could consider alternative definitions of trace classes. For example, one could
define trace classes based on task precedence relations as this would always yield

8 This problem is also referred to as Coupon Collector Problem in [23,18] or as Coupon
Collection Problem in [4].



a finite number of trace classes (given that the number of tasks is assumed to
be finite). Such a definition is particularly meaningful in case of the well-known
α-algorithm (as introduced in [36]). In fact, one could examine various defini-
tions of trace classes in relation to the log length and information completeness
problems, and link these definitions to process mining algorithms for which they
are particularly suited. In that case the focus can be increased to include local
completeness. Another extension to this work could assume the existence of noise
in logs.
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