
Supporting Risk-Informed Decisions during
Business Process Execution

Raffaele Conforti1, Massimiliano de Leoni2, Marcello La Rosa1, and
Wil M. P. van der Aalst2

1 Queensland University of Technology, Australia
2 Eindhoven University of Technology, The Netherlands
{raffaele.conforti,m.larosa}@qut.edu.au,
{m.d.leoni,w.m.p.v.d.aalst}@tue.nl

Abstract. This paper proposes a technique that supports process participants in
making risk-informed decisions, with the aim to reduce the process risks. Risk
reduction involves decreasing the likelihood and severity of a process fault from
occurring. Given a process exposed to risks, e.g. a financial process exposed to a
risk of reputation loss, we enact this process and whenever a process participant
needs to provide input to the process, e.g. by selecting the next task to execute or
by filling out a form, we prompt the participant with the expected risk that a given
fault will occur given the particular input. These risks are predicted by traversing
decision trees generated from the logs of past process executions and considering
process data, involved resources, task durations and contextual information like
task frequencies. The approach has been implemented in the YAWL system and
its effectiveness evaluated. The results show that the process instances executed in
the tests complete with substantially fewer faults and with lower fault severities,
when taking into account the recommendations provided by our technique.

1 Introduction

A process-related risk measures the likelihood and the severity that a negative out-
come, also called fault, will impact on the process objectives [15]. Failing to address
process-related risks can result in substantial financial and reputational consequences,
potentially threatening an organization’s existence. Take for example the case of Société
Générale, which went bankrupt after a e 4.9B loss due to a fraud.

Legislative initiatives like Basel II [3] and the Sarbanes-Oxley Act3 reflect the need
to better manage business process risks. In line with these initiatives, organizations have
started to incorporate process risks as a distinct view in their operational management,
with the aim to effectively control such risks. However, to date there is little guidance
as to how this can be concretely achieved.

As part of an end-to-end approach for risk-aware Business Process Management
(BPM) [5, 6], we proposed a technique to model risks in executable business process
models, detect them as early as possible during process execution, and support process
administrators in mitigating these risks by applying changes to the running process
instances. However, the limitation of these efforts is that risks are not prevented, but
rather acted upon when their likelihood exceeds a tolerance threshold. For example, a

3 www.gpo.gov/fdsys/pkg/PLAW-107publ204

mitigation action may entail skipping some tasks when the process instance is going to
exceed the defined maximum cycle time. While effective, mitigation comes at the cost
of modifying the process instance, often by skipping tasks or rolling back previously-
executed tasks, which may not always be acceptable. Moreover, we have shown that it
is not always possible to mitigate all process risks. For example, rolling back a task may
not allow the full recovery of the costs incurred in the execution of the task, for the sake
of mitigating a risk of cost overrun.

In light of this, in this paper we present a technique that supports process partici-
pants in making risk-informed decisions, with the aim to reduce process risks preemp-
tively. A process participant makes a decision whenever they have to choose the next
task to execute out of those assigned to them at a given process state, or via the data they
enter in a user form. This input from the participant may influence the risk of a process
fault to occur. For each such input, the technique returns a risk prediction in terms of
the likelihood and severity that a fault will occur if the process instance is carried out
using that input. This prediction is obtained via a function estimator which is trained
using historical process data such as process variables, resources, task durations and
frequencies as extracted from the process log. This way the participant can make a risk-
informed decision as to which task to execute next, or can learn the predicted risk of
submitting a form with particular data. If the instance is subjected to multiple faults, the
predictor can return the weighted sum of all fault likelihoods and severities, as well as
the individual figures for each fault. The weight of each fault can be determined based
on the severity of the fault’s impact on the process objectives.

We implemented the function estimator via decision trees and embedded this into a
custom service for the YAWL workflow management system. Our service interacts with
the worklist handler of the YAWL system to prompt the process participant with risk
predictions upon filling out a form or when choosing the next task to execute. We then
evaluated the effectiveness of our technique by conducting experiments on a simulated
process log of 2,000 traces and using different fault distributions. The results show that
the technique was always able to substantially reduce the number and severity of faults
upon instance completion.

The remainder of this paper is organized as follows. Section 2 introduces our ap-
proach for managing process-related risks and describes a running example. Section 3
defines the notions of event logs and faults which are required to explain our technique.
Section 4 describes the proposed technique to reduce process risks which is then evalu-
ated in Section 5. Section 6 discusses related work and Section 7 concludes the paper.

2 Background and Running Example

The technique proposed in this paper belongs to a wider approach for the management
of process-related risks. This approach aims to enrich the four phases of the BPM life-
cycle (Process Design, Implementation, Enactment and Analysis) [9] with elements of
risks management (see Fig. 1).

Before the Process Design phase, we add an initial phase, namely Risk Identifica-
tion, where existing techniques for risk analysis such as Fault Tree Analysis [4] or Root
Cause Analysis [11] can be used to identify possible risks of faults that may eventu-
ate during the execution of a business process. Faults and their risks identified in this
phase are mapped onto specific aspects of the process model during the Process Design

phase, obtaining a risk-annotated process model. In the Process Implementation phase,
a more detailed mapping is conducted linking each risk and fault to specific aspects of
the process model, such as content of data variables and resource states. In the Process
Enactment phase such a risk-annotated process model is executed.

