
Approximate Clone Detection in Repositories of
Business Process Models

Chathura C. Ekanayake1, Marlon Dumas2, Luciano Garcı́a-Bañuelos2,
Marcello La Rosa1, and Arthur H.M. ter Hofstede1,3

1 Queensland University of Technology, Australia
{c.ekanayake, m.larosa, a.terhofstede}@qut.edu.au

2 University of Tartu, Estonia
{marlon.dumas, luciano.garcia}@ut.ee

3 Eindhoven University of Technology, The Netherlands

Abstract. Evidence exists that repositories of business process models used in
industrial practice contain significant amounts of duplication. This duplication
may stem from the fact that the repository describes variants of the same pro-
cesses and/or because of copy/pasting activity throughout the lifetime of the
repository. Previous work has put forward techniques for identifying duplicate
fragments (clones) that can be refactored into shared subprocesses. However,
these techniques are limited to finding exact clones. This paper analyzes the prob-
lem of approximate clone detection and puts forward two techniques for detecting
clusters of approximate clones. Experiments show that the proposed techniques
are able to accurately retrieve clusters of approximate clones that originate from
copy/pasting followed by independent modifications to the copied fragments.

1 Introduction

Duplication is a widespread phenomenon in software and model repositories [7, 11].
Not surprisingly, significant amounts of duplication can also be found in repositories of
business process models used in industrial practice – both in the form of exact dupli-
cates (a.k.a. exact clones) [14] and pairs of similar fragments (approximate clones) [4].1

Clones in process model repositories emerge for example as a result of copy/pasting
activity, but also when multiple variants of a process co-exist and are described as sep-
arate models. For example, a large insurance company typically runs multiple claims
handling processes for different types of claims or products. Naturally, these process
variants share some commonalities, which manifest themselves in the form of clones.

Detecting clones in process model repositories allows analysts to identify oppor-
tunities for standardization and refactoring. For example, given that disbursing occurs
in multiple variants of a claims handling process, process fragments corresponding to
disbursing can potentially be standardized and encapsulated in a shared subprocess. In
previous work, we proposed a technique for identifying exact clones that can be refac-
tored into shared subprocesses [14]. However, when clones emerge as a result of copy-
/pasting, it is likely that these clones will subsequently undergo independent changes
and thereon can no longer be detected using exact clone detection methods.

1 The term fragment is used to refer to a connected subgraph of a process model.

2 C.C. Ekanayake et al.

When designing approximate clone detection methods, a first step is to define what
an approximate clone is. Generally, such a definition relies on a similarity or (equiva-
lently) a distance metric. Previous work has shown that graph-edit distance is a suitable
proxy for perceived process model dissimilarity [3]. Accordingly, we postulate that a
necessary condition for two process model fragments to be approximate clones is that
their graph-edit distance is below a user-defined threshold. However, three additional
issues ought to be considered when defining a notion of approximate clone.

Firstly, it should be considered that any fragment g1 is similar to any fragment g2
such that g2 contains g1 or g1 contains g2, provided that the difference between g1
and g2 falls below the threshold. A definition that would consider two fragments as
approximate clones merely because one contains the other would lead to many false
positives – an issue that has been widely discussed in the field of code and model clone
detection [11]. Secondly, given the goal to identify approximate clones for the sake of
refactoring them into subprocesses and given that subprocesses are invoked according
to a call-and-return semantics, it is necessary that the approximate clones we retrieve
are Single-Entry, Single-Exit (SESE) fragments. Thirdly, we are not interested in trivial
clones consisting of a single activity, since they do not represent an opportunity for
subprocess extraction. These considerations lead to the following definition.

Definition 1. Given a distance metric Dist and a distance threshold τ , two non-
trivial, SESE process model fragments g1 and g2 are approximate fragments – written
Approx(g1, g2) – iff g1 6⊂ g2, g2 6⊂ g1 and Dist(g1, g2) ≤ τ .

Armed with this definition, one can retrieve large amounts of approximate clone
pairs [4]. However, if the goal is to help analysts to identify opportunities for refactoring
and standardization, retrieving all such pairs is of limited use. Instead, given the goal at
hand, analysts need to identify sets of fragments C that can be standardized towards a
single fragment with a bounded amount of changes on each fragment. Otherwise, some
fragments would need to undergo changes during the standardization that would convert
them into arbitrarily different fragments. In this respect, we envisage two alternative
approaches to standardize a set of fragments:

– A set of fragments can be standardized by taking a given “medoid” fragment as a
reference and standardizing all fragments towards this medoid.

– A set of fragments can be standardized by selecting any fragment in the group as a
reference and standardizing all other fragments towards this reference fragment.

This leads to the following definition.

Definition 2. A set of SESE process model fragments C is a cluster of approximate
clones iff one of the following properties holds:

1. ∃g ∈ C ∀g′ ∈ C : Approx (g, g′). In this case, g is called the cluster medoid.
2. ∀g, g′ ∈ C : Approx (g, g′).

The main contribution of this paper are two techniques (one per standardization
approach) for identifying clusters of approximate clones. The proposed techniques are
validated in a twofold manner. First, a descriptive analysis of approximate clone clusters

Approximate Clone Detection in Repositories of Business Process Models 3

in two industrial repositories of process models is undertaken. Secondly, a synthetic ex-
periment is conducted to evaluate the accuracy of the clustering techniques with respect
to the task of retrieving clusters of clones that have emanated from a single original frag-
ment via copy/pasting followed by independent changes to the duplicated fragments.

The rest of the paper is structured as follows. Section 2 introduces three techniques
for process model parsing, exact clone detection and process model comparison used
in this paper. Section 3 then presents the proposed approximate clone clustering tech-
niques. Finally Section 5 discusses related work while Section 6 concludes the paper.

2 Preliminaries

This section introduces the three basic ingredients of the proposed technique: RPST,
RPSDAG and process model similarity.

