
Memory-Efficient Alignment of Observed and
Modeled Behavior

A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
(a.adriansyah,b.f.v.dongen,w.m.p.v.d.aalst)@tue.nl

Abstract. Experience shows that in systems where process executions
are not strictly enforced by process models, often deviations occur. Align-
ments between logged process executions and models reveal useful in-
sights and can be used for both conformance checking and performance
analysis. In this article, we present a memory-efficient approach using
marking equations of Petri nets to calculate optimal alignments between
process executions and process models. A comparative study shows that
in most cases the approach significantly reduces the memory required.
This makes it possible to analyze larger logs and models using align-
ments. The more deviations exist, the better the approach performs com-
pared to the approaches without using marking equations. The approach
has been implemented, tested against both artifical and real life logs, and
is publicly available as part of the ProM 6 framework.

1 Introduction

Process models are created to document processes, provide insights, automate
processes, and to evaluate alternative designs [11]. Analysis techniques ranging
from verification to simulation all start from process models (e.g. [16,37,38]).
However, process mining research shows that hand-made process models often
do not describe reality well [27,17]. Real processes tend to deviate from the
corresponding normative or descriptive models. Therefore, it is essential to di-
agnose the conformance of event logs and process models. Conformance checking
techniques highlight differences between observed behavior (i.e., event logs) and
modeled behavior. Even when models are discovered using process mining tech-
niques, it is important to compare the modeled and observed behavior, e.g., to
judge the quality of the process discovery technique.

To diagnose the conformance of a model with respect to an event log, activ-
ities in the log need to be related to tasks in the model. The alignment should
clearly show where the log and the model disagree, for example, show observed
activities in the log that are not allowed according to the model, and vice versa.
Furthermore, event logs may not necessarily contain all the activities executed.
Logging everything might be costly and affect the performance of process execu-
tions. Still, the unlogged activities can influence process behavior. The alignment
should also identify such activities in event logs to prevent misleading diagnosis.

2 A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst

add items finalize

pack items

deliver
money

accepted

cancel

add items?

no

yes

all packed?

no

order

yes

add items

add items?

no

yes

t1 t2

t4

t3

t5

t7

t6

Fig. 1. An online transaction for an electronic bookstore in BPMN notation

add items cancel finalize pack items money accepted

add items cancel ≫ ≫ ≫
t1 t7

Fig. 2. An alignment between trace ⟨add items, cancel, finalize, pack items,
money accepted⟩ and the model in Figure 1

Alignments are not only useful for identifying and measuring deviations (e.g.
[4,2,25,1]), but also for other types of analysis, such as auditing [31] and com-
pliance analysis [22]. Furthermore, knowing the relation between observed and
modeled behavior and deviations enables various types of analysis driven by
observed events. For example, non deviating events can be used to derive simu-
lation parameter [24] and analyze performance [3]. Knowing frequently occured
deviations enables process model repair [12] and process improvement in general
[27,28].

Take for example the BPMN model shown in Figure 1 which describes an
online transaction process for an electronic bookstore. The model has 7 tasks,
each task is labeled with an activity it represents. Customers can add as many
items to their cart before finalizing the order. After an order is finalized, items
in the order are packed individually. All items of an order are sent to customers
after they are packed and payment for the order is authorized and received.
Customers may add items after their orders are finalized, but they can only
cancel their order as long as it has not been finalized. The process ends when all
goods are sent or the process is cancelled. Note that the two tasks in the model
labeled add items represent the same activity that is performed in different
contexts: before or after orders are finalized.

Consider the trace σ = ⟨add items, cancel, finalize, pack items,money
accepted⟩ that is recorded in an event log. A possible alignment between σ and

Memory-Efficient Alignment of Observed and Modeled Behavior 3

add items cancel finalize pack items money accepted ≫
add items ≫ finalize pack items money accepted deliver

t1 t2 t4 t5 t6

Fig. 3. Alignment between the same trace and model as the one shown in Figure 2,
but with less number of deviating columns

the model is shown in Figure 2. The alignment is presented as a table with two
rows. The top row represents the trace as recorded in the event log, while the
bottom row represents a sequence of tasks allowed by the model to terminate
properly. We write task identifier below each task to uniquely distinguish two
different tasks with the same activity label, e.g. tasks t1 and t3 are both labeled
with add items. Deviations occur at positions where either the top or the bottom
row contains a “no move” (i.e. ≫): a logged activity cannot be executed accord-
ing to the model, or an activity should have occured according to the model but
did not appear in the log. Note that we do not consider elements other than tasks
such as gateways, events, connectors, etc. as they are used to describe possible
behavior rather than representing some real actions.

Alignment in Figure 2 shows that after adding items and canceling order,
the process should have finished according to the model, while in reality some
activities were still performed (i.e. finalize, pack items, and money accepted).
Assuming that the alignment in Figure 2 is a proper alignment of model and
reality, there are more deviating than non-deviating columns.

We refer to each column of the alignment as a move. An element in the top
row is a movement in the log and an element in the bottom row is a movement in
the model. If we move both in the log and the model, we call that a synchronous
move. If we move only in the log and not in the model (or the other way around),
we call it move on log (move on model).

Consider the alignment in Figure 3 between the same trace and model as the
one used to construct Figure 2. Alignment in Figure 3 has more synchronous
moves and less moves on log/moves on model than the one in Figure 2. Thus,
Figure 3 shows a “better” alignment because the deviations between the trace
and the model are not as severe as the ones indicated by Figure 2. Therefore,
the alignment in Figure 3 provides a better intuition showing which events are
deviating from the process model. Given a trace and a process model, the chal-
lenge is to identify optimal alignments between them, i.e. the ones that shows
least number of deviations.

Alignment-based analysis needs to be robust with respect to tasks in the
model whose activities are not logged (i.e. invisible tasks) and tasks in the model
that are labeled with the same activity (i.e. duplicate tasks) [5]. For example,
suppose that the activity deliver in the process shown in Figure 1 is not logged,
the move on model of task t6 in Figure 3 should not be accounted as deviations.
Creating an assignment is essentially an optimization problem and may be very

4 A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst

time consuming in case of large event logs and models with many (or even
infinitely) possible execution sequences.

In this article, we consider process models in the form of Petri nets [18].
We extend the approach to construct alignments in [4] that is based on the A⋆

algorithm [13] by providing a better estimation function. The function prunes
search spaces and guides state space exploration using the marking equation
for Petri nets. The idea is that partial alignments that are “hopeless” can be
discarded as soon as possible (e.g., if the final marking cannot be reached any-
more) and if there are better alignments, one does not need to further explore
a partial alignment. This technique significantly reduces the memory usage of
the approach without necessarily sacrificing computation time. The approach
is extendable to any modelling languages for which translation to Petri nets is
available. In fact, in this paper we also show that the approach is extendable
to Petri nets with reset/inhibitor arcs. A wide range of process modeling lan-
guages, such as BPMN [20], Web Services Business Process Execution Language
(WS-BPEL) [19], YAWL [29], EPCs [26], and UML’s sequence diagram [6] can
be mapped onto Petri nets with reset/inhibitor arcs. We show that our approach
outperforms existing approaches and is applicable to real-life scenarios.

Section 2 present preliminaries used throughout this paper. Section 3 defines
the core problem: finding an optimal alignment relating a trace and a model.
Section 4 shows how the problem can be formulated as a shortest path problem,
and Section 5 shows how the shortest path can be constructed efficiently in terms
of memory usage. Section 6 extends the memory-efficient approach to deal with
Petri nets having reset/inhibitor nets (thus enabling the analysis of languages
allowing for cancellation, priorities, etc.). Section 7 shows experimental results,
and Section 8 concludes the article.

2 Preliminaries

In this section, we define basic notations for matrices, vectors, sets, sequences,
graphs, and Petri nets.

Definition 2.1. (Matrix, vector) A matrix is a rectangular array of numbers.
Let M be a matrix of size m× n. Mi,j denotes the element of matrix M in the
i-th row and j-th column where 1 ≤ i ≤ m and 1 ≤ j ≤ n. MT of size n×m is
the transpose of M such that for all 1 ≤ i ≤ m, 1 ≤ j ≤ n : Mi,j = MT

j,i.

Let M1 and M2 be a pair of matrices with the same size m×n. The addition
of two matrices M1 and M2, denoted M1 +M2 = M3 such that for all 1 ≤ i ≤
m, 1 ≤ j ≤ n,M3i,j = M1i,j +M2i,j . Substraction of two matrices is defined in
the same way as addition by replacing summation ‘+’ with substraction ‘-’. The
dot product of M1 and M2, denoted M1 ·M2 =

∑
1≤i≤m,1≤j≤n M1i,j ·M2i,j .

Let M4 be a matrix of size n × o. The cross product of M1 and M4 is a
matrix M5 of size m × o, denoted M1 × M4 = M5, such that for all 1 ≤ i ≤
m, 1 ≤ j ≤ o,M5i,j =

∑n
r=1 M1i,r ·M4r,j .

Memory-Efficient Alignment of Observed and Modeled Behavior 5

A row vector #»v of size m is a matrix of size 1×m. Similarly, a column vector
#»w of size n is a matrix of size n × 1. #»v i and #»wi refer to the value of the i-th
column in #»v and the value of the i-th row in #»w respectively.

Definition 2.2. (Sets, sequences, multi-sets)
IN, IR, and IR+ denote the set of all natural numbers, positive real numbers, and
positive real numbers without zero respectively. Let W = {w1, . . . , wn} be a set
of size n ∈ IN . |W | = n denotes the size of set W and P(W) is the powerset of
set W , e.g. P({a, b}) = {∅, {a}, {b}, {a, b}}. For all functions f : A ̸→ B partially
mapping elements of set A to B, Dom(f) denotes the domain of f and Rng(f)
denotes the range of f .

W ∗ denotes the set of all finite sequences over W . ⟨⟩ denotes the empty se-
quence. A non-empty sequence σ = ⟨σ[1], . . . σ[n]⟩ is given by listing its elements
between angled brackets, where σ[i] refers to the i-th element of a sequence and
|σ| = n denotes the length of σ. For all w ∈ W,σ(w) counts the number of
occurrences of w in σ, i.e. σ(w) = |{1 ≤ i ≤ |σ| | σ[i] = w}|. Concatenation
of two sequences σ and σ′ is denoted with σ · σ′. Similarly, concatenation of an
element a and a sequence σ is denoted a · σ. Prefix sequences are denoted with
<, such that σ < σ′ if and only if there is a sequence σ′′ ̸= ⟨⟩ with σ′ = σ · σ′′.
When we iterate over w ∈ σ, we take multiple occurrences of the same value
into account, e.g. for all f : W → IN ,

∑
w∈σ f(w) =

∑
1≤i≤|σ| f(σ[i]). For

all W ′ ⊆ W , σ↓W ′ denotes the projection of a sequence σ ∈ W ∗ on W ′, e.g.,
⟨a, a, b, c⟩↓{a,c} = ⟨a, a, c⟩.

