
Process Mining Applied to the BPI Challenge 2012:
Divide and Conquer While Discerning Resources

R.P. Jagadeesh Chandra Bose and Wil M.P. van der Aalst

Department of Mathematics and Computer Science
Eindhoven University of Technology, The Netherlands
{j.c.b.rantham.prabhakara,w.m.p.v.d.aalst}@tue.nl

Abstract. A real-life event log, taken from a Dutch financial institute,
is analyzed using state-of-the-art process mining techniques. The log con-
tains events related to loan/overdraft applications of customers. We pro-
pose a hierarchical decomposition of the log into homogenous subsets of
cases based on characteristics such as the final decision, offer, and sus-
picion of fraud. These subsets are used to uncover interesting insights.
The event log in its entirety and the homogeneous subsets are analyzed
using various process mining techniques. In this paper, we present re-
sults related to (a) resource perspective and their influence on execu-
tion/turnaround times of activities, (b) control-flow perspective, and (c)
process diagnostics. A dedicated ProM1 plug-in developed for this chal-
lenge allows for a comprehensive analysis of the resource perspective. For
the analysis of control-flow and process diagnostics, we use recent, but
pre-existing, ProM plug-ins. As the evaluation shows, our mix of tech-
niques is able to uncover many interesting findings and could be used to
improve the underlying loan/overdraft application handling process.

1 Dissecting the Event Log

The event log used for the BPI Challenge 2012 contains events related to the
application process for a personal loan or overdraft within a Dutch financial in-
stitute. The event log contains 13, 087 cases and 262, 200 events distributed over
36 activities having timestamps in the period from 1-Oct-2011 to 14-Mar-2012.
The global process is defined over three sub-processes and can be summarized
as follows: a submitted loan/overdraft application is subjected to some auto-
matic checks. The application can be declined if it does not pass any checks.
Often additional information is obtained by contacting the customer by phone.
Offers are sent to eligible applicants and their responses are assessed. Appli-
cants are contacted further for incomplete/missing information. The application
is subsequently subjected to a final assessment upon which the application is
either approved and activated, declined, or cancelled. The different categories of
loan/overdraft applications can be classified according to the tree illustrated in
Fig. 1.

1 ProM is an extensible framework that provides a comprehensive set of tools/plug-
ins for the discovery and analysis of process models from event logs. See
http://www.processmining.org for more information and to download ProM.
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Fig. 1. Classification of applications based on their assessment.

Out of the 13, 087 cases, 2246 cases were approved while 7635 cases were declined
and 2807 cases were cancelled. 399 cases were still running and no decision was
taken yet (class “undecided” in Fig. 1). For all cases that have been approved,
an offer was made to the applicant. However, as Fig. 1 shows, cases can be
declined or cancelled without making an offer. For example, 6833 cases were
declined without making any offer while 802 cases were declined after making
an offer. Furthermore, certain cases are considered suspicious and a special kind
of check (W Beoordelen fraude) was performed. Cases for which this check was
executed are classified as “Fraud”; all other cases are classified as “No Fraud”.
For example, 30 of the 2246 cases that were approved are considered suspicious
(class “Fraud”). As can be seen from Fig. 1, the percentage of suspicious cases
is negligible (≈ 0.85%).

Each case in the event log has an attribute AMOUNT REQ, which specifies the
amount of loan/overdraft requested by a customer (called claim amount in the
remainder). We divide the claim amounts in bins of 10, 000 units and filter (re-
move) all undecided cases and bins where the number of cases is less than 100.
This results in 12, 613 cases. Table 1 depicts the distribution of cases in each bin
according to their final application assessment, i.e., approved, declined, or can-
celled. It can be seen that the cases with claim amounts between 0 and 10, 000
and between 50, 000 and 60, 000 have a relatively low rate of approval (12.65%
and 14.24%) when compared to the rest, which is between 20.95% and 24.66).
Similarly, relatively many cases in these bins are declined.

Assessing the Quality of Data

Before we perform a rigorous analysis of the event log, we first assess some
quality aspects of the log.

– Missing associations between start and complete events of activities: For ac-
tivities that have both the start and complete event types, we check for
each activity if every instance of complete event type has a corresponding



Table 1. Claim Amount and Final Assessment of Cases

Claim Amount # Cases A Approved A Declined A Cancelled

0− 10, 000 6095
771 4197 1127

(12.65%) (68.86%) (18.50%)

10, 001− 20, 000 3627
808 1928 891

(22.28%) (53.16%) (24.57%)

20, 001− 30, 000 1593
389 776 428

(24.42%) (48.71%) (26.87%)

30, 001− 40, 000 665
164 324 177

(24.66%) (48.72%) (26.62%)

40, 001− 50, 000 296
62 158 76

(20.95%) (53.38%) (25.68%)

50, 001− 60, 000 337
48 206 83

(14.24%) (61.13%) (24.63%)

start event type and vice versa. In the event log, we have six activities that
have both the start and complete event types. Table 2 depicts the number
of instances of such missing associations in the event log and the number of
traces where they manifest. For example, one instance of W Afhandelen leads-
complete has a missing W Afhandelen leads-start event in one of the traces.
For each trace, there is just one missing association per activity. Overall, in
the event log, there are 1042 traces where an association is missed for one of
these activities.

