
Real-Time Risk Monitoring in Business Processes:

A Sensor-based Approach

Raffaele Confortia, Marcello La Rosaa,b, Giancarlo Fortinoc, Arthur H. M. ter Hofstedea,b,d,
Jan Reckera

aQueensland University of Technology, GPO Box 2434, Brisbane QLD 4001, Australia
E-mail: {raffaele.conforti,m.larosa,a.terhofstede,j.recker}@qut.edu.au

bNICTA Queensland Lab, PO Box 6020, St Lucia QLD 4067, Australia
cUniversita’ della Calabria, Via P. Bucci, cubo 41C, 87036 Rende (CS), ITALY

E-mail: g.fortino@unical.it
dTechnische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

This article proposes an approach for real-time monitoring of risks in executable business
process models. The approach considers risks in all phases of the business process man-
agement lifecycle, from process design, where risks are defined on top of process models,
through to process diagnosis, where risks are detected during process execution. The ap-
proach has been realized via a distributed, sensor-based architecture. At design-time, sensors
are defined to specify risk conditions which when fulfilled, are a likely indicator of negative
process states (faults) to eventuate. Both historical and current process execution data
can be used to compose such conditions. At run-time, each sensor independently notifies
a sensor manager when a risk is detected. In turn, the sensor manager interacts with the
monitoring component of a business process management system to prompt the results to
process administrators who may take remedial actions. The proposed architecture has been
implemented on top of the YAWL system, and evaluated through performance measure-
ments and usability tests with end users. The experiments show that risk conditions can be
computed efficiently and that the approach is perceived as useful by the users.

1. Introduction

Business processes are constantly exposed
to a wide range of risks. As demonstrated
by the recent incidents in the finance sector
(the 4.9B Euros fraud at Société Générale),
in the health sector (Patel Inquiry) and
in the aviation industry (terrorist attacks),
failures of process-driven risk management
can result in substantial financial and rep-
utational consequences, potentially threat-

ening an organization’s existence.
According to the AS/NZS ISO 31000

standard, a business process risk is the
chance of something happening that will
have an impact on the process objectives,
and is measured in terms of likelihood and
consequence [69]. Legislative initiatives
such as the Sarbanes-Oxley Act1 and Basel
II [6] in the finance sector have highlighted

1www.gpo.gov/fdsys/pkg/PLAW-107publ204

Preprint submitted to Journal of Systems and Software December 20, 2012

Marcello La Rosa
Rectangle

Marcello La Rosa
Rectangle

the pressing need to better manage busi-
ness process risks. As a consequence of
these mandates, organizations are now seek-
ing new ways to control process-related risk
and are attempting to incorporate it as a
distinct view in their operational manage-
ment. However, whilst conceptually appeal-
ing, to date there is little guidance as to how
this can be done concretely. Currently, the
disciplines of process management and risk
management are largely disjoint and oper-
ate independently of one another. In indus-
try they are usually handled by different or-
ganizational units. Within academia, recent
research has centered on the characteriza-
tion of process-related risks. However the
incidents described above show that a focus
on risk analysis alone is no longer adequate,
and an active, real-time risk detection is re-
quired.

We propose a concrete approach for real-
time monitoring of risks in executable busi-
ness process models. This is achieved by
embedding risks into all phases of the BPM
lifecycle: from process design, where high-
level risks defined via a risk analysis method
are mapped down to specific process model
elements such as activities, resources and
data, through to process diagnosis, where
risks are detected during process execution.
By automating risk detection, the interested
users (e.g. a process administrator) can be
notified as early as a risk is detected (i.e. in
real-time), such that remedial actions can
be taken to rectify the current process in-
stance, and prevent an undesired state of
the process (fault for short), from occurring.
Based on historical data, we can also com-
pute the probability of a risk at run-time,
and compare it to a threshold, so as to no-
tify the user only when the risk is no longer
tolerable.

The proposed approach is operationalized

via a distributed, sensor-based architecture
on top of Business Process Management
Systems (BPMSs). Each sensor is coupled
with a risk condition capturing the situation
upon which the risk of a given fault may oc-
cur. Sensors are defined at design-time on
the executable process model. Conditions
can be determined via a query language that
can fetch both historical and current execu-
tion data from the logs of the BPMS. At
run-time sensors are registered with a cen-
tral sensor manager. At a given sampling
rate, or based on the occurrence of a specific
event, the sensor manager retrieves and fil-
ters all data relevant for the various sensors
(as it is logged by the BPMS engine), and
distributes it to the relevant sensors. If a
sensor condition holds, i.e. if the probabil-
ity of the associated risk is above a given
threshold, the sensor alerts the sensor man-
ager which in turn notifies the monitoring
component of the BPMS. The distributed
nature of the architecture guarantees that
there is no performance overhead on the
BPMS engine, and thus on the execution
of the various process instances. We im-
plemented this architecture on top of the
YAWL system. We extended the YAWL
Editor to cater for the design of risk sen-
sors, and equipped the run-time environ-
ment with a sensor manager service that
interacts with YAWL’s monitoring service
and execution engine. Finally, to facili-
tate the definition of process risks, we im-
plemented a set of risk templates for vari-
ous categories, such as organizational, data-
related and technology-related. Such tem-
plates are abstract risk definitions which
users need to bind to concrete process el-
ements.

To prove the feasibility of the proposed
approach, we used fault tree analysis [12]
(a well-established risk analysis method) to

2

identify risk conditions in a reference pro-
cess model for logistics, in collaboration
with an Australian risk consultant. These
risks embrace different process aspects such
as tasks’ order dependencies, involved re-
sources and business data, and relate to his-
torical data where needed, to compute risk
probabilities. We expressed these condi-
tions via sensors in the YAWL system, and
measured the time needed to compute these
conditions at run-time. The tests showed
that the sensor conditions can be computed
in a matter of milliseconds without impact-
ing on the performance of the running pro-
cess instances. Finally, we conducted a us-
ability analysis of the approach and its im-
plementation, by administering an online
questionnaire to users of the YAWL system.
The results of this analysis showed that the
approach is perceived as being interesting
and useful, confirming an intention of the
participants to use it.

This paper is organized as follows. Sec-
tion 2 illustrates the running example in
the logistics domain. Section 3 describes
our risk-aware BPM approach while Sec-
tion 4 presents the sensor-based architec-
ture to implement this approach. Section 5
formalizes the abstract syntax of the lan-
guage proposed for risk detection while Sec-
tion 6 shows how the risks defined on the
running example can be modeled via this
language. Next, Section 7 proposes a set
of risk templates to facilitate the definition
of process risks. Section 8 illustrates the
implementation of the sensor-based archi-
tecture, while Section 9 reports on the re-
sults of the performance and usability evalu-
ations. Section 10 covers related work while
Section 11 concludes the paper. Appendix
A provides a short description of the ac-
tions defined in the language. Appendix
B describes the nested loops that can be

executed during the verification of a sensor
condition while Appendix C describes the
functions that can be invoked on variables
(that are resources) during the verification
of a sensor condition. Finally, Appendix D
provides the questionnaire used in the us-
ability experiment.

2. Running Example

In this section we use an example to illus-
trate how the risk of possible faults to occur
during a business process execution can be
identified as early as possible. In particular,
we show how risks can be expressed in terms
of process-specific aspects such as tasks oc-
currence, data or available resources. Fig-
ure 1 describes the payment subprocess of
an order fulfillment business process which
is inspired by the VICS industry standard
for logistics [77]. The notation used to rep-
resent this example is that of YAWL [74],
although a deep knowledge of this language
is not required.

This process starts after the freight has
been picked up by a carrier and deals with
the shipment payment. The first task is
the production of a Shipment Invoice con-
taining the shipment costs related to a spe-
cific order for a specific customer. If ship-
ments have been paid in advance, all that
is required is for a Finance Officer to is-
sue a Shipment Remittance Advice speci-
fying the amount being debited to the cus-
tomer. Otherwise, the Finance Officer is-
sues a Shipment Payment Order that needs
to be approved by a Senior Finance Officer
(who is the superior of this Finance Offi-
cer). At this point, a number of updates
may be made to the Shipment Payment Or-
der by the Finance Officer that issued it,
but each of these needs to be approved by
the Senior Finance Officer. After the docu-

3

Process Shipment
Payment

Approve Shipment
Payment Order

[payment incorrect
due to overcharge]

[payment correct]

[payment
incorrect due to
underpayment]

Input
condition

Output
condition

Task

[else]

[pre-paid
shipments]

Issue Shipment
Invoice

Issue Shipment
Remittance Advice

[order
approved]

[order
not approved]

Issue Shipment
Payment Order

Update Shipment
Payment Order

Settle
Account

Receive
Payment

Issue Credit
Adjustment

Issue Debit
Adjustment

Receive
Payment

XOR join XOR splitArc

Figure 1: Order-Fulfillment: Payment subprocess.

ment is finalized and the customer has paid,
an Account Manager can process the ship-
ment payment by specifying the balance. If
the customer underpaid, the Account Man-
ager needs to issue a Debit Adjustment, the
customer needs to pay the balance and the
payment needs to be reprocessed. A cus-
tomer may also overpay. In this case the
Account Manager needs to issue a Credit
Adjustment. In the latter case and in case
of a correct payment, the shipment payment
process is completed.

In collaboration with a risk analyst of an
Australian consulting company, we identi-
fied four faults that can occur during the ex-
ecution of this payment subprocess. In or-
der to prevent the occurrence of these faults,
for each of them we also defined an associ-
ated risk condition by using fault tree anal-
ysis [12]. Accordingly, each risk condition
is expressed as a set of lower-level boolean
events which are organized in a tree via log-
ical connectives such as ORs, ANDs and
XORs.

The first fault is an overtime process
fault. A Service Level Agreement (SLA)
for a process or for a given task within a
process, may establish that the process (or
task) may not last longer than a Maximum
Cycle Time MCT , otherwise the organiza-
tion running the process may incur a pecu-
niary penalty. In our case, an overtime fault
occurs if an instance of the payment subpro-

cess is not completed within an MCT of five
days.

To detect the risk of overtime fault at
run-time, we should check the likelihood
that the running instance does not exceed
the MCT based on the amount of time Tc

expired at the current stage of the execu-
tion. Let us consider Te as the remaining cy-
cle time, i.e. the amount of time estimated
to complete the current instance given Tc.
Then the probability of exceeding MCT
can be computed as 1 − MCT/(Te + Tc)
if Te + Tc > MCT and is equal to 0 if
Te+Tc ≤ MCT . If this probability is greater
than a tolerance value (e.g. 60%), we no-
tify the risk to the user. The estimation of
the remaining cycle time is based on past
executions of the same process and can be
computed using the approach in [76] (see
Section 9 for more details).

The second fault is related to the re-
sources participating in the process. The
Senior Finance Officer who has approved a
Shipment Payment Order for a given cus-
tomer, must have not approved another or-
der by the same customer in the last d days,
otherwise there is an approval fraud. This
fault is thus generated by the violation of a
four-eye principle across different instances
of the Payment subprocess.

To detect the risk of this fault we first
have to check that there is an order, say or-
der o of customer c, to be approved. This

4

means checking that an instance of task Ap-
prove Shipment Payment Order is being ex-
ecuted. Moreover, we need to check that
either of the following conditions holds: i)
o has been allocated to a Senior Finance
Officer who has already approved another
order for the same customer in the last d
days; or ii) at least one Senior Finance Of-
ficer is available who approved an order for
customer c in the last d days and all other
Senior Finance Officers who never approved
an order for c during the last d days are
available. The corresponding fault tree is
shown in Figure 2.

The third fault relates to a situation
where a process instance executes a given
task too many times. This situation typ-
ically occurs in the context of loops. Not
only could this lead to a process slowdown
but also to a “livelock” if the task is in a
loop whose exit condition is purposefully
never met. In general, given a task t a max-
imum number of allowable executions of t
per process instance MAE i(t) can be fixed
as part of the SLA for t. With reference
to the Payment subprocess, this can occur
for example if task Update Shipment Pay-
ment Order is re-executed five times within
the same process instance. We call this an
order unfulfillment fault.

To detect the risk of this fault at run-
time, we need to check if: i) an order o
is been updated (i.e. task Update Ship-
ment Payment Order is currently being per-
formed for order o); and ii) it is likely that
this order will be updated again (i.e. task
Update Shipment Payment Order will be
repeated within the same process instance).
The probability that the number of times
a task will be repeated within the same in-
stance of the Payment subprocess is com-
puted by dividing the number of instances
where the MAE i for task Update Shipment

Payment Order has been reached, over the
number of instances that have executed this
task at least as many times as it has been
executed by the current instance, and have
completed. The tolerance value indicates a
threshold above which the risk should be
notified to the user. For example, if this
threshold is 60% for task t, a risk should
be raised if the probability of MAE i(t) is
greater than 0.6.

The fourth fault is an underpayment
fraud. It relates to a situation in which a
given task is executed too many times across
multiple process instances. Similar to the
previous fault, given a task t we can define
a maximum number of allowable executions
of t per process MAE p(t) as part of the SLA
for p. In our example, this type of fault oc-
curs when a customer underpays more than
three times within the last five days.

To detect the risk of underpayment fraud,
we need to check if: i) a debit adjustment is
currently being issued to a customer c (i.e.
task Issue Debit Adjustment is currently be-
ing performed for customer c); and ii) it is
likely that the maximum number of debit
adjustments will be issued to the same cus-
tomer in a d-day time frame. The proba-
bility that MAE p is reached for task Issue
Debit Adjustment of customer c in d days
is computed by dividing the number of cus-
tomers for which the MAE p for task Issue
Debit Adjustment has been reached within
d days, over the number of customers for
which this task has been executed at least
as many times as it has been executed for
c within d days. If this probability is above
a tolerance value, the risk should be raised
and the user notified. Similar to the pre-
vious risk, the tolerance value indicates a
threshold above which this risk should be
notified to the user. The corresponding
fault-tree is shown in Figure 2.

