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Soundness for Resource-Constrained Workflow Nets
is Decidable

Natalia Sidorova and Christian Stahl

Abstract—We investigate the verification of the soundness
property for workflow nets extended with resources, thereby con-
sidering the most general instance of soundness, which requires
that for any number of instances, the workflow net has always
the possibility to terminate, for a certain initial (finite) number
of resource items per resource type; moreover, adding additional
resources to a sound net does not violate the result. We prove
that this problem is decidable by reducing it to a home-space
problem, and we show how soundness can be decided by using
the procedure for deciding a home-space property.

Index Terms—Decidability, Petri nets, Workflow nets,
Resource-constrained workflow nets, Soundness, Home-space

I. INTRODUCTION

INFORMATION systems have become the backbone of
most organizations. Processes form the core of most in-

formation systems [1]. They orchestrate people, information,
and technology to deliver products. In this paper, we focus on
workflows. A workflow refers to the automation of a process
by an IT infrastructure, in whole or in part [2].

A workflow consists of a set of coordinated tasks describing
the flow of work within the organization. The occurrence of
those tasks may depend on resources, such as machines, man-
power, and raw material. Often, several cases (i.e., instances)
of a workflow may coexist, and they may all concurrently
access the resources. Thus, the execution of a workflow can
be seen as executing several threads of a piece of software.

A workflow forms a parameterized system with two param-
eters: the number k of cases and the vector R of resources,
indicating a finite number of resources available for each
resource type. Although we assume the workflow (and thus
every case) to be finite state and also the number of resources
available for each resource type to be finite, the total number of
cases can be unbounded, and the number of resources available
differs for each organization for the same workflow, making
the analysis of such a system challenging.

One of the most established correctness criteria for work-
flows is the soundness property. In its most general form,
soundness guarantees that for any number k of cases, there
exists a number of resources of each type such that all cases
have always the possibility to terminate. In addition, we
require that adding resources to the workflow do not violate
the result. As we restrict ourselves to durable resources in this
paper, i.e. resources that can neither be created nor destroyed,
soundness also ensures that the number of resources initially
available remains invariant.
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Fig. 1. An unsound resource-constrained workflow net.
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Fig. 2. A sound variant of the resource-constrained workflow net in Figure 1.

For the modeling of workflows, workflow nets have been es-
tablished [3] and later also extended to deal with resources [4],
[5]. To illustrate the model of workflow nets extended with
resources and the soundness property, consider the simple
example in Figure 1. Every case has to sequentially execute
tasks t, u, and v. Each task is modeled as a transition in
Figure 1. The tasks depend on one type of resources, modeled
as tokens in place r. To execute task t, one resource is taken;
u requires one resource, and v returns the two resources. A
(fresh) case is modeled as a token in place i, a terminated
case as a token in place f . The net in Figure 1 is unsound:
For any number k of tokens in i (i.e., cases) and any number
z of tokens in r (i.e., resources) such that k = z, it is always
possible to reach a marking with k tokens in p and zero tokens
in r. In this (nonfinal) marking, the net is stuck and, therefore,
it is not sound. The cause of the deadlock in Figure 1 is that
task t may be executed although there are not enough resources
to continue with task u.

Figure 2 shows another resource-constrained workflow net,
which is a slightly modification of Figure 1. In this net, task t
takes two resources rather than one but returns one resource.
This simple change guarantees that at least one instance has
the possibility to execute task u because an instance that
enters place p will always return one resource on r. As a
consequence, for any number k of tokens in i and any number
z of tokens in r, it is always possible to reach a marking with k
tokens in f and z tokens in r. Thus, we conclude that Figure 2
is sound.

Verification of soundness has been addressed by several
researchers. However, they reduce the complexity caused by
the two sources of unboundedness—the number of cases and
the addition of (arbitrary many) resources—by considering
simpler instances of this problem. Van Hee et al. [5] restrict
the number of resource types to one, and Barkaoui et al. [6]
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Fig. 3. Instantiation net [8] for Figure 2 in case of z = 2.

present solutions for restricted subclasses of workflow nets.
Soundness of the net in Figure 2 can be proved using the
technique in [5], for instance. In [5] remained still the open
question whether soundness in this general setting is decidable,
because the verification of parameterized systems is known to
be undecidable in general [7].