Table 2. Missing associations between start and complete instances of activities

Activity Missing Start Missing Complete
# Traces # Activity # Traces # Activity

Instances Instances

W Afhandelen leads 1 1 0 0
W Beoordelen fraude 0 0 0 0
W Completeren aanvraag 455 455 0 0
W Nabellen incomplete dossiers 571 571 1 1
W Nabellen offertes 6 6 2 2
W Valideren aanvraag 7 7 0 0

– Overlapping instances of activity executions: For activities that have both
the start and complete event types, we analyze if there are any scenarios
where activity executions overlap while using the same resource. This corre-
sponds to pairs of instances of the start of an activity before its completion
by the same resource leading to ambiguities in associating a complete event
with its corresponding start event. Fig. 2 depicts such a scenario where there
is an ambiguity in associating the instances of activity acomplete to instances
of activity astart . It is not possible to uncover whether the first occurrence



of acomplete corresponds to the first or the second occurrence of astart .
2 For-

tunately, only one trace (trace name: 212836) exhibits this behavior in the
event log.

astart astart acomplete acomplete

(a)

astart astart acomplete acomplete

(b)

Fig. 2. Ambiguities in associating events related to multiple instances.

– Missing resource information: There are some events in the log where the
resource information is missing. Overall, there are 18009 events across 3528
traces that have missing resource information, i.e., 6.86% of events and
26.96% of the traces have partially missing resource information.

2 Analyzing the Resource Perspective

In this section, we focus on the resource perspective and analyze whether there
are remarkable differences between resources. Understanding the correlations be-
tween resources, workloads, and processing speeds of cases is gaining attention
in recent years in process mining [1, 2].

The event log contains 69 distinct resources who have worked on at least one
case in the log. Fig. 3 depicts the number of resources working per day during
the time period covered by the event log. A resource is considered to be work-
ing on the process on a day if he/she is associated with at least one activity
executed on that day. We can see that although the log contains 69 resources,
on average only 20-30 resources work on the process on any given day. As ex-
pected, fewer resources work during weekends as is clearly shown by the pattern
in Fig. 3. It is interesting to see that on Mondays, more number of resources
are deployed. This can be attributed to the fact that there is a backlog of cases
arriving on weekends, which can be tackled by deploying more resources. The
number of resources working on the process from Monday to Friday follows a
U-shaped pattern, with the number of resources being the minimum on Wednes-
days. More number of resources are deployed on Fridays as well to reduce the
backlogs. Certain resources work only on specific days (e.g., resources 10789,
10862 work only on Mondays and/or Fridays) on this process. Fig. 4 depicts the
histogram of the number of resources and their total number of working days
within the time period of the event log. We can see that around 18 resources

2 Note that if the two instances of a are executed by different resources, it would have
been possible to disambiguate.



work less than 20 days over the time period. Resource 112 works on each and
every day (as can be seen in the histogram in the far right corner). In addition,
resource 112 works throughout the day (24 hours). This makes us believe that
resource 112 is an automated resource.

Fig. 3. Number of resources working on the cases per day

Fig. 4. Histogram of number of working days for resources

2.1 Resource–Application Assessment Task Matrix

Next, we investigate the relation between the resource handling the application
and the final outcome. Table 3 depicts the number of cases assessed by resources
based on their final assessment. We have considered only those resources who
have been involved in assessing at least 250 applications. We observe that only



selective resources3 have the privilege of approving a loan/overdraft. We can see
from Table 3 that resource 112, which corresponds to an automated resource, is
involved in the approval of 3 applications. The low number and the fact that 112
is an automated resource, make these three cases interesting from an auditing
point of view. They are outliers and should be investigated in more detail.

Table 3. Frequency of cases classified according to their final assessment for resources.

Resource # Approved # Cancelled # Declined

112
3

1004 3429
10609 335 5 206
10138 681 5 156
10809 271 1 87
10629 359 1 119
10972 518 3 106
10910 0 23 244
11169 0 63 238

2.2 Resource–Activity Execution Time Analysis

In this section, we analyze the execution and turnaround times spent by re-
sources on different activities. We need to differentiate between two types of
activities. Activities that have the start and complete event types and activities
that have only the complete event type. The former class of activities enables
the computation of execution times while the latter class of activities are as-
sumed (in this paper) to be atomic executions.4 Considering the time difference
between the activity completion and start timestamps as a notion of execution
time of an instance of the activity is incorrect due to the fact that resources can
be executing multiple activities simultaneously. We consider this time difference
to be the turnaround time rather than the pure execution time. In order to esti-
mate the execution times spent by resources on different activities, we need to
consider the notion of working slots.

A working slot for a resource r is defined to be a time interval [ws, we] such
that the resource r has started the execution of an activity at ws and completed
the execution of the activity at we (for atomic tasks, ws = we). A special consid-
eration needs to be done for activity executions that cover over multiple days.

3 Nine resources are involved in approving a loan/overdraft application in the event
log. The resources correspond to 112, 10138, 10609, 10629, 10779, 10809, 10972,
11289, and 11339

4 One could use heuristics when considering the duration of such activities, e.g., as-
suming a fully sequential process, we can consider the execution time of an activity
to be the time difference between the completion of the activity and its predecessor.



It could be the case that a resource starts the execution of an activity on some
day but finishes its execution on a different day. We create two working slots for
such activity executions. Let ws and we be the start and complete timestamps of
the execution of an activity and let d1 be the day when the activity was started
and let d2 be the day when the activity execution was completed. We create one
working slot [ws, d

e
1] and another working slot [ds2, we] where de1 is the closing

time of the resource on d1 and ds2 is the starting time of the resource on d2. The
starting and closing times of a resource on any given day can either be taken to
be the first and the last timestamp logged by that resource on that day or the
average starting and closing time of the resource. Fig. 5(a) and Fig. 5(b) depicts
the starting and closing working times of resources 10138 and 11119 respectively
across different days. We can see that resource 10138 on average starts working
around 8:30 in the morning and closes at around 16:30 in the afternoon. On
some occasions, the resource works in a different shift between 13:00 and 21:00.
In contrast, resource 11119 works on average between 17:00 and 21:00.

