
Passages in Graphs

W.M.P. van der Aalst

Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, The Netherlands.
Business Process Management Discipline, Queensland University of Technology, GPO Box 2434, Brisbane QLD 4001, Australia.

WWW: www.vdaalst.com, E-mail: w.m.p.v.d.aalst@tue.nl

Abstract

Directed graphs can be partitioned in so-called passages. A passage P is a set of edges such that any two edges sharing
the same initial vertex or sharing the same terminal vertex are both inside P or are both outside of P . Passages were
first identified in the context of process mining where they are used to successfully decompose process discovery and
conformance checking problems. In this article, we examine the properties of passages. We will show that passages
are closed under set operators such as union, intersection and difference. Moreover, any passage is composed of so-
called minimal passages. These properties can be exploited when decomposing graph-based analysis and computation
problems.

Keywords: Directed graphs, Process modeling, Decomposition

1. Introduction

Recently, the notion of passages was introduced in the
context of process mining [2]. There it was used to decom-
pose process discovery and conformance checking problems
[1]. Any directed graph can be partitioned into a collec-
tion of non-overlapping passages. Analysis can be done
per passage and the results can be combined easily, e.g.,
for conformance checking a process model can be decom-
posed into process fragments using passages and traces in
the event log fit the overall model if and only if they fit all
process fragments.

As shown in this article, passages have various elegant
problems. Although the notion of passages is very simple,
we could not find this graph notion in existing literature
on (directed) graphs [3, 6]. Classical graph partitioning
approaches [7, 8] decompose the vertices of a graph rather
than the edges, i.e., the goal there is to decompose the
graph in smaller components of similar size that have few
connecting edges. Some of these notions have been ex-
tended to vertex-cut graph partitioning [5, 9]. However,
these existing notions are not applicable in our problem
setting where components need to behave synchronously
and splits and joins cannot be partitioned. We use pas-
sages to decompose a graph into sets of edges such that all
edges sharing an initial vertex or terminal vertex are in
the same set. To the best of our knowledge, the notion
of passages has not been studied before. However, we be-
lieve that this notion can be applied in various domains
(other than process mining). Therefore, we elaborate on
the foundational properties of passages.

The remainder is organized as follows. In Section 2 we
define the notion of passages, provide alternative charac-

terizations, and discuss elementary properties. Section 3
shows that any graph can be partitioned into passages and
that any passage is composed of so-called minimal pas-
sages. Section 4 introduces passage graphs visualizing the
relations between passages. Graphs may be partitioned in
different ways. Therefore, Section 5 discusses the quality
of passage partitionings. Section 6 concludes this article.

2. Defining Passages

Passages are defined on directed graphs, simply re-
ferred to as graphs.

Definition 1 (Graph). A (directed) graph is a pair G =
(V,E) composed of a set of vertices V and a set of edges
E ⊆ V × V .

a

b

c

d

e

f

g

h

i

Figure 1: Graph G1 with 9 vertices, 12 edges, and 32 passages.

A passage is a set of edges such that any two edges sharing
the same initial vertex (tail) or sharing the same terminal
vertex (head) are both inside or both outside of the pas-
sage. For example, {(a, b), (a, c)} is a passage in graph G1

shown in Figure 1 because there are no other edges having
a as initial vertex or b or c as terminal vertex.

Technical Report - BPMcenter.org September 2012

Definition 2 (Passage). Let G = (V,E) be a graph. P ⊆
E is a passage if for any (x, y) ∈ P and {(x, y′), (x′, y)} ⊆
E: {(x, y′), (x′, y)} ⊆ P . pas(G) is the set of all passages
of G.

Figure 2 shows 7 of the 32 passages of graph G1 shown
in Figure 1. P2 = {(b, e), (b, f), (c, f), (c, d), (d, d), (d, f)}
is a passage as there are no other edges having b, c, or d
as initial vertex or d, e, or f as terminal vertex. Figure 2
does not show the two trivial passages: ∅ (no edges) and
E (all edges).

b

c

d

e

f

a

b

c

e g

f h

g

h

i

P1

P3

P2

P4

P5

e

f

g

h

i

P6

e

f

g

h

a

b

c
P7

Figure 2: Seven example passages of graph G1 shown in Figure 1.