We assume all sets to be countable and totally ordered, i.e. for any set W =
{w1, . . . , wn}, we assume a bijection λ : W → {1, . . . , |W |} exists, and for all
1 ≤ i ≤ |W |, we write W [i] as a shorthand for λ−1(i). The parikh vector #»σ of a
sequence σ over W is a column vector, such that #»σ = (σ(W [1]), . . . , σ(W [n]))T ,
i.e. ∀1≤i≤|W |

#»σ i = σ(W [i]).

A multi-set m over W is a function m : W → IN . We write e.g. m = [x, y2]
for a multi-set m over W where x, y ∈ W,m(x) = 1,m(y) = 2, and m(z) = 0
for all z ∈ W \ {x, y}. The parikh vector #»m of m is a column vector, such
that #»m = (m(W [1]), . . . ,m(W [|W |]))T , i.e. ∀1≤i≤|W |

#»mi = m(W [i]). For all
W ′ ⊆ W,m↓W ′ : W → IN denotes the projection of m to domain W ′, such that
for all w′ ∈ W ′,m↓W ′(w′) = m(w′) and m↓W ′(x′) = 0 for all x′ ∈ W \W ′.

In this article, we use A to denote a set of activities that appear in a business
process, i.e. either in a model and/or in a log.

Definition 2.3. (Tuples) Let W be a set and let z = (x1, x2, . . . , xn) ∈ W1 ×
. . . × Wn be a tuple of n elements. πi(z) refers to the i-th element of z, e.g.
Let (a, b) ∈ W × W be a tuple of 2 elements (i.e. pair), π1((a, b)) = a and
π2((a, b)) = b. We generalize this notation to sequences of tuples, e.g for all
sequence of pairs σ ∈ (W ×W)∗, πi(σ) = ⟨πi(σ[1]), . . . , πi(σ[|σ|])⟩.

An optimal alignment between a given process model and a trace is con-
structed by exploring the state space of the model and the trace. We consider
state spaces as labeled directed graphs.

6 A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst

Definition 2.4. (Labeled Directed Graphs, Path, Shortest Path)
A labeled directed graph is a tuple G = (N,E,L) where N is a set of nodes,
E ⊆ N × L×N is a set of labeled edges with labels L. For all nodes n, n′ ∈ N ,
a path from n to n′ is a sequence of edges σ ∈ E∗, where σ = ⟨⟩ =⇒ n = n′

and σ ̸= ⟨⟩ =⇒ π1(σ[1]) = n, π3(σ[|σ|]) = n′, and for all 1 ≤ i < |σ| : π3(σ[i]) =
π1(σ[i+ 1]). ΨG(n, n

′) is the set of all paths from n to n′ in G. The annotation
G can be omitted if the context is clear.

Let δ : E → IR be a distance function. The distance of a path δ(σ) is the
sum of distances of all edges in path σ where we abuse the distance function
notation δ, such that δ(σ) =

∑
1≤j≤|σ| δ(σ[j]). A path σ ∈ Ψ(n, n′) is a shortest

path from n to n′ if for all σ′ ∈ Ψ(n, n′), δ(σ) ≤ δ(σ′).

We translate the problem of finding optimal alignments as shortest path
problem in labeled directed graphs. We use a strategy based on the A⋆ algorithm
[13] to find a shortest path between two nodes in such graphs.

Definition 2.5. (The A⋆ Algorithm, Permissible Underestimation Func-
tion) LetG = (N,E,L) be a labeled directed graph and let δ : E → IR+ be a dis-
tance function. The A⋆ algorithm for graph G is a function a⋆G,δ : (N×N) → E∗

such that for a source node ns ∈ N and target node nt ∈ N , a⋆G,δ(ns, nt) = σ
where σ ∈ Ψ(ns, nt) is a shortest path from ns to nt.

The A⋆ algorithm requires a permissible underestimation function hG : (N ×
N) → IR that returns an underestimation of the distance between nodes, such
that for all n, n′ ∈ N :

– hG(n, n
′) = +∞ if ΨG(n, n

′) = ∅, and
– hG(n, n

′) ≤ δ(σ) for all σ ∈ ΨG(n, n
′) otherwise.

Annotations G, δ on a⋆ and h can be omitted if the context is clear. Notice
that the A⋆ algorithm require distance function that maps edges to positive
non-zero values.

Note that in Definition 2.5, the A⋆ algorithm require graphs where the dis-
tance of edges are positive and non-zero. Given a graph, a source node, a target
node, and a permissible underestimation function, the A⋆ algorithm works in a
best-first search manner. Priority is assigned to a node in the graph based on the
sum of the shortest distance from the source node to the node and the estimated
remaining distance from the node to the target node. In situations where there
exists an infinite path without loop with total distance of 0 from the currently
visited node and the estimated remaining distance for all nodes in the path is
the same, the algorithm does not terminate because it explores the infinite path.
This does not happen if the distance between nodes are positive non-zero. Notice
that permissible underestimation function may provide value of 0.

As mentioned in Section 1, the approach presented in this article exploits
Petri net theory, but is extendable for reset/inhibitor nets and other modeling
formalisms for which translation to reset/inhibitor nets are available. Petri net
and related concepts are defined as usual.

Memory-Efficient Alignment of Observed and Modeled Behavior 7

Definition 2.6. (Petri Net, Incidence Matrix) A Petri net over a set of
activities A is a tuple N = (P, T, F, α,mi,mf) where P and T are sets of places
and transitions respectively. F : (P × T) ∪ (T × P) → IN is a flow relation that
returns the weight of arcs. mi,mf : P → IN are the initial marking and the final
marking, respectively, and α : T ̸→ A is a partial function mapping transitions
to activities. A transition t ∈ T is invisible if t /∈ Dom(α).

A marking, i.e. a state of the Petri net, is a a multiset of places. A transition
t ∈ T is enabled at marking m : P → IN if and only if ∀p∈P F (p, t) ≤ m(p) hold.

m
t→N m′ denotes the firing of an enabled transition t in netN fromm that leads

to new marking m′ : P → IN , such that ∀p∈P m′(p) = m(p)− F (p, t) + F (t, p).
A sequence ϱ ∈ T ∗ of transitions is a firing sequence from marking m to m′ if

m
ϱ[1]→N m1

ϱ[2]→N m2 . . .
ϱ[|ϱ|]→ N m′, abbreviated with m

ϱ→N m′. Sequence ϱ ∈ T ∗

is a complete firing sequence if mi
ϱ→N mf . The annotation N of firing sequence

is omitted if the context is clear.
The incidence matrix N of N is a |P | × |T | matrix such that forall 1 ≤ j ≤

|P |, 1 ≤ k ≤ |T |,Nj,k = F (T [k], P [j])− F (P [j], T [k]).

Transitions for Petri nets correspond to tasks in process models: They are
both labeled with activities. In the remainder, we use term “transition” and
“task” interchangeably. The full behavior of a Petri net can be characterized by
a transition system, formalized as follows.

Definition 2.7. (Transition System of Petri Net)
Let N = (P, T, F, α,mi,mf) be a Petri net over a set of activities A. The tran-
sition system of N is a tuple M = (S,E, T, α, si, sf) where:

– S = {m : P → IN | ∃ϱ∈T∗ mi
ϱ→ m} is the set of all reachable markings,

– E = {(m, t,m′) ∈ S × T × S | m,m′ ∈ S ∧ t ∈ T ∧m
t→ m′} is the set of all

state transitions,

– si = mi is the initial state, and

– sf = mf is the final state.

Note that (S,E, T) is a labeled directed graph. TS (N) denotes the transition
system of N .

Using the notations introduced in this section, we can now formally define
the problem of constructing an optimal alignment.

3 Problem Statement

Alignments are created by comparing recorded process executions to process
models. Typically, an instance of a process does not directly influence other
instances of the same process. Take for example an insurance claim handling
process in an insurance company. The way a claim is handled does not influence
the way other claims are handled. Therefore, the construction of an alignment
is performed separately for each instance of a process (i.e. trace).

8 A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst

An alignment between a trace and a Petri net is constructed by pairing each
activity in the trace to a transition allowed by the net. By such, we match each
movement in the trace to a movement allowed by the model. If a movement in
the trace cannot be mimicked by a movement allowed by the model (or the other
way around), no movement is performed in either the trace or the model. We
explicitly denote “no move” by ≫. For convenience, for all sets W , we introduce
the set W≫ = W ∪ {≫} where ≫/∈ W .

Definition 3.1. (Movement Sequence) Let σ ∈ A∗ be a trace over a set of
activities A and let N = (P, T, F, α,mi,mf) be a Petri net over A. A movement
sequence γ ∈ (A≫ × T≫)∗ between σ and N is a sequence of pairs such that

– π1(γ)↓A ≤ σ, i.e. its sequence of movements in the trace (ignoring ≫) is a
prefix of σ,

– There exists a complete firing sequence ϱ ∈ T ∗ such that π2(γ)↓T ≤ ϱ, i.e. its
sequence of movements in the model (ignoring ≫) is a prefix of a complete
firing sequence,

– For all (a, t) ∈ γ, (a, t) ̸= (≫,≫) and a = α(t) if a ̸=≫ and t ̸=≫, i.e.
each pair consists of either an activity and a corresponding transition, or an
activity/transition and ≫.

For all tuples (a, t) ∈ γ in a movement sequence, we say that (a, t) is one of
the following movements:

– move on log if a ∈ A and t =≫,

– move on model if a =≫ and t ∈ T ,

– synchronous move if a ∈ A and t ∈ T .

Recall that an alignment between a trace and a model is a sequence of pairs of
activities in the trace and transitions in the model. If the trace is perfectly aligned
to the model, each movement in the trace can be mimicked by a movement in
the model. Furthermore, the trace ends exactly when the final state of the model
is reached. Therefore, we define an alignment as follows:

Definition 3.2. (Alignment) Let σ ∈ A∗ be a trace over a set of activities
A and let N = (P, T, F, α,mi,mf) be a Petri net over A. An alignment γ ∈
(A≫ × T≫)∗ between σ and N is a movement sequence such that:

– π1(γ)↓A = σ, i.e. its sequence of movements in the trace (ignoring ≫) yields
the trace, and

– mi

π2(γ)↓T

−−−−−→ mf , i.e. its sequence of movements in the model (ignoring ≫)
yields a complete firing sequence of N .

Γσ,N is the set of all alignments between a trace σ and a Petri net N .

The middle row in Figure 2 and Figure 3 can be derived using α. Therefore,
alignments and movement sequences do not explicitly list transition labels in
Definitions 3.1 and 3.2.