Fig. 6(a) depicts a generic scenario of working slots of a resource on a given
day while Fig. 6(b) represents the same working slots as in (a) but marked with
indices. We can see that working slots can overlap in different ways. For exam-
ple, working slot 3 starts during working slot 2 while the working slots 6 and
7 are completely subsumed in working slot 5 . As another example, working
slot 9 starts in working slot 8 and ends in working slot 10 . It is important to
note that these working slots may correspond to activity executions for different
cases, but all are executed by the same resource.

In order to deal with activities that are simultaneously executed, we consider
interval slots. Informally, a working day for each resource is partitioned into a
set of interval slots I. Each interval i ∈ I is characterized by a start time is and
an end time ie. Furthermore, every start time, ws, of a working slot w performed
by that resource on that day corresponds to an interval start time, is, of some
interval i ∈ I and every end time, we, of a working slot w performed by that
resource on that day corresponds to an interval end time, ie, of some interval
i ∈ I. Fig. 7 depicts the partitioning of a day into interval slots for the working
slots depicted in Fig. 6. In any interval slot, there could be zero or more working

slots. For example, no working slots exist in the interval slots { 2 , 6 , 8 , 14 }
while there are three working slots (corresponding to working slots 5 , 6 , and 7

cf. Fig. 6(b)) in the interval slot 11 . Similarly, each working slot is divided into

a set of interval slots. For example, working slot 5 (cf. Fig. 6(b)) is partitioned

into the interval slots { 9 , 10 , 11 , 12 , 13 } while working slot 7 corresponds to

only one interval slot { 11 }.

Having defined the relationship between interval slots and working slots, we
can now estimate the activity execution times. We assume that the duration of
an interval slot is uniformly utilized by all the working slots (and thereby the



(a) Resource 10138

(b) Resource 11119

Fig. 5. Staring and closing working times of resources on different days.

activities) in that interval slot. Let Wr,d be the set of working slots for resource
r on day d. Let Ir,d be the corresponding set of interval slots for resource r on
day d. Let ŵ ∈ Wr,d be the working slot pertaining to an instance t̂ of activity
t. Let fr,d : Ir,d → 2Wr,d be a function defining the set of working slots for an
interval slot i ∈ Ir,d and let gr,d : Wr,d → 2Ir,d be a function defining the set of
interval slots for a working slot w ∈Wr,d. The execution time of t̂ is defined as:

ExecutionTime(t̂) =
∑

i∈gr,d(ŵ)

(ie − is)

|fr,d(i)|

In other words, the execution time of an activity instance pertaining to a work-
ing slot is the sum of normalized duration of the interval slots defined by that
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Fig. 7. Interval slots corresponding to the working slots defined in Fig. 6.

working slot. Consider working slot 5 in Fig. 6(b). Let t̂ be the activity instance
corresponding to this working slot. The set of interval slots corresponding to

this working slot is gr,d( 5 ) = { 9 , 10 , 11 , 12 , 13 }. In interval slot 9 only t̂ is

executed, so interval slot 9 contributes wholly to the activity execution time

of t̂. In interval slot 10 , two activities (working slots 5 and 6 ) are executed.

Therefore, the duration of interval slot 10 is normalized by 2 and assigned to

the execution time of t̂. In interval slot 11 , three activities are simultaneously

executed (working slots 5 , 6 , and 7 ); so the duration of interval slot 11 is nor-
malized by 3 and assigned to the execution time of t̂. Hence, the total activity
execution time of t̂ is

Execution Time(t̂) =
[[ 9 ]]

1
+

[[ 10 ]]

2
+

[[ 11 ]]

3
+

[[ 12 ]]

2
+

[[ 13 ]]

1



where [[ i ]] is the duration of interval slot i .

The turnaround time of t̂ is defined as the length of the working slot, i.e.,
Turnaround Time(t̂) = (ŵe − ŵs).

We have analyzed the event log to see if there are perceivable differences in
the average execution times of activities between different resources. We have
noticed that certain resources tend to work on multiple loan/overdraft applica-
tions simultaneously while others tend to work on just one application at a time.
For example, Fig. 8 depicts the working slots for resource 11002 on 09-Jan-2012.
The x-axis represents the time and the y-axis represents the traces on which the
resource works on that date. Each bar in the figure from (x1, y) to (x2, y) depicts
one or more working slots covering time period [x1, x2] for some activity(ies) in
trace y.5 The resource works in the evening shift and starts at around 17:30
hrs. The resource performs some tasks for trace 191644 between 17:35 and 17:50
hrs. Subsequently, the resource performs no work on this process until 18:30 hrs.
The resource then starts to work on trace 190627 and after a couple of minutes
also starts working on another trace 199324 simultaneously. Similarly, the lone
working slot corresponding to the trace 190842 is subsumed in the first working
slot for the trace 191797 while the working slot for trace 199381 is overlapping
with the second working slot of 191797.

Fig. 8. Working slots for resource 11002 on 09-Jan-2012.

Fig. 9(a) depicts the number of activities worked upon by resource 11169 on
31-01-2012 at different periods of time while Fig. 9(b) depicts the number of
traces that the resource was working on at different periods of time. From the
figure we can see that this resource was working on two to five loan applications

5 overlapping, subsuming, and adjacent working slots for activities in the same trace
that fall in the interval [x1, x2] are captured in the same bar in the figure.



simultaneously between 09:30 and 10:00 hrs and between two to three applica-
tions between 15:06 and 16:00 hrs. We can further see that the resource was idle
between 12:30 hrs and 13:15 hrs (this might most likely correspond to a lunch
break).

(a) Simultaneous activity executions

(b) Simultaneous trace executions

Fig. 9. Number of simultaneous activities and traces that resource 11169 worked on
31-01-2012

.