Lemma 1 (Trivial Passages). Let G = (V,E) be a graph.
The empty passage ∅ and the full passage E are trivial
passages of G. Formally: {∅, E} ⊆ pas(G) for any G.

Some of the passages in Figure 2 are overlapping: P6 =
P3 ∪ P4 ∪ P5 and P7 = P1 ∪ P3 ∪ P4. To combine passages
into new passages and to reason about the properties of
passages we define the following notations.

Definition 3 (Passage Operators). Let G = (V,E) be
a graph with P, P1, P2 ⊆ E. P1 ∪ P2, P1 ∩ P2, P1 \ P2,
P1 = P2, P1 6= P2, P1 ⊆ P2, and P1 ⊂ P2 are defined as
usual. π1(P) = {x | (x, y) ∈ P} are the initial vertices of
P , π2(P) = {y | (x, y) ∈ P} are the terminal vertices of
P , P1#P2 if and only if P1 ∩ P2 = ∅, P1 . P2 if and only
if π2(P1) ∩ π1(P2) 6= ∅.

Note that d is both an initial and terminal vertex of P2 in
Figure 2: π1(P2) = {b, c, d} and π2(P2) = {d, e, f}. P5#P7

because P5 ∩ P7 = ∅. P4 . P5 because π2(P4) ∩ π1(P5) =
{h} 6= ∅.

The union, intersection and difference of passages yield
passages. For example, P7 = P1 ∪ P3 ∪ P4 is a passage
composed of three smaller passages. P5 = P6 \ P7 and
P6 ∩ P7 = P3 ∪ P4 are passages.

Lemma 2 (Passages Are Closed under ∪, ∩ and \).
Let G = (V,E) be a graph. If P1, P2 ∈ pas(G) are two pas-
sages, then P1∪P2, P1∩P2, and P1 \P2 are also passages.

Proof. Let P1, P2 ∈ pas(G), (x, y) ∈ P1∪P2, and {(x, y′),
(x′, y)} ⊆ E. We need to show that {(x, y′), (x′, y)} ⊆ P1∪

P2. If (x, y) ∈ P1, then {(x, y′), (x′, y)} ⊆ P1 ⊆ P1 ∪P2. If
(x, y) ∈ P2, then {(x, y′), (x′, y)} ⊆ P2 ⊆ P1 ∪ P2.

Let P1, P2 ∈ pas(G), (x, y) ∈ P1 ∩ P2, and {(x, y′),
(x′, y)} ⊆ E. We need to show that {(x, y′), (x′, y)} ⊆ P1∩
P2. Since (x, y) ∈ P1, {(x, y′), (x′, y)} ⊆ P1. Since (x, y) ∈
P2, {(x, y′), (x′, y)} ⊆ P2. Hence, {(x, y′), (x′, y)} ⊆ P1 ∩
P2.

Let P1, P2 ∈ pas(G), (x, y) ∈ P1 \ P2, and {(x, y′),
(x′, y)} ⊆ E. We need to show that {(x, y′), (x′, y)} ⊆ P1\
P2. Since (x, y) ∈ P1, {(x, y′), (x′, y)} ⊆ P1. Since (x, y) 6∈
P2, {(x, y′), (x′, y)} ∩ P2 = ∅. Hence, {(x, y′), (x′, y)} ⊆
P1 \ P2. �

A passage is fully characterized by both the set of initial
vertices and the set of terminal vertices. Therefore, the
following properties hold.

Lemma 3 (Passage Properties). Let G = (V,E) be a
graph. For any P1, P2 ∈ pas(G):

• π1(P1) = π1(P2) ⇔ P1 = P2 ⇔ π2(P1) = π2(P2),

• P1#P2 ⇔ π1(P1) ∩ π1(P2) = ∅, and

• P1#P2 ⇔ π2(P1) ∩ π2(P2) = ∅.

Proof. X = π1(P) implies P = {(x, y) ∈ E | x ∈ X}
(definition of passages). Hence, π1(P1) = π1(P2) ⇒ P1 =
P2 (because a passage P is fully determined by π1(P)).
The other direction (⇐) holds trivially. A passage P is also
fully determined by π2(P). Hence, π2(P1) = π2(P2) ⇒
P1 = P2. Again the other direction (⇐) holds trivially.