2.1 RPST

The RPST [15, 12] is a parsing technique that takes as input a process model and com-
putes a tree representing a hierarchy of single-entry single-exit (SESE) fragments. In-
tuitively, a process model, represented as a directed graph, is partitioned into sets of
edges such that the subgraph induced by each set of edges is a SESE fragment. SESE
fragments are organized by subset inclusion to form a rooted tree, where siblings are
associated to disjoint sets of edges. As the process graph is partitioned into set of edges,
some nodes may be shared in several SESE fragments. The RPST can be computed for
any process model in linear time and it is unique [15, 12].

A node in an RPST corresponds to a fragment of one out of four types: trivial, poly-
gon, bond or rigid. A trivial consists of a single edge. A polygon represents a sequence
of fragments. A bond corresponds to a subgraph where all child fragments are adjacent
to the entry and exit nodes of the fragment. Any other case is a rigid fragment. We use
the prefixes T, P, B and R to designate the type of fragment. For example fragment B1
is a bond. This bond appears in three different places (its occurrences are thus exact
clones). Meanwhile, bonds B2 and B4 could be considered as approximate clones, de-
pending on the user-defined distance threshold. Similarly, one level above, R1, R2 and
R3 could also be considered as approximate clones.

Figures 1(a)–(c) present sample process fragments extracted from models in the
SAP Reference Model [6]. For sake of clarity, only SESE fragments with at least four
vertices are identified in the figures, surrounded by a dashed rectangle. Moreover, Fig-
ure 1(d) shows a simplified (tree) representation of the RPST of each fragment in Fig-
ures 1(a)–(c). Consider the process fragment shown in Figure 1(a). We can observe that
this fragment contains three bonds, viz. B1, B2 and B3; two non-trivial polygons, viz.
P1 and P2; and a rigid fragment, viz. R1. Furthermore, the rigid R1 is the root fragment,
having B1, P1, and P2 as children. Finally, polygon P1 is parent of bonds B2 and B3.

The process models and fragments in this paper use EPC as the underlying notation.
However, the presented techniques are notation-independent.

2.2 RPSDAG

The RPSDAG [14] is an index structure designed for an efficient and accurate identifi-
cation of exact clones in a collection of process models. Conceptually, it can be thought

4 C.C. Ekanayake et al.

!"#$%&'()*+'(,(-".
/+."0"#01(02'#$(..(3

45."('0
6'#3*$"+#-0
!$7(3*/+-8090
:-"('5$"+;(

4<=0/+."0+.0
$'(5"(3

6*'$75.(0
'()*+.+"+#-0
$'(5"(3

6/5--(3
#'3('0$'(5"(30
5*"#,5"+$5//>

?(2(-3(-"0
'()*+'(,(-"0
$'(5"(3 6/5--+-80'(.*/".

#'0."#$%&'(),".0
.+"*5"+#-

+.02'#$(..(3

45."('06'#3*$"+#-0
!$7(3*/+-8090
@;5/*5"+#-

45."('0
6'#3*$"+#-0
!$7(3*/+-8090
!+-8/(9:"(,

A*."#,('0
<()*+'(,(-".0
B$$*''(3

!(25'5"(02/5--+-8
'*-0"#01(0$5''+(30#*"0C#'0
,5."('0.$7(3*/(0+"(,.

!"

#"

$"

#%

#&

$%

(a)

!"#$%&'()*+'(,(-".
/+."0"#01(02'#$(..(3

45."('0
6'#3*$"+#-0
!$7(3*/+-8090
:-"('5$"+;(

45."('0
6'#3*$"+#-0
!$7(3*/+-8090
<#"5/06/5--+-8

45."('0
6'#3*$"+#-0
!$7(3*/+-8090
!+-8/(9:"(,

!"#$

%&

%'

4=>0/+."0+.0
$'(5"(3

6*'$75.(0
'()*+.+"+#-0
$'(5"(3

6/5--(3
#'3('0$'(5"(30
5*"#,5"+$5//?

@(2(-3(-"0
'()*+'(,(-"0
$'(5"(3 6/5--+-80'(.*/".

#'0."#$%&'(),".0
.+"*5"+#-

+.02'#$(..(3

45."('06'#3*$"+#-0
!$7(3*/+-8090
A;5/*5"+#-

%(

#"

@(,5-30
6'#8'5,0
B'(5"(3

!(25'5"(02/5--+-8
'*-0"#01(0$5''+(30#*"0C#'0
,5."('0.$7(3*/(0+"(,.

(b)

!"#$%&'()*+)$#'
,)"$-"&

.-*/01)"234)"#"%-5
645-'-*'7"'8)*/"55"&

9$-")4$6'
)"234)"#"%-5'
86$%%4%+':'
4%&4;4&3$6

<;")$66'
)"234)"#"%-5'
86$%%4%+

9=>'645-'45'
/)"$-"&

(3)/?$5"'
)"23454-4*%'
/)"$-"&

(6$%%"&
*)&")'/)"$-"&'
$3-*#$-4/$66@

!"8"%&"%-'
)"234)"#"%-'
/)"$-"&

(6$%%4%+')"536-5
)'5-/01)"2#-5'

54-3$-4*%
45'8)*/"55"&

9$-")4$6'
)"234)"#"%-5'
86$%%4%+':'
";63-4*%

!"

#$ %&

!'

#(

(c)

!"

#" #$%"

%$ %&

!$

#& #$%"

%' %(

!&

#' #(%"

%)

!"

#" #$

%$ %&

%" #&

%' %(

!$!&

#(#'

%)

!#*+,-. !#*+,/.

!#*+,0. !#*123

(d)

Fig. 1. Process fragments extracted from the SAP Reference Model.

as the union of a set RPSTs represented. A node in the RPSDAG corresponds to a SESE
fragment of a model in the collection, whereas edges encode the containment relation
among SESE fragments. Importantly, each fragment only appears once in the RPSDAG.
Thus, if a fragment appears multiple times, in the same RPST or in different RPSTs,
it is factored out and represented only once in the RPSDAG. For example, Figure 1(d)
shows the RPSTs and the RPSDAG of the process fragments presented in Figures 1(a)–
(c). Note that fragments B1 and P2 are represented only once in the RPSDAG. A node
in the RPSDAG that has more than one parent is an exact clone fragment.