Note that alignments require termination of both trace and process model.
Thus, no alignment can be constructed for process models whose termination

Memory-Efficient Alignment of Observed and Modeled Behavior 9

add

items

add

items
deliver

edit

order

start finalize

Process Model

Trace : <add items, add items, finalize, finalize>

t3t1

t4t2

t5

p1 p2 p3 p4

t6

<unlogged activities>

<activities> Normal transition

Invisible transition

LEGEND

cancel

end

Fig. 4. Example of a Petri Net model and an unfitting trace

γ1 =

add items add items finalize finalize ≫
add items add items finalize ≫ deliver

t1 t2 t3 t5

γ2 =

add items add items finalize ≫ finalize ≫
add items add items finalize edit order finalize deliver

t1 t2 t3 t4 t3 t5

Fig. 5. Two possible alignments between the trace and model in Figure 4

state is not reachable from the initial state. In the remainder, we only consider
process models whose termination state is reachable from its initial state, i.e. easy
sound models [30]. Easy soundness is a weaker correctness notion than classical
soundness or relaxed soundness [30]. We can formulate the easy soundness [30]
as follows:

Definition 3.3. (Easy soundness) Let N = (P, T, F, α,mi,mf) be a Petri
net over a set of activities A. N is easy sound if and only if there exists a firing

sequence ϱ ∈ T ∗ such that mi
ϱ→ mf .

Take for example the trace and model in Figure 4. The model shows an
online transaction process for an electronic bookstore similar to the one shown
in Figure 1. The model consists of 6 transitions. Transition t4 is invisible as
activity edit order is not logged.

Figure 5 shows two possible alignments between the trace and model in
Figure 4. For each alignment, the sequence of activities on the top row yields
the original trace, while the sequence of transitions on the bottom row (i.e.
⟨t1, t2, t3, t5⟩ for γ1 and ⟨t1, t2, t3, t4, t3, t5⟩ for γ2) is a complete firing sequence
of the model shown in Figure 4.

In practice, severity of deviations may differ between different activities. For
example in Figure 5, one may consider move on model on t4 (edit order) in γ2

10 A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst

to be less severe than move on model on t5 (deliver), because activity edit order
is not logged while activity deliver is logged whenever it occurs. To measure the
quality of alignments, we assign costs to each movement (i.e. synchronous move,
move on model, and move on log). Given a trace a model, we are interested in
alignments with the least total cost according to the assigned cost function. Such
an alignment is called an optimal alignment.

Definition 3.4. (Optimal alignment) Let σ ∈ A∗ be a trace over a set
of activities A and let N = (P, T, F, α,mi,mf) be an easy sound Petri net
over A. Let κ : A≫ × T≫ → IR+ be a cost function for movements. We say
that γ ∈ Γσ,N is an optimal alignment between σ and N if and only if for all
γ′ ∈ Γσ,N , κ(γ) ≤ κ(γ′). Γκ

σ,N is the set of all optimal alignments between σ and
N with respect to cost function κ. Note that κ(γ) =

∑
(a.t)∈γ κ(a, t)

The cost function provides a certain level of flexibility to determine the de-
sired optimal alignment between a given trace and model. In this paper, we are
interested in alignments to identify deviations between the trace and the model.
Thus, we do not penalize synchronous moves and moves on model of invisible
transitions because their absence cannot be observed from traces. However, as
discussed in Section 2, the A⋆ algorithm requires graph with positive non-zero
distance between nodes. Therefore, we define a standard cost function that as-
signs a negligibly small cost ϵ ∈ IR+ to all synchronous moves and moves on
model of invisible transitions. Furthermore, the function assign cost 1 + ϵ to all
moves on log/moves on model of normal (not invisible) transitions. The choice
for ϵ > 0 depends on the specific log and model. As a guideline, one could
use ϵ = highest cost

(lowest cost)·(size of longest trace) . However, ϵ should always be significantly

smaller than all other costs. If chosen ϵ is too small, finding an optimal alignment
may take longer. After getting an optimal alignment γ, ϵ · |γ| can be substracted
from the total cost of γ to get the “real” total cost of γ. In the remainder sections,
we use the standard cost function unless indicated otherwise.

Take for example the alignments in Figure 5. Using the standard cost func-
tion, the total costs of alignment γ1 and γ2 are (5ϵ+2) and (6ϵ+1) respectively.
After substracting the cost with their extra costs (i.e. due to addition of ϵ), we
obtain the “real” total cost of deviation in γ1 and γ2 as 2 and 1 respectively. the
total cost of γ2 is less than γ1, γ2 is a better alignment than γ1. Furthermore,
there is no other alignment with less total cost than γ2 for the trace and the
model in Figure 4. Hence, γ2 is an optimal alignment.

Computing optimal alignments between traces and process models is com-
putationally expensive. Cook and Wolf [7] proposed a tree-based state space
exploration method to calculate optimal alignments. This approach is improved
by Adriansyah et al. [4] by modeling state spaces as connected graphs instead
of trees to prune the search space and use the A⋆ algorithm [13] to compute op-
timal alignments. The A⋆ algorithm requires the least number of visited states
among all shortest path algorithms to find a shortest path from a source node
to a target node, as long as it uses a permissible underestimation function that
provides an underestimate for the distance from each node to the target node
[9]. Given a trace and a process model, the approach in [4] uses a permissible

Memory-Efficient Alignment of Observed and Modeled Behavior 11

underestimation function that always returns the costs of synchronous moves
for replaying the remainder of traces. However, this function performs poorly as
the A⋆ algorithm works in a breadth first search manner. A poor estimation in-
creases the number of states required to create an alignment and severely limits
the applicability of the approach. To overcome this problem, we use the marking
equation of Petri nets to further prune the search space by providing a better
estimate for the lower bound on the remaining distance. Section 4 explains the
translation from the problem of computing optimal alignments to shortest path
problems which underlies our approach.

4 Optimal Alignments Correspond to Shortest Paths

An alignment between a given trace and an easy sound Petri net is constructed
by performing a sequence of movements that changes the “state” of the trace,
state of the model, or both. We define the problem of constructing an optimal
alignment by explicitly modeling the change of states in both the trace and the
model. We use the trace and model in Figure 4 as a running example.

We model traces as event nets [2] such that the state of a trace is captured
explicitly by its marking. The event net of a trace is a Petri net with a linear
structure, such that each transition in the net represents a unique activity oc-
currence in the trace. The net only has one complete firing sequence: the one
that follows the order of the activities in the trace. Figure 6 shows the event net
of the trace ⟨add items, add items,finalize,finalize⟩.

add

items
finalizestart end

add

items
finalize

t1' t2' t3' t4'

p1' p2' p3' p4' p5'

Fig. 6. The event net of trace σ = ⟨add items, add items,finalize,finalize⟩

Formally, we define event net of a trace as follows:

Definition 4.1. (Event net) Let σ ∈ A∗ be a trace of length n over a set of
activities A. The event net of σ is a Petri net N = (P, T, F, α,mi,mf), where

– P = {pj | 1 ≤ j ≤ n+ 1},
– T = {tj | 1 ≤ j ≤ n},
– F : (P × T) ∪ (T × P) → IN , such that

• F (pj , tj) = 1, for all 1 ≤ j ≤ n, pj ∈ P, tj ∈ T ,

• F (tj , pj+1) = 1, for all 1 ≤ j ≤ n, pj ∈ P, tj ∈ T , and

• F (x, y) = 0 otherwise.

12 A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst

– α : T → A is a function mapping transitions to activities such that for all
1 ≤ j ≤ n, α(tj) = σ[j],

– mi : P → IN is the initial marking, such that for p1 ∈ P,mi(p1) = 1 and for
all other p′ ∈ {p2, . . . , pn+1},mi(p

′) = 0,

– mf : P → IN is the final marking, such that for p|P | ∈ P,mf (p|P |) = 1 and
for all other p′ ∈ {p1, . . . , pn},mf (p

′) = 0,

Note that by definition, event nets are easy sound net. To prevent ambiguity
between event nets and the easy sound Petri net that represents the process
model, from this section on we refer to the latter the process net.

Having modeled traces as event nets, we explicitly model all possible move-
ments by taking the product of two Petri nets: event nets and process nets. The
product of two Petri nets is the union of both nets with extra synchronous tran-
sitions that are constructed by pairing transitions in one net with transitions
in the other net that have the same label [39]. This way, possible synchronous
moves are modeled by synchronous transitions, while moves on log and moves
on model are modeled as unpaired transitions in the event net and process net
respectively. Note that all event nets are easy sound nets.

(,t3)

add

items
finalizestart end

add

items
finalize

add

items finalize
add

items
add

items

add

items
finalize

Event net

Process net

Move on log

Move on model Synchronous move

LEGEND

(t1',) (t2',) (t3',) (t4',)

(t1',t1)
(t1',t2)

(t2',t1) (t2',t2)
(t3',t3)

(t4',t3)

p1' p2' p3' p4' p5'

add

items

add

items

deliver

edit

order

start finalize

p1
p2

p3

p4

cancel

end

(,t1)

(,t4)

(,t5)

(,t2)

(,t6)

Move on model (invisible transitions)

Fig. 7. Product of the event net of trace σ = ⟨add items, add items,finalize,finalize⟩
and the process net in Figure 4

Memory-Efficient Alignment of Observed and Modeled Behavior 13

For example, the product of the event net in Figure 6 and the easy sound
process net in Figure 4 is shown in Figure 7. Recall that the product is de-
rived from the trace and the model shown previously in Figure 4. The color of
transitions and places distinguishes elements of the original nets and the added
synchronous transitions (colored green). Yellow, purple, gray, and green-colored
transitions represent moves on log, moves on model (normal transitions), moves
on model (invisible transitions), and synchronous moves respectively. If a yellow
transition is fired, the state of the event net is changed but not the state of the
process net. Similarly, firing a purple/gray transition only changes the state of
the process net. Firing a green transition changes the state of both nets. All
transitions in the net represents movements. For example, the transition (t′1, t1)
represents a synchronous move by doing the first activity add items in the trace
and firing transition t1 in the process net. As another example, the transition
(≫, t1) represents a move on model by firing the transition t1 in the process net
without moving in the trace.

The product of two Petri nets is formalized as follows [39].