5

Allocation to same
resource

Approval of o allocated to Senior
Finance Officer r

r approved another order
for customer c in the

last d days

Other resources
are busy

At least one Senior Finance
Officer is available who

approved an order for customer
c in the last d days

All other Senior Finance
Officers who never approved an

order for c in the last d days
are busy

Order o of
customer c needs to be

approved

Approval fraud
risk

Debit adjustment being
issued to customer c

for order o

Underpayment fraud
risk

Another debit adjustment
is likely to be issued

to c for the same order o

Event Conditional
event

Logical
AND

Logical
OR

Figure 2: The fault trees for Approval Fraud and Underpayment Fraud.

3. Risk-aware Business Process Man-
agement

As we have seen in the context of the pay-
ment example, a fault in a business process
is an undesired state of a process instance
which may lead to a process failure (e.g.
the violation of a policy may lead to a pro-
cess instance being interrupted). Identify-
ing a fault in a process requires determining
the condition upon which the fault occurs.
For example, in the payment subprocess, we
have an underpayment fraud if a customer
underpays more than three times within a
five-day time frame.

However, a fault condition holds only
when the associated fault has occurred,
which is typically too late to avoid a pro-
cess failure. Indeed, we need to be able to
estimate the risk of a process fault, i.e. if,
and possibly with what likelihood, the fault
will occur in the future. Early risk detec-
tion allows process users to promptly react
with countermeasures, if any, to prevent the
related fault from occurring at all.

We use the notion of risk condition, as
opposed to fault condition, to describe the
set of events that lead to the possibility of a

fault to occur in the future. In order to eval-
uate risk conditions “on-line”, i.e. while a
process instance is being executed, we need
to consider the current state of the BPMS.
This means knowing the state of all run-
ning instances of any process (and not only
the state of the instance for which we are
computing the risk condition), the resources
that are busy and those that are available,
and the values of the data variables being
created and consumed. Moreover, we need
to know the historical data, i.e. the execu-
tion data of all instances that have been
completed. In particular, we can use his-
torical data to estimate the probability of
a given fault to occur, i.e. the risk proba-
bility. For example, for the underpayment
fraud, we can estimate the likelihood that
another debit adjustment is being issued
for a given combination of customer/order
(historical data), given that one such debit
adjustment has just been issued (current
data). To obtain a boolean risk condition,
we compare the risk probability that we ob-
tain with a tolerance value, such that the
condition holds if the risk probability ex-
ceeds the given threshold. For example, we
raise the risk of underpayment fraud if the

6

Process
Implementation

Risk-aware workflow
implementation

Risk
Identification

Risk analysis

Risk-annotated
models

Risk-annotated
workflows

Current
process data

Historical
process data

Risk-related
Improvements

Process Design

Risk-aware
process modelling

1

2

3

4Process Diagnosis

Risk monitoring and
mitigation

Process
Enactment

Risk-aware
workflow execution

Risk-related
Improvements

Reporting

Risks

Figure 3: Risk-aware Business Process Management lifecycle.

risk probability is greater then 60%.

In other cases, we may avoid to embed a
risk probability in the risk condition, if we
are able to determine the occurrence of a
set of events which directly leads to a high
risk. This is the case of the approval fraud,
where both the events “Allocation to same
resource” and “Other resources are busy”
already signal a high risk of approval fraud.

Based on these considerations, we present
a novel approach for on-line risk detection
in business processes. The focal idea of this
approach, shown in Figure 3, is to embed
elements of risk into all four phases of the
traditional BPM lifecycle [21].

Input to this “risk-aware” BPM lifecycle
is a Risk Identification phase, where risk
analysis is carried out to identify risks in the
process model to be designed. Traditional
risk analysis methods such as FTA (as seen
in the previous section), Root Cause Analy-
sis [35] or CORAS [43], can be employed in
this phase. The output of this phase is a set
of risks, each expressed as a risk condition.

Next, in the Process Design phase, these
high-level risk conditions are mapped down
to process model-specific aspects. For ex-
ample, the condition “debit adjustment be-

ing issued to customer c for order o” is
mapped to the occurrence of a specific task,
namely “Issue Debit Adjustment” in the
Payment process model. The result of this
second phase is a risk-annotated process
model. In the next phase, Process Imple-
mentation, these conditions are linked to
workflow-specific aspects, such as content
of variables, and resource allocation states.
For example, “customer c” is linked to the
Customer element of the XML representa-
tion of the Debit Adjustment document.
Process Implementation may be integrated
with Process Design if the language used at
design-time is executable (e.g. BPMN 2.0 or
YAWL).

The risk-annotated workflow model re-
sulting from Process Implementation is then
executed by a risk-aware process engine dur-
ing Process Enactment. Historical data
stored in process logs, and current execu-
tion data coming from process enactment,
are filtered, aggregated and analyzed in the
Process diagnosis phase, in order to evalu-
ate the various risk conditions. When a risk
condition evaluates to true, the interested
users (e.g. a process administrator) are noti-
fied and reports can also be produced during

7

this phase for auditing purposes. Finally,
this phase can trigger changes in the cur-
rent process instance, to mitigate the likeli-
hood of a fault to occur, or in the underlying
process model, to prevent a given risk from
occurring ever again.

In the next section we describe a sensor-
based architecture to operationalize this en-
hanced BPM lifecycle.

4. Sensor-based Realization

In order to realize our risk-aware BPM
lifecycle, we devised an approach based on
sensors. In a nutshell, the idea is to capture
risk and fault conditions via sensors, and
then monitor these sensors during process
execution. An overview of this approach is
shown in Figure 4 using the BPMN 2.0 no-
tation [50].

Sensors are defined during the Process
Design and Process Implementation phases
of our risk-aware BPM lifecycle (see Fig-
ure 3), for each process model for which the
presence of risks and/or faults need to be
monitored. If the process model is specified
via an executable language, then these two
phases coincide.

A sensor is defined through a boolean
sensor condition, constructed on a set of
process variables, and a sensor activation
trigger. Process variables are used to re-
trieve information from the specific instance
in which the sensor condition will be evalu-
ated as well as from other instances, either
completed or still running. For example, we
can use variables to retrieve the resource al-
located to a given task, the value of a task
variable, or the status of a task. Process in-
stances can either be identified based on the
current instance (e.g. the last five instances
that have been completed before the cur-
rent one), or based on the fulfillment of a

case condition (e.g. “all instances where a
given resource has executed a given task”).
The sensor condition can represent either a
risk condition associated with a fault, or a
fault condition, or both. If both conditions
are specified, the fault condition is evalu-
ated only if the risk condition evaluates to
true. For example, the sensor will check if
an overtime process fault has occurred in
a process instance only if first the risk of
such fault has first been detected, based on
the estimation of the remaining cycle time
for this instance. Finally, the sensor acti-
vation trigger can be either a timer peri-
odically fired according to a sampling rate
(e.g. every 5 minutes), or an event emitted
by the process engine (e.g. the completion
of a task).

During Process Enactment, the defined
sensors are registered with a sensor man-
ager, which activates them. In the Process
Diagnosis phase, which starts as soon as
the process is enacted, the activated sen-
sors receive updates on the variables of their
sensor conditions according to their trigger
(timer or event). When a sensor receives
an update, it checks its sensor condition.
If the condition holds, a notification is sent
from the sensor to the monitor service of the
BPMS.

The sensor manager relies on three inter-
faces to interact with the BPMS (see Fig-
ure 5(a)):

• Engine interface, used to register a sen-
sor with a particular event raised by
the BPMS engine. When the event oc-
curs the sensor is notified by the sensor
manager.

• Database interface, used to query the
BPMS database in order to collect cur-
rent and historical information.

8

Sensor-based Architecture - PostCameraReady

Enact Process
Model

Process
model

Define sensor

Process
case

Process
logs

Sensor

Register sensor

Monitor sensor

Update sensor
data

Check sensor
condit ion

Send
notif icat ion

Trigger
occurred

Process instance
completed

For each sensor

Suff icient
data

Sensor
condit ion

fulf illed

Insuff icient
data Sensor condit ion

not fulf illed

Dr La Rosa Marcello 1 of 1 23.09.2011

Figure 4: Realization of risk-aware BPM lifecycle via sensors.

• Monitor interface, used to notify the
detection of risks and faults to the mon-
itor service of the BPMS.

These interfaces can be implemented by
the vendor or user of the BPMS where the
sensor manager needs to be installed. In
this way, our sensor manager can virtually
be interfaced with any BPMS. As an exam-
ple, the conceptual model of the database
interface is showed in Figure 5(b), where
methods have been omitted for space rea-
sons. This conceptual model is inspired
by the reference process meta-model of the
WfMC [31], in order to cover as many as-
pects as possible of a workflow model, and
meantime, to remain as generic as possible.
For example, class WorkFlowDefinition al-
lows one to retrieve information about the
process model where the sensor is defined,
such as process identifier and name, while
class SubProcess allows one to retrieve in-
formation about a specific subprocess, and
so on. This interface should be implemented
according to the characteristics of the spe-
cific database used in the BPMS at hand.
For an efficient use of the interface, one
should also define indexes on the attributes
of the BPMS database that map the un-
derlined attributes in Figure 5(b). These

indexes have been determined based on the
types of queries that can be defined in our
sensor definition language.

An alternative approach to achieve the
portability of the sensor manager, would be
to read the BPMS logs from a standard se-
rialization format such as OpenXES [26].
However, as we will show in Section 9, this
solution is rather inefficient.

The advantages of using sensors are
twofold. First, their conditions can be mon-
itored while the process model is being exe-
cuted, i.e. in real-time. Second, according
to a distributed architecture, each sensor
takes care of checking its own condition af-
ter being activated by the sensor manager.
In this way, potential execution slowdowns
are avoided (e.g., the process engine and the
sensor manager could be deployed onto two
different machines).

5. Sensor Definition Language: Ab-
stract Syntax

In the following, the sensor definition lan-
guage is explained in detail via an abstract
syntax [47]. The definition of a sensor re-
quires a risk condition, a boolean fault con-
dition, a sensor activation trigger, and a
consequence which represents the gravity of

9

Process engine

Sensor Manager

Monitor service

Process logs
Sensors

BPMS

DB
int.face

Engine
int.face

Monitor
int.face

(a)

(b)

Figure 5: Sensor-based architecture (a); Database
Interface schema model (b).

the impact the fault will have on the com-
pany in case it occurs. The trigger can be a
timer based on a sampling rate, or an event
produced by the engine interface. Risk con-
dition and fault condition are constructed
on a set of process variables.

Sensor , v : Variables; t : Trigger ;
riskCond : RiskCond ;
faultCond : BoolCond ;
consequence : MaCond ;

Trigger , timer | event

A variable is defined with a mapping
among a varName and an Information.
This Information can be a constant (us-
ing Definition), or the result of a function
executed on a variable (using VarFunc),
or a piece of information collected from
the process instance (using CaseExp or
CaseEleExp). We use a CaseExp if the in-
formation is related to the process instance
itself, while a CaseEleExp if the information
is related to an element of a process instance
(that must be specified using TaskOrNet
that identifies a task by taskLabel or a net
by netName).

Variables , Assignment+

Assignment , result : varName;
i : Information

Information , Definition | VarFunc |
CaseExp | CaseEleExp

VarFunc , ResCond | ResSimFunc |
ResComFunc

Definition , c : constant

CaseEleExp , ce : CaseExp;
ton : TaskOrNet

TaskOrNet , taskLabel | netName

When we use a CaseExp we must
specify the instances of interest (using
CaseIDStat), and the action that identi-
fies the piece of information (using Action).
Such Action can either be an information
related to a predicate function, a predicate
function with input, task or net variable, or
a task or net subvariable. An instance can
be identified in various ways, by its position
among all the instances of the same pro-
cess model (using absExp), by its position
respect the current instance (using relExp),
or by the fulfillment of some conditions (us-

10

ing CaseCondSet).

CaseExp , cis : CaseIDStat ; a : Action

CaseIDStat , absExp | relExp |
CaseCondSet

Action , predFunc | taskOrNetVar |
SubVarExp | inputPredFunc

SubVarExp , var+

These conditions can be on the identifier
of the process instance (using CaseParam),
or on a piece of information related to a
task or a net (using CaseCond). It is
also possible to specify multiple conditions
that are obtained by the conjunction of sev-
eral CaseParam and CaseCond elements
(using CaseCondExp). Whether using a
CaseParam or a CaseCond it will be com-
pared with a RHandExp. A RHandExp can
be a constant , a function, a varName, or an
expression containing those elements.

CaseCondSet , CaseCond | CaseParam |
CaseCondExp

CaseCondExp , ccs1 , ccs2 : CaseCondSet ;
bo : BoolOp

CaseCond , ton : TaskOrNet ;
a : Action; co : CompOp;
rhe : RHandExp

CaseParam , i : idFunc; co : CompOp;
rhe : RHandExp

CompOp , le | leq | ge | geq | eq |
contains | isContained

RHandExp , constant | function |
varName | RHandExpSet

RHandExpSet , rhe1 , rhe2 : RHandExp;
o : Operator

Once all the variables have been speci-
fied the risk condition can be defined. A
RiskCond is composed of two MaCond el-
ements, one is the risk likelihood and the
other is the risk threshold. A risk condi-
tion evaluates true if the likelihood exceeds
the threshold. A MaCond is a arithmetical
expression that can use constants, variables,

results of functions invoked on variables (us-
ing ResSimFunc, and ResComFunc), and
the results obtained by the execution of
loops (using MaFor , and FixMaFor). A
MaCond may be in a conditional form, rep-
resented as MaITE , or be a normal ex-
pression represented as MaExp, despite it
is always possible to have conditional ele-
ments inside a normal expression. A con-
ditional expression MaITE is composed of
a BoolCond representing the if and two
MaConds representing respectively the then
and else.