Recently, the authors in [8] tried to address the question
whether soundness is decidable and presented a scheme for
reducing this problem to a home marking problem. Unfortu-
nately, the reduction scheme presented in [8] does not work.
The error can easily be illustrated on the example in Figure 2.
The proof idea in [8] is to construct a so-called case-resource
instantiation net that instantiates a given net with an arbitrary
number of instances and resources. Figure 3 illustrates the
construction of a case-resource net from [8] applied to the net
in Figure 2. The subnet on the bottom generates any number
k of instances on the start place i by firing transition t1. After
firing t2, this subnet can consume all terminated cases from
place f by firing t3. Likewise, the subnet at the top generates
any number j of additional resources on the resource place
r (by firing transition tr,1). After firing tr,2, the additional
resources can be removed from place r by firing tr,3.

Lemma 3.1(3) of [8] gives a false statement about the equiv-
alence of the soundness problem of a resource-constrained
workflow net to a home marking problem for its case-resource
instantiation net. According to this lemma, the net in Figure 2
is sound if and only if for any reachable marking of the
net in Figure 3, it is always possible to reach a marking
with one token in p3 and one token in place pr,3 (i.e., this
marking is a home-marking). However, the subnet at the
bottom of Figure 3 might first put tokens on place r (i.e.,
it adds additional resources) and then steal those resources by
firing transition tr,3 before the running cases are terminated.
In the example, we start with the marking [p1, pr,1, 2r] (i.e.,
one token on place p1, one token on place pr,1, and two
tokens on r—the marking shown in Figure 3). Firing transition
sequence t1 t1 tr,1 t t tr,2 tr,3 creates two case instances, adds
one resource, executes the task t of the workflow for both
instances, and finally steals the only resource left available,
thus yielding the marking [p1, pr,3, 2p] in which the workflow
net is deadlocked because no resource is available and, thus,

transition u cannot be fired while both cases need a resource to
proceed by firing u. One cannot easily repair the construction
in Figure 3 and find a way to reduce the problem to the
home marking problem. This would require to guarantee that
transition tr,3 can fire only if t3 cannot become enabled (i.e.,
all cases have terminated and have been removed from f by
firing t3). This can, however, only be achieved by introducing
an inhibitor arc for each resource place (i.e., an arc that tests
whether a place contains zero tokens). The home-marking
problem is, however, in general undecidable for Petri nets with
inhibitor arcs [9], [10].

So the question whether soundness is decidable is still not
answered. In this paper, we show that soundness verification
for arbitrary resource-constrained workflow nets extended is
decidable by reducing it to a home-space property. We also
show how soundness can be decided by applying the decision
procedure for deciding home-space properties.

Organization of the paper: We continue by providing
the background in Section II. In Section III, we introduce
our model of resource-constrained workflow nets—that is,
workflow nets extended with resources. Next, in Section IV,
we prove that soundness for resource-constrained workflow
nets is decidable by reducing it to verifying a home-space
property. We present an algorithm for deciding soundness in
Section V. We discuss related work in Section VI and close
with a conclusion.

II. PRELIMINARIES

In this section, we provide the basic notations used in this
paper, such as Petri nets and workflow nets.

A. Petri nets

Symbol N denotes the set of natural numbers, symbol Z the
set of all integers, and symbol Q the set of rational numbers.

For two sets P and Q, let P ]Q denote the disjoint union;
writing P ] Q expresses the implicit assumption that P and
Q are disjoint. A multiset or bag m over P is a mapping
m : P −→ N; for example, [p1, 2p2] denotes a multiset m with
m(p1) = 1, m(p2) = 2, and m(p) = 0 for p ∈ P \ {p1, p2}.
We define + for the sum and − for the difference of two
multisets and =, <,>,≤,≥ for comparison of multisets in the
standard way. We overload the set notation, writing ∅ for the
empty bag and ∈ for the element inclusion. We canonically
extend the notion of a multiset over P to supersets Q ⊇ P ; that
is, for a mapping m : P −→ N, we extend m to the multiset
m : Q −→ N so that for all p ∈ Q\P , m(p) = 0. Analogously,
a multiset can be restricted to a subset Q ⊆ P . For a mapping
m : P −→ N, the restriction of m to the elements in Q is
denoted by m|Q : Q −→ N.