Table 4 depicts the top five resources who have worked on this process for at least



30 days and spent a significant amount of their working time processing multiple
loan/overdraft applications. For example, resource 11169 worked on this process
for 594.47 hours spread across 85 days. Out of this 594.47 hours, the resource
spent 128.12 hours executing multiple loan applications simultaneously, which
contributes to 21.55% of his working time. Resources that are multitasking (i.e.,
simultaneously working on multiple cases) may have a negative effect on execu-
tion and turnaround times. We see evidences of this effect in the event log. High
execution/turnaround times might not be desirable by both by the customers as
well as the organization.

Table 4. Top 5 resources who work on multiple loan applications simultaneously

Resource No. Working Total Working Simul. Working Perct. Simul.
Days Time (hrs) Time (hrs) Working Time

11002 41 151.10 33.70 22.30%
11169 85 594.47 128.12 21.55%
10932 69 443.86 52.64 11.86%
11121 45 198.11 22.93 11.58%
10910 40 219.03 22.34 10.20%

Table 5 depicts the average execution and turnaround times for different activ-
ities (that have both start and complete event types) for resources 11169 and
11181. Both resources have comparable workload, i.e., the resources are compa-
rable. While resource 11169 spends 21.55% of his/her working time executing
multiple applications, resource 11181 spends only 2.62% of his/her working time
on simultaneous applications. From the table we can see that the average ex-
ecution and turnaround times for all the activities for resource 11169 is much
higher (between 1.7 and 7.3 times higher) than that of 11181. When resources
work on one trace at a time, the execution time and turnaround times will be
almost equal. When a resource spends a significant amount of time doing multi-
ple things, we see (1) higher average execution times of activities and (2) larger
differences between execution and turnaround times. We notice this phenomenon
for all resources who spend significant amounts of time working on multiple
things simultaneously.

We have considered all resources who have spent at least 25 days on this pro-
cess and analyzed their simultaneous working times and its influence on activity
execution/turnaround times. There are 45 resources who have worked on this
process 25 days or more. We divided the 45 resources into three classes based
on their percentage of simultaneous working time. The top 15 resources who
multitask frequently are labeled as High (and have an average percentage of si-
multaneous working time of 10.19%), the mid 15 resources as Medium (with an
average percentage of simultaneous working time of 2.01%), and the bottom 15
resources as Low (with an average percentage of simultaneous working time of
0.27%). Table 6 depicts the average execution and turnaround times of resources



Table 5. Comparison of average execution and turnaround times between two re-
sources: resource 11169 is frequently multitasking (21.55%) whereas resource 11181 is
rarely working on multiple cases at the same time (2.62%).

Activity
11169 11181

No. Avg. Avg. No. Avg. Avg.
exec. exec. turnaround exec. exec. turnaround

time (sec) time (sec) time (sec) time (sec)

W Afhandelen leads 510 381 764 81 103 105
W Beoordelen fraude 0 0 0 0 0 0
W Completeren aanvraag 1069 613 927 1182 244 262
W Nabellen incomplete dossiers 660 608 947 506 354 357
W Nabellen offertes 217 430 573 1172 153 160
W Valideren aanvraag 38 373 547 12 127 129

in these three classes for all the W activities. From the table, we can clearly
see a negative influence of multitasking on the execution/turnaround times, e.g.,
the average execution time of W Nabellen incomplete dossiers for resources who
frequently multitask (class High) is 403 sec where as for resources who occasion-
ally multitask (class Medium) it is 351 sec and it is 158 sec for resources who
rarely multitask (class Low). Since W activities are activities that correspond
to contacting the customer, high turnaround times for these activities may result
in unsatisfied customers.

Table 6. Comparison of average execution time (ET) and turnaround time (TAT)
between resources with varying degrees of multitasking: the average percentage of si-
multaneous working time for the different classes are High (10.19%), Medium (2.01%),
and Low (0.27%).

Activity
High Medium Low

No. Avg. Avg. No. Avg. Avg. No. Avg. Avg.
exec. ET TAT exec. ET TAT exec. ET TAT

(sec) (sec) (sec) (sec) (sec) (sec)

W Afhandelen leads 2725 342 533 2001 151 165 225 237 240
W Beoordelen fraude 0 0 0 0 0 0 247 66 67
W Completeren aanvraag 9987 333 429 8889 299 315 516 443 454
W Nabellen incomplete dossiers 3928 403 527 3919 351 366 2381 158 162
W Nabellen offertes 7173 221 274 8093 173 184 3092 80 83
W Valideren aanvraag 131 194 260 2784 930 952 4884 1034 1039

2.3 Resource–Idle Time Analysis

From Fig. 7, we can see that the resource is idle (i.e., not involved in executing

any activity) in interval slots 2 , 6 , 8 , and 14 . It could be the case that these



slots are free because no activity is available to be executed or alternatively, the
resource is idle in spite of the availability of an activity to be executed. In this
section, we analyze the time that resources are idle in spite of work available for
execution. Enforcing the resources to utilize their idle times can help in reducing
the cycle time of cases. To further analyze, resource idle times, we make the
following assumptions: (i) all resources that work on this process on a given day
devote their full time to this process and not to any other process and (ii) the
process is mostly sequential, i.e., an activity is assumed to be ready for execution
soon after its predecessor has finished execution.