Definition 4.2. (Product of Two Petri Nets)
Let N1 = (P1, T1, F1, α1,mi,1,mf,1) and N2 = (P2, T2, F2, α2,mi,2,mf,2) be two
Petri nets over a set of activities A. The product of N1 and N2 is the Petri net
N3 = N1 ×N2 = (P3, T3, F3, α3,mi,3,mf,3) where

– P3 = P1 ∪ P2 is the union set of places,

– T3 ⊆ (T≫
1 × T≫

2), such that T3 = {(t1,≫) | t1 ∈ T1} ∪ {(≫, t2) | t2 ∈
T2} ∪ {(t1, t2) ∈ Dom(α1) × Dom(α2) | α1(t1) = α2(t2)} is the set of the
original transitions with additional synchronous transitions,

– F3 : (P3 × T3) ∪ (T3 × P3) → IN is the arc weight function, such that

• F3((p1, (t1,≫))) = F1(p1, t1) if p1 ∈ P1 and t1 ∈ T1,

• F3(((t1,≫), p1)) = F1(t1, p1) if p1 ∈ P1 and t1 ∈ T1,

• F3((p2, (≫, t2))) = F2(p2, t2) if p2 ∈ P2 and t2 ∈ T2,

• F3(((≫, t2), p2)) = F2(t2, p2) if p2 ∈ P2 and t2 ∈ T2,

• F3(p1, (t1, t2)) = F1(p, t1) if p ∈ P1 and (t1, t2) ∈ T3 ∩ T1 × T2,

• F3(p2, (t1, t2)) = F2(p, t2) if p ∈ P2 and (t1, t2) ∈ T3 ∩ T1 × T2,

• F3((t1, t2), p1) = F1(t1, p) if p ∈ P1 and (t1, t2) ∈ T3 ∩ T1 × T2,

• F3((t1, t2), p2) = F2(t2, p) if p ∈ P2 and (t1, t2) ∈ T3 ∩ T1 × T2,

• otherwise F3(x, y) = 0.

– α3 : T3 ̸→ A is the partial mapping from transitions to activities, such that
for all (t1, t2) ∈ T3, α3((t1, t2)) = α(t1) if t1 ∈ Dom(α1) and α3((t1, t2)) =
α2(t2) if t2 ∈ Dom(α2),

– mi,3 : P3 → IN is the initial marking, such that ∀p1∈P1 mi,3(p1) = mi,1(p1)
and ∀p2∈P2 mi,3(p2) = mi,2(p2),

14 A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst

– mf,3 : P3 → IN is the final marking such that ∀p1∈P1
mf,3(p1) = mf,1(p1)

and ∀p2∈P2 mf,3(p2) = mf,2(p2),

Since transitions in all products of event nets and easy sound process nets rep-
resent movements, firing sequences in such products yield movement sequences.
Take for example a firing sequence ⟨(t′1, t1), (t′2, t2), (t′3, t3), (t′4,≫), (≫, t5)⟩ of the
net shown in Figure 7. The sequence shows three synchronous moves, followed
by a move on log and a move on model. By mapping each transition in the se-
quence back to its movement (i.e. pair of activities and transitions), we obtain
sequence of movements γ1 in Figure 5. Note that such a sequence of movements
is by definition an alignment.

We define a reverse function that maps transitions in a product of two Petri
nets to movements as follows:

Definition 1 (Reverse Function). Let N1 = (P1, T1, F1, α1,mi,1,mf,1) and
N2 = (P2, T2, F2, α2,mi,2,mf,2) be two Petri nets over A, and let N1 × N2 =
(P3, T3, F3, α3,mi,3,mf,3) be the product of N1 and N2.

rev(N1×N2) : T3 ̸→ A≫ × T≫ is the partial reverse function of N1 ×N2 that
maps some transitions in T3 to movements, such that for all (t1, t2) ∈ T3,

– rev(N1×N2)((t1, t2)) = (α1(t1),≫) if t2 =≫ and t1 ∈ Dom(α1), i.e. all tran-
sitions derived from only transitions of T1 (except invisible transitions) are
mapped to moves on log,

– rev(N1×N2)((t1, t2)) = (≫, t2) if t1 =≫, i.e. transitions derived from only
transitions of T2 are mapped to moves on model, and

– rev(N1×N2)((t1, t2)) = (α(t1), t2) if t1 ∈ Dom(α1) and t2 ∈ Dom(α2) and
α(t1) = α(t2), i.e. synchronous transitions are mapped to synchronous moves.

We use the reverse function and the theory of marking reachability in product
of two Petri nets in [39] to prove that complete firing sequences of products of
event nets and easy sound process nets yield alignments. We can reformulate the
result of [39] as follows:

Theorem 1 (Reachability of Marking in Product of Two Petri Nets).
Let N1 = (P1, T1, F1, α1,mi,1,mf,1) and N2 = (P2, T2, F2, α2,mi,2,mf,2) be two
Petri nets over a set of activities A. Let N1 × N2 = (P3, T3, F3, α3,mi,3,mf,3)

be the product of N1 and N2. For all firing sequences mi,3
ϱ→ m, ϱ ∈ T ∗

3 , both

mi,3↓P1

π1(ϱ)↓T1

−−−−−→ m↓P1
and mi,3↓P2

π2(ϱ)↓T2

−−−−−→ m↓P2 hold, i.e. the projection of the
marking to each original net is also reachable from its initial marking.

Proof. Refer to [39].

Using this result we can prove the following theorem:

Theorem 2 (Firing Sequences Define Movement Sequences). Let σ ∈
A∗ be a trace over a set of activities A and let N1 = (P1, T1, F1, α1,mi,1,mf,1)
be its event net. Let N2 = (P2, T2, F2, α2,mi,2,mf,2) be a process net over A,
and let N1 ×N2 = (P3, T3, F3, α3,mi,3,mf,3) be the product of N1 and N2.

Memory-Efficient Alignment of Observed and Modeled Behavior 15

For all firing sequences mi,3
ϱ→ m, ϱ ∈ T ∗

3 , rev(N1×N2)(ϱ) is a movement

sequence1. Furthermore, if mi,3
ϱ→ mf,3, then rev(N1×N2)(ϱ) is an alignment.

Proof. We prove the first part of this lemma by induction. If ϱ = ⟨⟩, then
rev(N1×N2)(ϱ) = ⟨⟩ is an alignment. Assume that ϱ = ϱ′ · (t1, t2) and that
rev(N1×N2)(ϱ) is a movement sequence. There exist markings m1 and m2 where

mi,3
ϱ′

→ m1
(t1,t2)→ m2. We show that rev(N1×N2)(ϱ) is a movement sequence by

considering all three cases:

– Assume rev(N1×N2)((t1, t2)) = (a,≫), a ∈ A (move on log). By definition,
Dom(α1) = T1. Thus, there exists a transition t1 ∈ T1 where α1(t1) =

σ[1 + |π1(ϱ
′)↓T1

|] = a and mi,3↓P1

π1(ϱ
′)↓T1

−−−−−→ m1↓P1

t1→ m2↓P1
. Furthermore,

mi,3↓P2

π2(ϱ)↓T2

−−−−−→ m1↓P2
. It is easy to see that rev(N1×N2)(ϱ) is a movement

sequence,

– Assume rev(N1×N2)((t1, t2)) = (≫, t2), t2 ∈ T2 (move on model). We know

that mi,3↓P1

π1(ϱ
′)↓T1

−−−−−→ m1↓P1
and mi,3↓P2

π2(ϱ
′)↓T2

−−−−−→ m1↓P2

t2→ m2↓P2
(see The-

orem 2). It is easy to see that rev(N1×N2)(ϱ) is a movement sequence,

– Assume rev(N1×N2)((t1, t2)) = (a, t2), a ∈ A, t2 ∈ T2 (synchronous move).

We know thatmi,3↓P2

π2(ϱ
′)↓T2

−−−−−→ m1↓P2

t2→ m2↓P2
. By definition, t1 ∈ Dom(α1)

such that α(t1) = σ[1 + |π1(ϱ
′)↓T1

|] = a and mi,3↓P1

π1(ϱ
′)↓T1

−−−−−→ m1↓P1

t1→
m2↓P1

. It is easy to see that rev(N1×N2)(ϱ) is a movement sequence.

We know that rev(N1×N2)(ϱ) is a movement sequence. If mi,3
ϱ→ mf,3 then

mi,3↓P1

π1(ϱ)↓T1

−−−−−→ mf,3↓P1
andmi,3↓P2

π2(ϱ)↓T2

−−−−−→ mf,3↓P2
. By definition, this implies

mi,1

π1(ϱ)↓T1

−−−−−→ mf,1 and mi,2

π2(ϱ)↓T2

−−−−−→ mf,2. Since α1(π1(ϱ)↓T1
) = σ, we show that

rev(N1×N2)(ϱ) is an alignment. ⊓⊔

To find an optimal alignment between a trace and a Petri net using the A⋆

algorithm, we use the transition system of the product between two nets: the
event net of the trace and the original net. Take for example the transition system
of the net in Figure 7, shown in Figure 8. Arcs between states are labeled with
transitions, and the color of each arc indicates the movement of its transition
label. The transition labels are abbreviated with their initials. We define the
distance of an arc in the cost of movement of its label. In this running example,
we use the standard cost function previously defined in the end of Section 3.

By definition, paths from the initial state of a transition system to its fi-
nal state yield complete firing sequences. Theorem 2 shows that complete firing

1 We abuse the reverse function to handle sequences of transitions. Let ϱ ∈ T ∗ be a
sequence of transitions, rev(N1×N2)(ϱ) = ⟨rev(N1×N2)(ϱ[1]), . . . , rev(N1×N2)(ϱ[ϱ])⟩

16 A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst

[p1'

,p1]
[p2'

,p1]

[p2'

,p2]

[p1'

,p2]

[p3'

,p1] [p1'

,p3]

a a

a

a

f

a
a

a a
e

LEGEND

initial state

state

final state

move on log

move on model

move on model

(invisible trans)

move synchronous

d

(t1',t1)

(t1',) (,t1)
(,t2)

(,t4)

(,t3)

[p1'

,p4]

(,t5)

c
(,t6)[p2'

,p3]

(,t3)
(,t4)

f

(,t1)
(t1',)(,t2)

e a
(t1',)

(t2',)

[p3'

,p2]

a
(t2',)

a

(t2',t2)

a
(,t1)

a

(,t2)

a

(t2',t1)

[p3'

,p3]

(,t3)

f(,t4)

e

a

(,t2)

[p4'

,p3]

f
(t3',)

f
(t3',t3)

[p4'
,p1]f

(t3',)

[p2'

,p4]

a
(t1',)

(,t6)

c

[p4'

,p2]

(,t1)

a

a
(,t2)

f

(,t3)

f

(,t4) e

[p5'

,p3]

f
(t4',t3)

f
(t4',)

[p3'
,p4]

(,t5)

d

(,t6)

c

a
(t2',)

[p4'

,p4]

f
(t3',)

(,t5)

d

(,t5)

[p5'

,p1]

f
(t4 ',)

[p5'

,p2]

a
(,t1)

f
(t4',)

a
(,t2)

(,t3)

f

e
(,t4)

[p5'

,p4]

d

c

(,t6)
f

(t4',)

c
(,t6)

(t3',)

(,t5)

d

Fig. 8. Transition System of the Petri net in Figure 7

sequences yield alignments. Transitively, such paths yield alignments. Further-
more, since arc distances are derived from movement costs, distances of the paths
yield cost of alignments.