RiskCond , riskL, riskT : MaCond

MaCond , MaITE | MaExp |
MaFor | FixMaFor |
ResSimFunc | constant |
ResComFunc | varName

MaITE , if : BoolCond ;
then, else : MaCond

MaExp , MaUnExp | MaBinExp

MaUnExp , s : sub; me : MaCond

MaBinExp , me1 ,me2 : MaCond ;
mo : MaOp

MaOp , add | sub | mul | div | exp |
mod

As said before a condition expression is de-
fined using a BoolCond . A BoolCond is a
boolean expression that can use constants,
variables, results of functions invoked on
variables (using ResCond), and the results
obtained by the execution of loops (using
BoolFor , and FixBoolFor). A BoolCond
may be in a conditional form, represented
as BoolITE , or be a normal expression rep-
resented as BoolExp, despite it is always
possible to have conditional elements in-
side a normal expression. A conditional
expression BoolITE is composed of three
BoolConds representing the if, the then, and
the else. From the definition of the BoolExp
element on, the syntax describes a boolean
expression. In fact a BoolExp element can
be solved via the analysis of an unary ex-
pression BoolUnExp or a binary expression

11

BoolBinExp, that can contain the result of
a comparison Comp, and so on.

BoolCond , BoolITE | BoolExp |
BoolFor | FixBoolFor |
Comp | ResCond |
varName | constant

BoolITE , if , then, else : BoolExp

BoolExp , BoolUnExp | BoolBinExp

BoolUnExp , n : neg ; e : BoolCond

BoolBinExp , e1, e2 : BoolCond ;
bo : BoolOp

BoolOp , and | or

Comp , ce1 , ce2 : CompElem;
co : CompOp

CompElem , MaCond | ResListFunc |
varName | constant

CompOp , lt | lteq | eq | gteq | gt |
noteq

The functions that can be invoked on
a variable are identified by the elements:
ResCond , ResListFunc, ResSimFunc, and
ResComFunc. This elements can be used
only in specific points of the syntax since
the result returned can be a boolean, or a
list, or a number.

ResCond , res : varName; a : Activity

ResListFunc , result : varName;
plrf : predListResFunc

ResSimFunc , resource : varName;
psrf : predSimpleResFunc

ResComFunc , res1 , res2 : varName;
pcrf : predComplResFunc

Activity , resource : varName;
lrf : ResListFunc

The constructs MaFor and BoolFor are
used to execute nested loops. The definition
of one of these elements requires to spec-
ify the type of loop (TypeBF for BoolFor
or TypeMF for MaFor), the list of vari-
ables that will be used to create the nested
loops (one loops for each variable), and the
expression that must be executed. The

TypeBF and TypeMF describe how the re-
sults of each execution will be joined, it
is possible to choose among four types of
loops: and (i.e. logic AND), or (i.e. logic
OR), add (i.e. addition), and mul (i.e. mul-
tiplication).

MaFor , t : TypeMF ; lr : ListResult ;
fme : ForMaCond

FixMaFor , fixEle : varName;
mf : MaFor

TypeMF , add | mul

BoolFor , t : TypeBF ; lr : ListResult ;
fbe : ForBoolCond

FixBoolFor , fixEle : varName;
bf : BoolFor

TypeBF , and | or

ListResult , varName+

As for a condition also for loops it is
possible to assume conditional or normal
forms. The expression executed inside a
loop is similar to the condition expression
but with some variations. The ForMaCond
is a arithmetical expression that can use
constants and variables, the difference with
an MaCond is that it is not possible to use
loops or functions inside this type of expres-
sion.

ForMaCond , ForMaITE |
ForMaExp |
constant | varName

ForMaITE , if : ForBoolCond ;
then, else : ForMaCond

ForMaExp , ForMaUnExp |
ForMaBinExp

ForMaUnExp , s : sub;
me : ForMaCond

ForMaBinExp , me1 ,me2 : ForMaCond ;
mo : MaOp

The ForBoolCond is a boolean expression
and does not allow the use of loops or func-
tions as the ForMaExp. Clarified this two
points, all the elements the name of which

12

starts with For are equals to the elements
used by an BoolCond .

ForBoolCond , ForBoolITE |
ForBoolExp | ForComp |
varName | constant

ForBoolITE , if , then, else : ForBoolExp

ForBoolExp , ForBoolUnExp |
ForBoolBinExp

ForBoolUnExp , n : neg ; e : ForBoolCond

ForBoolBinExp , e1, e2 : ForBoolCond ;
bo : BoolOp

ForComp , ce1 , ce2 : ForCompElem;
co : CompOp

ForCompElem , ForMaCond | varName |
constant

6. Risk Definition for the Running
Example

We now have all ingredients to show how
the risks that we identified for the Payment
subprocess can be captured via sensor con-
ditions, using the language defined in Sec-
tion 5.

There is an overtime process if an in-
stance of the payment subprocess is not
completed within an MCT of five days (see
Section 2). Accordingly, the corresponding
risk can be detected if the probability of
exceeding MCT is greater than a tolerance
value (e.g. 60%). This condition is checked
by using two variables: one to retrieve the
amount of time Tc expired and the other to
retrieve the Te remaining cycle time.

d = 5
Tc = case(current).Payment(PassTimeInMillis)
Te = case(current).(TimeEstimationInMillis)

The risk condition defined to monitor this
risk is:

(1-(d*24*60*60*1000)/(Te+Tc))>0.6.

There is an approval fraud whenever a Se-
nior Finance Officer approves two orders for
the same customer within five days (see Sec-
tion 2). Accordingly, the corresponding risk
can be detected if given an order o of cus-
tomer c to be approved, either of the follow-
ing conditions holds: i) o has been allocated
to a Senior Finance Officer who has already
approved another order for the same cus-
tomer in the last five days; or ii) at least
one Senior Finance Officer is available who
approved an order for customer c in the last
five days and all other Senior Finance Offi-
cers who never approved an order for c dur-
ing the five days are available.

This risk condition is triggered by an
event, i.e. the spawning of a new instance
of task Approve Shipment Payment Order
(see Figure 1). This is checked by using a
variable to retrieve the status of this task
in the current instance. The risk condi-
tion itself is given by the disjunction of the
two conditions described above. The first
such condition is checked by using a vari-
able to retrieve which resources were allo-
cated to task Approve Shipment Payment
Order, and another variable to retrieve the
number of times this task was completed for
customer c. This latter variable is defined
via a case condition over customer c, the
completion time of this task (that must be
greater than the start time of the current
task Approve Shipment Payment Order mi-
nus five days in milliseconds), and the iden-
tifier of the instance (that must be different
from the identifier of the current instance).

The second condition is checked by using
two variables and invoking two functions.
A variable to retrieve which resources com-
pleted task Approve Shipment Payment Or-
der, and another variable to retrieve all re-
sources that can be offered this task (i.e. the
current task). The first variable is defined

13

via a case condition over customer c and the
completion time of this task (that must be
greater than the start time of the current
task Approve Shipment Payment Order mi-
nus five days). The two invoked functions
return the number of tasks started on the re-
sources that completed task Approve Ship-
ment Payment Order, and the number of
tasks in the execution queue of the resources
that have been offered this task, and did not
complete it for customer c in the last five
days.

After the definition of the variables, de-
fined in Table 1, the risk condition is speci-
fied as follows:

(ASPO#App>0)∨((sfo2.startMinNumber=0)∧
(sfo.startMinNumberExcept.sfo2>=1)).

An order unfulfillment occurs whenever
an order is updated more than five times
(see Section 2). Accordingly, the respec-
tive risk can be detected if: i) task Update
Shipment Payment Order is currently be-
ing performed for a given order; and ii) it is
likely that this order will be updated again
(i.e. task Update Shipment Payment Order
will be repeated within the same process
instance). The probability that the num-
ber of times a task will be repeated within
the same instance of the Payment subpro-
cess is computed by dividing the number
of instances, where five executions for task
Update Shipment Payment Order has been
reached, over the number of instances that
have executed this task at least as many
times as it has been executed by the cur-
rent instance, and have completed. The
tolerance value indicates a threshold above
which the risk should be notified to the user.
For example, this threshold is 60%. This
condition can be checked by using two vari-
ables: one to retrieve the amount of orders

that have been updated at least as much as
this order, the other to retrieve the amount
of orders that have been updated at least
five times.

The variables described can be defined
via the sensor definition language as in Ta-
ble 2. The risk condition is specified as fol-
lows:

(USPO#U5/USPO#US)>0.6.

An underpayment fraud occurs when-
ever a customer underpays more than three
times in a five-day time frame (see Sec-
tion 2). Accordingly, the respective risk can
be detected if i) task Issue Debit Adjust-
ment is being performed for a given cus-
tomer and order (this is the trigger for this
risk); and ii) the probability that the max-
imum number of allowable executions for
this task will be reached in a five-day time
frame, is above the fixed tolerance value for
this risk, say 60% (this is the risk condi-
tion itself). This condition can be checked
by using two variables: one to retrieve the
number of times the task Issue Debit Ad-
justment has been completed for this cus-
tomer, the other to retrieve the probabil-
ity that an attempted fraud will take place.
For this second variable, we use the Action
“FraudProbabilityFunc” to compute the
specific probability (see Appendix A).

The defined variables are implemented
through the sensor language as follows as in
Table 3. These variables are used to com-
pose the following risk condition:

Probability>0.6.

The definition of actions and functions
used in the above variables is provided in
appendix. In particular, the complete list
of all actions is provided in Appendix A,
the complete lists of the nested loops and of

14

sfo1 = case(current).Approve Shipment Payment Order 593(allocateResource)
c = case(current).Issue Shipment Invoice 594.ShipmentInvoice.Company
d = 5

ASPO = case(current).Approve Shipment Payment Order 593(OfferTimeInMillis)
ASPO# = case(Approve Shipment Payment Order 593(completeResource)=sfo1 ∧

Issue Shipment Invoice 594.ShipmentInvoice.Company=c ∧
Approve Shipment Payment Order 593(CompleteTimeInMillis)>
(ASPO-(d*24*60*60*1000)) ∧ (ID)!=[IDCurr])
.Approve Shipment Payment Order 593(CountElements)

sfo2 = case(Issue Shipment Invoice 594.ShipmentInvoice.Company=c ∧
Approve Shipment Payment Order 593(isCompleted)=“true” ∧
Approve Shipment Payment Order 593(CompleteTimeInMillis)>
(ASPOStartTime-(d*24*60*60*1000)) ∧ (ID)!=[IDCurr])
.Approve Shipment Payment Order 593(completeResource)

sfo = case(current).Approve Shipment Payment Order 593(offerDistribution)

Table 1: Variable definition for approval fraud risk.

USPO#UC = case(current).Update Shipment Payment Order 604(Count)
USPO#U5 = case(Update Shipment Payment Order 604(Count)>=5).

Update Shipment Payment Order 604(CountElements)
USPO#US = case(Update Shipment Payment Order 604(Count)>=USPO#UC ∧

Process Shipment Payment 603(isOffered)=“true”).
Update Shipment Payment Order 604(CountElements)

Table 2: Variable definition for order unfulfillment risk.

the functions are provided in Appendix B
and Appendix C.

7. Risk Templates

To facilitate the definition of concrete
risks on process models, we defined a no-
tion of risk template. A risk template is
a risk defined using generic tasks and vari-
ables not associated with any real process
model. In essence, a risk template is an
“abstract” risk whose condition is composed
of generic tasks and of generic variables as-
sociated with these tasks. These generic
tasks and variables will then be bound to
real tasks and variables when the template
risk is used to define a concrete risk for a
specific process model.

Several studies address different types of
risks [57, 18, 46, 61, 66, 68]. After an analy-
sis of these studies we decided to subdivide

our risk templates into categories reflecting
these types of risks. We expect that this
division into categories also reduces the ef-
fort required by a user to select a suitable
template. These categories were defined us-
ing the risk taxonomy proposed by Rose-
mann and zur Muehlen [57] and other types
of risks proposed in the literature [27].

In particular we organized risk templates
in two levels. The first level is obtained us-
ing the risk taxonomy, obtaining five cate-
gories of risks. These categories are: i) Goal,
capturing risks of not achieving the process
objectives; ii) Structural, capturing risks de-
riving from wrong decisions taken at design
time; iii) Data, capturing risks of damag-
ing data integrity; iv) Technology, captur-
ing risks of impacting on the availability of
IT systems; and v) Organizational, captur-
ing risks of process faults that may impact

15

IDAStartTime = case(current).Issue Debit Adjustment 605(StartTimeInMillis)
c = case(current).Issue Shipment Invoice 594.ShipmentInvoice.Company
d = 5

IDA#Issue = case(Issue Shipment Invoice 594.ShipmentInvoice.Company=c ∧
Issue Debit Adjustment 605(Count)>0 ∧ Issue Debit Adjustment 605
(CompleteTimeInMillis)>(IDAStartTime-d*24*60*60*1000))
.Issue Debit Adjustment 605(CountElements)

GroupingElement = Issue Shipment Invoice 594.ShipmentInvoice.Company
WindowElement = Issue Debit Adjustment 605(CompleteTimeInMillis)

Threshold = 0.6
Probability = case(Issue Debit Adjustment 605(Count)>0 ∧ (ID)!=[IDcurr]).

Issue Debit Adjustment 605(FraudProbabilityFunc, IDA#Issue, 3,
GroupingElement, WindowElement, (d*24*60*60*1000))

Table 3: Variable definition for underpayment fraud risk.

on the employees or be caused by them.
For each of these risk categories we defined
eleven subcategories. These subcategories
are based on the type of risks proposed in
the literature [27]. Specifically, we have: i)
Strategic, risks of affecting the implemen-
tation of business strategies; ii) Operations,
risks of affecting the capability of supplying
and producing services or goods; iii) Supply,
risks that prevent a resource from execut-
ing an operation; iv) Customer, risks related
to customers; v) Asset, risks deriving from
the use of an asset; vi) Competitive, risks
deriving from faults related to competitive-
ness; vii) Reputation, risks of loss of reputa-
tion; viii) Financial, risks of financial loss;
ix) Fiscal, risks caused by changes in taxa-
tion; x) Regulatory, risks related to changes
in regulations; xi) Legal, risks of faults that
may lead to legal actions. Figure 6 shows
a mind map illustrating how risk templates
are categorized and subcategorized.