Process

Implementation

Risk-aware workflow

implementation

Risk

Identification

Risk analysis

Risk-annotated

 models

Risk-annotated

workflows

Current

process data

Historical

process data
Risk prevention

changes

Process Design

Risk-aware

process modelling

1

2

3

4Process Diagnosis

Risk monitoring and

controlling

Process

Enactment

Risk-aware

workflow execution

Risk mitigation

changes

Reporting

Risks

Fig. 1. Risk-aware BPM lifecycle.

Finally, information pro-
duced during the Process
Enactment phase is used in
combination with historical data
during the Process Diagnosis
phase, to monitor the occur-
rence of risks and faults during
the execution of a process
instance. This monitoring may
trigger some form of mitigation
in order to (partially) recover
the process instance from a fault. The technique presented this paper fits in this
latter phase, since it aims to provide run-time support in terms of risk prediction, by
combining information on risks and faults with historical data.

To illustrate how this technique works, we use the example model shown in Fig-
ure 2. The process captured by this model may be subjected to several risks during its
execution. The model is defined using the YAWL language. Thus, before explaining
this example, we introduce the basic ingredients of YAWL.

We will not repeat the full definition of a YAWL specification as defined in [18].
Rather, we will only describe those parts that are relevant to this paper. Each YAWL
specification is made up of one or more nets organized hierarchically in a root net and
zero or more subnets (each modeling a subprocess). Each net is defined as a set of
conditions C (represented as circles), an input condition i ∈ C, an output condition
o ∈ C, and a set of tasks T (represented as boxes). Tasks are connected to conditions
via a flow relation F ⊆ (C \ {o}× T)∪ (T ×C \ {i})∪ (T × T) (represented as a set
of arcs). We write TN and CN to access the tasks and conditions of a net N .

Tasks model units of work that are performed either by process participants (user
tasks) or by software services (automated tasks). An example of an automated task is
Receive Confirmation Order in Fig. 2, while an example of user task is Estimate Trailer
Usage. Conditions denote states of execution, for example the state before executing a
task or that resulting from its execution. Conditions can also be used for routing pur-
poses when they have more than one incoming and/or outgoing flow relation. In partic-
ular, a condition followed by multiple tasks, like condition FLT in Fig. 2, represents a
deferred choice, i.e. a choice which is not determined by some process data, but rather
by the first process participant that is going to start one of the outgoing tasks of this
condition. In the example, the deferred choice is between tasks Arrange Delivery Ap-
pointment, Arrange Pickup Appointment and Create Shipment Information Document,
each assigned to a different process participant. When the choice is based on data, this
is captured in YAWL by an XOR-split if only one outgoing flow can be taken, or by an
OR-split if one or more outgoing flows can be taken. XOR-join and OR-join capture the
merging behavior of their respective splits. Finally, an AND-split captures two or more
flows that have to be executed in parallel while the AND-join is used to synchronize
parallel flows. Splits and joins are represented as decorators on the task’s box.

In YAWL trivial conditions, i.e. those having a single incoming flow and a single
outgoing flow, can be hidden. To simplify the discussion in the paper, without loss
of generality, we assume a strict alternation between tasks and conditions. Under this
assumption, the preset of a task t is the set of its input conditions: •t = {c ∈ CN |
(c, t) ∈ F}. Similarly, the postset of a task t is the set of its output conditions: t• = {c ∈
CN | (t, c) ∈ F}. The preset and postset of a condition can be defined analogously.

Placing a token in the input condition of a YAWL net initiates a new process in-
stance. The token corresponds to the thread of control and it flows through the net as
tasks are executed. Each task execution consumes one token from some of its input
conditions (depending on the type of join preceding the task) and produces one token
in some of its output conditions (depending on the type of split following the task).

Example 1 The example in Fig. 2 shows the Carrier Appointment subprocess of an Order Ful-
fillment process. This process is inspired by the VICS industry standard for logistics [20]. This
standard is endorsed by 100+ companies worldwide, with a total sales volume of $2.3 Trillion
annually [34]. The Carrier Appointment subprocess starts when a Purchase Order Confirmation
is received. In this case a Shipment Planner makes an estimation of the trailer usage and prepares
a route guide. Once they are ready a Supply Officer prepares a quote for the transportation which
indicates the cost of the shipment, the number of packages and the total freight volume.

If the total volume is over 10,000 lbs a full track is required. In this case two different Client
Liaisons will try to arrange a pickup appointment and a delivery appointment. Before these two
tasks are performed, a Senior Supply Officer may create a Shipment Information document. In
case the Shipment Information document is prepared before the appointments are arranged, a
Warehouse Officer will arrange a pickup appointment and a Supply Officer will arrange a deliv-
ery appointment, with the possibility of modifying these appointments until a Warehouse Admin
Officer produces a Shipment Notice after which the freight will be picked up from the Warehouse.