Approximate Clone Detection in Repositories of Business Process Models 5

The RPSDAG is built incrementally. When a new process model is added to the
collection, the corresponding RPST is computed and merged into the existing RPSDAG.
The RPSDAG implementation described in [14] incorporates several optimizations that
make it scalable to real-life repositories of process models with hundreds of models. In
addition to identifying exact clones, the RPSDAG allows us to determine if a process
fragment is contained in another – a feature we will use during clustering.

2.3 Process Model Similarity

The similarity of process models specified in a graph-based notation can be measured
on the basis of three complementary aspects: the labels attached to tasks, events and
other model elements; their graph structure; or their execution semantics. In this paper,
we adopt a measure that combines structural and label similarity and that has been
shown to be correlated with perceived similarity [3]. This measure is defined over an
abstract representation of process models based on labelled graphs, as follows.

Definition 3 (Process graph). Let L be a set of labels. A (business) process graph H
is a tuple (V,E, λ) where V is the set of vertices, E ⊆ V × V is the set of edges, and
λ : V → L is a function that maps vertices to labels.

The adopted similarity measure is based on the well-known graph-edit distance [10].
The graph edit distance of two graphs is the minimal set of edit operations required to
transform one graph into the other. There are three edit operations: vertex substitution,
vertex insertion/deletion and edge insertion/deletion. A vertex substitution refers to the
fact that a vertex in one of the graphs is mapped to a vertex in the other graph. To define
a valid vertex substitution, we require a notion of vertex similarity. In this respect, we
consider that vertices are matched according to their label similarity measured in terms
of string-edit distance, denoted as Simled(label1, label2).2 A vertex substitution is only
allowed if the similarity between their labels is above a user-defined threshold (e.g.
0.6). Whenever a vertex in a graph is not matched to any vertex in the other graph, it is
considered as either inserted in one graph or deleted in the other one. Similarly, an edge
insertion (or deletion) operation is required for each edge that cannot be mapped to an
edge in the other graph. This intuition is formalized as follows.

Definition 4 (Normalized process graph edit distance [2]). Let H1 = (V1, E1, λ1)
and H2 = (V2, E2, λ2) be two process graphs. Let M : V1 9 V2 be a partial injective
mapping that maps vertices of H1 to vertices of H2. Moreover, let subv be the set of
substituted vertices, i.e., ∀v ∈ subv : v ∈ dom(M)∪ cod(M), skipv the set of skipped
vertices, i.e., ∀v ∈ skipv : v /∈ dom(M) ∪ cod(M), and skipe the set of skipped
edges, i.e., ∀(v, w) ∈ skipe : v /∈ dom(M) ∪ cod(M) ∨ w /∈ dom(M) ∪ cod(M). The
normalized graph edit distance induced by the mapping M is:

DistMGED(H1, H2) =
wskipv · fskipv + wskipe · fskipe+ wsubv · fsubn

wskipv + wskipe+ wsubv

2 Other measures of label similarity (e.g. semantic ones) can be used as discussed in [2].

6 C.C. Ekanayake et al.

where wskipv, wskipe and wsubv are relative weights in the range [0..1] assigned
to each graph-edit operation, fskipv is the fraction of skipped vertices, fskipe
the fraction of skipped edges, and fsubv the average distance between substituted
vertices, defined as fskipv = |skipv|

|V1|+|V2| , fskipe = |skipe|
|E1|+|E2|m and fsubv =

2·
∑

(v,w)∈M 1−Simled(λ1(v),λ2(w))

|E1|+|E2| , where Distled is the string-edit distance between
vertex labels.

Finally, the normalized graph-edit distance between H1 and H2, written
DistGED(H1, H2), is the smallest DistMGED(H1, H2) across all mappings M .

A DistGED of 0 means that the process graphs are identical, while a DistGED of
1 implies that the process graphs are completely dissimilar.

The problem of computing the graph-edit distance is NP-Complete [10]. In this
paper, we adopt a fast greedy heuristic described in [2]. Still, despite the fact that we use
a greedy heuristic, the computation of the DistGED is expensive. Accordingly, before
computing the actual DistGED between two graphs, we first calculate a lower-bound
of it. When this lower-bound is above threshold τ (cf. Definition 1), we do not need
to compute DistGED to determine if two fragments are approximate clones. In this
way, we avoid unnecessary calculations when clustering. The lower-bound is obtained
from the following observations. First, we take the largest of the two graphs (i.e. the
one with more nodes and more edges). Say that H1 is larger than H2 (otherwise we
revert the roles). Now, assuming that H1 is a subgraph of H2, all vertices of H1 can be
substituted by vertices of H2, all edges of H1 are matched with edges of H2, and no
vertices are substituted. The only differences come from the vertices and edges of H2

that are not in H1. Thus, fskipv =
∣∣∣ |V1|−|V2|
|V1|+|V2|

∣∣∣, fskipe =
∣∣∣ |E1|−|E2|
|E1|+|E2|

∣∣∣ and fsubv =

0. These are lower-bound values. If the assumption that H1 is not a subgraph of H2

is violated, then the graph-edit distance will necessarily be greater because it entails
additional differences. Thus, we conclude that DistGED(H1, H2) is greater than the
one obtained by feeding the above lower-bound values of fskipv, fskipe and fsubv
into the equation for DistMGED(H1, H2) in Definition 4. Note that if the graphs have
equal size, the obtained lower-bound is zero – which is not useful.

3 Approximate Clones Clustering

In order to operationalize the two approaches proposed in the introduction, we reviewed
various clustering algorithms and selected two of them which allowed us, with minor
adaptations, to fulfill our requirements. These are the Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [13] for the first approach, and the Hierarchical
Agglomerate Clustering (HAC) [13] for the second approach. In both algorithms, de-
scribed below, we assume that the distance between every possible pair of fragments
has been pre-computed and stored in a distance matrix. This matrix only stores the dis-
tance DistGED of Definition 4 for a pair of fragments if this is within the user-defined
threshold τ , and if the two fragments do not contain one another (non-containment
relationship). For all other fragment pairs, it stores∞.