Take for example the path σ = ⟨(t′1, t1), (t′2, t2), (t′3, t3), (t′4,≫), (≫, t5)⟩ from
the initial state to the final state of the transition system in Figure 8. σ is also
a complete firing sequence of the net in Figure 7. Each transition in σ can be
mapped back to its movement, e.g. (t′1, t1) is mapped to a synchronous move
between activity add items and transition t1, (t

′
4,≫) is mapped to a move on

log of activity finalize. Such mapping yields an alignment whose total cost is the
same as its path distance. In this example, mapping back all transitions in σ

Memory-Efficient Alignment of Observed and Modeled Behavior 17

yields alignment γ1 in Figure 5. Notice that the total distance of σ is the same
as the total cost of γ1 (i.e. ϵ+ ϵ+ ϵ+1+ ϵ+1+ ϵ = 5ϵ+2). Therefore, a shortest
path from the initial state to the final state of the transition system yields an
optimal alignment. The formal proof is as follows:

Lemma 1 (Paths Yield Movement Sequences). Let σ ∈ A∗ be a trace
over A. Let N1 be the event net of σ and let N2 be a process net over A. Let
TS (N1 ×N2) = (S,E, T, α, si, sf) be the transition system of N1 ×N2.

For all states s ∈ S, let ϱ ∈ Ψ(S,E,T)(si, s) be a path from si to s. γ =
rev(N1×N2)(π2(ϱ)) is a movement sequence. Furthermore, if s = sf , then γ is an
alignment between σ and N2. ⊓⊔

Proof. By definition, all paths from the initial state si are firing sequences. Theo-
rem 2 shows that all firing sequences yield movement sequences, and all complete
firing sequences yield alignments. Transitively, all paths from the initial state si
yield movement sequences, and all paths from the initial state si to the final
state sf yield alignments.

We translate the problem of finding optimal alignments to a problem of
finding a shortest path in a directed graph. In the following, we show that such
a path always exists.

Lemma 2 (Path from the Initial State to the Final State Exists). Let
N1 = (P1, T1, F1, α1,mi,1,mf,1) and N2 = (P2, T2, F2, α2,mi,2,mf,2) be an event
net and an easy sound process net over a set of activities A respectively. Let
TS (N1 ×N2) = (S3, E3, T3, α3, si,3, sf,3) be the transition system of N1 ×N2.

Ψ(S3,E3,T3)(si,3, sf,3) ̸= ∅, i.e. the path from the initial state si,3 to the final
state sf,3 of TS (N1 ×N2) always exists.

Proof. From Definition 4.1, we know that there exists ϱ1 ∈ T ∗
1 , such that mi,1

ϱ1→
mf,1. From Definition 3.3, we know that there exists a sequence ϱ2 ∈ T ∗

2 such

that mi,2
ϱ2→ mf,2. Since markings mf,1 and mf,2 are reachable from mi,1 and

mi,2 respectively, there exists ϱ3 ∈ T ∗
3 such that si,3

ϱ3→ sf,3 (see Theorem 1),
thus Ψ(S3,E3,T3)(si,3, sf,3) ̸= ∅. ⊓⊔

Intuitively, there are many trivial alignments between a trace and a model.
It is possible to first do move on model only and then do move on log only for
all activities in the trace, as well as all interleavings between its moves on model
and moves on log. Typically, such trivial alignments do not correspond to an
optimal alignment. In Lemma 1, we showed that paths in transition systems
yield alignments and such path always exists (see Lemma 2). By associating
distances of arcs in the transition systems according to cost of movements, we
convert the problem of finding an optimal alignment into the problem of finding
a shortest path.

Theorem 3 (Shortest Path Yields Optimal Alignment). Let N1 be an
event net over A, let N2 be an easy sound process net over A. Let TS (N1×N2) =

18 A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst

(S3, E3, T3, α3, si,3, sf,3) be the transition system of N1×N2. Let κ : A≫×T≫ →
IR+ be a cost function of movements. Let δ : E3 → IR+ be a distance function,
such that for all e ∈ E3, δ(e) = κ(rev(N1×N2)(π2(e))).

For all shortest paths ϱ ∈ Ψ(S3,E3,T3)(si,3, sf,3) from the initial state to the
final state such that for all ϱ′ ∈ Ψ(S3,E3,T3)(si,3, sf,3), δ(ϱ) ≤ δ(ϱ′), the sequence
of movements γ = rev(N1×N2)(π2(ϱ)) is an optimal alignment.

Proof. Lemma 1 proves that γ is an alignment. By the definition, δ(ϱ) =
∑

1≤j≤|ϱ| δ(ϱ[j]) =∑
1≤j≤|ϱ| κ(rev(N1×N2)(π2(ϱ[j]))) =

∑
1≤h≤|γ| κ(γ[h]), i.e. the distance between

two nodes is the same as the cost of movements. Since ϱ is a shortest path from
si to sf , its distance yields the minimal cost of movements of all possible align-
ments. ⊓⊔

Consider again our previous example of the transition system of Figure 8.
Figure 9 shows a shortest path from the initial state to the final state of the tran-
sition system with such a cost function. The path consists of three consecutive
synchronous transitions (i.e. add items,add items,finalize) followed by a move
on model of an invisible transition (edit order), another synchronous transition
(finalize), and a move on model (deliver). By mapping each transition back to
its movement, the alignment constructed from the path is shown in Figure 10.
The alignment shown in Figure 10 is an optimal alignment.

Given a directed graph in form of a transition system, we use the A⋆ algo-
rithm [13] to find a shortest path from the initial state to a final state efficiently
as mentioned in Section 1. This approach is explained in Section 5.

5 Efficient Search Space Exploration using Marking
Equation

In Section 4, we translated the problem of construcing an alignment between a
trace and a model to the problem of finding a shortest path between two nodes
in a transition system. However, finding such a path in a transition system is not
trivial. First of all, process models may have an unbounded number of states.
Second, in reality, trace executions often deviate from predefined process models.
In such cases, using a breadth-first-search approach to find shortest paths requires
a huge amount of memory because many states need to be visited and queued.

Therefore, we introduce a permissible underestimation function for the A⋆

algorithm that provides a good underestimation of the remaining distance from
each state in the system to its final state based on the marking equation of Petri
nets. The function improves the efficiency of theA⋆ based state space exploration
in two ways (see Figure 11). First of all, the state space is pruned as for some
states we can state with certainty that the final state is no longer reachable. If,
according to the marking equation, the final state is no longer reachable, we do
not need to explore successor states in the transition system. Second, by using
the marking equation we can provide a better underestimation of the total cost
required to reach the final state. This way state space exploration can be limited
to those states that most likely lead to the final state.

Memory-Efficient Alignment of Observed and Modeled Behavior 19

[p1'

,p1]
[p2'

,p1]

[p2'

,p2]

[p1'

,p2]

[p3'

,p1] [p1'

,p3]

a a

a

a

f

a
a

a a
e

d

(t1',t1)

(t1',) (,t1)
(,t2)

(,t4)

(,t3)

[p1'

,p4]

(,t5)

c
(,t6)[p2'

,p3]

(,t3)
(,t4)

f

(,t1)
(t1',)(,t2)

e a
(t1',)

(t2',)

[p3'

,p2]

a
(t2',)

a

(t2',t2)

a
(,t1)

a

(,t2)

a

(t2',t1)

[p3'

,p3]

(,t3)

f(,t4)

e

a

(,t2)

[p4'

,p3]

f
(t3',)

f
(t3',t3)

[p4'

,p1]f
(t3',)

[p2'

,p4]

a
(t1',)

(,t6)

c

[p4'

,p2]

(,t1)

a

a
(,t2)

f

(,t3)

f

(,t4) e

[p5'

,p3]

f
(t4',t3)

f
(t4',)

[p3'

,p4]

(,t5)

d

(,t6)

c

a
(t2',)

[p4'

,p4]

f
(t3',)

(,t5)

d

(,t5)

[p5'

,p1]

f
(t4 ',)

[p5'

,p2]

a
(,t1)

f
(t4',)

a
(,t2)

(,t3)

f

e
(,t4)

[p5'

,p4]

d

c

(,t6)
f

(t4',)

c
(,t6)

(t3',)

(,t5)

d

LEGEND

initial state

state

final state

move on log

move on model

move on model

(invisible trans)

move synchronous

Cost of Movements
1

1

a

(t1',t1)

a

(t2',t2)

f

(t3',t3) (,t4)

e f

(t4',t3) (,t5)

dA shortest path

Fig. 9. A shortest path in the transition system in Figure 7 yields an optimal alignment

5.1 Pruning the Exploration Graph

To prune the exploration graph we exploit the well known theory of the Petri net
marking equation. The following result can be found in any textbook on Petri
nets, for example [18].

20 A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst

add items add items finalize ≫ finalize ≫
add items add items finalize edit order finalize deliver

t1 t2 t3 t4 t3 t5

Fig. 10. An optimal alignment between trace ⟨add items, add items,finalize,finalize⟩
and the net in Figure 4

Limit exploration area

Prune graph
LEGEND

visited states

unvisited states

final state

...

... ...
......

initial state

final state

Fig. 11. Two utilizations of marking equation: pruning exploration graph and limit
exploration area

Theorem 4 (Reachability Implies Solution to Marking Equation). Let
N be a Petri net over a set of activities A, let N be the incidence matrix of N .
Let TS (N) = (S,E, T, α, si, sf) be the transition system of N . For all s, s′ ∈
S, ϱ ∈ T ∗ such that s

ϱ→ s′, the following marking equation holds: #»s +N · #»ϱ =
#»

s′

Proof. See for example the proof in [18].

Theorem 4 states that reachability implies a solution. This implies that if no
solution exists then one state is not reachable from the other. Recall that we
need to find a shortest path to the final node and all paths are firing sequences.
Hence, we exploit this knowledge to identify nodes in the exploration graph from
which the target node cannot be reached.

Theorem 5 (State Pruning). Let N be a Petri net over a set of activities
A. Let N be the incidence matrix of N . Let TS (N) = (S,E, T, α, si, sf) be the
transition system of N . For all s ∈ S, if there is no solution #»x to #»s +N· #»x = #»sf ,
Ψ(S,E,T)(s, sf) = ∅.

Proof. We prove this theorem by contradiction. Suppose that there exists a

state s′ ∈ S such that no solution to
#»

s′ + N · #»x = #»sf , but there exists a path
σ ∈ Ψ(S,E,T)(s

′, sf) from state s′ to final state sf . Let ϱ = π2(σ)↓T be the firing

sequence of σ. By definition, we know that s
ϱ→ sf and according to Theorem 4,

#»s +N · #»ϱ = #»sf holds. Thus, #»x = #»ϱ is a solution. ⊓⊔

The marking equation helps in pruning the exploration graph. However, we
can also use the marking equation to provide a better underestimate of the
remaining cost.