If the total volume is below 10,000 lbs and there is more than one package, a Warehouse
Officer arranges the pickup appointment and a Client Liaison tries to arrange the delivery ap-
pointment. Afterwards, a Senior Supply Officer creates a Bill of Lading, which is similar to the
Shipment Information document. If a delivery appointment is missing a Supply Officer takes care
of it. After this point the rest of the process is the same as for the full track option.

If the customer ordered a single package, a Supply Officer has to arrange a pickup appoint-
ment, a delivery appointment, and has to create a Carrier Manifest, after which a Warehouse
Admin Officer produces a Shipment Notice. ut

3 Event Logs And Fault Severity

The execution of completed and running process instances can be stored in an event
log:

Definition 1 (Event Log). Let T and V be a set of tasks and variables, respectively.
Let U be the set of values that can be assigned to variables. LetR be the set of resources
that are potentially involved during the execution. Let D be the universe of timestamps.
Let Φ be the set of all partial functions V 6→ U that define an assignment of values to
a sub set of variables in V . An event log L is a multiset of traces where each trace is a
sequence of events of the form (t, r, d, φ), where t ∈ T is a task, r ∈ R is the resource
performing t, d ∈ D is the event’s timestamp, φ ∈ Φ is an assignment of values to a
sub set of variables in V . In other words, L ∈ B((T ×R×D × Φ)∗).4

4 B(X) the set of all multisets over X .

Fig. 2. Order-Fulfillment: Carrier Appointment subprocess.

Each completed trace of the event log is assigned a fault’s severity between 0 and
1, where 0 identifies an execution with no fault and 1 identifies a fault with the highest
severity. To model this, a risk analyst needs to provide a fault function f . The set of all
such functions is:

F = (T ×R×D × Φ)∗ → [0, 1]

In many settings, processes are associated with different faults. These faults can be
combined together by assigning different weights. Let us suppose to have n faults
{f1, . . . , fn} with fi ∈ F for every i ∈ [1, n], we can have a composite fault:

f̂ =

∑
1≤i≤n wifi∑
1≤i≤n wi

∈ F

where wi is the weight of the fault fi, with 1 ≤ i ≤ n.

Example 2 Three faults can naturally be thought for a complete trace σ relative to a process
instance of our running example of Carrier Appointment:

Over-time fault. It is linked to a Service Level Agreement (SLA) which establishes that the pro-
cess must terminate within a certain Maximum Cycle Time dmct (e.g. 21 hours), in order
to avoid pecuniary penalties that will incur as consequence of a violation of the SLA. The
severity of the fault grows with the amount of time that the process execution exceeds dmct.
Let dσ be the duration of the process instance, i.e. difference between the timestamps of the
last and first event of σ. Let dmax be the maximum duration among all process instances
already completed (including σ). The severity of an overtime fault is measured as follows:

ftime(σ) = max(
dσ − dmct
dmax − dmct

, 0)

Reputation-loss fault. During the execution of the process when a “pickup appointment” or a
“delivery appointment” is arranged, errors with location or time of the appointment may be
committed due to the misunderstanding between the company’s employee and the customer.
In order to keep the reputation high, the company wants to avoid these misunderstandings

and from having to call the customer again, which may affect the reputation. The severity of
this fault is:

frep(σ) =

0 if tasks Modify Delivery Appointment and Modify Pick-up Appointment

do not appear in σ
1 if both Modify Delivery Appointment and Modify Pick-up Appointment

appear in σ
0.5 otherwise

Cost Overrun fault. During the execution of this process, several activities need to be executed,
and each of these has an execution cost associated with it. Since the profit of the company
decreases with a higher shipping cost of a good (or goods), the company wants to reduce
them. Of course, there is a minimum cost under which it is actually impossible to go. The
severity increases as the cost goes beyond the minimum. Let cmax be the greatest cost as-
sociated with any process instance that has already been completed (including σ). Let cσ
be the cost of σ and cmin be the minimum cost that any process instance can undergo. The
severity of a cost fault is:

fcost(σ) = min(
cσ − cmin

cmax − cmin
, 1)

Moreover, we assume that the company reputes Reputation-loss Fault to be less significant than
the others. Therefore, e.g., we can also define a composite fault where the reputation weights half:

fcar(σ) =
(
fcost(σ) + ftime(σ) + 0.5 · frep(σ)

)
/2.5

ut

We distinguish between a fault’s severity and a fault’s likelihood. The risk is the product
of the estimation of the fault’s severity at the end of the process-instance execution and
the likelihood of such an estimation.

When a process instance is being executed, many factors that may influence the risk
and, ultimately, the severity of a possible fault. For instance, a specific order with which
a certain set of tasks is performed may increase or decrease the risk, with respect to other
orders. Nonetheless, it is opportune to leave freedom to resources to decide the order
of their preference. Indeed, there may be factors outside the system that let resources
opt for a specific order. For similar reasons, when there are alternative tasks that are all
enabled for execution, a risk-aware decision support may highlight those tasks whose
execution yields less risk, anyway leaving the final decision up to the resource.

4 Decision Support for Risk Reduction

In order to provide decision support for risk reduction, it is necessary to predict the
most likely fault severity associated with continuing the execution of a process instance
with each task enabled for execution. The problem of providing such a prediction can
be translated into the problem of finding the best estimator of a function.