Approximate Clone Detection in Repositories of Business Process Models 7

3.1 Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

In the first approach we propose to standardize a set of clones towards a medoid frag-
ment. Given a cluster, a medoid is an element of the cluster that is the closest to the
center of the cluster. The medoid does not necessarily coincide with the center of the
cluster (called centroid) since in our problem the distance between the medoid and all
other cluster elements is not the same, but is bounded by the user-defined threshold. A
well-known algorithm that is built upon this principle is DBSCAN. DBSCAN creates
clusters based on the density of neighborhoods. Given a set of objects O, the neighbor-
hood of an object o ∈ O is the set of fragments No = {oi ∈ O | d(o, oi) ≤ ε}, where
d(o, oi) is a distance measure between o and oi and ε is the neighborhood radius. A
core object is an object whose |No| ≥ Sizemin, where Sizemin is the minimum cluster
size (we observe that a core object is contained in its neighborhood since its distance
with itself is 0). Thus, we have to specify two parameters for this algorithm: neighbor-
hood radius and minimum cluster size. In our case, the neighborhood radius coincides
with the used-defined distance threshold τ , whereas we can fix Sizemin to 2 to retrieve
clusters of at least two fragments. Moreover, we use the notion of graph-edit distance
DistGED as the distance measure between two objects.

Standard DBSCAN identifies all core objects of a given dataset and considers their
neighborhoods as initial clusters. If two core objects are within each other’s neigh-
borhood, their neighborhoods are merged into a single cluster. On the other hand, if an
object does not belong to the neighborhood of any core object, it is marked as noise. Our
adaptation of DBSCAN is described in Algorithm 1. Given the set of process fragments
G extracted from the RPSDAG, the algorithm repeats the clustering process (Steps 2–
14) until all fragments in G have been checked whether they are core objects. At the
beginning of each iteration, a random fragment f is removed from G and marked as
“processed”. The neighborhood Nf of f is computed (Step 3), and if f is a core ob-
ject the fragments in Nf are removed from G and from Noise (Step 5), and added to
a new cluster C (Step 6). Otherwise f is treated as noise and another fragment is ex-
tracted from G. The algorithm then expands cluster C by checking whether there are
core objects in C whose neighborhoods can be merged with C. This is done by iterating
over all fragments in Nf except f , via a set MC . For a fragment m in MC that has not
been processed, its neighborhood Nm is computed (Step 8) to determine whether m is
itself a core object. If so, before merging its neighborhood with C, we check whether
there is still a medoid s whose distance with all other fragments of the combined cluster
is within τ (Step 10), otherwise we will create clusters whose fragments are far apart
from each other to be standardized. In case of merging, the fragments in Nm are re-
moved from G and added, except m, to MC (Step 11), so that they can be checked
whether they are core objects. If Nm cannot be merged with C, m is added back to G
so that it can be eventually processed again (Step 12). In fact, Nm may form a cluster
by itself or be merged with some other cluster.

A fragment’s neighborhood is constructed using the distance matrix. Given the non-
containment relation enforced by this matrix, a fragment cannot be in the neighborhood
of a core object that contains or is contained by it. Still, it is possible to include two re-
lated fragments in a neighborhood if they are both sufficiently similar to the core object.
To prevent this, we retrieve the set of all the ascendants and descendants of a fragment

8 C.C. Ekanayake et al.

Algorithm 1: DBSCAN Clustering
Input: Set G of process fragments.
Output: The sets of clusters (Clusters) and noise (Noise).

Initialize Clusters and Noise to empty sets.1
Remove a fragment f from G and mark f as “processed”.2
Retrieve the neighborhood Nf .3
If |Nf | < Sizemin, add f to Noise , then go to 2.4
Remove Nf from G and from Noise .5
Initialize a new cluster C in Clusters with Nf , and a new set MC to Nf \ {f}.6
Remove a fragment m from MC .7
If m is not “processed”, mark m as “processed” and retrieve Nm.8

If Nm ≥ Sizemin9
If there is a fragment s ∈ C ∪Nm such that for all p ∈ C ∪Nm DistGED(s, p) ≤ τ10

Remove Nm from G and Noise and add Nm to C and Nm \ {m} to MC .11
Else, mark m as “unprocessed” and add it to G.12

If MC 6= ∅ go to 7.13
If G 6= ∅ go to 2.14

by computing its transitive closure on the RPSDAG, and add to the neighborhood the
fragment in the transitive closure that is the nearest to the core object (the original frag-
ment may thus be discarded in favor of one of its ascendants or descendants). Further,
we mark all other fragments in the transitive closure as “visited” for that cluster, so that
these fragments will not be included in any neighborhood of that cluster.

The complexity of Algorithm 1 is dominated by that of the neighborhood compu-
tation (Steps 3 and 8), and by that of the merging condition (Step 10). Neighborhood
computation for a fragment f requires at most |G| − 1 lookups in the distance matrix.
The exploration of the transitive closure of each neighbor of f requires further |G| − 1
lookups (retrieving the transitive closure of an RPSDAG node is linear on the RPS-
DAG size, which is bounded by |G|). Similarly, the merging condition requires |G| − 1
lookups in the distance matrix for all members of a cluster. As the main loop is repeated
|G| times, the overall complexity of Algorithm 1 is O(|G|3). This is higher than the
complexity of standard DBSCAN, which is O(|G|2) [13]. That said, in our experience
the algorithm showed to be efficient (cf. Section 4). In fact, the search space is greatly
reduced by the cutoff conditions used when computing the distance of clusters, i.e. the
distance threshold τ and the non-containment relationship. The result is that the dis-
tance matrix is highly sparse, but the sparsity depends on intrinsic characteristics of the
process model collection. Further, we store each computed neighborhood so that it can
be reused when reprocessing a core object whose neighborhood has not been merged.