The second property follows from the observation that
two passages share an edge if and only if the initial vertices
overlap. If two passages share an edge (x, y), they also
share initial vertex x. If two passage share initial vertex
x, then they also share some edges (x, y).

Due to symmetry, the same holds for the third property.
�

The following lemma shows that a passage can be viewed
as a fixpoint: P = ((π1(P)× V)∪ (V × π2(P)))∩E. This
property will be used to construct minimal passages.

Lemma 4 (Another Passage Characterization). Let
G = (V,E) be a graph. P ⊆ E is a passage if and only if
P = ((π1(P)× V) ∪ (V × π2(P))) ∩ E.

Proof. Suppose P is a passage: it is fully characterized
by π1(P) and π2(P). Take all edges leaving from π1(P):
P = (π1(P) × V) ∩ E. Take all edges entering π2(P):
P = (V × π2(P)) ∩ E. Hence, P = (π1(P) × V) ∩ E =
(V ×π2(P))∩E. So, P = ((π1(P)×V)∪(V ×π2(P)))∩E.

Suppose P = ((π1(P) × V) ∪ (V × π2(P))) ∩ E. Let
(x, y) ∈ P and {(x, y′), (x′, y)} ⊆ E. Clearly, (x, y′) ∈
(π1(P) × V) ∩ E and (x′, y) ∈ (V × π2(P)) ∩ E. Hence,
{(x, y′), (x′, y)} ⊆ ((π1(P)× V) ∪ (V × π2(P))) ∩E = P .
�

2

3. Passage Partitioning

After introducing the notion of passages and their prop-
erties, we now show that graph can be partitioned using
passages. For example, the set of passages {P1, P2, P3, P4,
P5} in Figure 2 partitions G1. Other passage partitionings
for graph G1 are {P2, P5, P7} and {P1, P2, P6}.

Definition 4 (Passage Partitioning). Let G = (V,E)
be a graph. P = {P1, P2, . . . , Pn} ⊆ pas(G) \ {∅} is a
passage partitioning if and only if

⋃
P = E and ∀1≤i<j≤n

Pi#Pj.

Any passage partitioning P defines an equivalence relation
on the set of edges. For e1, e2 ∈ E, e1 ∼P e2 if there exists
a P ∈ P with {e1, e2} ⊆ P .

Lemma 5 (Equivalence Relation). Let G = (V,E) be
a graph with passage partitioning P. ∼P defines an equiv-
alence relation.

Proof. We need to prove that ∼P is reflexive, symmetric,
and transitive. Let e, e′, e′′ ∈ E. Clearly, e ∼P e because
e ∈ E =

⋃
P (P is a passage partitioning). Hence, there

must be a P ∈ P with e ∈ P (reflexivity). If e ∼P e′,
then e′ ∼P e (symmetry). If e ∼P e′ and e′ ∼P e′′, then
there must be a P ∈ P such that {e1, e2, e3} ⊆ P . Hence,
e ∼P e′′ (transitivity). �

Any graph has a passage partitioning, e.g., {E} is always
a valid passage partitioning. However, to decompose anal-
ysis one is typically interested in partitioning the graph in
as many passages as possible. Therefore, we introduce the
notion of a minimal passage. Passage P6 in Figure 2 is not
minimal because it contains smaller non-empty passages:
P3, P4, and P5. Passage P7 is also not minimal. Only the
first five passages in Figure 2 (P1, P2, P3, P4 and P5) are
minimal.

Definition 5 (Minimal Passages). Let G = (V,E) be
a graph and P ∈ pas(G) a passage. P is minimal if and
only if there is no non-empty passage P ′ ∈ pas(G) \ {∅}
such that P ′ ⊂ P . pasmin(G) is the set of all non-empty
minimal passages.