Definition 2 (Function estimator). LetX1, . . . , Xn be n finite or infinite domains. Let
Y be a finite domain. Let f : X1×X2× . . .×Xn → Y . An estimator of function f is a
functionψf : Y → 2X1×X2×...×Xn×[0,1], such that, for each y ∈ Y ,ψf (y) returns a set
of tuples (x1, . . . , xn, l) where (x1, . . . , xn) ∈ (X1×X2×. . .×Xn) is an input domain
tuple for which the expected output is y and l is the likelihood of such an estimation.
Moreover, for each y ∈ Y , ψf (y) cannot contain identical domain tuples with different
likelihood: (x1, . . . , xn, l1) ∈ ψf (y) ∧ (x1, . . . , xn, l2) ∈ ψf (y)⇒ l1 = l2.

The function estimator is trained through a set of observations. An observation in-
stance is a pair (−→x , y) where −→x ∈ X1 × X2 × . . . × Xn is the observed input and
y ∈ Y is the observed output. Given a set I of observation instances, the construction
of a function estimator is abstracted as a function buildFunctionEstimator(I), which
returns a function ψf .

Resource

Var GoodCost Task

Michael Brown¬Michael Brown

0.85

0.6

Create
Shipment

Information
Document

Arrange
Delivery

Appointment

Time
elapsed

< 3157

0.70.6

≥ 3157

≥ 30< 30

0.4

Arrange
Pickup

Appointment

Task

0.5

0.2

Create
Shipment

Information
Document

Arrange
Delivery

Appointment

0.1

Arrange
Pickup

Appointment
Task

0.45

Create
Shipment

Information
Document

Arrange
Delivery

Appointment

0.2

Arrange
Pickup

Appointment

Fig. 3. An example of Decision Tree used to build a
function estimator.

The function estimator can
be easily built using many ma-
chine learning techniques. In
this paper, we employ decision-
tree building algorithms, specif-
ically the C4.5 algorithm [14].
Decision trees classify instances
by sorting them down in a
tree from the root to some leaf
node. Each non-leaf node spec-
ifies a test of some attribute
x1, . . . , xn and each branch de-
scending from that node corre-
sponds to a range of possible
values for this attribute. In gen-
eral, a decision tree represents
a disjunction of conjunctions of
expressions: each path from the tree root to a leaf corresponds to an expression that is,
in fact, a conjunction of attribute tests. Each leaf node is assigned one of the possible
output values: if an expression e is associated with a path to a leaf node y, every input
domain tuple −→x ∈ X1 × X2 × . . . × Xn for which e evaluates to true is expected to
return y as output.

We link the likelihood of a prediction for ψf (y) to the quality of e as classify-
ing expression. Let #n be number of observation instances (−→x , y) such that e eval-
uates to true with respect to −→x = (x1, . . . , xn). A subset of these instances are cor-
rectly classified (i.e., y = y). If #c is the number of those correctly classified, for all
(x1, . . . , xn, l) ∈ ψf (y), likelihood l = #c/#n.

Example 3 Figure 3 shows an example of a possible decision tree obtained
through a set of observation instances to build the estimator ψfĉ of a function
fĉ(Resource, Task,GoodCost, T imeElapsed) = y ∈ [0, 1]. For instance, let us con-
sider the value y = 0.6. Analyzing the tree, the value is associated with two expressions:
e1 ← (Resource = Michael Brown ∧ Task = Arrange Pickup Appointment) and
e2 ← (Resource 6= Michael Brown ∧ GoodCost < 3157 ∧ T imeElapsed < 30 ∧ Task =
Create Shipment Information Document). Let us suppose that, among observation instances
(Resource, Task,GoodCost, T imeElapsed, y) s.t. e1 or e2 evaluates to true, y = 0.6
occurs 60% or 80% of times, respectively. With this tree, e.g., ψfĉ(0.6) contains the tuples
(Resource, Task,GoodCost, T imeElapsed, 0.6) for each e1 evaluates to true, along with
the tuples (Resource, Task,GoodCost, T imeElapsed, 0.8) for each e2 evaluates to true. ut

Regarding computational complexity, if decision trees are used, training ψf with m
observation instances is computed in quadratic time [14] with respect to n, specifically
O(n2 ·m).

As mentioned before, it is necessary to predict the most likely fault severity as-
sociated with continuing the execution of a process instance with each task enabled

for execution. Function estimators are used for such a prediction. Since tasks consume
tokens from their own input conditions, we associate a function estimator with each
condition of the YAWL specification. Given a condition c, the function estimator ψc
for c predicts the risk associated with consuming a token from c by each task t in the
postset of c.