3.2 Hierarchical Agglomerate Clustering (HAC)

In the second approach, a set of clones can be standardized by selecting any fragment
in the group as a reference and standardizing all other fragments towards this reference
fragment. In other words, we require that every pair of fragments in a cluster has a dis-
tance below the threshold τ . This goal can be straightforwardly mapped to the strategy

Approximate Clone Detection in Repositories of Business Process Models 9

followed by the basic hierarchical agglomerative clustering method [13]. This cluster-
ing method starts with singleton clusters and iteratively combine the pair of clusters
that is found to be the closest among all other possible pairs. The process of merging
continues until there is only one cluster left.

One key issue is the definition of the distance between two clusters, which needs
to be recomputed after every cluster merging. Several possibilities are available: taking
the smallest distance between fragments in one of the clusters to the fragments in the
other one, known as single link; taking the farthest distance, referred to as complete
link; among others. It can be easily see that the complete link strategy suites well to our
purposes, as it allows to identify the cluster mergings that will not meet the requirement
of keeping a distance below the threshold τ . Note that the identification of such situation
can be accomplished ahead of time. The intuition is captured in the following definition.

Definition 5 (Distance of clusters under complete link strategy). Let Ci and Cj be
clusters in the dendrogram built by a hierarchical clustering algorithm, and τ be the
similarity threshold among fragments of Ci and fragments of Cj . Moreover, let F(C)
be a function that returns the set of fragments associated to C, inductively defined as
follows: (BASE) if C is a leaf node in the dendrogram, C is a singleton and refers to
a single fragment, say f , then F(C) = {f}; (STEP) if C is an intermediate node then
F(C) = ∪c∈CF(c). The distance of clusters Ci and Cj , denoted as Dist(Ci, Cj), can
defined as follows.
∞ if ∃f ∈ F(Ci), g ∈ F(Cj) : g ⊆ f ∨ f ⊆ g
∞ if maxf∈F(Ci),g∈F(Cj)DistGED(f, g) > τ
maxf∈F(Ci),g∈F(Cj)DistGED(f, g) otherwise

We note that the distance of two clusters is set to∞ when there exist one fragment
in the first cluster which is in containment relationship with another fragment in the
second cluster. Moreover, when farthest distance between fragments of both clusters is
above the threshold τ , the distance is set to∞. In the two previous cases, we are meeting
the constraints described in Definitions 1 and 2. Finally, the farthest distance between
fragments of both clusters is reported as the distance of the clusters, only when the value
is less or equal to the threshold τ . Algorithm 2 corresponds to the modified version of
the basic hierarchical agglomerative method adapted for clustering approximate clones.

Algorithm 2 can be divided into two parts. Step 1 and 2, initialize the set of single-
ton clusters, stores them in TopClusters and initializes the distance matrix between
clusters (according to Definition 5). The remaining steps correspond to the main loop.
In Step 3, a pair of clusters is selected such that their distance is found to be the small-
est among all other possible pairs. If the distance of such pair is ∞ or there is only
one cluster left then the algorithm stops. In Step 4, a new cluster is created to hold the
union the previously selected pair. In Step 5, the distance matrix is updated (according
to Definition 5), by removing the pair clusters previously selected and adding the newly
created cluster.

The algorithm starts with a working set of |G| clusters. In every iteration, two clus-
ters are removed and a new one is added. Hence, the size of the working set decreases
monotonically. The algorithm stops when |TopClusters| = 1 or before if the entire
distance matrix D is filled with∞.

10 C.C. Ekanayake et al.

Algorithm 2: Hierarchical Agglomerative Clustering
Input: Set G of process fragments.
Output: The set of maximal clusters, viz. TopClusters.

For each f ∈ G create a singleton cluster. Initialize TopClusters to contain all singleton1
clusters.
Using the distance matrix between fragments, calculate the initial distance matrix between2
clusters in TopClusters, i.e. D[i, j]← Dist(Ci, Cj), where Ci, Cj ∈ TopClusters .
In the distance matrix D, select a pair of clusters Ci, Cj ∈ TopClusters such that their3
distance is the minimum. Stop if no such pair exists, i.e. either all distances in D are∞ or
|TopClusters| = 1.
Combine clusters Ci and Cj to form a new cluster Cij . Remove clusters Ci and Cj from4
TopClusters. Add cluster Cij to TopClusters.
Update matrix D by adding the distance between cluster Cij and all other clusters in5
TopClusters.
Go to 3.6

The complexity of Algorithm 2 is dominated by the maintenance of the distance
matrix (i.e., Steps 2 and 5), which has an initial size of O(|G|2). As the main loop
is repeated O(|G| − 1) times, the worst-case upper bound of the complexity is of
O(|G|3) [13]. The same simplifications of the search space that we used for DBSCAN
apply to HAC (distance cutoff and non-containment). Also this algorithm has shown to
be efficient in our experience.

4 Evaluation

We implemented the two algorithms as a Java console application and evaluated them in
a twofold manner. First, we performed a descriptive analysis of approximate clone clus-
ters in two industrial process model collections in order to assess the potential useful-
ness of the techniques. Secondly, we conducted an experiment to measure the accuracy
of the technique at retrieving fragments resulting from copy/pasting and subsequent in-
dependent changes. Both experiments make use of a measure of cluster quality intended
to capture the potential benefits of standardization.

4.1 Cluster quality measure

The proposed techniques are aimed at retrieving clusters of fragments that can be stan-
dardized into a common fragment. Such a standardization activity entails a certain ef-
fort and brings in certain benefits – in the form of less duplication and thus smaller
total repository size. We contend that clusters that have a higher benefit-to-cost ratio are
most likely to be candidates for standardization. In particular, if a cluster of approximate
clones has emerged from copy/pasting of a fragment followed by independent changes
of the copied fragments, it is likely to have a high benefit-to-cost ratio, provided that
the changes made are not considerable.