Definition 2.1 (Petri net): A Petri net N = 〈P, T, F+, F−〉
consists of
• a nonempty finite set P of places,
• a nonempty finite set T of transitions such that P and T

are disjoint,
• a mapping F+ : (P×T ) −→ N from transitions to places,

and
• a mapping F− : (P×T ) −→ N from places to transitions.
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C = F+ − F− denotes the incidence matrix of N .
A marking m : P −→ N is a distribution of tokens over

the places. With m0 we denote the initial marking of N ,
and (N,m0) denotes a Petri net N with initial marking m0.
Depending on the context, we interpret a marking m of N
either as a multiset over P or as a vector from P −→ N.

Graphically, a circle represents a place, a box represents a
transition, and the directed arcs between places and transitions
represent the flow relation. A marking is a distribution of
tokens over the places. Graphically, a black dot represents a
token.

For a transition t ∈ T , we define the preset •t and
the postset t• of t as the multisets of places where every
p ∈ P occurs F−(p, t) times in •t and F+(p, t) times in
t•. Analogously, we define for a place p ∈ P its preset •p and
its postset p•. We also lift pre- and postsets to sets of places
and of transitions. A place p is a source place if •p = ∅ and
a sink place if p• = ∅.

The behavior of a Petri net N relies on the marking of N
and the marking changes by the firings of transitions of N .
A transition t ∈ T is enabled at a marking m, denoted by
m

t−→ , if •t ≤ m. If t is enabled at m, it can fire, thereby
changing the marking m to a marking m′ = m− •t+ t•. The
firing of t is denoted by m t−→ m′; that is, t is enabled at m
and firing it results in m′.

The behavior of N can be extended to sequences: m1
t1−−→

. . .
tk−1−−−→ mk is a run of N if for all 0 < i < k, mi

ti−→ mi+1.
A marking m′ is reachable from a marking m if there exists
a (possibly empty) run m1

t1−−→ . . .
tk−1−−−→ mk with m = m1

and m′ = mk; for v = t1 . . . tk, we also write m
v−→ m′.

Marking m′ is reachable if m0 = m. The set R(m) represents
the set of all markings of N that are reachable from m. If not
clear from the context, we use −→N instead of −→ to emphasize
that we consider the behavior of N .

We shall also use the exchange lemma [11] providing a
condition under which the order of transitions in a transition
sequence can be exchanged.

Proposition 2.1 ( [11]): Let U and V be disjoint subsets
of transitions of a Petri net N satisfying •U ∩ V • = ∅. Let
A ⊆ U ] V , and let σ ∈ A∗ be a sequence of transitions.
Then, m σ−→ m′ in N implies m

σ|Uσ|V−−−−−→ m′ in N .
A marking m is a home-marking if from every reachable

marking we can reach m. A set HS of markings of N is a
home-space if for every reachable marking m, there exists a
marking m′ ∈ HS such that m′ is reachable from m.

A place invariant is a row vector I : P → Q such that
I ·C = 0. When talking about invariants, we consider markings
as vectors.

B. Workflow nets

A workflow refers to the automation of processes by an IT
infrastructure, in whole or in part [2]. Workflows are case-
based; that is, every piece of work is executed for a specific
case. One can think of a case as a workflow instance, such as a
mortgage, an insurance claim, or a purchase order. Each case is
handled individually according to the workflow definition. The

workflow definition specifies which tasks need to be executed
for a case and in what order. The order, in which tasks are
executed, is determined by conditions specifying dependencies
between tasks.

We can model a workflow definition as a Petri net, thereby
modeling tasks by transitions and conditions by places; the
state of a case is captured by a marking of the net. The
assumption that a typical workflow has a well-defined starting
point and a well-defined ending point imposes syntactic re-
strictions on Petri nets that resulted in the following definition
of a workflow net [12].

Definition 2.2 (WF-net): A Petri net N = 〈P, T, F+, F−〉
is a workflow net (WF-net) if it has a single source place i, a
single sink place f , and every place and every transition is on
a path from i to f .