Example 4 The function estimator ψfĉ can be associated with the condition FTL, which is
red-colored in Figure 2. Here, for simplicity, let us suppose the likelihood is 1 for all estima-
tions. If the execution is such that there is a token in FTL, GoodCost < 3157, executing
tasks Arrange Pickup Appointment, Arrange Delivery Appointment are associated with a risk of
0.2 and 0.45, respectively. Conversely, executing task Create Shipment Information Document is
given a risk of either 0.6 or 0.7, depending on the time elapsed since the instance has started.
Therefore, it is evident that it is less “risky” to execute Arrange Pickup Appointment. ut

Given a concluded process instance identified by a log trace σ ∈ (T × R ×D × Φ)∗,
an observation instance (−→x , y) to train ψc is relative to each event (t, r, d, φ) such that
t is in the postset of c. More specifically, the input −→x contains the process variable’s
value before the event has occurred, task t, the time elapsed since the execution has
started, and the contextual information; the output y is the fault’s severity observed for
σ, i.e. y = f(σ) for some fault function f . The contextual information of the event is
relative to the prefix σ′ of the trace σ before the occurrence of that event. In particu-
lar, it contains, for each task in the process specification, the number of times that the
task has been performed and the last resource that has executed it. This information
is clearly relevant to guarantee predictions with higher likelihood. Indeed, the risk is
generally linked to the resources that perform the activities, since some resources may
be more prone to be mistaken. Concerning the number of executions of tasks, let us
consider the overtime fault in Example 2: the risk reasonably increases with the number
of repetitions of certain tasks. In the remainder, the retrieval of the contextual informa-
tion is abstracted as function C = getContextInformation(σ′) which returns a tuple
C containing this information.

In the remainder, we use � to denote the operator to concatenate tuples: given two
tuples −→x = (x1, . . . , xn) and −→y = (y1, . . . , ym), −→x �−→y = (x1, . . . , xn, y1, . . . , ym).
Operator � can also be overridden to deal with functions defined on a finite and
ordered domain. Let f : W → Z be a function defined on an ordered domain
W = 〈w1, . . . , wo〉. If we denote zi = f(wi) with 1 ≤ i ≤ o, f � −→x =
(z1, . . . , zo, x1, . . . , xn).

Algorithm 1 details how the function estimators ψc mentioned above can be con-
structed. This algorithm is periodically executed, e.g., every week or every k process
instances are completed. In this way, the predictions are updated according to the re-
cent process executions. The input parameters of the algorithm are a YAWL net N , an
event log with traces referring to past execution of instances of this process, and a fault
function. The output is a function Ψ that associates each condition with the opportune
function estimator. Initially, in line 1, we initialize function I which is going to asso-
ciate each condition c with the set of observation instances relative to execution of tasks
in the postset of p. From line 2 to line 12, we iteratively replay all traces σ to build the
observation instances. While replaying, a function A keeps the current value’s assign-
ment to variables (line 3). For each trace’s event (ti, ri, di, φi), first we build the tuple
C of the contextual information (line 5) and compute the elapsed time d (line 6). Then,
we build an observation instance J where tuple A� (ti, ri, d)�C is the observed input

Algorithm 1: GENERATEFUNCTIONESTIMATORSFORRISKPREDICTION
Data: N – A YAWL net, L – An event log, f ∈ F – A fault function
Result: A Function Ψ that associates each condition c ∈ CN with a function estimator ψc

Let I be a function whose domain is the set of conditions c ∈ CN , and initially ∀c ∈ C. I(C) = ∅.1
foreach trace σ = 〈(t1, r1, d1, φ1), . . . , (tn, r1, dn, φn)〉 ∈ L do2

Set functionA such that dom(A) = ∅3
for i← 1 to n do4

C ← getContextInformation(σ)5
Time elapsed d← (di − d1)6
J ← (A� (ti, ri, d)� C, f(σ))7
foreach c ∈ •

ti do8
I(c)← I(c) ∪ {J}9

end10
foreach variable v ∈ dom(φi) do11

A(v)← φi(v)12
end13

end14
end15
Set function Ψ such that dom(Ψ) = ∅16
foreach condition c ∈ CN do17

Ψ(c)← buildFunctionEstimator
(
I(c)

)
18

end19
return Ψ20

Algorithm 2: GENERATERECOMMENDATIONS
Data: Ψ – A Function that associates each condition with a function estimator, σ – a sequence of events, T - a set

of tasks,A – the value’s assignment to variables after the occurrence of the events in σ
Result: A FunctionR that associates each task t ∈ T with a risk.
Let σ = 〈(t1, r1, d1, φ1), . . . , (tn, r1, di, φi)〉 ∈ (T × R×D × Φ)∗1
C ← getContextInformation(σ)2
de = dnow − d13
foreach task t ∈ T do4

R(t)← 05
(x1, . . . , xn)← A� (t, r, de)� C6
foreach condition c ∈ •

t do7
ψc ← Ψ(c)8
if ∃y, l such that (x1, . . . , xn, l) ∈ ψc(y) then9

R(t)← max
(
R(t), y · l

)
10

end11
end12

end13
returnR14

and the fault severity f(σ) is the observed output. This observation instance is put into
the set of observation instances relative to each condition c ∈ •ti. In lines 11-13, we
update the current value’s assignment during the replay, i.e. we rewrite function A. Fi-
nally, in lines 16-19, we build each function estimator ψc for condition c by the relative
observation instances and rewrite Ψ s.t. Ψ(c) = ψc.