Memory-Efficient Alignment of Observed and Modeled Behavior 21

5.2 Limiting the State Space Exploration Area

We showed that the existence of a solution to the marking equation for a state
in Theorem 4 strongly correlates with the existence of path from the state to the
final state of corresponding transition system. Next, we show that if such path
exists, a solution to the marking equation with the minimum total cost yields a
lower bound for the path distance. Since all transitions in the product of event
nets and process nets represent movements, we define cost of transitions in such
a product based on cost of movements.

Definition 5.1. (Cost of Transitions) Let N1 be an event net over a set of
activities A and let N2 be a process net over A. Let N1 ×N2 = (P3, T3, F3, α3,
mi,3,mf,3) be the product of N1 and N2. Let κ : A≫ × T≫ → IR+ be a cost
function of movements. cκ : T3 → IR+ is the cost of firing transitions, defined
by κ such that for all t3 ∈ T3, cκ(t3) = κ(rev(N1×N2)(t3)).

For simplicity, in the remainder we use the cost of firing transitions directly
instead of the cost of movements. Next, we show that marking equation provides
lower bound for the total cost of movements.

Theorem 6 (Marking Equation Solution provides Lower Bound).
Let N be the product of an event net and an easy sound process net over a set of
activities A. Let N be the incidence matrix of N . Let TS (N) = (S,E, T, α, si, sf)
be the transition system of N . Let cκ : T → IR+ be a cost function of firing
transitions, and let δ : E → IR+ be a distance function, such that for all e ∈
E, δ(e) = cκ(π2(e)).

For all states s ∈ S where Ψ(S,E,T)(s, sf) ̸= ∅

– let v = min ({
∑

1≤j≤|T |
#»x j · cκ(tj) | tj ∈ T ∧ #»s +N · #»x = #»sf}) be the mini-

mum value of total cost of solution to marking equation, and

– let v′ = min({δ(ϱ) | ϱ ∈ Ψ(S,E,T)(s, sf)}) be the minimum distance of all
paths from s to sf .

The following statement holds: v ≤ v′

Proof. We prove this theorem by first showing that a shortest path from s to
sf is also a solution to the marking equation. Suppose that σ ∈ Ψ(S,E,T)(s, sf)
such that for all σ′ ∈ Ψ(S,E,T)(s, sf), δ(σ) ≤ δ(σ′), i.e. σ is a shortest path. From

Lemma 1, we know that ϱ = π2(σ) is a firing sequence from s to sf , i.e. s
ϱ→ sf .

Hence, ϱ yields a solution for marking equation #»s +N · #»ϱ = #»sf .
The total cost of solution to marking equation is the same as the distance of

path (see the proof of Theorem 3). Therefore, δ(σ) =
∑

1≤j≤|ϱ| cκ(ϱ[j]). Since

ϱ ∈ T ∗, we can reformulate the formula into
∑

1≤k≤|T | ϱ(tk)·cκ(tk) where tk ∈ T ,
which is the same as the defined cost of solution to marking equation. ⊓⊔

Given a state in a transition system, we know from Theorem 5 that if a
solution to marking equation in Theorem 4 does not exist, there is no path to
the target node. Hence, there is no point to explore the successors of that node

22 A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst

anymore. If a solution exists, we know a lower bound for the distance from the
node to the target node (see Theorem 6). We use this knowledge to define a
permissible underestimation function for the A⋆ algorithm.

Theorem 7 (Permissible Underestimation Function).
Let N be the product of an event net and an easy sound process net over a set of
activities A. Let N be the incidence matrix of N . Let TS (N) = (S,E, T, si, sf)
be the transition system of N . Let cκ : T → IR+ be a cost function of fir-
ing transitions. Let δ : E → IR+ be a distance function, such that for all
e ∈ E, δ(e) = cκ(π2(e)).

For all s ∈ S, a function h : S → IR where,

– h(s) = +∞ if there is no solution to #»s +N · #»x = #»sf , otherwise

– h(s) = min ({
∑

1≤j≤|T |
#»x j · cκ(tj) | tj ∈ T ∧ #»s +N · #»x = #»sf})

is a permissible underestimation function. ⊓⊔

Proof. For all s ∈ S, if there is no solution to the marking equation, according
to Theorem 5 there is no path from s to sf . Therefore, h(s) = +∞ satisfies the
requirements for a permissible underestimation function. If there is a solution,
we know that h(s) is a lower bound for the distance from s to sf (Theorem 6).
Thus, h(s) is a permissible underestimation function.

Finding a solution for the marking equation with the minimum cost can
viewed as an ILP problem [8]. Many approaches to solve such a problem exist
in literature. Given a trace and a process net, we use the permissible underes-
timation function in Theorem 7 to guide state space exploration on transition
systems constructed from product of event nets and process nets, such as the
one shown in Figure 8.

We extend this ILP-based approach to Petri nets with reset/inhibitor arcs
[10,23,36]. Section 6 explains the extension in detail.

6 Extension to Reset/Inhibitor Nets

Next to Petri nets, many process modeling languages are used in practice. In
this section, we extend the approach in Section 5 to deal with models in the
form of reset/inhibitor nets [36]. Reset/inhibitor nets are Petri nets that are
extended with reset arcs and/or inhibitor arcs. The addition of reset/inhibitor
arcs allows modelers to express complex behavior that cannot be expressed in
ordinary Petri nets. There are many approaches in literatures that translate
various modeling languages to reset/inhibitor nets (e.g. [6,33,14,15,21]). Thus,
by extending the approach to handle reset/inhibitor nets, we also extend the
practical applicability of the approach and allow for many additional workflow
patterns, e.g. cancellation.

Figure 12 shows the reset/inhibitor net of the model in Figure 1. Reset arcs
are represented graphically by arcs with double arrows, while inhibitor arcs

Memory-Efficient Alignment of Observed and Modeled Behavior 23

add

items

finalize

pack

items
money

accepted

cancel

start end

add

items

deliver

t2

t1

t4

t3

t7

t5 t6

p1 p2

p3

p4
p5

Fig. 12. Translation of the BPMN model in Figure 1 to Petri Net with a reset arc
(r(t7) = {p2}) and an inhibitor arc (i(t5) = {p2})

are decorated with a small circle. Note that cancellation, priorities, and data-
constrained behavior (the number of ordered and packaged items must be the
same) can be easily modeled with reset/inhibitor arcs.

Formally, we define reset/inhibitor net as follows.

Definition 6.1. (Reset/Inhibitor Net) A Reset/Inhibitor net N over a set
of activities A is a tuple (P, T, F, α,mi,mf , r, i), where

– (P, T, F, α,mi,mf) is a Petri Net,

– r : T → P(P) is a function mapping transitions to reset places, and

– i : T → P(P) is a function mapping transitions to inhibitor places

A transition t ∈ T is enabled at marking m : P → IN if and only if both

∀p∈P\i(t) F (p, t) ≤ m(p) and ∀p∈i(t) m(p) = 0 hold. m
t→ m′ denotes the firing

of an enabled transition t from m that leads to new marking m′ : P → IN , such
that ∀p∈P\r(t) m

′(p) = m(p)− F (p, t) + F (t, p) and ∀p∈r(t) m
′(p) = F (t, p).

We use the same notation as the one that is already defined in Definition 2.6
for firing sequences. Furthermore, the correctness notion such as easy soundness
for Petri nets are also defined on reset/inhibitor nets similarly [30]. Note that if
for all t ∈ T, r(t) = ∅ and i(t) = ∅, N has exactly the same behavior as the Petri
net (P, T, F, α,mi,mf).

Similar to Petri net without reset/inihibitor arcs, the behavior of a reset/inhibitor
net can be represented by a transition system. Since all theorems and lemmas
that translate the problem of finding optimal alignments into shortest path prob-
lems in Section 4 are based on transition systems, they are still hold even for
reset/inhibitor nets.

The general idea to construct an alignment between traces and reset/inhibitor
nets is the same as the construction we described before for Petri nets in Sec-
tion 4. Given a trace and a reset/inhibitor net, we construct the product of the
event net of the trace and the reset/inhibitor net in a similar way as construct-
ing the product of two Petri nets. The only difference is that we also keep the
reset/inhibitor arcs in the event net of the trace and add new reset/inhibitor

24 A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst

arcs to synchronous transitions whose process net transitions are connected to
reset/inhibitor arcs.

Figure 13 shows the product of the event net of a trace σ = ⟨add items,
cancel , add items,finalize, pack items, pack items,money accepted⟩ and the re-
set/inhibitor net in Figure 12. Transition labels are abbreviated according to
their initials. All reset and inhibitor arcs in the original reset/inhibitor net are
preserved. Synchronous transitions that are constructed from transitions that are
connected to reset/inhibitor arcs also have reset/inhibitor arcs (e.g. synchronous
transitions c and m).

Move on log

Move on model

Synchronous move

LEGEND

a pastart c f

a a

Event net

Process net

m endp

a

f
p

m

c

start
end

a

d

c m...

Move on model

(invisible transitions)

Fig. 13. Product of event net of trace ⟨add items, cancel, add items,finalize, pack items,
pack items,money accepted⟩ and the reset/inhibitor net in Figure 12

Definition 6.2. (Product of Two Reset/Inhibitor Nets)
Let N1 = (P1, T1, F1, α1,mi,1,mf,1, r1, i1) and N2 = (P2, T2, F2, α2,mi,2,mf,2,
r2, i2) be two reset/inhibitor nets over a set of activities A. The product of N1

and N2 is a reset/inhibitor net N3 = N1×N2 = (P3, T3, F3, α3,mi,3,mf,3, r3, i3),
such that

– (P3, T3, F3, α3,mi,3,mf,3) = (P1, T1, F1, α1,mi,1,mf,1)×(P2, T2, F2, α2,mi,2,
mf,2), i.e. places, arcs, and transitions are created using the product of two
ordinary Petri nets (see Definition 4.2),

– r3 : T3 → P(P3) and i3 : T3 → P(P3) are the reset function and the inhibitor
function respectively, such that

• for all (t1,≫) ∈ T3 where t1 ̸=≫, r3 ((t1 ,≫)) = r1(t1) and i3 ((t1 ,≫)) =
i1(t1),

Memory-Efficient Alignment of Observed and Modeled Behavior 25

• for all (≫, t2) ∈ T3 where t2 ̸=≫, r3((≫, t2)) = r2(t2) and i3((≫, t2)) =
i2(t2), else

• for all (t1, t2) ∈ T3 where t1 ̸=≫ and t2 ̸=≫, r3((t1, t2)) = r1(t1)∪ r2(t2)
and i3((t1, t2)) = i1(t1) ∪ i2(t2)

The approach to prune the state space and direct state space exploration
using the marking equation of Petri nets cannot be applied directly, because
the equation is based on the incidence matrix that by definition ignores re-
set/inhibitor arcs. However, given a reset/inhibitor net, we only need values
that underestimate the actual distance from states of its transition system to its
final state. Therefore, we propose a general idea to estimate the actual distance
of states of reset/inhibitor net using a Petri net with some cost function and
constraints that can be related to the original reset/inhibitor net and its cost to
fire transitions. We call such a net an estimation net.