In the first instance, researchers were interested in workflow
correctness with respect to a single case. One of the most
established correctness properties of WF-nets is soundness,
as introduced by Van der Aalst [3] in the context of one
case. Soundness guarantees that the workflow has always
the possibility to terminate. Later on, multi-instance behavior
attracted researchers’ attention, where WF-nets are considered
as parameterized systems modeling the processing of batches
of tasks, as introduced in [13]. While in classical workflows,
cases are considered to be independent and the modeling of
multiple cases in one workflow net requires the introduction
of id tokens, in batch workflows cases are considered to be
undistinguishable and mixable (e.g., it does not matter which
bicycle gets which wheel) and, as a consequence, cases are
modeled with undistinguishable black tokens. Under certain
conditions on the workflow structure, called separability, the
behavior of the workflow net with undistinguishable cases
(black tokens) is equivalent (up to trace equivalence) to
the behavior of the workflow net with id tokens [13]–[15].
Moreover, every net with id tokens can be transformed into an
up-to-bisimulation-equivalent net with black tokens only [13],
[16].

Capturing the correctness notion for batch workflow nets
requires the use of the generalized notion of soundness, as
proposed in [13].

Definition 2.3 (soundness of a WF-net): Let k ∈ N and N
be a WF-net.

• N is k-sound if, for every marking m reachable from
marking k[i], we can reach marking k[f ].

• WF-net N is sound if it is k-sound for all k ∈ N.

The next definition gives a structural requirement for the
correct design of a workflow. Nonredundancy of a place p ∈ P
guarantees that p can potentially be marked with a token in
some reachable marking.

Definition 2.4: Let N = 〈P, T, F+, F−〉 be a WF-net. A
place p ∈ P is nonredundant if there exist k ∈ N and m ∈ NP
such that k[i] ∗−→ m ∧ p ∈ m.

Example 2.1: Consider the Petri net in Figure and ignore
place r and its adjacent arcs. The resulting Petri net is a work-
flow net. The net is sound and every place is nonredundant.
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III. RESOURCE-CONSTRAINT WORKFLOW NETS

Workflow nets specify the handling of tasks within an
organization, but they do not model resources necessary for
the execution. In other words, a workflow net models the
process perspective of a workflow while abstracting from
resources. However, it is known that excluding resources from
the model can lead to wrong verification results (see [17],
for instance). To overcome this, we extend workflow nets
with resource information. The resulting model are resource-
constrained workflow nets, which have been introduced in [4],
[5].

A resource belongs to a type; thus, we model each resource
type as a place. Each token in such a place models an available
resource of the respective resource type. Resources become
part of a case when they are occupied. In this paper, we assume
that resources are durable; that is, they can neither be created
nor destroyed. Resources are claimed during the execution of
a case and then released. By abstracting from the resource
places and its adjacent arcs, we obtain the WF-net to which
we refer as the production net.

Definition 3.1 (RCWF-net): A Petri net N = 〈Pp ]
Pr, T, F

+
p ]F+

r , F
−
p ]F−r 〉 is a resource-constrained workflow

net (RCWF-net) if
• Np = 〈Pp, T, F+

p , F
−
p 〉 is a WF-net, the production net

of N ;
• Pp is the set of production places, and Pr is the set of

resource places;
• F+

r : (Pr ×T ) −→ N maps transitions to resource places;
and

• F−r : (Pr ×T ) −→ N maps resource places to transitions.
The initial marking m0 = k[i] + R of an RCWF-net N

consists of a number k ∈ N tokens in place i, specifying
the number of cases in the workflow that are concurrently
executed, and an initial marking for the set Pr of resources
places, denoted as a resource vector R ∈ NPr .

Example 3.1: Figures 1 and 2 show two RCWF-nets, each
containing a single resource place r. Removing this place
and its adjacent arcs yields the respective production net. The
initial marking of both RCWF-nets is m0 = k[i]+z[r]; that is,
there are k tokens on the initial place and z tokens on resource
place r.