We defined 14 risk templates as a start-
ing point for a larger risk template repos-
itory. For example, one template of type
Data/Operations, aims to detect a possible
inconsistency in the value of a critical vari-
able. The template requires a as the critical
variable, b the identifier variable, and two

set of instances s1 and s2, where s1 is com-
posed of the instances in which the values
of a and b are equal to the value of a and
b for the current instance, and s2 is com-
posed of the instances in which the value
of a is equals to the value of a for the cur-
rent instance. If the number of instances
in s1 divided by the number of instances in
s2 is greater than a certain threshold the
template triggers a notification. This risk
template can be used to represent a case in
which the critical variable is a credit card
number, or a bank account, while the iden-
tifier variable is the customer identifier.

Another risk template, of type
Goal/Financial, detects the possibility
that a particular process may exceed the
budget assigned for its execution. This risk
is detected looking at all the completed
instances of the process and at all the
completed instances with an execution cost
at least equal to the execution cost of the
current instance. The condition calculates
the probability that the current instance
will exceed the budget. This risk can be
associated with any process where the cost
is a relevant element. An example is an
insurance process where opinions from
different assessors may be required but the

16

Figure 6: Template structure with categories and
subcategories.

total cost of their involvement should not
exceed the premium.

In the category Organizational, subcate-
gory Supply, we defined a template that ad-
dresses possible delays with the execution of
tasks. It detects the possibility that a crit-
ical task would not be started as soon as it
is offered. This risk is detected looking at
all the resources which have been offered a
work item of the critical task. If the ratio
between the number of resources that are
busy versus the total number of resources
is greater than a certain threshold the risk
is detected. This type of risk is relevant
for processes in healthcare such as a pro-
cess for transferring organs from one hospi-

tal to another, where the unavailability of
a resource may cause the organ deteriora-
tion. Finally, taking in consideration the
process described in Section 2, let’s say that
the company wants to avoid that process-
ing a shipment payment may be subjected
to delays, what we have to do is: i) im-
port the template; ii) create a mapping of
our generic critical task to the task “Pro-
cess Shipment Payment”; and iii) modify
the specified threshold if required.

These templates are available as part of
our implementation in the YAWL system
(see Section 8). Finally, a briefly overview
of the templates available at the moment is
provided in Table 4. In addition to the three
templates showed before we have templates
that identify risk of: underpayment fraud,
approval fraud, time limits exceeding, four-
eyes principle violations and others.

8. Software Implementation

In order to prove the feasibility of our ap-
proach, we implemented the sensor-based
architecture in the YAWL system.2 We
decided to extend the YAWL system for
the following reasons. First, this sys-
tem is based on a service-oriented archi-
tecture, which facilitates the seamless ad-
dition of new services. Second, the system
is open-source, which facilitates its distri-
bution among academics and practitioners,
and widely used in practice (the system has
been downloaded over 100,000 times since
its first inception in the open-source com-
munity). Finally, the underlying YAWL
language is very expressive as it provides
wide support for the workflow patterns [74].

As part of this implementation, we ex-
tended the YAWL Editor version 2.2beta

2Available at www.yawlfoundation.org

17

Category SubCategory Template Name Risk Description

Data

Financial Underpayment Fraud Underpayment fraud

Operational
Data Inconsistency Across Cases

Wrong information provided, detected using
multiple cases

Data Inconsistency Parallel Activity Wrong information provided to parallel tasks

Goal

Financial CostProcessExceededRisk
Exceeding the budget during the execution of
the process

Strategic

Activity Time Exceeded
Exceeding the time limit within which the
activity needs to be completed

MultiActivity Time Exceeded
Exceeding the time limit within which a
sequence of activities needs to be completed

Process Time Exceeded
Exceeding the time limit within which the
process needs to be completed

Organizational

Financial Approval Fraud Approval fraud

Operational

Four-Eyes Principle Four-Eyes Principle violation

Four-Eyes Principle Across Cases
Four-Eyes Principle violation for activities
across different cases

Inadequate Preparation The activity is executed by a novice resource

Supply
Delay In Start The activity start will be delayed

Task Priority Unfulfilled
Activity with high priority cannot start
because resources are busy

Structural Operational Loop A loop is executed too many times

Table 4: Risk Templates and descriptions

with a new component, namely the Sen-
sor Editor, for the specification of sensors
within YAWL process models. Such graphi-
cal component, shown in Figure 7, fully sup-
ports the specification of sensor conditions
as defined in Section 4, and the specification
of risk templates.

A wizard (see figure 8) was developed as
part of the YAWL Editor to facilitate the
use of risk templates and in particular the
mapping required for their use. This wiz-
ard using an user friendly interface guides
the user during each step of the mapping,
providing a description of each generic task
and variable. The wizard also provides the
possibility of customizing a risk, since it is
possible to modify a risk condition during
the creation of a risk using templates.

Moreover, we implemented the Sensor
Manager as a generic component which ex-
poses three interfaces (engine, database and
monitor) as described in Section 4. We then
wrapped this component into a Web ser-
vice which implements the three interfaces
for the YAWL system, allowing the compo-

nent to interact with the YAWL Engine, the
Monitor service and the YAWL database.
While there is a straightforward mapping
between the YAWL Engine and our engine
interface, and between the YAWL Moni-
tor service and our monitor interface, we
had to join several YAWL tables to im-
plement our database interface. This is
because in the YAWL system, event logs
are scattered across different database ta-
bles. For example, to retrieve all identi-
fiers of the process instances for a specific
process model, given the model identifier,
we need to perform a join among the fol-
lowing YAWL tables: logspecification,
lognetinstance, lognet and logevent.

The complete mapping is illustrated in
Table 5. As an example, this table also
shows the mapping between our database
interface and the relational schema used by
Oracle BPEL 10g to store BPEL process
logs. Also in this case, the database can
be fully mapped by joining several tables.

Finally, we implemented a separate ser-
vice to estimate the remaining cycle time

18

Figure 7: The Sensor Editor within the YAWL Editor.

Figure 8: Template Wizard: a) Tasks mapping, b) Variables mapping.

Te for a process or task instance. This ser-
vice uses ProM’s prediction miner [76] to
compute the estimations, and provides the
results to the Sensor Manager on demand.
While the estimation of Te could be done
on-line, i.e. while evaluating a particular
sensor condition at run-time, parsing the
full logset each time would be inefficient.
Rather, we compute this estimation off-line,
whenever a new process model is deployed
to the YAWL Engine, by using the logset
available at that time. Periodically, we up-

date the logset with the new instances being
executed meantime, and invoke this service
to refresh the estimations for each process
model currently deployed.

9. Evaluation

In this section we discuss two evaluations
of the sensor-based architecture. First, we
discuss a performance analysis of the imple-
mentation of the architecture in the YAWL
system, and second, we report on a usabil-

19

Database table
Tables that need to be joined

YAWL Oracle BPEL 10g
WorkFlowDefinition logspecification, lognet, lognetinstance, logevent cube instance and cube scope

SubProcess logspecification, lognet, lognetinstance, logevent cube instance and cube scope

Activity
lognetinstance, logtask, logtaskinstance, lognet,

wftask and work item
logevent, logspecification, rs eventlog

Variables
logtask, lognet, lognetinstance, logtaskinstance,

audit trail, audit detail and xml document
logevent, logdataitem, logspecification

Role rs participant wftask
ActivityRole rs eventlog, logtaskinstance wftask

Table 5: Database interface mapping for YAWL 2.2beta and Oracle BPEL 10g.

ity evaluation of the architecture on basis
of a survey with 21 BPM practitioners that
gained experience with the system.

9.1. Performance Analysis

We used our implementation to evaluate
the scalability of the approach. First, we
measured the time needed to evaluate the
basic functions (e.g. counting the number of
instances of a task or retrieving the resource
allocated to a task). Next, we measured the
time needed to evaluate the sensor condi-
tions for the risks defined in the Payment
subprocess. The tests were run on an Intel
Core I5 M560 2.67GHz processor with 4GB
RAM running Linux Ubuntu 11.4. The
YAWL logs were stored on the PostGres 9.0
DBMS. These logs contained 318 completed
process instances from 36 difference process
models, accounting for a total of 9,399 pro-
cess events (e.g. task instance started and
completed, variable’s value change). Specif-
ically, there were 100 instances from the
Payment subprocess yielding a total of 5,904
process events. The results were averaged
over 10 runs.

Table 6 shows the results of the evalua-
tion of the basic functions provided by our
language. In particular, in this table we
compare the evaluation times obtained by
accessing the YAWL logs via our database
interface, with those obtained by access-
ing a serialization of the logs, e.g. in the

OpenXES format. While OpenXES pro-
vides a simple and unique representation of
a generic set of process logs, accessing an
OpenXES file in real-time, i.e. during the
execution of a process instance, is not fea-
sible, due to the long access times (e.g. 6.5
sec. on average for evaluating a net vari-
able). On the other hand, accessing the
logs via our database interface, despite it
requires the creation of a specific imple-
mentation for each BPMS database, pro-
vides considerably faster times than access-
ing OpenXES files (at least 87% gain w.r.t.
OpenXES access). In fact, as we can see
from Table 6, the evaluation times for all
the basic functions are below 30 ms, apart
from function task variable, which takes
almost 100 ms and function net variable,
which takes about 430 ms.

The last two basic functions reported in
Table 6, namely task distribution and
task initiator, are evaluated in less than
250 milliseconds. These functions are not
computed by accessing the logs, but rather
by accessing information that is contained
directly in an executable process model, e.g.
the resources that are associated with a spe-
cific task. However, in our implementation
we still use the database interface to ac-
cess this information, in order to provide
the developer with a single access point to
all process-related data.

Table 7 reports the results of the eval-

20

Basic function Description
OpenXES Database Reduction
time [ms] time [ms] rate [%]

net status
functions checking if a net status has been reached

6,535 18.9 99.71
(isStarted, isCompleted)

net time
functions returning the time when a net status has been

6,781 18.8 99.72reached (startTime, completeTime, startTimeInMillis,
completeTimeInMillis)

net variable returns the value of a net variable 6,489 432.6 93.33
task count number of times a task has been completed 803 19.8 97.53

task resource
functions that return the resources associated with a task

850 20.9 97.54(offerResource, allocateResource, startResource,
completeResource)

task status
functions checking if a task status has been reached

792 30.5 96.14
(isOffered, isAllocated, isStarted, isCompleted)

task time

functions returning the time when a task status has been

824 22.3 97.29
reached (offerTime, allocateTime, startTime,
completeTime, offerTimeInMillis, allocateTimeInMillis,
startTimeInMillis, completeTimeInMillis)

task variable returns the value of a task variable 787 96.7 87.71

task
functions returning the resources associated with a task by

243 -
distribution

default (offerDistribution, allocateDistribution,
startDistribution, completeDistribution)

task initiator
functions returning the allocation strategy for a resource

249.6 -association (offerInitiator, allocateInitiator, startInitiator,
completeInitiator)

Table 6: Performance of basic functions.

uation of the sensor conditions defined for
our running example. While the sensor con-
ditions for the overtime process and order
unfulfillment faults are very low (below 150
ms), longer times are obtained for evaluat-
ing the conditions for the two faults related
to fraud. This is because both these condi-
tions require to evaluate “complex queries”,
i.e. queries over the entire process logs: in
the approval fraud, we need to retrieve all
resources that approved an order for a spe-
cific customer, while in the underpayment
fraud we need to retrieve all process in-
stances where a debit adjustment was is-
sued and aggregate these instances per cus-
tomer. These queries are different than
those needed to evaluate the basic func-
tions, as the latter are performed on the
events in the logs that are relative to a sin-
gle known process instance, e.g. the instance
for which the sensor condition is being eval-
uated.

The worst-case complexity of evaluating

Sensor
Min Max Ave St.Dev.
[ms] [ms] [ms]

Overtime process 121 137 131.8 4.66
Approval fraud 6,483 7,036 6,766.4 183.06
Order

69 91 77.4 7.18
unfulfillment
Underpayment

3,385 3,678 3,523 89.98
fraud

Table 7: Performance of sensors.

one such a complex query is still linear
on the number of parameters that need be
evaluated in the query (corresponding to
the language element CondExprSet in Sec-
tion 4) multiplied by the total number of
instances present in the logs (corresponding
to the size of table WorkflowDefinition ad-
dressed by our database interface).

In conclusion, the performances of eval-
uating sensor conditions should always be
considered w.r.t. the specific process for
which the risks are defined, and the type
of trigger used. For example, let us assume
an average duration of 24 hours for the Pay-
ment subprocess, with a new task being ex-

21

ecuted every 30 minutes. This means we
have up to 30 minutes to detect an overtime
process risk before a new task is executed,
and we need to compute this sensor condi-
tion again. If we choose a rate of 5 minutes
to sample this condition, we are well below
the 6 minute-threshold, so we can check this
sensor condition up to 6 times during the
execution of a task. Since we do this in less
than 150 ms, this time is acceptable. For
an event-driven risk we also need to con-
sider the frequency of the specific event used
as trigger. For example, the approval fraud
risk is triggered every time an instance of
task Approve Shipment Payment Order is
offered to a Senior Financial Officer for ex-
ecution. Since we take up to 7 seconds to
compute this sensor condition, we are able
to cope with a system where there is a re-
quest for approval every 7 seconds. So also
for this sensor, the performance is quite ac-
ceptable.