Definition 6.3. (Estimation net and cost)
Let N1 = (P, T1, F1, α1,mi,mf , r, i) be a reset/inhibitor net. Let c1 : T1 → IR+

define the costs of firing transitions in T1. Let N2 = (P, T2, F2, α2,mi,mf) be
a Petri net and let c2 : T2 → IR define the costs of firing transitions in T2.
N2 with costs c2 is an estimation of N1 with costs c1 if for all ϱ1 ∈ T ∗

1 such

that mi
ϱ1→N1 m, there exists a sequence ϱ2 ∈ T ∗

2 such that mi
ϱ2→N2 m, and∑

1≤k≤|ϱ2| c2(ϱ2[k]) ≤
∑

1≤j≤|ϱ1| c1(ϱ1[j]).

Given a reset/inhibitor net and the costs of firing its transitions, estimation
net and cost function are used to provide a permissible underestimation to the
minimum distance between states of the reset/inhibitor net.

Theorem 6.4. (Estimation net and cost provide permissible underesti-
mation) Let TS (N1) = (S1, E1, T1, α1, si, sf) be the transition system of an easy
sound reset/inhibitor netN1, let c : T1 → IR+ define the costs of firing transitions
in T1. Let N2 be an estimation net of N1 and let TS (N2) = (S2, E2, T2, α2, si, sf)
be the transition system of N2, let c2 : T2 → IR define the costs of firing tran-
sitions in T2. Let δ1 : E1 → IR+ be the distance of edges such that for all
e1 ∈ E1, δ(e1) = κ(π2(e1)) and let δ2 : E2 → IR be the distance of edges such
that for all e2 ∈ E2, δ(e2) = κ(π2(e)).

For all s, s′ ∈ S1,min ({δ2(σ) | σ ∈ Ψ(S2,E2,T2)(s, s
′)}) is a permissible under-

estimation of the distance between s and s′ in graph (S1, E1, T1).

Proof. We consider both possible cases:

– Suppose that Ψ(S1,E1,T1)(s, s
′) ̸= ∅, then there exists ϱ1 ∈ T ∗

1 such that s
ϱ1→N1

s′. From Definition 2.7, we know that there exists mi
ϱ→N1 s

ϱ1→N1 s′. From

Definition 6.3, we also know that there exists ϱ′, ϱ2 ∈ T ∗
2 such that mi

ϱ′

→N2

s
ϱ2→N2 s′. By the same definition, we know that both

∑
1≤k≤|ϱ′·ϱ2| c((ϱ′ ·

ϱ2)[k]) ≤
∑

1≤j≤|ϱ·ϱ1| c((ϱ · ϱ1[j])) and∑
1≤k≤|ϱ′| c(ϱ[k]) ≤

∑
1≤j≤|ϱ| c(ϱ[j])) hold, thus

∑
1≤k≤|ϱ2| c(ϱ2[k]) ≤

26 A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst∑
1≤j≤|ϱ1| c(ϱ1[j]). Therefore, min ({δ2(σ2) | σ2 ∈ Ψ(S2,E2,T2)(s, s

′)}) ≤
min ({δ1(σ1) | σ1 ∈ Ψ(S1,E1,T1)(s, s

′)})
– Suppose that Ψ(S1,E1,T1)(s, s

′) = ∅, i.e. state s′ is not reachable from s in
N1. min ({δ2(σ) | σ ∈ Ψ(S2,E2,T2)(s, s

′)}) ≤ +∞, thus it is a permissible un-
derestimation.

start end

t2

t1

t4

t3

t7

t5 t6

p1 p2

p3

p4
p5

Extra transition to replace reset arcs

connected to its input place

add

items

finalize

pack

items

money

accepted

cancel

add

items

deliver

add

items

finalize

pack

items
money

accepted

cancel

start end

add

items

deliver

t2

t1

t4

t3

t7

t5 t6

p1 p2

p3

p4
p5

Remove inhibitor arcs

(i) Reset/inhibitor net

(ii) Simple estimation net of (i)

tp2

Fig. 14. An estimation net of reset/inhibitor net shown in Figure 12: The inhibitor arc
is removed and the reset arc is replaced by a sink transition (tp2)

Given a reset/inhibitor net and a cost function, there are possibly many
estimation nets and cost functions that one can construct. We encode reset
arcs explicitly as invisible transitions that take tokens from places connected to
reset arcs. Figure 14 shows a reset/inhibitor net and its simple estimation net.
Transitions and places of the original net are preserved and an extra transition is
added for each reset place. Furthermore, inhibitor arcs are removed. Intuitively,
all behavior allowed by the original net is allowed by the estimation net, but not
necessarily the other way around. Furthermore, we use a cost function where the
cost of firing transitions is the same as the cost of firing the original transitions,
while the costs of firing the extra transitions are 0. Note that zero cost function
is allowed because the net is used only to provide estimation. We show that such
a net and cost is an estimation.

First, we define such an estimation net and cost function as follows:

Definition 6.5. (Simple Estimation Petri Nets and Cost)
Let N = (P, T, F, α,mi,mf , r, i) be a reset/inhibitor net over a set of activities

Memory-Efficient Alignment of Observed and Modeled Behavior 27

A, and let c : T → IR+ define the costs of firing transitions in N . N ′ = (P, T ∪
T ′, F ′, α′,mi,mf) is the simple estimation net of N where

– T ′ = {tp | p ∈
∪
t′∈T

r(t′)}, i.e. an extra transition is added for each reset place

in N ,

– F ′ : (P × (T ∪ T ′)) ∪ ((T ∪ T ′) × P) → IN is a flow relation returning the
weight of arcs, such that

• for all e ∈ (P × T) ∪ (T × P), F ′(e) = F (e),

• for all tp ∈ T ′, the following holds:

∗ F ′(tp, p) = 0,

∗ F ′(p, tp) = 1, and

∗ For all p′ ∈ P \ {p}, F (tp, p
′) = F (p′, tp) = 0

– α′ : (T ∪T ′) ̸→ A is a partial labeling function, such that for all t ∈ Dom(α) :
α′(t) = α(t)

Furthermore, c′ : (T ∪T ′) → IR is a estimation cost function for N ′ such that
for all t ∈ T : c′(t) = c(t) and for all t′ ∈ T ′ : c′(t′) = 0.

We show that the simple estimation net and cost satisfies the requirements
in Definition 6.3.

Theorem 6.6. (Simple estimation net and cost satisfies requirements)
Let N = (P, T, F, α,mi,mf , r, i) be an easy sound reset/inhibitor net over a set
of activities A, and let c : T → IR+ define the costs of firing transitions in N .
Let N ′ = (P, T ∪ T ′, F ′, α′,mi,mf) be the simple estimation net of N and let
c′ : (T ∪ T ′) → IR be its cost function as defined in Definition 6.5. N ′ with costs
c′ provides estimation for N with costs c.

Proof. We show that for all markings m reachable from mi and for all transition

t ∈ T such that m
t→N m′, there exists a sequence ϱ ∈ (T ∪ T ′)∗ such that

m
ϱ→N ′ m′ and c(t) =

∑
1≤j≤|ϱ| c′(t).

Since m
t→N m′, we know that for all p ∈ P \ i(t) : m(p) ≤ F (p, t) and for

all p′ ∈ i(t) : m(p′) = 0. By definition, for all p ∈ P : F ′(p, t) = F (p, t). Since
there is no inhibitor arcs in N ′, t is also enabled at m in net N ′.

Suppose that m
t→N ′ m′′. For all p ∈ P \ r(t) : F (t, p) = F ′(t, p) thus

m′′(p) = m′(p). For all other p′ ∈ r(t),m′′(p′) = m(p′) − F (p′, t) + F (t, p′). By
definition, we know that there exists tp′ ∈ T ′ that only decrease the marking
value of place p′ by 1 each time it is fired. For all places p′ ∈ r(t), firing tp′

for exactly (m(p′) − F (p′, t)) times from marking m′′ leads to a marking m′′′ :
P → IN where m′′′(p′) = F (t, p′) and m′′′(p′′) = m′′(p′′) for all p′′ ∈ P \ {p′}.
It is easy to see that firing such sequence of transitions for all places in r(t)
from marking m′′ yields marking m′. Formally, let seq(t, n) be a shorthand for
a sequence of transition t with size n, e.g. seq(t, 3) = ⟨t, t, t⟩. The sequence

28 A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst

ϱ′ = t · seq(tp1
,m(p1)− F (p1, t)) · . . . · seq(tp|r(t)| ,m(p|r(t)|)− F (p|r(t)|, t)) where

p1, . . . , p|r(t)| ∈ r(t) satisfies m
ϱ′

→N ′ m′.
Furthermore, since the cost of firing all tp ∈ T ′ is 0, the total cost of ϱ′ is

c′(t)+ 0 · ((m(p1)−F (p1, t))+ . . .+(m(p|r(t)|)−F (p|r(t)|, t))) = c′(t) = c(t). ⊓⊔

Theorem 6.6 provides a permissible heuristic function for reset/inhibitor nets.
We perform state space analysis as we did before, but instead using the marking
equation of the reset/inhibitor net to provide estimation, we use the marking
equation of its estimation net. Given a trace and a reset/inhibitor net, for all
visited states s in the net, estimation of the remaining distance from s to its
final state is the same as the estimation of remaining distance from the same
state s in its estimation net to its final state. Hence, the A⋆ algorithm and the
marking equation can both be used to compute optimal alignments. Section 7
explains the implementation of this approach and obtained results.

7 Experiments

We performed various experiments to show that the proposed permissible un-
derestimation function reduces the number of explored states during state space
exploration. We implemented the approach in ProM 6 [35] and used the lp solve
tool as the ILP solver in our implementation2.

Two sets of experiments were performed. The first set of experiments com-
pares the proposed approach with existing approaches using two similar artificial
models with real-life complexity. The second set of the experiments shows the
applicability of the approach to handle real life models and logs and some in-
sights into process executions that one can perform using a study case taken
from a municipality in the Netherlands. The former is explained further in Sub-
section 7.1, while the latter is explained in Subsection 7.2.