We adapt the definition of soundness for WF-nets to RCWF-
nets. Soundness of an RCWF-net N guarantees that the
underlying production net of N is sound; that is, also in the
presence of resources, a case has always the possibility to
terminate. In addition, we put two conditions on the resources:
First, we require that all resources that are initially available
are again available after all cases are terminated. Second, we
also require that at any reachable marking, the number of
available resources does not increase the number of initially
available resources. These two criteria are a consequence of
our restriction to durable resources, because they ensure that
no resources are created or removed.

Definition 3.2 (soundness of an RCWF-net): Let N be an
RCWF-net.
• N is (k,R)-sound for some k ∈ N, R ∈ NPr if for all
m ∈ R(k[i] +R) : m

∗−→ (k[f ] +R) ∧m|Pr ≤ R.

• N is sound if there exists R0 ∈ NPr such that, for all
k ∈ N, R ∈ NPr with R ≥ R0, N is (k,R)-sound. In
this case we also say that N is sound for R0.

Example 3.2: The RCWF-net in Figure 1 is, for example,
1, z-sound for all z ≥ 2, but it is not sound. In contrast, the
RCWF-net in Figure 2 is sound for z[r] with z ≥ 2.

We now recapitulate three necessary conditions for sound-
ness taken from [18]. The first condition ensures that no
resource tokens can be created; that is, if N initially contains
R tokens on its resource places, then every reachable marking
has a resource vector R′ ≤ R. The second condition states that
there exists a place invariant for places i and f , guaranteeing
that the number of instances remains constant. Likewise, the
third condition requires that, for every resource place, there
exists a place invariant, guaranteeing that the number of
resources remains constant.

Proposition 3.1 ( [18]): For any sound RCWF-net N with-
out redundant places in its production net, we have

1) ∀x ∈ ZT : (C · x)|Pp\{i} ≥ 0 implies (C · x)|Pr
≤ 0.

2) There exists a place invariant Ip such that Ip(i) =
Ip(f) = 1 and, for all r ∈ Pr, Ip(r) = 0.

3) For each r ∈ Pr, there exists a place invariant Ir
satisfying Ir(i) = Ir(f) = 0, Ir(r) = 1, and ∀r′ ∈
Pr \ {r} : Ir(r′) = 0.

Moreover, due to parametrization of the number of resources
in the definition of soundness for RCWF-nets, soundness of
an RCWF-net implies soundness of its production net:

Proposition 3.2 ( [18]): Let N be a sound RCWF-net.
Then its production net Np is sound too.

RCWF-nets satisfying the properties in Proposition 3.1 and
having a sound production net can be unsound only if they
contain a deadlock or a livelock due to a lack of resources
during the production process.

Example 3.3: For the RCWF-net in Figure 2, i+ p+ q+ f
is an invariant in the production net according to Proposi-
tion 3.1(2) and r + p + 2q an invariant for resource place r
according to Proposition 3.1(3). Furthermore, the production
net is sound. In contrast, the RCWF-net in Figure 1 has the
same invariants and a sound production net, but it can deadlock
due to the lack of resources, as shown in the introduction, and
is therefore not sound.

IV. DECIDABILITY OF SOUNDNESS

Given an RCWF-net N together with a proper initial
marking R0 for the resource places (e.g., given by an oracle),
we show that checking soundness of N reduces to deciding
a home-space property for a modified version of N . As the
latter problem is known to be decidable [19], we can conclude
that checking soundness is decidable as well.

Soundness of an RCWF-net N requires that, for all k ∈
N, R ∈ NPr with R ≥ R0, net N is (k,R)-sound. To cover
different initial markings (i.e., the number of tokens in place i
and in the resource places of N ) in one Petri net, we modify
N so that it can arbitrarily increase its initial marking on i and
on the resource places. Figure 4 illustrates the construction. It
is similar to a construction used by Juhas et al. in [16], which
allows adding tokens on the initial place; in our construction,
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Fig. 4. Constructing the transformed RCWF-net.

we can add tokens to resource places as well. We refer to the
resulting net as the transformed RCWF-net N ′ of N . It has an
additional place p0 which is initially marked with one token.
The token in this place enables transitions ti, t1, . . . , t|Pr|,
and to. A firing of transition ti produces a token in the initial
place i, thereby increasing the number of cases running in N ;
each transition t1, . . . , t|Pr| produces a token in the respective
resource place. Firing transition to removes the token from
place p0; that is, after this transition has fired, the the number
of tokens in i and the resource places cannot be increased any
more. In addition, we add a transition ts to N ′ that removes
the tokens from f corresponding to the completed cases.