For each resource, we consider its working slots on a given day. Let w = [ws, we]
be a working slot (where ws and we are the start and end times of the working
slot) and t̂ be the corresponding activity instance, and let r be the resource
executing t̂, i.e., activity instance t̂ is executed between ws and we by resource
r. Let t̂

s
be the time when the activity instance t̂ was ready to be executed

(this is assumed to be the completion time of the activity preceding t̂ in the
event log). Let It̂s be the set of interval slots that the resource is not involved

in any activity since t̂
s

and before ws. It̂s is the set of idle slots for the activ-
ity t̂. Ideally, the resource should have started executing t̂ in the first interval
slot in It̂s after t̂

s
. Fig. 10(a) depicts the working slots and interval slots for

resource 11019 on 01-Oct-2011. The resource worked on five different traces on
that day. Working slot 1 corresponding to trace 173736 was executed between
15:25:56 and 15:40:09. However, the activity was scheduled to be executed at

13:02:44 ( 1
s

in the figure). Interval slot 2 corresponds to an idle slot for 1s .
The resource was idle between 13:03:36–15:25:55 in spite of the fact that the
activity 1 was ready to be executed. Similarly, working slot 2 corresponding
to trace 173760 was scheduled at 15:15:57 but executed between 15:49:25 and
16:01:45. Now, there are two idle slots corresponding to interval slots 2 and
4 since 2s . The resource was idle between 15:15:58 and 15:25:55 in interval

slot 2 and for the entire duration of interval slot 4 , i.e., between 15:40:10 and
15:49:24 (i.e., the time between the completion of 1 and the starting of 2 ). Note
that an interval slot can contribute to an idle slot of more than one activity. We
resolve such ambiguities to the earliest working slot. In the above example, in-

terval slot 2 is assigned to 1 while only the interval slot 4 is considered to
be an idle slot for working slot 2 . Working slot 3 was ready for execution at
16:12:45 but actually executed between 16:21:09–16:45:56. The resource was not
doing any activity between 16:09:36–16:21:08 though 3 was ready to be executed
from 16:12:46. Hence the resource is considered to be idle between 16:12:46 and
16:21:08. Fig. 10(b) depicts the idle times for the figure in (a).

We have analyzed the idle times for all resources in the event log. We con-
sidered only those activities that have both the start and complete event types
(i.e., all W activities). We have ignored all idle slots that are one minute or
less (we assume it is reasonable for an idle resource to initiate a task within one
minute of its scheduling). Table 7 depicts the top five resources who have worked
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Fig. 10. Working slots and corresponding activity’s schedule time for resource 11019
on 01-Oct-2011.

on this process for at least 60 days and who were idle for a significant amount of
time in spite of some activity being available for execution. The second column
indicates the number of days that the resource worked on this process while the
third column indicates the number of activities executed by the resource. The
fourth column indicates the amount of time that a resource spent on this process
working on some activity while the fifth column indicates the amount of time
the resource was idle in spite of an activity being available for execution. The
sixth column indicates the percentage of idle time with respect to the working
time. The idle time also counts the time that a resource might have taken for
breaks during a day (lunch/coffee break). To factor in this aspect, we discount 1
hr per work day of the resource. The adjusted idle time indicates the time that



a resource was idle after factoring in break times (this is derived by subtracting
the number of days (column 2) from the idle time (column 5)). Fig. 11 depicts
the histogram of number of resources and the percentage of adjusted idle time
spent by them. We can see that the majority of resources are idle for about 15
to 55 percent of their working time while some activity is available for execu-
tion. This impacts the cycle time of the cases. The organization should consider
improving its process by reducing unjustified idle times.

Table 7. Top five resources based on the percentage of adjusted idle time.

Resource No. Days No. Working Idle Perc. Idle Adjusted Perc. Adj.
Activities Time (hr) Time (hr) Time (%) Idle Time Idle Time

(hr) (%)

11259 81 1315 321.09 258.06 80.37 177.06 55.14
11049 74 1641 331.58 255.26 76.98 181.26 54.67
10899 79 1215 315.78 245.80 77.84 166.80 52.82
10982 99 1995 435.38 245.79 56.45 146.79 33.71
10913 106 2502 549.91 276.53 50.29 170.53 31.01

Fig. 11. Histogram of percentage of adjusted idle time spent by resources.

3 Process Diagnostics Using Trace Alignment

In Section 2, we focussed on resource behavior without considering the control-
flow. Now, we shift our attention to the ordering of activities. In particular,
we search for deviations and other non-conforming behavior. Trace alignment
has been proposed as a powerful technique for process diagnostics [3, 4]. Trace



alignment can be used to explore the process in the early stages of analysis.
It can also be used to answer specific questions in later stages of analysis. For
example, trace alignment can assist in answering diagnostic questions such as:

– What is the most common (likely) process behavior that is executed?
– Are there any common patterns of execution in the traces?
– Where do process instances deviate and what do they have in common?
– What are typical contexts in which an activity or a set of activities tend to

occur?
– What are the process instances that share/capture a desired behavior either

exactly or approximately?
– Are there particular patterns (e.g., milestones, concurrent activities etc.) in

the process?

We have analyzed the financial event log using the Trace Alignment with Guide
Tree plug-in in ProM [4]. We have analyzed the entire event log as well as subsets
of homogenous cases based on the classification defined in Fig. 1. Analyzing ho-
mogenous subsets of cases instead of the entire event log has several advantages.
Firstly, trace alignment is computationally expensive (polynomial in terms of
the number of cases and the average length of a case) [4]; analyzing smaller
homogenous subsets reduces the overall complexity. Secondly, heterogeneity in
event logs can lead to disturbances in the alignment [4]; analyzing homogenous
cases will lead to high-quality alignments. In the following sections, we discuss
the results obtained using trace alignment on some categories of cases where we
uncovered interesting insights on potential non-conforming behavior.