Approximate Clone Detection in Repositories of Business Process Models 11

To operationalize the benefit-to-cost ratio as a measure of cluster quality, we need to
define a cost measure and a benefit measure. The cost of standardizing the fragments of
a cluster into a single fragment is determined by many factors, some of them exogenous
to the process models themselves. However, we contend that this cost is proportional
to the amount of elementary changes that will be made to the fragments in order to
standardize them to one common subprocess. Indeed, each elementary change will re-
quire a certain amount of effort to ensure that the execution of the process is adapted to
this change. Accordingly, we hereby use the absolute GED (DistAGED(H1, H2)) de-
fined in the same way as DistGED(H1, H2) in Definition 4 but replacing fskipv and
fskipe with |skipv|, |skipe| respectively, and removing the denominator in the defini-
tion of fsubv. In other words, we count actual number of edit operations as opposed to
fraction of edit operations relative to total size. We do not used the normalized GED in
this context (DistGED), because this normalized version is not reflective of the number
of operations required to standardize the fragments. Instead, DistGED is reflective of
the percentage difference shared between two models.

In the case of clusters produced using DBSCAN, there is a designated medoid
that serves as a reference. Thus, the cost of standardizing the cluster is the sum
of the distances between each fragment in the cluster and the medoid (m), i.e.∑
f∈C DistAGED(f,m). In the case of clusters produced using hierarchical cluster-

ing, every fragment in the cluster could potentially be used as the “medoid” towards
which all fragments would be standardized. Assuming that the aim is to maximize the
benefit-to-cost ratio, we will pick as medoid the fragment that will yield the highest
benefit-to-cost ratio (see below).

The benefit of standardizing and refactoring a cluster into a subprocess is propor-
tional to the amount of reduction in duplication, which in turn reflects itself in a re-
duction in size of the overall repository. This size reduction is equal to the sum of the
sizes of the fragments in the cluster (since they are removed) to which we subtract the
size of the medoid – since this medoid becomes a new subprocess – and the number of
fragments – since each cluster is replaced by a “call activity” to the subprocess. In other
words, the benefit of standardizing a cluster is

∑
f∈C |f | − |m| − |C|.

Given the above, we define the benefit-to-cost ratio of a cluster obtained with the
DBSCAN method as BCR(C) =

∑
f∈C DistAGED(f,m)∑

f∈C |f |−|m|−|C|
. In the case of hierarchical

clustering, we define the benefit-to-cost ratio of a cluster as the maximum of BCR(C)
across all fragments in the cluster.

4.2 Potential usefulness assessment

We assessed the potential usefulness of the approximate clone clustering techniques us-
ing two datasets. The first dataset is the SAP R/3 reference model [6]. It contains 595
models with sizes ranging from 5 to 119 nodes (average 22.28). The second dataset is
taken from an insurance company under condition of anonymity. It contains 363 mod-
els ranging from 4 to 461 nodes (average 27.12). We first computed the RPSDAG for
both datasets and post-processed them by factoring out all exact clones using the tech-
nique presented in [14]. This yielded 2348 non-trivial fragments for the SAP dataset
(11.47 average size) and 2037 non-trivial fragments for the insurance dataset (16.58 av-

12 C.C. Ekanayake et al.

erage size). We then applied the two clustering methods independently – having elimi-
nated exact clones to avoid double-counting. The clustering algorithms were run with a
DistGED threshold of 0.4.

All tests were run on a PC with a dual core Intel processor, 1.8GHz, 4GB memory,
running Microsoft Windows 7 and Oracle Java Virtual Machine v1.6. The cluster com-
putation is dominated by the computation of the distance matrix which took 26.3 mins
for the SAP dataset and 2.69 hours for the insurance dataset. The time for clustering
itself is negligible in comparison. The longer time taken for the insurance dataset is jus-
tified by the size of its fragments – much larger than those in the SAP dataset (e.g. the
largest fragment in the insurance dataset is a rigid with 461 nodes whereas the largest
SAP fragment contains 117 nodes).

Figure 2 plots the histograms of distribution of cluster sizes for the two datasets. For
the SAP dataset we retrieved a total of 364 clusters with DBSCAN (with sizes ranging
from 2 to 5 clusters) and 335 clusters for HAC (sizes between 2 and 13), while for
the insurance dataset we retrieved 243 clusters with DBSCAN (sizes between 2 and 6)
and 309 clusters with HAC (sizes between 2 and 10). This confirms the intuition that
real-life process model repositories contain a large number of approximate clone clus-
ters, and thus that copy/pasting of fragments across process models is a very common
practice. Looking at the size distribution, for both datasets the majority of the clusters
retrieved by the two algorithms contain between 2 and 8 fragments, with the largest
clusters having 2 fragments. This suggests that copy/pasting is typically limited to 6-8
copies per fragment.

2 (2, 4] (4, 8] (8, 16]
DBSCAN 225 133 6 0
HAC 207 93 31 4

0

50

100

150

200

250

Cl
us

te
rs

Clusters size (SAP)

2 (2, 4] (4, 8] (8, 16]
DBSCAN 176 63 4 0
HAC 207 76 23 3

0

50

100

150

200

250

Cl
us

te
rs

Clusters size (Insurance)

Fig. 2. Number of clusters vs clusters size for both algorithms.

Figure 3 shows the histograms of distributions of BCR for both datasets. We observe
that in general none of the techniques performs better than the other, since for the SAP
dataset we achieve higher BCRs for HAC than for DBSCAN, whilst for the insurance
dataset it is the other way around. This suggests that depending on the type of the
repository, one of the two techniques might be more appropriate than the other.

4.3 Retrieving copy/pasted fragments

The second experiment aimed to evaluate the accuracy of the clustering techniques
with respect to the task of retrieving clusters of clones that have emanated from a single
original fragment by means of copy/pasting followed by independent changes to the
duplicated fragments. We did so by simulating a situation where new fragments are
inserted in an existing process model repository by copying a master fragment across

Approximate Clone Detection in Repositories of Business Process Models 13

<1 [1, 2) [2, 4) [4, 8) [8, 16) [16, 32) [32, 64)
DBSCAN 7 287 60 7 1 2 0
HAC 147 89 54 23 5 11 6

0

50

100

150

200

250

300

Cl
us

te
rs

Benefit-cost ratio (SAP)

<1 [1, 2) [2, 4) [4, 8) [8, 16)

DBSCAN 2 124 85 24 8

HAC 155 102 37 11 4

0

20

40

60

80

100

120

140

160

C
lu

st
er

s

Benefit-cost ratio (Insurance)

Fig. 3. Number of clusters vs benefit/cost ratio for both algorithms.

various models of the repository, after doing minor changes. We randomly extracted 50
fragments from the two datasets used in the previous experiment, such that they were
sufficiently different from each other (pairwise graph-edit distance above 70%).