Definition 4.1 (transformed RCWF-net): The transformed
RCWF-net Ntr of an RCWF-net N = 〈Pp ] Pr, T, F+

p ]
F+
r , F

−
p ] F−r 〉 with n resource types (i.e., |Pr| = n) is the

tuple 〈Ptr, Ttr, F+
tr , F

−
tr 〉 with

• Ptr = Pp ] Pr ] {p0},
• Ttr = T ] {ti, to, ts} ] {tj | 1 ≤ j ≤ n},
• For all p ∈ Pp, t ∈ T , F+

tr (p, t) = F+
p (p, t) and

F−tr (p, t) = F−p (p, t);
for all p ∈ Pr, t ∈ T , F+

tr (p, t) = F+
r (p, t) and

F−tr (p, t) = F−r (p, t);
•p0 = [ti, t1, . . . , tn];
p•0 = [to, ti, t1, . . . , tn];
•ti =

•t1 = . . . = •tn = [p0];
t•i = [p0, i] and t•j = [p0, rj ], for all 1 ≤ j ≤ n;
•ts = [f ] and t•s = ∅;
•to = [p0] and t•o = ∅.

The rest of this section is devoted to the proof that sound-
ness is decidable. To this end, we show that N is sound if
and only if its transformed RCWF-net Ntr has a particular
home-space property. For the implication, we show that every
firing sequence in Ntr can be reshuffled using Proposition 2.1
such that the resulting sequence contains a transition sequence
that can be executed in N . By the soundness of N , we can
conclude the home-space property of Ntr.

Lemma 4.1: Let N = 〈Pp ]Pr, T, F+
p ]F+

r , F
−
p ]F−r 〉 be

a sound RCWF-net. Then, the transformed RCWF-net Ntr of
N , initialized with marking m0 = [p0] + R0, has the home-
space HS = {R | R ∈ NPr : R ≥ R0}.

Proof: We have to show that for any marking m ∈
RNtr (m0), there is a marking m′ ∈ HS such that m ∗−→ m′.
Let σ be a transition sequence from the initial marking of Ntr
to m. We use Proposition 2.1 to reshuffle the firing sequence σ.
Observe that for U = {ti, t1, . . . , tn}, we have •U = [p0] and
•p0 ∩ T = ∅; that is, p0 does not belong to the postset of any
subset of transitions of N . Thus we can move all the firings

of {ti, t1, . . . , tn} to the beginning of the firing sequence,
obtaining a firing sequence σ1 = σ|{ti,t1,...,tn}σ|T]{to,ts} and,
by Proposition 2.1, m0

σ1−−→ m.
Next we apply Proposition 2.1 again, for σ1, V = {ts}

and U consisting of the rest of the transitions of Ntr. Clearly,
since t•s = ∅, the conditions of Proposition 2.1 are satisfied
and we can delay all the firings of ts until the end of the firing
sequence σ, obtaining σ2 = σ|{ti,t1,...,tn}σ|T]{to}σ|{ts} and,
by Proposition 2.1, m0

σ2−−→ m.
Finally, we apply Proposition 2.1 to σ|T]{to}. Since •to =

[p0] and p0 6∈ T •, we can move firings of to to the be-
ginning of the sequence. Thus, we obtain a firing sequence
σ′ = σ|{ti,t1,...,tn}σ|{to}σ|Tσ|{ts}.

The firing of σ|{ti,t1,...,tn}σ|{to} in Ntr leads to a marking
m1 = k[i] + R0 + R for some k ∈ N, R ∈ NPr , which is a
possible initial marking of N . Due to the construction of the
transformed RCWF-net Ntr, σ|T is firable in (N,m1), leading

to the same marking in N and Ntr: m1
σ|T−−−→ m2.