Two different minimal passages cannot share the same
edge. Otherwise, the difference between both passages
would yield a smaller non-empty minimal passage. Hence,
an edge can be used to uniquely identify a minimal pas-
sage. The fixpoint characterization given in Lemma 4 sug-
gests an iterative procedure that starts with a single edge.
In each iteration edges are added that must be part of the
same minimal passage. As shown this procedure can be
used to determine all minimal passages.

Lemma 6 (Constructing Minimal Passages). Let G
= (V,E) be a graph. For any (x, y) ∈ E, there exists
precisely one minimal passage P(x,y) ∈ pasmin(G) such
that (x, y) ∈ P(x,y).

Proof. Initially, set P := {(x, y)}. Extend P as follows:
P := ((π1(P)×V)∪(V ×π2(P)))∩E. Repeat extending P
until it does not change anymore. Finally, return P(x,y) =
P . The procedure ends because the number of edges is
finite. If P = ((π1(P) × V) ∪ (V × π2(P))) ∩ E (i.e., P
does not change anymore), then P is indeed a passage (see
Lemma 4). P is minimal because no unnecessary edges are
added: if (x, y) ∈ P , then any edge starting in x or ending
in y has to be included.

To prove the latter one can also consider all passages
P = {P1, P2, . . . , Pn} that contain (x, y). The intersection
of all such passages

⋂
P contains edge (x, y) and is again

a passage because of Lemma 2. Hence,
⋂
P = P(x,y). �

The construction described in the proof can be used com-
pute all minimal passages and is quadratic in the number
of edges.

pasmin(G1) = {P1, P2, P3, P4, P5} for the graph shown
in Figure 1. This is also a passage partitioning. (Note that
the construction in Lemma 6 is similar to the computation
of so-called clusters in a Petri net [4].)

Theorem 1 (Minimal Passage Partitioning). Let G =
(V,E) be a graph. pasmin(G) is a passage partitioning.

Proof. Let pasmin(G) = {P1, P2, . . . , Pn}. Clearly, {P1,
P2, . . . , Pn} ⊆ pas(G)\{∅},

⋃
1≤i≤n Pi = E and ∀1≤i<j≤n

Pi#Pj (follows from Lemma 6). �

Figure 3 shows a larger graph G2 = (V2, E2) with V2 =
{a, b, . . . , o} and E2 = {(a, b), (b, e), . . . , (n, o)}. The figure
also shows six passages. These form a passage partitioning.
Each edge has a number that refers to the corresponding
passage, e.g., edge (h, k) is part of passage P4. Passages are
shown as rectangles and vertices are put on the boundaries
of at most two passages. Vertex a in Figure 3 is on the
boundary of P1 because (a, b) ∈ P1. Vertex b is on the
boundary of P1 and P2 because (a, b) ∈ P1 and (b, e) ∈
P2. G2 has no isolated vertices, so all vertices are on the
boundary of at least one passage.

The passage partitioning shown in Figure 3 is not com-
posed of minimal passages as is indicated by the two dashed
lines. Both P1 and P6 are not minimal. P1 can be split
into minimal passages P1a = {(a, b)} and P1b = {(c, d)}.
P6 can be split into minimal passages P6a = {(m, l)} and
P6b = {(n, o), (n,m)}. In fact, as shown next, any passage
can be decomposed into minimal non-empty passages.

Theorem 2 (Composing Minimal Passages). Let G =
(V,E) be a graph. For any passage P ∈ pas(G) there is
a set of minimal non-empty passages {P1, P2, . . . , Pn} ⊆
pasmin(G) such that

⋃
1≤i≤n Pi = P and ∀1≤i<j≤n Pi#Pj.

Proof. Let {P1, P2, . . . , Pn} = {P(x,y) | (x, y) ∈ P}.
These passages are minimal (Lemma 6) and also cover all
edges in P . Moreover, two different minimal passages can-
not share edges. �

3

a b

d

m

c

P1

e

f

g

h

i

k

j

n

o

l

P2 P3 P4

P5

P6

1 2

2 2

2

2

3

3

4 4

4

4

4

5
5

5

6 6
6

1

Figure 3: A passage partitioning for graph G2.

A graph without edges has only one passage. Hence, if E =
∅, then pas(G) = {∅} (just one passage), pasmin(G) = ∅
(no minimal non-empty passages), and ∅ is the only pas-
sage partitioning. If E 6= ∅, then there is always a trivial
singleton passage partitioning {E} and a minimal passage
partitioning pasmin(G) (but there may be many more).