9.2. Usability Analysis

For the evaluation of the usability of the
sensor-based architecture we followed the
example from related studies [39, 40] and
conducted focus group-like online sessions
with BPM practitioners. Each online ses-
sion consisted of a tutorial about the func-
tions and use of the sensor-based architec-
ture that consisted of an introduction, the
creation of risk sensors in the YAWL editor
and detailed instructions for defining sen-
sors from scratch or on the basis of tem-
plates. Additional documentation provided
descriptions and explanations of actions, re-
source functions and loops relevant to risk
sensors. After completing the tutorial, each
participant was asked to complete a struc-
tured online questionnaire (see Appendix
D).

In these focus groups, overall twenty-one
participants participated, where 10 of them
were from Italy and 11 from Australia. Par-
ticipants, on average, had about 2.6 years of
experience with process modeling and had
read and created, on average, 71 and 15
models, respectively, over the last twelve
months. Participants’ experience with dif-
ferent process modeling languages varied,
with most having experience, at least, with
UML Activity Diagrams, Petri Nets, EPCs
and/or BPMN. These characteristics de-
scribe our participants as proxies for novice
to average BPM professionals, with one of
our participants being representative of an
expert practitioner (more than 5 years ex-
perience, more than 250 models created,
more than 1000 models read). Overall, our
study population might not be representa-
tive of experts but is roughly equivalent to
the range of expertise found in actual BPM
practitioners as reported in other surveys,
e.g. [55].

The structured questionnaire that was
completed by the participants contained
measurement items that were, where possi-
ble, adapted from prior surveys on process
modeling [39, 40] and usage of the YAWL
system [56]. The questionnaire was struc-
tured in four parts. First we gathered demo-
graphic information about the participants.
Next, we captured information about the
extent and intensity of usage experiences
with YAWL or other BPMSs. Third, we
presented three risk scenarios on the basis
of the developed sensor-based architecture
and examined how well participants were
able to assess risks, in terms of accuracy of
understanding the risks and the difficulty of
understanding the meaning of the risks. Ac-
curacy and difficulty are widely used mea-
sures [11, 44] of the effectiveness and the
efficiency of the sensor-based approach in

22

terms of how well users of the approach can
understand the risk information provided
through the approach, and how cognitive ef-
fort is required to develop this understand-
ing. Three different scenarios were proposed
to the users. The first and last scenar-
ios describe risks using the developed risk
definition language. Here we asked ques-
tions about the risk proposed. The second
scenario describes a risk using a fault tree.
Here we asked questions about how such a
risk can be defined using the proposed lan-
guage. For each scenario, a 5-point scale
measured the difficulty of understanding the
risk from very simple to very difficult, and
five true/false/do not know questions mea-
sured accuracy of comprehension of the risk
information provided.

Fourth and finally, we captured partici-
pants’ perceptions about the usage experi-
ence of the approach, building on theories
of technology acceptance [19] and continued
usage of process modeling [53, 54]. To that
end, we adapted the measurements items in
[56] to measure satisfaction (SAT), useful-
ness (PU), ease of use (PEOU) and inten-
tions to use (ITU). Similar to previous uses
of these items [53, 54, 56], the measures
were of appropriate reliability, with Cron-
bach’s Alphas ranging from 0.64 (ITU) to
0.81 (PU).

The box-plots in Figure 9(a) and Fig-
ure 9(b) show the accuracy of the compre-
hension of the risks in the three scenarios
as well as the perceived difficulty of under-
standing these risks. The data shows that
scenarios 1 and 3 were reasonably well un-
derstood (averages for the comprehension
questions were 2.9 for scenario 1 and 3.1 for
scenario 3, both exceeding 50% accuracy),
while comprehension of scenario 2 was sig-
nificantly lower (average score 1.7). Sim-
ilarly, perceived difficulty was highest for

scenario 2 (average of 3.7), while the per-
ceived difficulty for scenario 1 and 3 was
similar in range (averages 3.4 and 3.3, re-
spectively).

(a) Accuracy of risk comprehension, on a scale
from 0 (low) to 5 (high).

(b) Difficulty of risk comprehension, on a scale
from 1 (very simple) to 5 (very difficult).

Figure 9: Accuracy and difficulty of risk compre-
hension.

Next we were interested in understand-
ing under which circumstances participants
were able to obtain higher levels of accuracy
in understanding the risk information pro-
vided. To that, we built a regression model
in which we regressed relevant demographic
data and perceived difficulty onto the to-

23

tal comprehension score across all three risk
scenarios. Specifically, we included as coef-
ficients:

• PMExp(Years): Process modeling ex-
perience in years

• PMExp(Training): Extent of formal
training in process modeling in days
over the last twelve months

• PMExp(SelfEducation): Extent of self-
education in process modeling in days
over the last twelve months

• PMExp(processModelsCreated):
Number of process models created over
the last twelve months

• BPMSFAM: Self-perceived familiarity
with BPMSs [53]

• YAWLUse(time): length of use of the
YAWL system

• YAWLUse(features): Number of
YAWL features used

• YAWLUse(models): Number of YAWL
models created, read or edited over the
last twelve months

• RISKPerDif: Average perceived com-
prehension difficulty across the three
presented scenarios.

The regression model was significant (F
= 3.54, p = 0.04) and explained 77.9 per-
cent of the variance in total comprehension
score, thus attesting to very good explana-
tory power. Table 8 gives the results from
the regression model analysis.

Table 8 shows that four factors were sig-
nificant predictors for explaining compre-
hension accuracy, these being process mod-
eling experience in years, number of pro-

Standardized
Coefficients

Variable Beta t Sig.
PMExp(Years) -0.80 -2.79 0.02
PMExp(Training) -0.03 -0.16 0.88
PMExp

1.28 4.31 0.00
(processModelsCreated)
BPMSFAM 0.38 1.15 0.28
YAWLUse(time) 0.80 3.07 0.01
YAWLUse(features) -0.30 -1.40 0.20
YAWLUse(models) -1.20 -3.86 0.00
RISKPerDif -0.19 -1.05 0.32

Table 8: Regression analysis of risk comprehension
across all three scenarios

cess models created, use of the YAWL sys-
tem and number of YAWL models cre-
ated, edited or read over the last twelve
months. Several interesting findings are
noteworthy. First, PMExp(Years) and
YAWLUse(models) are negative predictors,
which may suggest that novice users with
little process modeling experience and lit-
tle experience with YAWL models bene-
fited more from the risk sensor approach.
Second, the difficulty of understanding the
risk information provided is not related to
how well users understand the risks. Third,
training in process modeling or more var-
ied use of the YAWL system, likewise, are
irrelevant in terms of understanding risk in-
formation provided by the sensor-based ar-
chitecture.

Finally, we were interested in the partici-
pants’ evaluation of the sensor-based archi-
tecture. Following the theory of technology
acceptance [19] and its extended application
in the process modeling context [54], we un-
derstand that satisfaction, ease of use and
perceived usefulness are key criteria for ex-
plaining intentions to use a process model-
ing artifact. Figure 10 shows the box-plots
for the average total factor scores for these
four criteria.

The data displayed in Figure 10 suggests
that participants rated the usefulness of the

24

Figure 10: Perceptual evaluations of the sensor-
based architecture on a scale from 1 (low) to 7
(high).

approach high (mean score > 5.3) and were
in general inclined to use the system (mean
score > 4.4). Satisfaction with the approach
was reported as average (mean score = 4.0)
and ease of use, notably, was reported as
low (mean score < 3.5), indicating potential
to improve interface and user interaction of
the system. In a post-hoc analysis, we com-
pared evaluations of SAT, PU, PEOU and
ITU across users that scored low or high
on risk comprehension, based on a median
split, and across users that rated the per-
ceived difficulty of understanding risks as
low or high, again based on a median split.
MANOVA tests in both cases showed that
evaluations of the approach were indepen-
dent from comprehension accuracy or dif-
ficulty, with p-values ranging from 0.30 to
0.49 and 0.18 to 0.58, respectively. The re-
sults indicate that the evaluations of satis-
faction, usefulness, ease of use and inten-

tions to use were robust against variances
in the performance in using the system.

In summary, our evaluation showed that
the sensor-based risk identification and
modeling approach provided value in allow-
ing participants to develop an understand-
ing of process risks. We found the ap-
proach to be useful particularly for users
with limited experience in process modeling
or BPMSs. The evaluation further revealed
that ease of use of the system should be im-
proved to warrant better user acceptance.

10. Related Work

Risk measurement and mitigation tech-
niques have been widely explored in vari-
ous fields. At the strategic-level risk man-
agement, standards prescribe generic pro-
cedures for identifying, analyzing, evaluat-
ing and treating risks (see e.g. [69]). Al-
though helpful, such general guidelines are
inevitably vague and fail to provide any spe-
cific guidance for operationalizing risk man-
agement strategies in business processes. At
the other extreme, there are many tech-
niques for identifying risks in specific areas
such as employee [1], conflict of interest [42]
and in the engineering field more gener-
ally [30, 10]. Other approaches, such as
fault-tree analysis [12], are general enough
to be applied to multiple domains. How-
ever, none of these approaches provides in-
sights on how to define and operationalize
the detection of process-related risks. In
the following, we first discuss related work
at methodological level with respect to the
proposed approach and then related work
with respect to the architectural level of our
proposal is discussed.

Previous process-based research recog-
nizes the importance of explicitly linking
elements of risk to business process mod-

25

els, through specific methodological ap-
proaches. Such approaches, discussed be-
low, can be mainly categorized into design
time Risk-aware BPM with and without in-
tegrated risks constructs. The former [57,
80, 33, 75, 62, 65, 63, 64, 17, 16, 79, 3] ana-
lyzes and models BPM risks through the in-
troduction of new integrated risk constructs
whereas the latter [48, 49, 59, 58, 8, 29, 70,
38, 73, 52, 41, 9, 32, 4, 5, 22, 23, 36, 2, 7,
60, 34, 67, 37] reuses existing risk analysis
methods. In the next paragraphs we are go-
ing to discuss the most relevant of these ap-
proaches while we refer to [71] for a compre-
hensive discussion on all these approaches.

Among these approaches we can identify
several groups. The first group is com-
posed of the approaches described in [17,
16, 79, 48, 49, 59, 58, 62, 65, 63, 64, 41].
They propose to extend existing model-
ing languages, such as Business Process
Model and Notation (BPMN), Event-driven
Process Chain (EPC), Value-Focused Pro-
cess Engineering (VFPE), semantic busi-
ness process modeling language (SBPML)
and the integrated definition (IDEF) lan-
guage, with risk-related constructs. The ap-
proaches provide the possibility to annotate
business process models with risk-related
information and in some cases it is also pos-
sible to annotate mitigation actions. Fur-
thermore Rotaru et al. [49, 59, 58] also pro-
pose an utility calculation technique that
can be used to determine optimal risk coun-
termeasure solutions.

The second group is composed of ap-
proaches [2, 7, 60, 8, 4, 5] which propose
risk-informed design. In these approaches
common is the idea of modelling business
processes (in one or several stages) which
contain elements of risk and possible mitiga-
tion actions. These models are then used to
create a process model in which mitigation

activities are already part of the process it-
self. In particular, Betz et al. [8] propose a
method based on simulation to choose the
optimum process model variant if several
variants are proposed.

The third group focuses on simulation
and is composed of the approches described
in [33, 75, 73, 36, 34]. The ROPE (Risk-
Oriented Process Evaluation), methodology
proposed by Jakoubi et al. [33, 75], is based
on the observation that faults (here called
“threats”) impact the functionality of re-
sources (required for the execution of pro-
cess activities). If a threat is detected, a
countermeasure process or a recovery pro-
cess is invoked to counteract the threat.
The ROPE methodology aims to incorpo-
rate these aspects in a single model that
can be simulated to determine a companys
critical business processes and single points
of failure. Similarly, Taylor et al. [73], pro-
pose a simulation environment based on the
jBPM Process Definition Language (JPDL)
workflow language. In this environment
a process models annotated with risk in-
formation (i.e. key risk indicator (KRI),
key performance indicator (KPI), and risk
event) can be simulated in order to evalu-
ate the effects of risk events on some pre-
defined KPIs and KRIs. Finally, Kaegi et
al. [36] simulate a process model described
in BPMN via agent-based modelling tech-
nique to analyze business process-related
risks, while Jallow et al. [34], propose an
approach where risks in business processes
are analysed. The approach use the Monte
Carlo simulation [45], on a given a set of
identified risk events and their occurrence
probabilities, in order to assess and quan-
tify the impact/consequences of those risk
events (in terms of time, cost, performance,
and other objectives) on each process activ-
ity and on the overall process.

26

Other works which cannot be grouped
together annoverate: i) a taxonomy of
process-related risks [57, 80, 49], which in-
cludes five process-related risk types (goals,
structure, information technology, data and
organization) that can be captured by four
interrelated model types (risk structure
model, risk/goal matrix, risk state model,
and an extension to the EPC notation); ii)
an extended goal-risk framework [3], which
consists of an asset layer (composed of
business process goals, activities, and busi-
ness artifacts), an event layer (composed of
various events, including risk events, that
can impact the asset layer), and a treat-
ment layer (composed of a set of risk treat-
ment activities that can mitigate the im-
pact of the risk events modeled in the
event layer); and iii) a technique to evalu-
ate a workflow’s non-completion risk due to
uncertain/dynamic information [67], which
quantifies the confidence level of the non-
monotonic predicates of a workflow and
whether one of these confidence levels is be-
low certain threshold considers the workflow
to be risky suggesting the use of a backup
workflow.

Finally, in the approach proposed by
Kang et al. [37], a technique to estimate
the probability that a process instance en-
ters an abnormal termination state is de-
fined. Process-related historical data is used
to inform the probability estimation calcu-
lation. Then, a run-time risk estimation al-
gorithm is developed such that appropriate
risk alerts can be produced when risky sit-
uations are detected. The main limitation
of this approach results be necessity of hav-
ing an exhaustive log containing all possible
executions and the impossibility of making
distintions among different abnormal termi-
nation states.