In Ntr, we have m2

σ|{ts}−−−−→ m. In N , due to its soundness,
there is a firing sequence γ ∈ T ∗ such that m2

γ−→ k[f ]+R0+
R. Since •ts = [f ] in Ntr while f is a sink place in N , we

have m2

σ|{ts}−−−−→ m
γ−→ `[f ]+R0+R with ` = k−|(σ|{ts})|

in Ntr. We can conclude that m
γ·(ts)`−−−−−→ R0 + R and since

R0 + R ∈ HS , the home-space property is proven. Note that
only transitions of T ∪ {to} are used to reach a home-space
marking from an arbitrary reachable marking.

For the reverse implication of our decidability theorem, we
must prove the converse of Lemma 4.1. Interestingly, this
statement only holds if we add additional assumptions.

Lemma 4.2: Let N be an RCWF-net without redundant
places in its production net, for which the three conditions
of Proposition 3.1 hold, and Ntr be its transformed RCWF-
net with home-space HS = {R | R ∈ NPr : R ≥ R0}. Then
N is sound.

Proof: We have to show that for all m ∈ RN (k[i] + R)
with k ∈ N, R ∈ NPr , R ≥ R0, there is a firing sequence
m

∗−→ k[f ] + R. Let σ be a transition sequence from the
initial marking m0 = k[i] + R of N to m. Firing sequence
σ0 = (ti)

k(t1)
(R−R0)(r1) . . . (tn)

(R−R0)(rn) leads to marking
m0 in (Ntr, R0): R0

σ0−−→ m0 and σ is firable in (Ntr,m0):
m0

σ−→ m.
Because of the home-space property, there exists a firing

sequence γ ∈ (T ] {to})∗ (see Lemma 4.1) in Ntr such that
m

γ−→ R1. Let |(γ|{to})| = `. Applying Proposition 2.1 to γ

and V = {to}, we obtain m
γ|T−−−→ `[f ] +R1

(to)
`

−−−→ R1.
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Due to the construction of Ntr, γ|T is a firing sequence of
N , too. Proposition 3.1(3) implies that R1 = R, while Proposi-
tion 3.1(2) implies that ` = k. Furthermore, Proposition 3.1(1)
implies that every marking on the path from m to `[f ] + R1

does at most contain R resources. Thus m
γ|T−−−→ k[f ] + R,

implying that N is sound.
Given a resource vector R0, we have a necessary and suffi-

cient condition for soundness of N . Moreover, this condition
reduces the soundness check for N to checking a home-space
property of the transformed RCWF-net of N .

Theorem 4.1 (Soundness is decidable): Let N be an
RCWF-net. Then, soundness of N is decidable.

Proof: First, remove the redundant production places
from N . The obtained net N ′ has the same behavior as
N , because the redundant places can never get a token, and
therefore N ′ is sound if and only if N is sound. Then check
whether the three properties of Proposition 3.1 hold for N ′.
If not, the net is not sound. If they do hold, by Lemmata 4.1
and 4.2, checking soundness of N ′ (and hence of N ) reduces
then to checking a home-space property of the transformed
RCWF-net (N ′tr, R0) of Ntr. The latter is decidable, as shown
in [19]; thus, checking soundness of N is decidable, too.

V. AN ALGORITHM FOR DECIDING SOUNDNESS

Using the construction from [19], we show that in order to
check soundness it is sufficient to check proper termination
for the set of minimal reachable markings containing at least
one token on some production place.

We first partition the set of the reachable markings into the
set of resource markings and the markings containing tokens
on production places; that is, R(N,R0 + [p0]) = RPr ] RPp

with RPr = R(N,R0 + [p0]) ∩NPr and RPp = R(N,R0 +
[p0])\NPr . The home-space property holds for any m ∈ RPr .
We shall show that the home-space property holds for RPp if
and only if it holds for the set RPp

min of minimal markings of
RPp , which is defined as RPp

min = {m | m ∈ RPp ∧ m 6=
∅ ∧ @m′ ∈ RPp : m′ < m}.

Lemma 5.1: Let N be an RCWF-net and (Ntr, R0) be its
transformed RCWF-net. The home-space property holds for
R
Pp

min iff it holds for RPp .
Proof: If there is a marking m ∈ R

Pp

min for which
the home-space property does not hold, then the home-space
property does not hold for (N,R0 + [p0]) because RPp

min ⊆
RPp ⊆ R(N,R0 + [p0]).