3.1 Cases Declined After Making an Offer

We have considered the event log containing cases that have been declined after
making an offer and not suspected for fraud (cf. Fig. 1).6 The selected event
log contains 796 cases and 29, 852 events distributed over 27 activities. We have
further partitioned the event log into six clusters (primarily for legibility pur-
poses). Fig. 12 depicts a snippet of the alignment for one of the clusters (the
alignment has been clipped for legibility reasons7 and to show only the portion
relevant for the discussion that follows). The alignment clearly uncovers common
execution patterns present in the event log. In the remainder, we focus more on
deviations in the event log. We can see that in only one trace (trace 204586),
activity a (W Completeren aanvraag-START) follows activity x (A ACCEPTED-
COMPLETE). In all other traces there is no a after x. It is surprising that the
application is accepted before some requests for checking completeness are made
with the customer. We used the LTL checker to check in how many of the traces
do we see this exceptional behavior. We have considered both only the declined

6 Recall that we classify a case into “Fraud” or “No Fraud” depending on the occur-
rence of task W Beoordelen fraude.

7 this cluster has 40 traces and the total alignment length is 114.



cases and the entire log for this analysis. Table 8 depicts the results of this anal-
ysis. We can see that only a negligible fraction of cases in the event log satisfy
this relation suggesting that the position of x in trace 204586 is an outlier and
a deviation from the normal behavior.

. . .

. . .

:

Fig. 12. Snippet of the alignment of cases that have not been suspected for fraud and
declined after making an offer. Also highlighted in the figure is an example of outlier
behavior (see position of x in trace 204586).

Table 8. LTL constraint checking of W Completeren aanvraag-START follows
A ACCEPTED-COMPLETE

Event Log # Cases No. Satisfied Perct. Satisfied

Only offered and declined and no fraud 796 13 1.60%
All declined cases 7635 17 0.22%
Entire event log 13087 74 0.56%

3.2 Cases Cancelled Without Making an Offer

For our second analysis, we applied trace alignment to all cases that were can-
celled without making an offer and not suspected for fraud (cf. Fig. 1). The
selection corresponds to 1163 cases and 22132 events distributed over 11 activ-
ities. We have applied trace alignment on this selection and divided the log
into five clusters. Fig. 13 depicts a snippet of the alignment for one of the
clusters. This cluster contains 154 traces. Fig. 13 also highlights some of the
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missing activities
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of k
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Fig. 13. Snippet of the alignment of cases that have been cancelled without making
an offer. Also highlighted in the figure are outliers/exceptional behavior.

exceptional execution behavior. For example, we can see that in the second
trace (trace name: 193378), the activities f (A PREACCEPTED-COMPLETE),
g (W Completeren aanvraag-SCHEDULE), a (W Completeren aanvraag-START),
and e (W Completeren aanvraag-COMPLETE) are missing before i (A CANCELLED-
COMPLETE), i.e., the case is cancelled without performing these activities. We
have applied LTL checker to see how exceptional is this behavior in the entire
log. Table 9 depicts the results of checking the properties (see the first two rows).
We can see that only the trace 193378 captured in this alignment violates the
normative behavior, clearly indicating that this trace is an outlier. Similarly, in
the same trace, there is a missing activity c (W Afhandelen leads-START) before
the activity h (W Afhandelen leads-COMPLETE). In the entire event log only one



trace exhibits this behavior thereby indicating that this is most likely an outlier
than an issue with logging.

We can further see that there is a rare execution of activity k (A ACCEPTED)
before i (A CANCELLED) in trace 197542, i.e., an application is cancelled after it
has been accepted. Table 9 depicts the number of such cases in the event log. We
can see that in only a small fraction of cases (5.59%) an application is accepted
before it is cancelled without making an offer. However, this is always the case
in traces that have been cancelled after an offer is made. Another exception that
we see is the absence of activity a (W Completeren aanvraag-START) before e

(W Completeren aanvraag-COMPLETE). This might most likely be an issue with
logging.

Table 9. Results of checking some LTL properties on cases that were cancelled

LTL Formula Event Log # Cases No. Satisfied Perct. Satisfied

A Preaccepted does not
Precede A Cancelled

Cancelled without
offer and no fraud

1163 1 0.08%

All Cancelled cases 2807 1 0.03%

W Completeren aanvraag
does not Precede
A Cancelled

Cancelled without
offer and no fraud

1163 1 0.08%

All Cancelled cases 2807 1 0.03%

A Accepted Precedes
A Cancelled

Cancelled without
offer and no fraud

1163 65 5.59%

Cancelled after an
offer is made

1640 1640 100.00%

All Cancelled cases 2807 1706 60.77%

3.3 Cases Cancelled After Making an Offer

We considered the cases that have been cancelled after an offer was made. The
selected event log contains 1640 cases and 56, 803 events distributed over 26
activities. Fig. 14 depicts a snippet of the aligned traces in one of the clus-
ters of this event log (the event log is partitioned into 10 clusters). The cluster
has 48 traces. From the alignment we can see that for one of the traces (trace
name: 181607), we see the activity pairs g (W Nabellen offertes-START) and
l (W Nabellen offertes-COMPLETE) following z (A CANCELLED-COMPLETE),
i.e., phone calls pertaining to offers were made to the customer in spite of the
application having been cancelled. We have applied LTL checker to check how
frequent is this behavior. Table 10 depicts the result of checking this constraint.
We can see that this is a clear outlier with only two traces (trace names: 181607
and 201427) exhibiting this behavior. In this alignment, we also see that there
is a missing g before an l in some traces, i.e., in some instances, a (W Nabellen
offertes-COMPLETE) activity is not preceded by its corresponding (W Nabellen
offertes-START) activity. This might most likely be an issue with logging.
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Fig. 14. Snippet of the alignment of cases that have been cancelled after an offer was
made. Also highlighted in the figure is an outlier.