At run-time, function Ψ is used to predict the risk and, hence, to provide recom-
mendations. In fact, function Ψ is input for Algorithm 2, which produces the recom-
mendations for a set of task T relative to a given process instance, in which a sequence
σ of events has occurred. The input of the algorithm contains also a function A that
associates each instance’s variable v with the value A(v) after the events in σ have oc-
curred. The algorithm’s output is a function that associates each task t ∈ T with the
relative risk. For each task t ∈ T , the algorithm computes the tuple (x1, . . . , xn) that

contains the instance’s state, task t, the time elapsed de since the execution has started,
and the contextual information C (line 6). Then, for each function estimator ψc associ-
ated with each condition in the preset of t, we find the expected fault’s severity y and
the expectation’s likelihood l such that ψc(x1, . . . , xn, l) = y. The value y · l is the risk
associated with the instance if t is performed and consumes a token from c. The risk
associated with continuing the execution by performing t is the maximum with respect
to all conditions from which tokens are consumed when t is executed.

5 Implementation and Evaluation

We operationalized our technique for the YAWL system by extending a visual plug-in
for the YAWL worklist handler and by implementing a new custom YAWL service. The
YAWL system [18] is an open source workflow managemet system which is based on
the workflow patterns5 and uses a service-oriented architecture.

The intent of our technique is to “drive” participants during the execution of a pro-
cess instance. This goal can be achieved if participants can easily understand a proposed
suggestion. In order to do this, we extended a previous visual plug-in for YAWL [7] for
decision support, named Map Visualizer. This plug-in provides a graphical user inter-
face to suggest the tasks to execute, along with assisting during their execution. The
tool is based on two orthogonal concepts: maps and metrics. A map may can be a ge-
ographical map, a process model, an organizational diagram, etc. For each map, tasks
can be visualized by dots which are located in a meaningful position (e.g., for a ge-
ographic map, tasks are projected onto the locations where they need to be executed,
or for a process-model map onto the corresponding tasks in the model). Dots can also
be colored according to certain metrics, which determine the suggested level of prior-
ity of a task to be executed. However very basic metrics are only defined in [7]. With
this paper, we designed a new metric which is computed by employing the technique
described in Section 4. The validity of the metaphors of maps and metrics has been
confirmed through a set of experiments, as reported in [7].

Figure 4(a) shows a screenshot of the Map Visualizer where a risk-based metric is
employed. The map shows the process model using the YAWL notation and dots are
projected onto the corresponding element of the model. Each dot corresponds to a dif-
ferent task and is colored according to the risks for the three faults defined before. When
multiple dots are positioned at the same coordinates, they are merged into a single larger
dot whose diameter grows with the number of dots being amalgamated. According to
the analysis reported in [7], the possible colors go from white to black, passing through
intermediate shades of yellow, orange, red, purple and brown. The white and black
colors identify tasks associated with a risk of 0 and 1, respectively. The screenshot in
Fig. 4(a) refers to a configuration where multiple process instances are being carried
on at the same time and, hence, the tasks refer to different process instances. The con-
figuration of dots highlights that the risk is lower if the process participant performs
the task Estimate Trailer Usage, Arrange Pickup Appointment or Arrange Delivery Ap-
pointment for a certain instance. When clicking on the dot, the participant is shown the
process instance of the relative task(s). As mentioned in Sections 1 and 4, the activity of
compiling a form is also supported. Figure 4(b) shows a screenshot where, while filling

5 www.workflowpatterns.com

(a) The UI to support participants in choos-
ing the next task to perform based on risks.

(b) The UI to support participants in
filling out a form based on risks.

Fig. 4. Screenshots of the Map Visualizer extension for risk-aware prediction in YAWL.

Fig. 5. The integration of the implemented tools with the YAWL system.

in a form, participants are shown the risk associated with that specific input for that
form via a vertical bar (showing a value of 45% in the example). While a participant
changes the data in the form, the risk value is recomputed accordingly.

Besides the extension to the Map Visualizer, we implemented a new custom service
for YAWL, namely the Prediction Service. This service provides risk-aware prediction
and recommendation. It employs the technique described in Section 4 using the J48
algorithm to generate decision trees from the Weka toolkit for data mining.6 The pre-
diction service communicates with the Log Abstraction Layer described in [5], to be
able to retrieve event logs from textual files, such as from OpenXES event logs, or from
the database that is used by YAWL, storing both historical information and the cur-
rent system’s state. The Prediction Service is invoked by the Map Visualizer to obtain
the risk predictions and recommendations. The map visualizer works together with the
standard Worklist Handler provided by YAWL to obtain the up-to-date distribution of
work to resources. Figure 5 shows the diagram of these connections.

We evaluated the technique using the Carrier Appointment example described in
Section 2. We used CPN Tools 7 to simulate the process model and the resource behav-
ior. We performed three sets of experiments with different faults. First, we only used

6 Available at www.cs.waikato.ac.nz/ml/weka/
7 Available at www.cpntools.org

a composite fault that includes Overtime and Reputation; then, we included all of the
three faults; finally, we relaxed the Overtime fault by increasing the maximum cycle
time dmct from 21 hours to 25, and by increasing the minimum cost that any process
instance can undergo cmin from 70% to 85% of the value of the good sold.