With respect to the risk-aware BPM life-

cycle shown in Figure 3, all the above pro-
posals (except the approach by Kang et
al. that is specifically focused on risk-aware
workflow execution) only cover the phases
of risk analysis and risk-aware process mod-
eling (see Table 9). None of them speci-
fies how risk conditions can be concretely
linked to run-time aspects of process mod-
els such as resource allocation, data vari-
ables and control-flow conditions, for the
sake of detecting risks during process execu-
tion. Thus, none of these approaches opera-
tionalizes risk detection into workflow man-
agement systems. Moreover, they neglect
historical process data for risk estimation.
As such, these approaches are complemen-
tary to our work, i.e. they can be used at
a conceptual level for the identification of
process-related risks, which can then be im-
plemented via our sensor-based lower-level
methodology.

From the architectural point of view, our
approach, specifically our sensor-based ar-
chitecture, is also related to real-time mon-
itoring of business process execution. Simi-
larly to our approach, Oracle Business Ac-
tivity Monitoring (BAM) [51] relies on sen-
sors to monitor the execution of BPEL pro-
cesses. Three types of sensors can be de-
fined: activity sensors, to grab timings and
variable contents of a specific activity; vari-
able sensors, to grab the content of the vari-
ables defined for whole BPEL process (e.g.
the inputs to the process); and fault sensors,
to monitor BPEL faults. These sensors can
be triggered by a predefined set of events
(e.g. task activation, task completion). For
each sensor, one can specify the endpoints
where the sensor will publish its data at
run-time (e.g. a database or a JMSQueue).
We allow the specification of more sophis-
ticated sensor (and fault) conditions, where
different process-related aspects can be in-

27

Approach

Risk Process Process Process Process
identification/ design/ implementation/ enactment/ diagnosis/
Risk analysis Risk-aware Risk-aware Risk-aware Risk

process workflow workflow monitoring
modeling implementation execution & mitigation

zur Muehlen et al. [57, 80] X X
Asnar and Giorgini [3] X X
Karagiannis et al. [38] X X
Singh et al. [67] X X
Cope et al. [17, 16] X X
Weiss and Winkelmann [79] X X
Mock and Corvo [48] X X
Rotaru et al. [49, 59, 58] X X
Sienou et al. [62, 65, 63, 64] X X
Lambert et al. [41] X X
Jakoubi et al. [33, 75] X X
Taylor et al. [73] X X
Kaegi et al. [36] X X
Jallow et al. [34] X X
Bergholtz et al. [2, 7, 60] X X
Betz et al. [8] X X
Bhuiyan et al. [4, 5] X X
Hermann and Hermann [29] X X
Strecker et al. [70] X X
Panayiotou et al. [52] X X
Bhuiyan et al. [9, 32] X X
Fenz et al. [22, 23] X X
Kang et al. [37] X
Our proposal X X X X X

Table 9: Comparison of available R-BPM approaches with respect to the five phases of our reference R-BPM
lifecycle.

corporated such as data, resource allocation
strategies, order dependencies, as well as
historical data and information from other
running process instances. Moreover, our
sensors can be triggered by process events
or sampled at a given rate. Nonetheless,
our sensor-based architecture is exposed as
a service and as such it could be integrated
with other process monitoring systems, such
as Oracle BAM.

Real-time monitoring of process models
can also be achieved via Complex Event
Processing (CEP) systems. In this context,
CEP systems have been integrated into
commercial BPMSs, e.g. webMethods Busi-
ness Events3, ARIS Process Event Moni-
tor [20] and SAP Sybase [72], as well as

3http://www.softwareag.com/au/products/wm
/events/overview

explored in academia [24, 28]. A CEP sys-
tem allows the analysis of aggregated events
from different sources (e.g. databases, email
accounts as well as process engines). Us-
ing predefined rules, generally defined with
a specific SQLlike language [78], a CEP sys-
tem can verify the presence of a specific
pattern among a stream of simple events
processed in a given time window. Our
approach differs from CEP systems in the
following aspects: i) strong business pro-
cess orientation vs general purpose system;
ii) ability to aggregate and analyze com-
plex XML-based events (e.g. process vari-
ables) vs simple events; iii) time-driven and
event-driven triggers vs event-driven trig-
ger only. Moreover, CEP systems typically
suffer from performance overheads [28, 78]
which limit their applicability to real-time

28

risk detection [78].
This article is an extended version of the

work presented in [14]. Compared to this
work, this article provides the full and re-
vised definition of the language’s abstract
syntax, the support for risk templates, the
usability evaluation with users and a com-
prehensive related work.

11. Conclusion

We contributed an approach for real-time
monitoring of risks in executable business
process models. The approach embeds ele-
ments of risk into each phase of the BPM
lifecycle: from process design, where high-
level risks defined via a risk analysis method
are mapped down to specific process model
elements such as activities, resources and
data, through to process diagnosis, where
risks are detected during process execution,
and those no longer tolerable are notified to
process administrators. To the best of our
knowledge, this is the first attempt to con-
cretely embed risks into executable business
processes and enable their automatic detec-
tion at run-time.

As a second contribution, we provided
an operationalization of the proposed risk-
awareness approach on top of BPMSs.
This is achieved via a distributed, sensor-
based architecture that communicates with
a BPMS via a set of tool-independent in-
terfaces. Each risk is associated with a sen-
sor condition and refers to a fault, which is
an undesired state of the process. Condi-
tions can relate to any process aspect, such
as control-flow dependencies, resource allo-
cations, the content of data elements, both
from the current process instance and from
instances of any process that have already
been completed. At design-time, these con-
ditions are expressed within a process model

via a simple query language, for which we
provide an abstract syntax. At run-time,
each sensor independently alerts a sensor
manager when the associated risk condi-
tion evaluates to true during the execution
of a specific process instance. When this
occurs, the sensor manager notifies a pro-
cess administrator about the given risk by
interfacing with the monitoring service of
the BPMS. This allows early risk detection
which in turn enables proper remedial ac-
tions to be taken in order to avoid poten-
tially costly process faults.

From an analysis of relevant literature,
we designed a set of risk templates to al-
low process designers to easily specify new
risk conditions into a process model. Each
template captures an abstract risk. To use
these templates, one has to bind the tem-
plate variables to concrete elements of the
process model for which the risk condition
needs to be monitored. We contend that by
using such templates the effort of defining
risks in executable process models can be
reduced.

As a proof-of-concept, we implemented
the sensor-based architecture on top of the
YAWL system along with 14 representative
templates. We then used the tool to evalu-
ate the feasibility of the approach in prac-
tice. This was carried out in two directions.
First, we evaluated the performance of the
implementation; second, we evaluated the
usability and ease of use of the approach
with users of the YAWL system. The per-
formance experiments showed that the sen-
sor conditions can be computed efficiently
and that no performance overhead is in-
duced to the BPMS engine. The results of
the empirical evaluation with users showed
that the sensor-based risk identification and
modeling approach provided value to de-
velop an understanding of process risks. We

29

found the approach to be useful particu-
larly for users with limited experience in
process modeling or BPMSs. The evalua-
tion further revealed that ease of use of the
language for defining sensors should be im-
proved to warrant better user acceptance.
In order to overcome this limitation we plan
to devise a mechanism for automatically
deriving skeletons of sensors directly from
fault trees. We expect that this will allow a
smoother transition from high-level risk def-
initions to low-level risk conditions. More-
over, aiding features provided by common
source code editors such as autocomplete,
syntax highlighting and bracket matching
can be put in place to reduce the human
effort.

The approach presented in this paper
and its operationalization serve as the cor-
nerstone for other techniques that aim to
bridge the gap between risk and process
management. In particular, in [15] we doc-
umented a technique which uses input from
this approach in order to mitigate risks.
Specifically, as soon as one or more risks
are detected which are no longer tolerable,
the technique identifies a set of alternative
mitigation actions that can be applied by
process administrators. A mitigation ac-
tion is a sequence of controlled changes ap-
plied to the process instance, that takes
into account a snapshot of the process re-
sources and data, and the current status
of the system in which the process is exe-
cuted. Furthermore, in [13] we reported on
a second technique which also builds on the
approach presented in this paper to allow
process participants to make risk-informed
decisions. This is achieved by estimating
the risk that the current process instance
will end up with one or more faults based
on the input provided by the participant,
e.g. when filling out a user form based on

the conditions specified for each fault.

Acknowledgments We thank Peter
Hughes for his help with the identification
of process-related risks. This research
is partly funded by the ARC Discovery
Project “Risk-aware Business Process
Management” (DP110100091). NICTA
is funded by the Australian Government
as represented by the Department of
Broadband, Communications and the
Digital Economy and the Australian Re-
search Council through the ICT Centre of
Excellence program.

References

[1] Albrecht, W.S., Albrecht, C.C., Albrecht,
C.O., Zimbelman, M.F., 2008. Fraud Exam-
ination. 3rd ed., South-Western Publishing.

[2] Andersson, B., Bergholtz, M., Edirisuriya, A.,
Ilayperuma, T., Johannesson, P., 2005. A
declarative foundation of process models, in:
Pastor, O., e Cunha, J.F. (Eds.), CAiSE,
Springer. pp. 233–247.

[3] Asnar, Y., Giorgini, P., 2008. Analyzing busi-
ness continuity through a multi-layers model,
in: Dumas, M., Reichert, M., Shan, M.C.
(Eds.), BPM, Springer. pp. 212–227.

[4] Bagchi, S., Bai, X., Kalagnanam, J., 2006.
Data quality management using business pro-
cess modeling, in: IEEE SCC, IEEE Computer
Society. pp. 398–405.

[5] Bai, X., Padman, R., Krishnan, R., 2007. A
risk management approach to business process
design, in: ICIS, Association for Information
Systems. p. 28.

[6] Basel Committee on Bankin Supervision,
2006. Basel II - International Convergence of
Capital Measurement and Capital Standards.

[7] Bergholtz, M., Grégoire, B., Johannesson, P.,
Schmitt, M., Wohed, P., Zdravkovic, J., 2005.
Integrated methodology for linking business
and process models with risk mitigation, in:
REBNITA, Citeseer.

[8] Betz, S., Hickl, S., Oberweis, A., 2011. Risk-
aware business process modeling and simula-
tion using xml nets, in: Hofreiter, B., Dubois,
E., Lin, K.J., Setzer, T., Godart, C., Proper,

30

E., Bodenstaff, L. (Eds.), CEC, IEEE. pp.
349–356.

[9] Bhuiyan, M., Islam, M.M.Z., Koliadis, G., Kr-
ishna, A., Ghose, A., 2007. Managing business
process risk using rich organizational models,
in: COMPSAC (2), IEEE Computer Society.
pp. 509–520.

[10] Bhushan, N., Rai, K., 2004. Strategic Deci-
sion Making: Applying the Analytic Hierarchy
Process. 3rd ed., Springer.

[11] Burton-Jones, A., Wand, Y., Weber, R., 2009.
Guidelines for empirical evaluations of concep-
tual modeling grammars. Journal of the Asso-
ciation for Information Systems 10, 495–532.

[12] Commission, I.E., 1990. IEC 61025 Fault Tree
Analysis (FTA).

[13] Conforti, R., de Leoni, M., La Rosa, M.,
van der Aalst, W.M.P., 2013. Support-
ing Risk-Informed Decisions during Busi-
ness Process Execution. QUT ePrints
55979. Queensland University of Technology.
http://eprints.qut.edu.au/55979.

[14] Conforti, R., Fortino, G., La Rosa, M., ter Hof-
stede, A.H.M., 2011. History-aware, real-time
risk detection in business processes, in: Proc.
of CoopIS, Springer.

[15] Conforti, R., ter Hofstede, A.H.M., La Rosa,
M., Adams, M., 2012. Automated risk mitiga-
tion in business processes, in: Proc. of CoopIS,
Springer.

[16] Cope, E.W., Küster, J.M., Etzweiler, D.,
2009. Risk Extensions to the BPMN 1.1 Busi-
ness Process Metamodel. Technical Report
RZ3740. IBM Research.

[17] Cope, E.W., Küster, J.M., Etzweiler, D.,
Deleris, L.A., Ray, B., 2010. Incorporating risk
into business process models. IBM Journal of
Research and Development 54, 4.

[18] Cousins, P.D., Lamming, R.C., Bowen, F.,
2004. The role of risk in environment-related
supplier initiatives. International Journal of
Operations & Production Management 24,
554–565.

[19] Davis, F.D., 1989. Perceived usefulness, per-
ceived ease of use, and user acceptance of in-
formation technology. MIS quarterly 13, 319–
340.

[20] Davis, R.B., Brabander, E., 2007. ARIS De-
sign Platform: Getting Started with BPM.
Springer.

[21] Dumas, M., van der Aalst, W.M., ter Hofstede,

A.H., 2005. Process-Aware Information Sys-
tems: Bridging People and Software through
Process Technology. Wiley & Sons.

[22] Fenz, S., 2010. From the resource to the
business process risk level, in: Proceedings of
the South African Information Security Multi-
Conference (SAISMC’2010), pp. 100–109.

[23] Fenz, S., Neubauer, T., 2009. How to deter-
mine threat probabilities using ontologies and
bayesian networks, in: Proceedings of the 5th
Annual Workshop on Cyber Security and In-
formation Intelligence Research: Cyber Secu-
rity and Information Intelligence Challenges
and Strategies, ACM, New York, NY, USA.
pp. 69:1–69:3.

[24] Gay, P., Pla, A., López, B., Meléndez, J., Me-
unier, R., 2010. Service workflow monitoring
through complex event processing, in: ETFA,
IEEE. pp. 1–4.

[25] Golden, W., Acton, T., Conboy, K., van der
Heijden, H., Tuunainen, V.K. (Eds.), 2008.
16th European Conference on Information
Systems, ECIS 2008, Galway, Ireland, 2008.