Lemma 7 (Number of Passages). Let G = (V,E) be
a graph with k = |pasmin(G)| minimal non-empty pas-
sages. There are 2k passages and Bk passage partition-
ings.1 For any passage partitioning {P1, P2, . . . , Pn} of G:
n ≤ k ≤ |E|.

Proof. Any passage can be composed of minimal non-
empty passages. Hence, there are 2k passages. Bk is the
number of partitions of a set with k members, thus corre-
sponding to the number of passage partitionings.

If there are no edges, there are no minimal non-empty
passages (k = 0) and there is only one possible passage
partitioning: ∅. Hence, n = 0. If E 6= ∅, then pasmin(G)
is the most refined passage partitioning. There are at
most |E|minimal non-empty passages as they cannot share
edges. Hence, n ≤ k ≤ |E|. Note that n ≥ 1 if E 6= ∅. �

Graph G2 in Figure 3 has 28 = 256 passages and B8 =
4140 passage partitionings.

4. Passage Graphs

Passage partitionings can be visualized using passage
graphs. To relate passages, we first define the input/output
vertices of a passage.

Definition 6 (Input and Output Vertices). Let G =
(V,E) be a graph and P ∈ pas(G) a passage. in(P) =
π1(P)\π2(P) are the input vertices of P , out(P) = π2(P)\
π1(P) are the output vertices of P , and io(P) = π1(P) ∩
π2(P) are the input/output vertices of P .

1Bk is the k-th Bell number (the number of partitions of a set of
size k), e.g., B3 = 5, B4 = 15, and B5 = 52 [10].

Note the difference between input, output, and input/output
vertices on the one hand and the initial and terminal ver-
tices of a passage on the other hand. Given a passage
partitioning, there are five types of vertices: isolated ver-
tices, input vertices, output vertices, connecting vertices,
and local vertices.

Definition 7 (Five Types of Vertices). Let G = (V,E)
be a graph and P = {P1, P2, . . . , Pn} a passage partition-
ing. Viso = V \ (π1(E) ∪ π2(E)) are the isolated ver-
tices of P, Vin = π1(E) \ π2(E) are the input vertices
of P, Vout = π2(E) \ π1(E) are the output vertices of P,
Vcon =

⋃
i6=j π2(Pi)∩ π1(Pj) are the connecting vertices of

P, Vloc =
⋃
i π1(Pi) ∩ π2(Pi) are the local vertices of P.

Note that V = Viso ∪ Vin ∪ Vout ∪ Vcon ∪ Vloc and the
five sets are pairwise disjoint, i.e., they partition V . In the
passage partitioning shown in Figure 3: a is the only input
vertex, k and o are output vertices, and e, i and m are local
vertices. All other vertices are connecting vertices.

Definition 8 (Passage Graph). Let G = (V,E) be a
graph and P = {P1, P2, . . . , Pn} a passage partitioning.
(P, {(P, P ′) ∈ P × P | P . P ′}) is corresponding passage
graph .

Figure 4 shows a passage graph. The graph shows the
relationships among passages and can be used to partition
the vertices V into Viso ∪ Vin ∪ Vout ∪ Vcon ∪ Vloc .

a P1 P2 P3 P4

b,d f,g

e

h

i

k

P5
c j

P6

nl

om

Figure 4: Passage graph based on the passage partitioning shown in
Figure 3.

5. Quality of a Passage Partitioning

Passages can be used to decompose analysis problems
(e.g., conformance checking and process discovery [2]). In
the extreme case, there is just one minimal passage cov-
ering all edges in the graph. In this case, the graph can-
not be decomposed. Ideally, we would like to use a pas-
sage partitioning P = {P1, P2, . . . , Pn} that is accurate
and that has only small passages. One could aim at as
many passages as possible in order to minimize the av-

erage size per passage: av(P) = |E|
n per passage. One

can also aim at minimizing the size of the biggest passage

4

(i.e., big(P) = max 1≤i≤n |Pi|) because the biggest passage
often takes most of the computation time.