Table 10. LTL constraint checking of W Nabellen offertes-START follows
A CANCELLED

Event Log # Cases No. Satisfied Perct. Satisfied

Only cancelled after an offer cases 1640 2 0.12%
All cancelled cases 2407 2 0.08%

In this fashion, trace alignment can assist in uncovering extremely interesting
insights and act as probes when analyzing process execution behavior thereby
giving cues on process improvement opportunities.

4 Control-Flow Analysis

In this section, we analyze the control-flow aspects of the given event log. When
we mine for a process model using the event log as given, we get a spaghetti-
like and completely incomprehensible model. Fig. 15 depicts the Heuristic net
[5] mined from the event log after removing all schedule events (this filtered
event log contains 13087 traces and 235882 events distributed over 29 activities).
There are two primary reasons for such a spaghetti-like model: (i) the event log is
heterogenous and (ii) there is a lot of concurrency in the process. Process mining
results can be improved by partitioning the event log into homogeneous subsets
of cases [6–10]. We use the classification defined in Section 1 and consider clusters
of homogenous cases for control-flow analysis.



Fig. 15. Heuristic net mined on the whole log (after filtering schedule events).

Fig. 16. Heuristic net mined for cases that were cancelled without making an offer.

4.1 Traditional Process Discovery

Fig. 16 depicts the Heuristic net [5] mined using the cases that were cancelled
without making an offer. This event log contains 1167 cases and 20716 events
distributed over 11 activities (after removing the schedule events). This model
is straightforward and comprehensible. An application is first pre-accepted and
in some cases W Afhandelen leads activity is executed. After an application is



pre-accepted, W completeren aanvraag activity is performed one or more times.
An application is cancelled during some instance of execution of W completeren
aanvraag. Sometimes (only in 66 out of 1167 cases), an application is accepted
before it is cancelled. This behavior is also uncovered using trace alignment and
we suspect that this is most likely to be outlier behavior and probably non-
conforming. In addition, for cases that are suspected for fraud, execution of the
activity related to fraudulent checks, viz., W Beoordelen fraude is performed.

Financial Log (13087)
Fitness: 0.85
Control-Flow: 855
AND-splits/joins: 41/36
XOR-splits/joins: 35/37
Ars: 359
Transitions/Places: 114/80

Approved (2246)
Fitness: 0.85
Control-Flow: 281
AND-splits/joins: 20/17
XOR-splits/joins: 25/28
Arcs: 221
Transitions/Places: 81/60

Declined (7635)
Fitness: 0.89
Control-Flow: 288
AND-splits/joins: 24/19
XOR-splits/joins: 24/24
Arcs: 205
Transitions/Places: 80/55

Cancelled (2807)
Fitness: 0.86
Control-Flow: 113
AND-splits/joins: 19/18
XOR-splits/joins: 15/16
Arcs: 145
Transitions/Places: 54/53

Offer
2246 Offer (1640)

Fitness: 0.92
Control-Flow: 140
AND-splits/joins: 13/12
XOR-splits/joins: 20/18
Arcs: 147
Transitions/Places: 59/44

No Offer (1167)
Fitness: 0.93
Control-Flow: 38
AND-splits/joins: 3/2
XOR-splits/joins: 6/8
Arcs: 54
Transitions/Places: 24/19

Offer
802

No Offer
6833

Fraud
30

No Fraud
2216

Fraud
6

No Fraud
796

Fraud
67

No Fraud
6766

No Fraud
1640

Fraud
4

No Fraud
1163

Fig. 17. Quality metrics for the various categories of cases. The fitness metric is ob-
tained using the Conformance Checker plug-in while the structural complexity metrics
are obtained using the Petri net Complexity Analysis plug-in in ProM 5.2. For the fit-
ness metric, the higher the value, the better is the model. For the complexity metrics,
the lower the values the better is the model.

We have applied traditional process discovery algorithms such as the Heuristics
miner [5] and Petri net discovery algorithms [11] for the different classes of cases
(depicted in Fig. 1) and in all the cases, we obtained more comprehensible and
structurally simpler models when compared to analyzing the whole event log.
Fig. 17 depicts the case classification tree along with some metrics assessing the
quality of the mined models (we depict the metrics only for some subsets of
homogenous cases due to space constraints). We have used the Heuristics miner
[5] for all the scenarios and translated the Heuristic net into Petri net and applied
the Conformance Checker plug-in [12] in ProM 5.2 for the fitness metric. The
complexity metrics are obtained using the Petri net Complexity Analysis plug-in
in ProM 5.2. From the figure, we can see that as we go down the tree (i.e., as we



reduce the heterogeneity), we get models that are more fitting and structurally
simpler.8

4.2 Discovering Process Maps

The discovered process models can further be simplified by using the two-phase
approach to process discovery [13, 14]. In the first phase, we define abstractions
of activities based on common execution patterns manifested in the event log.
The event log is transformed using these abstractions wherein patterns that de-
fine abstractions are replaced by its corresponding abstract activity. At the same
time, a sub-log is created for each abstract activity wherein the process instances
are defined by the pattern manifestations that are replaced. In the second phase
a process map is mined over the abstracted log. We use the Pattern Abstractions
and Fuzzy Map Miner plug-ins in ProM 6.0 for the two-phase approach to process
discovery.