For each set of experiments, we randomly generated 2,000 log traces with CPN
Tools, which we used to train the function estimators. In fact, these traces are relative
to process instances that do not follow any suggestion, for which we also computed
the severity of the different composite faults as mentioned in the previous paragraph.
Finally, we generate 200 new log traces where the executions have always followed the
recommendations proposed by our tool. Figure 5 shows the results comparing the fault’s
severity when recommendations were and were not followed. It is worth highlighting
how the results are given in terms of severity measured for completed instances. Risks
are relative to running instances and estimate the expected fault’s severity and likelihood
when they will eventually complete.

Despite the number of instances in which recommendations were followed is a tenth
of the number of instances in which the execution was random, a comparison among
the distributions of fault’s severity is possible. In all three sets of experiments, our tool
significantly reduced the overall severity and number of faults and changed the shape
of the distribution increasing the number of instances terminating without faults (i.e.,
severity equal to 0).

6 Related Work

Various risk analysis methods have been defined which provide elements of risk-aware
process management. Meantime, academics have recognized the importance of manag-
ing process-related risks. However, risk analysis methods only provide guidelines for
the identification of risks and their mitigations, while academic efforts mostly focus on
risk-aware BPM methodologies in general, rather than on concrete approaches for risk
prevention [17]. For a comprehensive review of approaches and methods for managing
and analyzing process risks, we refer to the survey in [17].

An exception is made by the works of Pika et al. [13] and Suriadi et al. [16]. Pika
et al. propose an approach for predicting overtime risks based on statistical analysis.
They identify five process risk indicators whereby the occurrence of these indicators in
a trace indicates the possibility of a delay. Suriadi et al. propose an approach for Root
Cause Analysis based on classification algorithms. After enriching a log with informa-
tion like workload, occurrence of delay and involvement of resources, they use decision
trees to identify the causes of overtime faults. The cause of a fault is obtained as a
disjunction of conjunctions of the enriching information. Despite looking at the same
problem from different prospectives, these two approaches result to be quite similar.
The main difference between them and our technique is that we use risk prediction as a
tool for providing suggestions in order to prevent the eventuation of faults, while they
limit their scope to the identification of indicators of risks or of causes of faults. More-
over, both approaches do not consider the data prospective and have only been designed
for overtime risks.

Our work shares commonalities with recommendation and Decision Support Sys-
tems (DSSs), since it provides recommendations to process participants to make risk-
informed decisions. Our technique fully embraces the aim of these systems to improve

(a) Results using a composite fault that includes Overtime and Reputation
risks. Following the suggestions, the fault’s severity is reduced from an average
of 5.5 to 3.47 (-37%)

(b) Results using a composite fault that includes all the three faults defined in
the running example with maximum cycle time dmct = 21 and minimum cost
cmin = 70%. Following the suggestions, the fault’s severity is reduced from
an average of 6.1 to 4.7 (-21%)

(c) Results using a composite fault that includes all three faults with maximum
cycle time dmct = 25 and minimum cost cmin = 85%. Following the sugges-
tions, the fault’s severity is reduced from an average of 4.24 to 2.59 (-38.9%)

Fig. 6. The outcome of the experiments for different composite faults. The x-axis represents the
severity of the composite fault and the y-axis represents the number of instances that terminated
with such a severity. The left-hand side figures show the distribution of the fault’s severity when
recommendations were not followed, the right-hand side figures show the distribution when rec-
ommendations were always followed.

decision making within work systems [2], by providing an extension to existing process-
aware information systems. In this area, Dey [8] describes how DSS can be used for risk
management. He also uses decision trees despite those trees are manually generated as
a final step of brainstorming sessions and used only as a reference when risks occur.

Operational support is an emerging field of research in process mining, which
shares commonalities with DSSs. Operational support concerns three dimensions: de-
tection, prediction and recommendation [1]. In this paper, we focus on the latter two
dimensions. Prediction is about forecasting which faults are likely to be reached at the

end of the process instance and with what severity. Recommendation concerns enact-
ing the appropriate actions to prevent faults from occurring. We dealt with run-time
risk detection in previous work [5]. Regarding prediction, van der Aalst et al. [19] pro-
pose an approach to predict the remaining cycle time till the end of the execution of a
process instance on the basis of the process control-flow, while Folino et al. [10] use
decision trees to improve the remaining cycle time estimation by also taking process
data into account. Unfortunately, both approaches only focus on time, which is, in fact,
linked to one possible cause of process fault (i.e. the overtime fault). Our technique
is more generic since we aim to predict faults that are related to different dimensions
such as cost and reputation. Westergaard et al. propose protocols and infrastructures for
providing recommendation during process execution [12]. However, concrete recom-
mendation algorithms are out of scope.

7 Conclusion

We proposed a technique that allows process participants to make risk-informed deci-
sions when taking part in a business process. The technique relies on a risk estimator
trained using historical information extracted from the process log. For each state of
a process instance where input is required from a process participant, the estimator
determines the severity and likelihood that a fault (or set of faults) will occur if the
participant’s input is going to be used to carry on the process instance.