To test the accuracy of the DBSCAN algorithm, we used these 50 fragments as
“seeds” to generate 50 artificial clusters by producing from 2 to 10 variants for each
seed, and grouping each seed with its variants in a cluster. We obtained a total of 311
fragments in 50 clusters. Seed variants were obtained by applying simple change op-
erations (edge/node removal or insertion), such that the graph-edit distance between a
variant and its seed was no more than 40% – the same threshold that we used in the
first experiment. The clusters’ size ranged from 3 to 10 fragments (average 6.35). We
then generated 300 process models from the two existing datasets, such that none of
these models contained any of the seed fragments, and we randomly inserted the 311
fragments into these models such that a model would contain from 0 to 2 fragments.
We then extracted the RPSDAG from this dataset and clustered the retrieved fragments
using our DBSCAN. The algorithm retrieved 328 clusters. We matched each artificial
cluster with the retrieved fragment that yielded the maximum FScore [17]. FScore is the
harmonic mean of the recall and precision of a retrieved cluster with respect to (w.r.t.)
an artificial cluster. Precisely, given an artificial cluster l and a retrieved cluster s, the
FScore of s w.r.t. l is F (s, l) = 2·R(s,l)·P (s,l)

R(s,l)+P (s,l) where R(s, l) and P (s, l) are the recall
and precision of s w.r.t. l.

In order to measure the overall quality of the algorithm, we then computed the
weighted average FScore (Fwa) [17]. Fwa is the maximum FScore of each artificial
cluster weighted against the combined size of all artificial clusters. Let L be the set of
artificial clusters and S the set of retrieved clusters. Then Fwa =

∑L
l=1

|l|
|L|F (l), where

F (l) = maxs∈S F (s, l).
We repeated the same experiment for the HAC algorithm. In order

to ensure that all fragments in an artificial cluster have pairwise graph-
edit distance within the 40% threshold, we used a random walk approach.

Recall Precision Fwa

min max avg std min max avg std
DBSCAN 0.17 1 0.71 0.37 0.2 1 0.89 0.24 0.73

HAC 0.1 1 0.82 0.25 0.17 1 0.84 0.33 0.77

Table 1. Various quality metrics for the two algorithms.

From each seed we generated a variant
with graph-edit distance of at most 0.4.
We chose one of these two fragments and
generated another variant such that its
distance to both fragments was at most
0.4, and so on until we generated from 2

14 C.C. Ekanayake et al.

to 10 variants for each cluster. This led to a total of 289 fragments in 50 clusters, with
sizes ranging from 3 to 10 fragments (average 5.8). We inserted these fragments in the
collection of 300 process models that we generated in the previous step, and then clus-
tered the fragments retrieved from the RPSDAG of this collection using HAC. This led
to 295 clusters.

The results for both algorithms are reported in Table 1. Besides Fwa, this table
reports the minimum, maximum, average and std. deviation of recall and precision for
the best-matched retrieved cluster for each artificial cluster. The accuracy of the two
algorithms is partly affected by the presence of approximate clones that exist in the
generated process model collections, besides those that have been generated artificially.
Despite this, the results show high Fwa (0.73 for DBSCAN and 0.77 for HAC), as well
as high average precision and recall for both algorithms, demonstrating the accuracy of
the algorithms. None of the algorithms clearly outperforms the other.

Finally, we used the above data to evaluate the ranking accuracy of the BCR.

1 - Specif ici ty
1.00.80.60.40.20.0

S
en

si
tiv

ity

1.0

0.8

0.6

0.4

0.2

0.0

ROC Curve - DBSCAN

Page 1

1 - Specif ic i ty
1.00.80.60.40.20.0

S
en

si
tiv

ity

1.0

0.8

0.6

0.4

0.2

0.0

ROC Curve - Hierarchical Clustering

Page 1

Fig. 4. ROC curves for both algorithms.

For each algorithm, we plot-
ted a ROC curve by ordering
the retrieved clusters from the
highest to the lowest BCR. In
these curves, we considered a
retrieved cluster as a true posi-
tive if it had a recall of 1, and
as a true negative otherwise. The
curves, shown in Fig. 4, show
that the clusters with highest
BCR are indeed those that most
closely match the synthetically
generated clusters. This result is confirmed by the Area Under the Curve which is 0.72
for DBSCAN and 0.89 for HAC (both with asymptotic significance less than 0.05).

5 Related Work

Clone detection in software repositories has been an active field of research for several
years [7]. However in this field focus has been on exact software clone detection.

In the field of model-driven engineering, approximate clone detection has been in-
vestigated in [1] and [11]. In [1] the authors present CloneDetective, a method for de-
tecting clones in large repositories of Simulink/TargetLink models from the automotive
industry. Models are partitioned into connected components and compared pairwise us-
ing a heuristic subgraph matching algorithm. According to [11], CloneDetective suffers
from low inaccuracy and low degree of completeness in detection, mainly due to the
fact that small clones are absorbed by larger clone pairs. In other words, the algorithm
tends to find as large clones as possible, whereas in our approach we allow related frag-
ments to belong to different clusters, in order to allow users to choose the abstraction
level at which to standardize. Moreover, this method is not very sensitive to approxi-
mate clones having small differences. These cases commonly result from copy/pasting
and as such they should not be discarded. Moreover, they yield low standardization
costs making them easy to standardize. The work in [11] overcomes these problems by

Approximate Clone Detection in Repositories of Business Process Models 15

proposing two methods for exact and approximate matching of clones. In particular, the
second method, namely aScan, represents graphs by a set of vectors built from graph
features: e.g. path lengths and vertex in/out degrees. An empirical study shows that this
feature-based approximate matching improves pre-processing and running times, while
keeping a high precision. Despite these advantages, the method proposed in [11] does
not fulfill our requirements: The resulting clones may be non-SESE fragments and the
identified clusters do not necessarily satisfy any of the properties in Definition 2.