We consider the event log pertaining to cases that were approved. The event
log contains 2246 cases and 88570 events distributed over 26 activities (after
removing the schedule events). We have discovered the tandem arrays [15] in the
log and defined abstractions over them. Six abstractions pertaining to the start
and complete event types of different W activities are formed. The event log
is transformed using these abstractions [13]. The transformed log contains 2246
cases and 44205 events distributed over 20 activities. Fig. 18 depicts the process
map obtained on the transformed log. Blue (dark) colored nodes in the map are
abstract activities which can be zoomed in to see the sub-processes underneath
them. In this example, the sub-processes are simple loops (since we formed ab-
stractions over tandem arrays) between the start and complete event types of the
corresponding W activities. The process is easy to comprehend. An application
that is submitted is first pre-accepted. If needed, the checks W Afhandelen Leads
and W Completeren aanvraag are performed. The application is then finalized
and accepted and an initial offer is made and sent to the customer. Offers can be
cancelled and created multiple times; the activity W Nabellen offertes is involved
in this process. The application is subjected to further checks one/more times
W Valideren aanvraag and W Nabellen incomplete dossiers before it is activated,
approved, and registered. Fig. 19 and Fig. 20 depicts the process maps for cases
that were cancelled and declined respectively.

As shown, we can deal with heterogeneity by partitioning the event log into
homogenous subsets of cases. Analysis of each subset separately enables the dis-
covery of comprehensible process models. Even simpler models can be obtained
by using the two-phase approach to process discovery, which enables the discov-
ery of hierarchical process models.

8 several of the transitions in the Petri net obtained from Heuristic net are silent
transitions.
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Fig. 18. Process map of cases that were approved.
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Fig. 19. Process map of cases that were cancelled.
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Fig. 20. Process map of cases that were declined.



5 Implementation and Tools for Analysis

For our analysis, we used three types of ProM plug-ins:

– A dedicated plug-in developed for this challenge: We have implemented the
ideas presented in this paper on the analysis of resources (Sections 1 and
2) as the Resource Work Analysis plug-in9 in ProM 6.0. Fig. 21 depicts the
result for working slot analysis from the plug-in.

– Recently developed plug-ins by authors: We have used several plug-ins devel-
oped by us during our earlier research for the analysis of the BPI Challenge
event log. The Guide Tree Miner and the Trace Alignment with Guide Tree
plug-ins are used for aligning the traces and exploring the alignment for de-
viations and non-conforming behavior. Trace alignment is a two step process:
first, we group similar traces in clusters [6, 7]; second, we visualize these clus-
ters by aligning the traces [3, 4]. The Guide Tree Miner plug-in clusters the
traces based on the techniques proposed in [6, 7, 13] while the Trace Align-
ment with Guide Tree plug-in uses this guide tree and aligns the traces.

For the discovery of process maps, we use the Pattern Abstractions and Fuzzy
Map Miner plug-ins. Together, these two plug-ins realize the two-phase ap-
proach to process discovery [14] and enables the discovery of hierarchical
process models [16, 17]. The Pattern Abstractions plug-in caters to the dis-
covery of common execution patterns, the definition of abstractions over
them, and the transformation of the event log with these abstractions. Dur-
ing the transformation phase, the Pattern Abstractions plug-in generates a
sub-log that captures the manifestation of execution patterns defined by
that abstraction as its process instances. The Fuzzy Map Miner plug-in is
an enhancement of the Fuzzy miner [18] and utilizes the availability of sub-
logs to mine sub-processes, which are displayed upon zooming-in on abstract
activities.

– General purpose plug-ins: We have also used several general purpose ProM
plug-ins for process discovery and conformance checking. More specifically,
we have used the Heuristics Miner [5], Conformance Checker [12], Petri net
Complexity Analysis, and LTL Checker plug-ins in ProM 5.2

6 Conclusions

In this paper, we used a systematic approach to analyze the financial institute
event log provided for the BPI challenge. We proposed a hierarchical classifica-
tion of the event log based on the loan/overdraft application characteristics and
showed that this classification simplifies the complexity of analysis and enables
the discovery of interesting insights. We have reported the results (and obser-
vations) from the analysis of the log on three different aspects (a) resource (b)

9 The plug-in can be provided upon request.
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control-flow and (c) process diagnostics. Only a small subset of our findings are
reported in this paper. However, we strongly believe that more accurate insights
and interpretations can be obtained/inferred by performing the analysis in col-
laboration with the domain experts.

Key Findings

– Some resources tend to work on cases (loan/overdraft applications) simul-
taneously and spend significant amounts of their working time executing
multiple activities. The top five resources exhibiting such multitasking be-
havior are 11002, 11169, 10932, 11121, and 10910.

– Working on simultaneous cases has a negative influence on the execution
times of activities leading to high turnaround times. Obviously, this is
undesirable for customers and the organization.

– The average execution and turnaround times of activities is much higher
for resources who work on simultaneous cases when compared to their
counterparts who work on one case at a time for similar workloads.

– Several resources are often idle although an activity is available for exe-
cution. This impacts the cycle time of cases. The top five resources who
are often idle while work is piling up are 11259, 11049, 10899, 10982, and
10913.

– At first glance, the event log may seem complex due to the heterogeneity
in the log. However, our hierarchical classification of the log based on the
characteristics of the loan/overdraft applications helps to simplify analysis
significantly.

– Analyzing homogenous subsets of cases in the event log based on the clas-
sification proposed in this paper reveals that the process is in fact rather
simple. Comprehensible process models and interesting diagnostic insights
can be uncovered using such a classification.

– There are several (potential) outliers in the event log
• an automated resource (112) is involved in the approval of 3 loan ap-

plications.
• in two cases, W Nabellen offertes is executed even after the application

is cancelled.
• in one case, an application is cancelled even before it is pre-accepted.
• in one case, completion checks (W Completeren aanvraag) are performed

even after the application is cancelled (alternatively, an application is
cancelled without thorough checks).

• in 74 cases in the entire event log, completion checks (W Completeren
aanvraag) are performed even after the application is accepted (alter-
natively, applications are accepted without thorough checks).

– There are some anomalies with respect to the quality of the log (missing
information, ambiguities, etc.). The organization should take appropriate
steps to improve this.
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