Let the homes-space property hold for all markings m ∈
R
Pp

min . We partition RPp into subsets according to the number
of tokens on the production places: RPp =

⊎∞
i=1Ri, where

Ri = {m | m ∈ RPp ∧
∑
p∈Pp

m(p) = i}, and we define
R0 = RPr .

We prove by induction on i that all m ∈ R(N,R0 + [p0])
have the home-space property.

For i = 0 the induction hypothesis holds trivially.
Let it hold up to some k ∈ N. Take m ∈ Rk+1. If m ∈

R
Pp

min , then the home-space property holds. If not, there is a
marking m1 ∈ R

Pp

min such that m1 < m. Since m1 ∈ R
Pp

min ,
the home-space property holds for m1: m1

σ−→ mh for some
σ ∈ T ∗, mh ∈ RPr .

Then m
σ−→ mh + (m − m1) and mh + (m − m1) ∈

R(N,R0 + [p0]). Since m1 ∈ R
Pp

min(⊆ RPp), m1 con-
tains at least one token on some production place, and mh

does not contain tokens on the production places. There-
fore, the number of tokens on the production places of∑
p∈Pp

(mh + (m −m1))(p) <
∑
p∈Pp

m(p). Therefore, the
induction hypothesis holds for (mh + (m−m1))(p) and thus
m

σ−→ mh + (m −m1)
∗−→ m′h for some m′h ∈ RPr , which

implies that the home-space property holds for m as well.
The problem remains is to efficiently compute the set of

minimal markings of RPp .
Example 5.1: The minimal markings for Figure 1 are

R
Pp

min = {[i, 2r], [2p], [q]}. It is easy to see that [2p] is a
deadlock, proving the net to be unsound. For Figure 2, we
obtain R

Pp

min = {[i, 2r], [p, r], [q]}. As we can reach a final
marking from all these markings, we conclude soundness.

VI. RELATED WORK

The verification of soundness for workflow nets (WF-
nets) extended with resources has been investigated by many
researchers. Extending workflows with resources resulted in
the model of resource-constrained workflow nets (RCWF-
nets) [4], [5]. To cope with the resource parameter, the
notion of (generalized) soundness [20] for WF-nets had to
be adapted [5]. We distinguish between approaches where
the number of resources is assumed to be fixed and those
approaches where it is variable, meaning, adding additional
resources does not violate the soundness property.

Juhas et al. [16] present for a weaker problem instance
where only the absence of deadlocks is considered a reduction
to an ILP problem. Van Hee et al. [5] solve the problem
instance of a variable number of resources for a single resource
type. They transform the workflow part of the RCWF-net into
a state machine and annotate the transitions of this net with the
effect on the resource place. The algorithm is then based on
place invariants. In [18], Van Hee et al. define four necessary
criteria based on traps and siphons for analyzing the general
instance of soundness of RCWF-nets.

Barkaoui et al. [6] investigate the verification of soundness
for three restricted classes of RCWF-nets. In their setting, the
verification of soundness boils down to checking boundedness
and some structural property (i.e., commoner’s property—
every minimal siphon is trap controlled).

There also exist extensions of the temporal logics CTL
and ATL to reason about resources [21], [22]. Although the
problem instance considered in this paper can be expressed in
terms of those logics, verification would require to check the
system for all parameters.

VII. CONCLUSION

We have investigated the soundness property for resource-
constrained workflow nets (RCWF-nets) in its most general
form. An RCWF-net is sound if there exists a number R0 of
resources for each of its finitely many resources types such
that for every finite number k of workflow cases and any
greater number R of resources, it is always possible to reach
a state where all k cases are terminated and the resources R
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are available. We have proved soundness to be decidable by
reducing the problem to checking a home-space property in
(a modified version) of the net. In addition, we have shown
that the reduction schema used to prove decidability in [8] is
wrong.

Although soundness is decidable, there is so far no efficient
decision algorithm because our proposed algorithm decides a
home-space property, which requires a finite but (in general)
too high number of reachability checks. Ongoing research
is devoted to study more efficient algorithms. In addition,
we keep as an open problem the calculation of the smallest
number of resources R0 for which soundness can be proved.
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