Refactoring process model collections has been investigated in [14, 4, 16]. In [14],
we described a technique to find fragments that are equal across different process mod-
els, so that they can be factored out in separate subprocess. In this paper, we assume
that all such exact clones have already been factored out, but we reuse the RPSDAG
structure that we built in [14] to identify hierarchical dependencies among fragments in
different process models. In [4], process fragments that are sufficiently similar to each
other are identified. In contrast to our work, fragment similarity is exclusively based on
label similarity rather than a combination of label and structural similarity. Also, frag-
ments are considered pairwise and no clustering takes place. This approach can help
analysts detect overlap between process models, however no support is offered to stan-
dardize these similar fragments such that they can be refactored. In [16], eleven process
model refactoring techniques are identified and evaluated. Extracting process fragments
as subprocesses is one of the techniques identified. Our work addresses the problem of
identifying opportunities for such “fragment extraction” and provides an actual imple-
mentation and experimentation. In addition, [16] does not consider clustering.

Clustering of process models has been dealt with in [5] and [9]. In both cases pro-
cess models are clustered rather than process fragments leading to a small number of
clusters. Using fragments instead of process models is more complex, but for the pur-
poses of standardization and reuse it is more suitable as a fragment may be shared
between process models, while the rest of these models may be quite different.

In [8] an approach is described to synthesize the most representative process model
out of a collection of variants. This work is complementary to ours in that it could be
used after clustering has been applied in order to synthesize the centroid of a cluster.
However, this is not the approach we followed as this may likely lead to an artificially
created centroid which does not represent an actual fragment occurring in a process
model. The presence of such an artificial fragment could cause problems for a business
analyst when trying to standardize a cluster.

6 Conclusion

This paper presented two techniques for retrieving clusters of approximate clones for
possible refactoring into shared subprocesses. Experiments showed that both clustering
techniques, coupled with the proposed measure of cluster quality (benefit-to-cost ratio),
are able to accurately retrieve clusters resulting from copy/pasting activity followed
by independent modifications to the copied fragments. Hence, the proposed techniques
could be used to re-consolidate copies of a fragment. A descriptive analysis of clones
in two industrial process model repositories put into evidence a proliferation of approx-
imate clones of varying sizes and benefit-to-cost ratio.

16 C.C. Ekanayake et al.

The evaluation is limited in at least two respects. First, clustering and cluster rank-
ing accuracy are evaluated based on synthetic data – albeit generated via perturbations
of real-world fragments. The retrieved clusters may not be reflective of the types of
clusters that analysts would find most suitable for standardization and refactoring. Ad-
dressing this limitation requires a realistic “golden standard”, for example, one resulting
from a manual assessment of cluster quality by domain experts. This is a direction for
future work. A second limitation of the study is that only two repositories were used
to evaluate the potential benefit of the proposed techniques. In one case one technique
led to higher overall benefit-to-cost ratio, while the reverse was observed in the sec-
ond case. Further evaluation is needed to determine in what cases one technique should
be preferred over the other. Finally, the evaluation could be extended to include other
clustering techniques.

References

1. F. Deissenboeck, B. Hummel, E. Jürgens, B. Schätz, S. Wagner, J.-F. Girard, and S. Teuchert.
Clone Detection in Automotive Model-based Development. In ICSE, 2008.

2. R.M. Dijkman, M. Dumas, and L. Garcı́a-Bañuelos. Graph matching algorithms for business
process model similarity search. In BPM, volume 5701 of LNCS. Springer, 2009.

3. R.M. Dijkman, M. Dumas, B.F. van Dongen, R. Käärik, and J. Mendling. Similarity of
business process models: Metrics and evaluation. Inf. Syst., 36(2):498–516, 2011.

4. R.M. Dijkman, B. Gfeller, J.M. Küster, and H. Völzer. Identifying refactoring opportunities
in process model repositories. Information & Software Technology, 53(9):937–948, 2011.

5. J.-Y. Jung and J. Bae. Workflow clustering method based on process similarity. In ICCSA,
volume 3981 of LNCS. Springer, 2006.

6. G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation: Iterative Process Pro-
totyping. Addison-Wesley, 1998.

7. R. Koschke. Identifying and Removing Software Clones. In Software Evolution. Springer,
2008.

8. C. Li, M. Reichert, and A. Wombacher. The minadept clustering approach for discovering
reference process models out of process variants. IJCIS, 19(3-4):159–203, 2010.

9. J. Melcher and D. Seese. Visualization and clustering of business process collections based
on process metric values. In SYNASC. IEEE, 2008.

10. B.T. Messmer. Efficient Graph Matching Algorithms. PhD thesis, Switzerland, 1995.
11. N.H. Pham, H.A. Nguyen, T.T. Nguyen, J.M. Al-Kofahi, and T.N. Nguyen. Complete and

Accurate Clone Detection in Graph-based Models. In ICSE, pages 276–286. IEEE, 2009.
12. A. Polyvyanyy, J. Vanhatalo, and H. Völzer. Simplified Computation and Generalization of

the Refined Process Structure Tree. In WSFM, 2010.
13. P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison-Wesley,

2005.
14. R. Uba, M. Dumas, L. Garcı́a-Bañuelos, and M. La Rosa. Clone detection in repositories of

business process models. In BPM, pages 248–264, 2011.
15. J. Vanhatalo, H. Völzer, and J. Koehler. The Refined Process Structure Tree. Data Knowl.

Eng., 68(9):793–818, 2009.
16. Barbara Weber, Manfred Reichert, Jan Mendling, and Hajo A. Reijers. Refactoring large

process model repositories. Computers in Industry, 62(5):467–486, 2011.
17. Ying Zhao and George Karypis. Evaluation of hierarchical clustering algorithms for docu-

ment datasets. In CIKM, pages 515–524. ACM, 2002.