To have smaller passages, one may need to abstract
from edges that are less important. To reason about such
“approximate passages” we define the input as Gπ = (V, π)
with vertices V and weight function π ∈ (V × V) →
[−1, 1]. Given two vertices x, y ∈ V : π(x, y) is “weight”
of the possible edge connecting x and y. If π(x, y) >
0, then it is more likely than unlikely that there is an
edge connecting x and y. If π(x, y) < 0, then it is more
unlikely than likely that there is an edge connecting x

and y. One can view π(x,y)+1
2 as the “probability” that

there is such an edge. The penalty for leaving out an
edge (x, y) with π(x, y) = 0.99 is much bigger than leav-
ing out an edge (x′, y′) with π(x′, y′) = 0.15. The accu-
racy of a passage partitioning P = {P1, P2, . . . , Pn} with
E = ∪1≤i≤n Pi for input Gπ = (V, π) can be defined as

acc(P) =
∑

(x,y)∈E π(x,y)

maxE′⊆V×V

∑
(x,y)∈E′ π(x,y)

. If acc(P) = 1, then

all edges having a positive weight are included in some
passage and none of edges having a negative weight are
included. Often there is a trade-off between higher accu-
racy and smaller passages, e.g., discarding a potential edge
having a low weight may allow for splitting a large passage
into two smaller ones. Just like in traditional graph par-
titioning [7, 8], one can look for the passage partition-
ing that maximizes acc(P) provided that av(P) ≤ τav
and/or big(P) ≤ τbig , where τav and τbig are suitably cho-
sen thresholds. Whether one needs to resort to approxi-
mate passages depends on the domain, e.g., when discov-
ering process models from event logs causalities tend to be
uncertain and including all potential causalities results in
Spaghetti-like graphs [1], therefore approximate passages
are quite useful.

6. Conclusion

In this article we introduced the new notion of pas-
sages. Passages have been shown to be useful in the do-
main of process mining. Given their properties and possi-
ble applications in other domains, we examined passages
in detail. Passages are closed under the standard set oper-
ators (union, difference, and intersection). A graph can be
partitioned into components based on its minimal passages
and any passage is composed of minimal passages. The
theory of passages can be extended to deal with approxi-
mate passages. We plan to examine these in the context
of process mining, but are also looking for applications of
passage partitionings in other domains (e.g., distributed
enactment and verification).

References

[1] W.M.P. van der Aalst. Process Mining: Discovery, Confor-
mance and Enhancement of Business Processes. Springer-
Verlag, Berlin, 2011.

[2] W.M.P. van der Aalst. Decomposing Process Mining Problems
Using Passages. In S. Haddad and L. Pomello, editors, Appli-
cations and Theory of Petri Nets 2012, volume 7347 of Lec-
ture Notes in Computer Science, pages 72–91. Springer-Verlag,
Berlin, 2012.

[3] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms
and Applications (Second Edition). Springer-Verlag, Berlin,
2009.

[4] J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of
Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, Cambridge, UK, 1995.

[5] U. Feige, M. Hajiaghayi, and J. Lee. Improved Approximation
Algorithms for Minimum-Weight Vertex Separators. In Proceed-
ings of the thirty-seventh annual ACM symposium on Theory
of computing, pages 563–572. ACM, New York, 2005.

[6] J.L. Gross and J. Yellen. Handbook of Graph Theory. CRC
Press, 2004.

[7] G. Karpis and V. Kumar. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM Journal on
Scientific Computing, 20(1):359–392, 1998.

[8] B.W. Kernighan and S. Lin. An Efficient Heuristic Procedure
for Partitioning Graphs. The Bell Systems Technical Journal,
49(2), 1970.

[9] M. Kim and K. Candan. SBV-Cut: Vertex-Cut Based Graph
Partitioning Using Structural Balance Vertices. Data and
Knowledge Engineering, 72:285–303, 2012.

[10] N.J.A. Sloane. Bell Numbers. In Encyclopedia
of Mathematics. Kluwer Academic Publishers, 2002.
http://www.encyclopediaofmath.org/index.php?title=

Bell_numbers&oldid=14335.

5