We designed the technique in a language-independent manner and implemented it
as a Web service. This service can train risk estimators by importing process logs in
the standard OpenXES format or directly from the database of a workflow management
system like YAWL. The service was linked to the YAWL system as a proof-of-concept.
Specifically, we extended the Map Visualizer plug-in of YAWL so that risk predictions
can be visualized as colored circles on top of tasks, indicating the likelihood and severity
of faults. We also extended the YAWL user form visualizer. Based on the data inserted
by the participant, a risk profile is shown. This way, participants are offered risk-based
recommendations when selecting the next task to execute or filling out a form.

We simulated a large process model based on an industry standard for logistics and
generated event logs for it. We then executed three experiments with different faults and
fault conditions in order to obtain different fault distributions and used this log to train
our risk estimator. We simulated new process instances according to the recommenda-
tions provided by our risk estimator and measured the number and severity of the faults
upon instance completion. In all experiments we were able to substantially reduce the
number of faults and their severities provided that the simulated users followed the rec-
ommendations provided by our technique. And while this shows that the technique is
effective, it has to be considered as an upper-bound result, since in reality it might not
always be feasible to follow the recommendations provided.

The technique suffers from some limitations that will be addressed in future work.
First, it lacks an empirical evaluation of its usefulness with domain experts. We are plan-
ning to overcome this problem by performing experiments with risk analysts and pro-
cess participants of a large Australian insurance company. Second, the technique does
not support user decisions involving inter-instance or inter-process data, but only looks
at single business processes. For example, the technique can be extended to support
process administrators in taking risk-informed decisions when (re)allocating resources

to tasks, potentially belonging to instances of different processes. Finally, we plan to
also investigate different machine-learning techniques to build function estimators, e.g.
Bayesian networks or the k-means algorithm, to evaluate if other techniques outperform
decision-tree building algorithms.

References
1. W. M. P. van der Aalst. Process Mining - Discovery, Conformance and Enhancement of

Business Processes. Springer, 2011.
2. S. Alter. A work system view of DSS in its fourth decade. Decision Support Systems,

38(3):319–327, 2004.
3. Basel Committee on Bankin Supervision. Basel II - International Convergence of Capital

Measurement and Capital Standards, 2006.
4. International Electrotechnical Commission. IEC 61025 Fault Tree Analysis (FTA), 1990.
5. R. Conforti, G. Fortino, M. La Rosa, and A. H. M. ter Hofstede. History-aware, real-time

risk detection in business processes. In Proc. of CoopIS, volume 7044 of LNCS. Springer,
2011.

6. R. Conforti, A. H. M. ter Hofstede, M. La Rosa, and M. Adams. Automated risk mitigation
in business processes. In Proc. of CoopIS, volume 7565 of LNCS. Springer, 2012.

7. M. de Leoni, M. Adams, W. M. P. van der Aalst, and A. H. M. ter Hofstede. Visual support
for work assignment in process-aware information systems: Framework formalisation and
implementation. Decision Support Systems, 54(1):345–361, 2012.

8. P. K. Dey. Decision support system for risk management: a case study. Management Deci-
sion, 39(8):634–649, 2001.

9. M. Dumas, W. M. P. van der Aalst, and A. H. M. ter Hofstede. Process-Aware Information
Systems: Bridging People and Software through Process Technology. Wiley & Sons, 2005.

10. F. Folino, M. Guarascio, and L. Pontieri. Discovering context-aware models for predicting
business process performances. In Proc. of CoopIS. Springer, 2012. To appear.

11. W.G. Johnson. MORT - The Management Oversight and Risk Tree. U.S. Atomic Energy
Commission, 1973.

12. J. Nakatumba, M. Westergaard, and W.M.P. van der Aalst. An infrastructure for cost-effective
testing of operational support algorithms based on colored petri nets. In Proc. of ATPN,
volume 7347 of LNCS. Springer, 2012.

13. A. Pika, W.M.P. van der Aalst, C. Fidge, A.H.M. ter Hofstede, and M. Wynn. Predicting
deadline transgressions using event logs. In Proc. of BPM Workshop 2012. Springer, 2012.
To Appear.

14. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc.,
1993.

15. Standards Australia and Standards New Zealand. Standard AS/NZS ISO 31000, 2009.
16. S. Suriadi, Chun Ouyang, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Root cause

analysis with enriched process logs. In Proc. of BPM Workshop 2012. Springer, 2012. To
Appear.

17. S. Suriadi, B. Weiß, A. Winkelmann, A. ter Hofstede, M. Wynn, C. Ouyang, M.J. Adams,
R. Conforti, C. Fidge, M. La Rosa, and A. Pika. Current research in risk-aware business
process management - overview, comparison, and gap analysis. BPM Center Report BPM-
12-13, BPMcenter.org, 2012.

18. A. H. M. ter Hofstede, W. M. P. van der Aalst, M. Adams, and N. Russell, editors. Modern
Business Process Automation: YAWL and its Support Environment. Springer, 2010.

19. W. M. P. van der Aalst, M. H. Schonenberg, and M. Song. Time prediction based on process
mining. Information Systems, 36(2):450–475, 2011.

20. Voluntary Interindustry Commerce Solutions Association. Voluntary Inter-industry Com-
merce Standard (VICS). http://www.vics.org. Accessed: June 2011.