[26] Günther, C.W., Verbeek, E., 2013. Sup-
porting Risk-Informed Decisions dur-
ing Business Process Execution. Tech-
nical Report 55979. Eindhoven Uni-
versity of Technology. http://www.xes-
standard.org/ media/openxes/
openxesdeveloperguide-1.9.pdf.

[27] Harland, C., Brenchley, R., Walker, H., 2003.
Risk in supply networks. Journal of Purchas-
ing and Supply Management 9, 51 – 62.

[28] Hermosillo, G., Seinturier, L., Duchien, L.,
2010. Using complex event processing for dy-
namic business process adaptation, in: IEEE
SCC, IEEE Computer Society. pp. 466–473.

[29] Herrmann, P., Herrmann, G., 2006. Secu-
rity requirement analysis of business processes.
Electronic Commerce Research 6, 305–335.

[30] Hespos, R.F., Strassmann, P.A., 1965.
Stochastic decision trees for the analysis of in-
vestment decisions. Management Science 11,
244–259.

[31] Hollingsworth, D., 1995. The Workflow Refer-
ence Model. Workflow Management Coalition.
Workflow Management Coalition.

[32] Islam, M.M.Z., Bhuiyan, M., Krishna, A.,
Ghose, A., 2009. An integrated approach to
managing business process risk using rich or-
ganizational models, in: Meersman, R., Dil-

31

lon, T.S., Herrero, P. (Eds.), OTM Confer-
ences (1), Springer. pp. 273–285.

[33] Jakoubi, S., Goluch, G., Tjoa, S., Quirchmayr,
G., 2008. Deriving resource requirements ap-
plying risk-aware business process modeling
and simulation, in: [25]. pp. 1542–1554. pp.
1542–1554.

[34] Jallow, A.K., Majeed, B., Vergidis, K., Tiwari,
A., Roy, R., 2007. Operational risk analysis in
business processes. BT Technology Journal 25,
168–177.

[35] Johnson, W.G., 1973. MORT - The Manage-
ment Oversight and Risk Tree. U.S. Atomic
Energy Commission.

[36] Kaegi, M., Mock, R., Ziegler, R., Nibali, R.,
2006. Information systems’ risk analysis by
agent-based modelling of business processes,
in: Soares, C.G., Zio, E. (Eds.), ESREL, Tay-
lor & Francis. pp. 2277–2284.

[37] Kang, B., Cho, N.W., Kang, S.H., 2009. Real-
time risk measurement for business activity
monitoring (bam). International Journal of In-
novative Computing, Information and Control
5, 3647–3657.

[38] Karagiannis, D., Mylopoulos, J., Schwab, M.,
2007. Business process-based regulation com-
pliance: The case of the sarbanes-oxley act, in:
RE, IEEE. pp. 315–321.

[39] La Rosa, M., ter Hofstede, A.H.M., Wohed,
P., Reijers, H.A., Mendling, J., van der Aalst,
W.M.P., 2011a. Managing process model com-
plexity via concrete syntax modifications. In-
dustrial Informatics, IEEE Transactions on 7,
255–265.

[40] La Rosa, M., Wohed, P., Mendling, J., ter Hof-
stede, A.H.M., Reijers, H.A., van der Aalst,
W.M.P., 2011b. Managing process model com-
plexity via abstract syntax modifications. In-
dustrial Informatics, IEEE Transactions on 7,
614–629.

[41] Lambert, J.H., Jennings, R.K., Joshi, N.N.,
2006. Integration of risk identification with
business process models. Systems engineering
9, 187–198.

[42] Little, A., Best, P.J., 2003. A framework for
separation of duties in an sap r/3 environment.
Managerial Auditing Journal 18, 419–430.

[43] Lund, M.S., Solhaug, B., Stølen, K., 2011.
Model-Driven Risk Analysis. Springer.

[44] Mendling, J., Strembeck, M., Recker, J., 2012.
Factors of process model comprehension - find-

ings from a series of experiments. Decision
Support Systems 53, 195–206.

[45] Metropolis, N., 1987. The beginning of the
monte carlo method. Los Alamos Science 15,
125–130.

[46] Meulbroek, L., 2000. Total strategies for
company-wide risk control. Financial Times
9, 1–4.

[47] Meyer, B., 1990. Introduction to the theory of
programming languages. Prentice-Hall.

[48] Mock, R., Corvo, M., 2005. Risk analysis of
information systems by event process chains.
International journal of critical infrastructures
1, 247–257.

[49] Neiger, D., Churilov, L., zur Muehlen, M.,
Rosemann, M., 2006. Integrating risks in busi-
ness process models with value focused process
engineering, in: Ljungberg, J., Andersson, M.
(Eds.), ECIS, pp. 1606–1615.

[50] Object Management Group (OMG),
2011. Business Process Model and
Notation (BPMN) ver. 2.0. Object
Management Group (OMG). URL:
http://www.omg.org/spec/BPMN/2.0.

[51] Oracle, http://download.oracle.com/docs/
cd/E15523 01/integration.1111/e10224/bp
sensors.htm. Accesssed: June 2011. BPEL
Process Manager Developer’s Guide.

[52] Panayiotou, N.A., Oikonomitsios, S.,
Athanasiadou, C., Gayialis, S.P., . Risk
assessment in virtual enterprise networks:
A process-driven internal audit approach,
in: Managing Risk in Virtual Enterprise
Networks: Implementing Supply Chain
Principles. IGI Global.

[53] Recker, J., 2010a. Continued use of process
modeling grammars: the impact of individual
difference factors. European Journal of Infor-
mation Systems 19, 76–92.

[54] Recker, J., 2010b. Explaining usage of process
modeling grammars: Comparing three theo-
retical models in the study of two grammars.
Information & management 47, 316–324.

[55] Recker, J., 2010c. Opportunities and con-
straints: the current struggle with bpmn.
Business Process Management Journal 16,
181–201.

[56] Recker, J., La Rosa, M., 2012. Understanding
user differences in open-source workflow man-
agement system usage intentions. Information
Systems 37, 200–212.

32

[57] Rosemann, M., zur Muehlen, M., 2005. In-
tegrating risks in business process models, in:
ACIS, AISeL.

[58] Rotaru, K., Wilkin, C., Churilov, L., Neiger,
D., 2008. Formalising risk with value-focused
process engineering, in: [25]. pp. 1583–1595.
pp. 1583–1595.

[59] Rotaru, K., Wilkin, C., Churilov, L., Neiger,
D., Ceglowski, A., 2011. Formalizing process-
based risk with value-focused process engineer-
ing. Information Systems and e-Business Man-
agement 9, 447–474.

[60] Schmitt, M., Grégoire, B., Dubois, E., 2005. A
risk based guide to business process design in
inter-organizational business collaboration, in:
International Workshop on Requirements En-
gineering for Business Need and IT Alignment
(REBNITA 2005).

[61] Schwartz, P., 2000. When good companies do
bad things. Strategy & Leadership 28, 4–11.

[62] Sienou, A., Karduck, A.P., Lamine, E., Pin-
gaud, H., 2008. Business process and risk mod-
els enrichment: Considerations for business in-
telligence, in: ICEBE, pp. 732 –735.

[63] Sienou, A., Karduck, A.P., Pingaud, H., 2006.
Towards a framework for integrating risk and
business process management, in: Dolgui, A.,
Morel, G., Pereira, C.E. (Eds.), Information
Control Problems in Manufacturing. Elsevier.
volume 6, pp. 615–620.

[64] Sienou, A., Lamine, E., Pingaud, H., Karduck,
A.P., 2009. Aspects of the bprim language
for risk driven process engineering, in: Meers-
man, R., Herrero, P., Dillon, T.S. (Eds.), OTM
Workshops, Springer. pp. 172–183.

[65] Sienou, A., Lamine, E., Pingaud, H., Karduck,
A.P., 2010. Risk driven process engineering in
digital ecosystems: Modelling risk, in: DEST,
pp. 647–650.

[66] Simons, R.L., 1999. How risky is your com-
pany? Harvard Business Review 77, 85.

[67] Singh, P., Gelgi, F., Davulcu, H., Yau, S.S.,
Mukhopadhyay, S., 2008. A risk reduction
framework for dynamic workflows, in: IEEE
SCC (1), IEEE Computer Society. pp. 381–
388.

[68] Smallman, C., 1996. Risk and organizational
behaviour: a research model. Disaster Preven-
tion and Management 5, 12–26.

[69] Standards Australia and Standards New
Zealand, 2009. Standard AS/NZS ISO 31000.

[70] Strecker, S., Heise, D., Frank, U., 2010.
RiskM: A multi-perspective modeling method
for IT risk assessment. Information Systems
Frontiers 13, 1–17.

[71] Suriadi, S., Weiß, B., Winkelmann, A., ter
Hofstede, A., Wynn, M., Ouyang, C., Adams,
M., Conforti, R., Fidge, C., La Rosa, M., Pika,
A., 2012. Current Research in Risk-Aware
Business Process Management - Overview,
Comparison, and Gap Analysis. BPM Center
Report BPM-12-13. BPMcenter.org.

[72] Sybase, http://www.sybase.com.au/files/
White Papers/Sybase CEP Implementation
Methodology wp.pdf. Accessed: June 2011.
Sybase CEP Implementation Methodology for
Continuous Intelligence.

[73] Taylor, P., Godino, J.J., Majeed, B., 2008.
Use of fuzzy reasoning in the simulation of
risk events in business processes, in: Louca,
L., Chrysanthou, Y., Oplatkova, Z., AlBegain,
K. (Eds.), Proceedings of the 22nd European
Conference on Modelling and Simulation, pp.
25–30.

[74] ter Hofstede, A.H.M., van der Aalst, W.M.P.,
Adams, M., Russell, N., 2010. Modern Busi-
ness Process Automation: YAWL and its Sup-
port Environment. Springer.

[75] Tjoa, S., Jakoubi, S., Quirchmayr, G., 2008.
Enhancing business impact analysis and risk
assessment applying a risk-aware business pro-
cess modeling and simulation methodology, in:
ARES, IEEE Computer Society. pp. 179–186.

[76] van Dongen, B.F., Crooy, R.A., van der Aalst,
W.M.P., 2008. Cycle time prediction: When
will this case finally be finished?, in: Meers-
man, R., Tari, Z. (Eds.), OTM Conferences
(1), Springer. pp. 319–336.

[77] Voluntary Interindustry Commerce Solutions
Association, http://www.vics.org. Accessed:
June 2011. Voluntary Inter-industry Com-
merce Standard (VICS).

[78] Wang, D., Rundensteiner, E.A., Ellison, R.T.,
Wang, H., 2011. Active complex event process-
ing infrastructure: Monitoring and reacting to
event streams, in: Abiteboul, S., Böhm, K.,
Koch, C., Tan, K.L. (Eds.), ICDE Workshops,
IEEE. pp. 249–254.

[79] Weiß, B., Winkelmann, A., 2011. Develop-
ing a process-oriented notation for modeling
operational risks - a conceptual metamodel
approach to operational risk management in

33

knowledge intensive business processes within
the financial industry, in: HICSS, IEEE Com-
puter Society. pp. 1–10.

[80] zur Muehlen, M., Ho, D.T.Y., 2005. Risk man-
agement in the bpm lifecycle, in: Bussler, C.,
Haller, A. (Eds.), Business Process Manage-
ment Workshops, pp. 454–466.

34

Appendix A. Actions

Here are listed all actions defined for the language.

Action Description
(ID) returns the ID of the generic instance that is being analyzed
[IDCurr] returns the ID of the instance that the sensor is monitoring
Count returns the number of times a task has been completed
offerResource returns the resources to which the task has been offered
allocateResource returns the resources to which the task has been allocated
startResource returns the resources that started the task
completeResource returns the resource that completed the task
isOfferd returns “true” if the task has been offered
isAllocated returns “true” if the task has been allocated
isStarted returns “true” if the task has been started
isCompleted returns “true” if the task has been completed
OfferTime returns the time when the task has been offered
AllocateTime returns the time when the task has been allocated
StartTime returns the time when the task has been started
CompleteTime returns the time when the task has been completed
OfferTimeInMillis returns the time (in millisecond) when the task has been offered
AllocateTimeInMillis returns the time (in millisecond) when the task has been allocated
StartTimeInMillis returns the time (in millisecond) when the task has been started
CompleteTimeInMillis returns the time (in millisecond) when the task has been completed
PassTimeInMillis returns the amount of time (in millisecond) that was needed to complete the task
TimeEstimationInMillis returns an estimation of the time (in millisecond) needed to completed the task/process
Variable returns the value of the variable or sub-variable required
offerDistribution returns the list of resources to which the task is offered by default
allocateDistribution returns the list of resources to which the task is allocated by default
startDistribution returns the list of resources to which the task is started by default
offerInitiator returns the offering policy of the task (user or system)
allocateInitiator returns the allocating policy of the task (user or system)
startInitiator returns the starting policy of the task (user or system)
CountElements returns the number of instances that satisfy the parameters required

FraudProbabilityFunc

returns the probability of a fraud using as parameters: the current number of executions,
the maximum number of executions allowed, the parameter used to group these instances,
the parameter used to identify a temporal window, and the dimension of the temporal
window

List of actions of the architecture

Appendix B. Nested Loops

Here are listed the four type of loops defined for the language.

For Description

forAND[][]
executes a nested loop for each list provided in input (among the first couple of brackets) resolving the
expression (defined among the second couple of brackets), then returns the AND conjunction of the
results obtained

forOR[][]
executes a nested loop for each list provided in input (among the first couple of brackets) resolving the
expression (defined among the second couple of brackets), then returns the OR conjunction of the
results obtained

forADD[][]
executes a nested loop for each list provided in input (among the first couple of brackets) resolving the
expression (defined among the second couple of brackets), then returns the sum of the results obtained

forMUL[][]
executes a nested loop for each list provided in input (among the first couple of brackets) resolving the
expression (defined among the second couple of brackets), then returns the product of the results
obtained

List of nested loops

35

Appendix C. Functions

Here are listed all functions defined for the language.

Function Description

offeredList
returns the list of tasks currently offered to the resource/resources (returns a list
of list if used on resources)

allocatedList
returns the list of task currently allocated to the resource/resources (returns a list
of list if used on resources)

startedList
returns the list of task currently started by the resource/resources (returns a list
of list if used on resources)

offeredNumber
returns the number of tasks currently offered to the resource/resources (returns
a list if used on resources)

allocatedNumber
returns the number of tasks currently allocated to the resource/resources (returns
a list if used on resources)

startedNumber
returns the number of tasks currently started by the resource/resources (returns
a list if used on resources)

offeredMinNumber returns the minimum number of tasks currently offered to the resource/resources
allocatedMinNumber returns the minimum number of tasks currently allocated to the resource/resources
startedMinNumber returns the minimum number of tasks currently started by the resource/resources

offeredMinNumberExcept
returns the minimum number of tasks currently offered to the resource/resources
excluding the resource/resources provided in input (the input is provided using
a dotted format after the name of the function)

allocatedMinNumberExcept
returns the minimum number of tasks currently allocated to the resource/resources
excluding the resource/resources provided in input (the input is provided using a
dotted format after the name of the function)

startedMinNumberExcept
returns the minimum number of tasks currently started by the resource/resources
excluding the resource/resources provided in input (the input is provided using a
dotted format after the name of the function)

offeredContain
returns true if the task provided in input (using a dotted format after the name
of the function) is currently offered to the resource/resources.

allocatedContain
returns true if the task provided in input (using a dotted format after the name
of the function) is currently allocated to the resource/resources.

startedContain
returns true if the resource/resources started the task provided in input (using
a dotted format after the name of the function).

List of functions

36

Appendix D. Questionnaire

Part 1) Background Questions

E1a: Which description matches best
your current status?

• Student

• Academic

• Professional

E1b:Please specify your gender:

• Female

• Male

• Prefer not to tell.

E2: How many years ago did you start
process modeling?

Years

E3a: How many process models have you
analyzed or read within the last 12 months?
(A year has about 250 work days. In case
you read one model per day, this would sum
up to 250 models per year)

Models

E3b: How many process models have you
created or edited within the last 12 months?

Models

E3c: How many activities did all these
models have on average?

Activities

E4a: How many work days of formal
training on process modeling have you re-
ceived within the last 12 months? (This in-
cludes e.g. university lectures, certification
courses, training courses. 10 weeks of a 120
minute university lecture is roughly 3 work
days)

Days

E4b: How many work days of self-
education have you made within the last 12
months? (This includes e.g. learning-by-
doing, self-study of textbooks or specifica-
tions)

Days

Part 2) Your experience with Work-
flow Management Systems

Q1: Which of the following (process)
modelling techniques other than YAWL
have you used to describe a process or pro-
cedure? Tick all that apply.

• None. Please go to question 10.

• BPMN

• UML

• Activity Diagrams

• EPCs

• BPEL

• Petri Nets

• Protos

• Other:

37

Q2: If you have used any technique other
than YAWL, roughly, how many concep-
tual process models do you think you have
created?

process models

Q3: If you have used any technique other
than YAWL, roughly, how many workflow
models (i.e. executable process models) do
you think you have read?

workflow models

Q4: How long have you been using a
Workflow Management System?

• I am evaluating to do so/I have just
started

• Less than 1 month

• 1 - 6 months

• 7 - 12 months

• More than 1 year

Q6: Indicate your level of agreement to
the following statements on the given scale
by circling the number that best describes
your view on the statement.

S
tr

o
n

g
ly

d
is

a
g
re

e

D
is

a
g
re

e

S
o
m

ew
h

a
t

d
is

a
g
re

e

N
o
rm

a
l

S
o
m

ew
h

a
t

a
g
re

e

A
g
re

e

S
tr

o
n

g
ly

a
g
re

e

Overall, I am very
familiar with Work
flow Management
Systems.

1 2 3 4 5 6 7

I feel very confident
in my understanding
of Workflow
Management
Systems.

1 2 3 4 5 6 7

I feel very competent
in using Workflow
Management
Systems.

1 2 3 4 5 6 7

Part3) Your experience with the
YAWL system

Q1: How long have you been using
YAWL?

• I am evaluating to do so/I have just
started

• Less than 1 month

• 1 - 6 months

• 7 - 12 months

• More than 1 year

Q2: Please indicate, roughly, the typi-
cal extent of usage of YAWL. This includes
any activity related to the YAWL system,
e.g. development, reading documentation,
modelling, executing or simulating YAWL
workflows, and using a system that is based
on some YAWL component. Keep in mind,
a regular working days has eight hours (480
minutes).

• Not applicable

• On average, I spend hours and
minutes on YAWL every working

day.

Q3: Roughly, how many YAWL models
do you think you have created or read?

YAWL models

Q4: Which features of the YAWL system
have you ever used? Tick all that apply

• Not applicable

• Execution environment

38

• Syntax checker/verification

• Cancelation region

• OR-join

• Multiple instance task

• Deferred choice

• Milestone

• Retain familiar/Separation of duties

• Deferred distribution

• Distribution set filter

• Allocation strategies

• Worklets/Exlets

• Custom services

• Configuration

Part 4) Risk Sensor Comprehension
In this part, you will be shown 3 risks re-

lated to a process described in YAWL. You
will be asked questions about each of them.

Risk 1: Consider the following YAWL
model and associated risk condition de-
scribed below.

Variables:
A = case(current).Update Shipment Payment

Order(Count)
B = case(Update Shipment Payment

Order(Count)>=E).Update Shipment
Payment Order(CountElements)

C = case(Update Shipment Payment
Order(Count)>=A AND Process
Shipment Payment(isOffered)=“true”).
Update Shipment Payment
Order(CountElements)

D = 0.6
E = 5

Sensor Condition:(C/B)>D where“/”
is the division operator

Q0. How difficult is it to understand the
meaning of the above sensor condition:

• 1 – very simple

• 2 – rather simple

• 3 – neutral

• 4 – rather difficult

• 5 – very difficult

Q1. Does the sensor send a notification if
the task Update Shipment Payment Order
may not be executed?

• Yes / No / I do not know

Q2. Can the sensor notify a risk if the
task Update Shipment Payment Order has
been executed only twice?

• Yes / No / I do not know

Q3. Does A retrieve the value of a vari-
able named Count of the task Update Ship-
ment Payment Order?

• Yes / No / I do not know

Q4.Does C return the number of in-
stances where the task Process Shipment
Payment has been offered?

39

• Yes / No / I do not know

Q5. Does D indicate a threshold that if
exceeded produces a notification from the
sensor?

• Yes / No / I do not know

Risk 2: Using the YAWL model of page
6 above, an Approval fraud risk has been
identified using Fault Tree Analysis, as
shown below.

text1-img2.png

To detect the risk of this fault, we first
have to check whether there is an order, say
order o of customer c, to be approved. This
means checking that an instance of task Ap-
prove Shipment Payment Order is being ex-
ecuted. Moreover, we need to check that
either of the following conditions holds:

1. o has been allocated to a Senior Fi-
nance Officer who has already ap-
proved another order for the same cus-
tomer in the last d days; or

2. at least one Senior Finance Officer is
available who approved an order for
customer c in the last d days and
all other Senior Finance Officers who
never approved an order for c during
the last d days are available

Q0. How difficult is it to understand the
meaning of the above risk:

• 1 – very simple

• 2 – rather simple

• 3 – neutral

• 4 – rather difficult

• 5 – very difficult

Q1. Could condition Abe used as trigger
for the sensor?

• Yes / No / I do not know

Q2. If condition B is expressed using a
variable, would the following assignment be
correct?

B = case(current).Approve Shipment
Payment Order(allocateResource)

• Yes / No / I do not know

Q3. Could condition D be expressed us-
ing only one variable in the risk condition?

• Yes / No / I do not know

Q4. Could condition E be expressed us-
ing only one variable in the risk condition?

• Yes / No / I do not know

Q5. Could the AND between conditions
B and C be expressed using only one vari-
able in the risk condition?

40

• Yes / No / I do not know

Risk 3: Consider the following YAWL
model and the associated risk condition
described below.

Variables:
A = case(current).Process Shipment

Payment.Customer
B = case(Process Shipment Payment.

Customer=A AND Issue Debit
Adjustment(isCompleted)=“true”).
Issue Debit Adjustment
(CountElements)

C = case(Process Shipment Payment.
Customer=A AND Issue Credit
Adjustment(isCompleted)=“true”).
Issue Debit Adjustment
(CountElements)

D = case(Process Shipment Payment.
Customer=A).Process Shipment
Payment(CountElements)

F = 0.4

Sensor Condition:
(B/D)>F|(C/D)>F where“/” is the di-
vision operator and “|” is the logical OR
operator

Q0. How difficult is it to understand the
meaning of the above sensor condition:

• 1 – very simple

• 2 – rather simple

• 3 – neutral

• 4 – rather difficult

• 5 – very difficult

Q1. Does the sensor send a notification
if the task Issue Debit Adjustment is not
executed?

• Yes / No / I do not know

Q2. Will the sensor send a notification as
soon as the task Issue Credit Adjustment is
completed?

• Yes / No / I do not know

Q3. Does B return the number of in-
stances where the customer is the same
of the current instance and the task Issue
Debit Adjustment has been completed?

• Yes / No / I do not know

Q4. Does C return the number of in-
stances where the task Process Shipment
Payment has been offered?

• Yes / No / I do not know

Q5. Does B always return a value greater
than the value return by C?

• Yes / No / I do not know

Part 5) Your views on the use of
the Sensor-based component of the
YAWL system

This part of the survey captures some in-
formation about how you overall rate the
Sensor-based component of the YAWL sys-
tem you have been using. Please note again
that all information you provide will be
treated confidently. Thus, we ask you to
please answer honestly.

In the following, you will be given a
number of statements on opinions that
you may have towards the Sensor-based

41

component of the YAWL system. Please
indicate your level of agreement to the
statements on the given scale by ticking
the box that best describes your view on
the respective statement. Facilitating S

tr
o
n

g
ly

d
is

a
g
re

e

D
is

a
g
re

e

S
o
m

ew
h

a
t

d
is

a
g
re

e

N
o
rm

a
l

S
o
m

ew
h

a
t

a
g
re

e

A
g
re

e

S
tr

o
n

g
ly

a
g
re

e

Conditions
Guidance was
available to me in
the use of the
Sensor-based
component of the
YAWL system.

1 2 3 4 5 6 7

Specialized
instruction
concerning the use of
the Sensor-based
component of the
YAWL system was
available to me.

1 2 3 4 5 6 7

A specific person or
group was available
for assistance with
difficulties with the
Sensor-based
component of the
YAWL system.

1 2 3 4 5 6 7

Satisfaction S
tr

o
n

g
ly

d
is

a
g
re

e

D
is

a
g
re

e

S
o
m

ew
h

a
t

d
is

a
g
re

e

N
o
rm

a
l

S
o
m

ew
h

a
t

a
g
re

e

A
g
re

e

S
tr

o
n

g
ly

a
g
re

e

I am extremely
pleased with my use
of the Sensor-base
component of the
YAWL system.

1 2 3 4 5 6 7

I am extremely
contented with my
use of the
Sensor-base
component of the
YAWL system.

1 2 3 4 5 6 7

I am extremely
delighted with my
use of the
Sensor-base
component of the
YAWL system.

1 2 3 4 5 6 7

I am extremely
satisfied with my use
of the Sensor-base
component of the
YAWL system.

1 2 3 4 5 6 7

42

Perceived S
tr

o
n

g
ly

d
is

a
g
re

e

D
is

a
g
re

e

S
o
m

ew
h

a
t

d
is

a
g
re

e

N
o
rm

a
l

S
o
m

ew
h

a
t

a
g
re

e

A
g
re

e

S
tr

o
n

g
ly

a
g
re

e

Usefulness
Overall, I find the
Sensor- based
component of the
YAWL system useful
for modelling
process-related risks.

1 2 3 4 5 6 7

I find the
Sensor-based
component of the
YAWL system useful
for achieving the
purpose of modelling
process-related risks.

1 2 3 4 5 6 7

I find the
Sensor-based
component of the
YAWL system helps
me in meeting my
process-related risks
modelling objectives.

1 2 3 4 5 6 7

Perceived S
tr

o
n

g
ly

d
is

a
g
re

e

D
is

a
g
re

e

S
o
m

ew
h

a
t

d
is

a
g
re

e

N
o
rm

a
l

S
o
m

ew
h

a
t

a
g
re

e

A
g
re

e

S
tr

o
n

g
ly

a
g
re

e

Ease of Use
I find it easy to
model process-
related risks in the
way I intended using
the Sensor-based
component of the
YAWL system.

1 2 3 4 5 6 7

I find learning to use
the Sensor-based
component of the
YAWL system is
easy.

1 2 3 4 5 6 7

I find easy to create
process-related risks
using the
Sensor-based
component of the
YAWL system.

1 2 3 4 5 6 7

Intention S
tr

o
n

g
ly

d
is

a
g
re

e

D
is

a
g
re

e

S
o
m

ew
h

a
t

d
is

a
g
re

e

N
o
rm

a
l

S
o
m

ew
h

a
t

a
g
re

e

A
g
re

e

S
tr

o
n

g
ly

a
g
re

e

to Use
I intend to use the
Sensor-based
component of the
YAWL system when
I have to define and
detect risks in
business processes.

1 2 3 4 5 6 7

I predict I would use
the Sensor-based
component of the
YAWL system.

1 2 3 4 5 6 7

I plan to use the
Sensor-based
component of the
YAWL system in the
future.

1 2 3 4 5 6 7

I prefer to continue
to work with the
Sensor-based
component of the
YAWL system.

1 2 3 4 5 6 7

43