7.1 Artifical Logs and Models

The goal of this experiment is to show that our proposed approach is more robust
than existing ones to handle large and complex process models. We compare the
approach proposed in this paper with the one proposed by Cook and Wolf [7]
and Adriansyah et al. [4], using two models and a set of logs generated from both
models. Both models loosely describe the process of asking building permission in
a municipality in the Netherlands. One model is a Petri net (see Figure 15), and
the other is a reset/inhibitor net (see Figure 16). For the sake of readability, some
parts of the model are grouped into subprocesses. Both models have the same
subprocess of regular permit check, shown in Figure 17, and contain invisible
transitions, duplicate transitions, and complex control-flow patterns (e.g. OR-
splits, loops, and alternatives).

We generated perfectly fitting traces from each model (traces that can be
perfectly replayed) with various lengths between 20 to 69 activities per trace,

2 see http://sourceforge.net/projects/lpsolve/

Memory-Efficient Alignment of Observed and Modeled Behavior 29

register

application

request

submission

completeness

check

fast track

application

check city

regulations

regular

assessment

reevaluation

objection

timeout archive

exception

reevaluation

endoptional check

regular permit

check
interview

decide normal

permission

decide light

permission

fraud check

estimate value

assign special

category

check police

records

check

accountant

appointment

reschedule

interview

create

preagreement

change design

collect complete

document

consider

decision

request archive

accept archive

check city

regulations

check city

regulations

consult

decision

create decision

letter

send letter

create decision

letter

update legacy

system

notify internal

department

authority stamp

consider

decision

request archiveaccept archive

decide

create decision

letter authority stamp

create decision

letter

send letter

update database

Optional check Decide light permission

Interview

Decide normal permission

LEGEND

invisible transitionsnormal transitions subprocess transitions

start

start
start

end

end

end

start

start

end

Fig. 15. The Petri net used in the experiments and details of some of its subprocesses

and then introduced noise by randomly removing and/or inserting activities.
Then, we constructed an optimal alignment for each trace and its model and
recorded the number of queued states (i.e. the states that are actually visited

30 A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst

register

application

request

submission

completeness

check

fast track

application

check city

regulations

regular

assessment

reevaluation

objection

timeout archive

exception

reevaluation

endoptional check

regular permit

check
interview

decide normal

permission

decide light

permission

fraud check

estimate value

assign special

category

check police

records

check

accountant

appointment

reschedule

interview

create

preagreement

change design

collect complete

document

consider

decision

request archive

accept archive

check city

regulations

check city

regulations

consult

decision

create decision

letter

send letter

create decision

letter

update legacy

system

notify internal

department

authority stamp

consider

decision

request archiveaccept archive

decide

create decision

letter authority stamp

create decision

letter

send letter

update database

Optional check Decide light permission

Interview

Decide normal permission

LEGEND

invisible transitionsnormal transitions subprocess transitions

start

start
start

end

end

end

start

start

end

fast track

application

Fig. 16. The reset/inhibitor net used in the experiments and details of some of its
subprocesses

and others that are considered as candidates to be visited) needed to construct
it.

Memory-Efficient Alignment of Observed and Modeled Behavior 31

send invoice

assign aesthetic

check

accept aesthetic

report

report police

department

police dep.

response

assign durability

test

accept durability

report

assign health

test

accept health

report

evaluate

accept payment

fire department

process

environment

department

process

ask

neighbourhood

report

environment

department

check traffic

report

check contour

check

environment

stats

assign team survey submit report

decide send letter

create rejection

letter

create

agreement

letter

report fire

department

check running

projects

check history

check local rules

consult plan

expert
request

pipesystem plan

decide

create rejection

letter

create

agreement

letter

send letter

appointment

reschedule

interview create report

Ask neighbourhood

Environment department process

Fire department process

LEGEND

invisible transitionsnormal transitions subprocess transitions

start

end

start

end start end

end
start

Fig. 17. The sub-process of transition regular permit check in both Figure 15 and
Figure 16

The cost of synchronous moves/moves on model of invisible transitions has to
be negligible in comparison with cost of moves on log/moves on model of non-
invisible transitions. Therefore, we assigned the cost for the later movements
to be 1,000 higher than the cost of the former movements. Furthermore, to
avoid value inconsistency problems when using real values, costs are presented
as integers instead of real numbers. Thus, we assign cost ϵ = 1 for all synchronous
moves and moves on model of invisible transitions, while cost 1,000 is assigned
for all moves on model on non-invisible transitions and for all moves on log.

For benchmarking, we did the same set of experiments with the tree state-
space-based approach proposed in [7] and the A⋆ approach proposed in [4] where
no ILP calculation is needed. We use a computer with Intel Xeon 2.66 GHz pro-
cessor and use 1 GB of Java Virtual Memory. The results are shown in Figure 18
to Figure 20. Each dot in the figures is based on the average of performing the
same experiments 30 times, each with a different log consists of 100 traces. The
vertical bars indicate the corresponding 95% confidence interval. Note that for
all figures, y-axis is shown in logarithmic scale.

32 A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst

���
��������

� � �� �� �� �� ��������������	
�
�	����
�
��	���	�

��������	 ���
��������

� � �� �� �� �� ��������������	
�
�	���
��
��	���	�

��������	
���

��������
� � �� �� �� �� ��������������	
�
�	����

�
��	���	�
��������	 ���

��������
� � �� �� �� �� ��������������	
�
�	����

�
��	���	�
��������	

Petri net

(Figure 7.1)

Reset/

inhibitor net

(Figure 7.2)

A* with ILP A* without ILP Tree-based

LEGEND

Length 20 to 24 Length 25 to 29

Fig. 18. The number of explored states to construct optimal alignments for Petri net
in Figure 15 and reset/inhibitor net in Figure 16. Each dot in the figures is based on
the average of performing the same experiment 30 times with different noisy logs where
each log consists of 100 traces. Missing values are due to out-of-memory problems of
tree-based and A⋆ without ILP.

Figure 18 shows that the number of explored states to construct alignments
increases as length of traces and noise level increases. Figure 18 shows that
the approach with ILP computation explores much fewer states to construct
alignments than other approaches in all cases. Furthermore, it is less sensitive
to noise than other approaches. The permissible underestimation functions in
Theorem 7 and Theorem 6.6 manage to estimate the cost such that only relevant
states towards solutions are explored. Both the approach without ILP and the
tree-state-space based exploration do not use such precise estimation. In cases
where they need to choose which transition to fire for an OR-split/join pattern,
both of them use random selection that may lead to the exploration of many
irrelevant states before they finally explore the correct ones. We can also see
that the estimation function significantly cuts the number of states that need to
be investigated in cases where there is noise.

Figure 18 also shows that only the ILP-based approach managed to compute
optimal alignments in all experiments. Other approaches have out-of-memory
problems when dealing with either large or noisy logs. For example, in the ex-

Memory-Efficient Alignment of Observed and Modeled Behavior 33

�������������������
� � �� �� �� �� ����������	
����������

�������������
��������	 �������������������

� � �� �� �� �� ����������	
����������
�������������

��������	
�������������������

� � �� �� �� �� ����������	
����������
�������������

��������	 �������������������
� � �� �� �� �� ����������	
����������

�������������
��������	

Petri net

(Figure 7.1)

Reset/

inhibitor net

(Figure 7.2)

A* with ILP A* without ILP Tree-based

LEGEND

Length 20 to 24 Length 25 to 29

Fig. 19. The computation time required to construct optimal alignments for Petri net
in Figure 15 and reset/inhibitor net in Figure 16. Each dot is based on the average
of performing the same experiment 30 times with different noisy logs where each log
consists of 100 traces. Missing values are due to out-of-memory problems of tree-based
and A⋆ without ILP.

periment with Petri net and logs with traces of length between 20 and 24 (see
Figure 18, top-left), the tree-based state space approach [7] only managed to
compute optimal alignments until noise level reaches 5%. Above 5% noise level,
there are too many states that need to be explored by the approach such that
out-of-memory problem occurred. The non-ILP approach performs better than
the tree-based state space approach, but it can only provide results up to noise
level 20% before out of memory problem occurred.

Figure 19 shows the computation time needed to construct optimal align-
ments using different approaches. As shown in Figure 19, the approach with
ILP requires more computation time than the others if there is no noise. The
overhead of computing the ILP per visited state does not pay off if there are no
or just few deviations. However, in cases where noise exists and traces are long,
the approach without ILP explores significantly more states than the one with
ILP, such that its total computation time is higher. See for example the experi-
ments with Petri net and log with traces of length between 20 to 24 activities in
top-left of Figure 19. When noise level reaches 20%, the ILP approach has lower
computation time than the one without ILP. Similarly, the experiment with the

34 A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst

���������������������������
����� ����� ����� ����� ����� ����� ����� ����� ����� �������������	
��������������

���������
������

����������������
����� ����� ����� ����� ����� ����� ����� ����� ����� �����������������	
�
�	�����
�

�	���	�
������ ���������������������������

����� ����� ����� ����� ����� ����� ����� ����� ����� �������������	
��������������
���������

������
����������������

����� ����� ����� ����� ����� ����� ����� ����� ����� �����������������	
�
�	�����
�
�	���	�

������
A* with ILP A* without ILP Tree-based

LEGEND

Petri net

(Figure 7.1)

Reset/

inhibitor net

(Figure 7.2)

Computation TimeQueued States

Fig. 20. The computation time and the number of explored states to construct optimal
alignments for Petri net in Figure 15 and reset/inhibitor net in Figure 16. Each dot
is based on the average of performing the same experiment 30 times with different
perfectly fitting logs where each log consists of 100 traces. Missing values are due to
out-of-memory problems of tree-based and A⋆ without ILP.

reset/inhibitor net and traces of same length shows the same result when noise
level reaches 20% (see Figure 19, bottom-left). Moreover, for larger noise levels
the tree-based and A⋆ without ILP are unable to compute alignment due to
out-of-memory problems.

Figure 20 shows experiment results using the same models and logs with
perfectly fitting traces of various length. As shown in the figure, only the ILP
approach managed to provide optimal alignments for all experiment logs while
the others fail at logs with long traces due to out of memory problems. This
underlines the importance of having a memory-efficient alignment approach.

7.2 Real Life Cases

Alignments are the starting point for various analysis based on both observed
and modeled behavior. To show that the approach shows various insights and
robust to logs and models with real-life complexity, we take a real-life log of a
Dutch financial institution as a case study [34]. The log consists of 13,087 cases
with 262,200 events. Since there is no process model associated with the log,
we use the algorithm that utilizes passages [32] to discover a process model for
the log and modify it manually to make it weakly sound. A screenshot of the
model is shown in Figure 21. Then, we computed optimal alignments between

Memory-Efficient Alignment of Observed and Modeled Behavior 35

Fig. 21. Process model of a Dutch financial institute

Synchronous moves of

“Completeren aanvraag”
Move on log of “Completeren aanvraag”

Moves on model towards end of traces

Move on log of “O_CANCELLED” and “A_CANCELLED”

Fig. 22. Screenshot of optimal alignments obtained from the traces in BPI Challenge
2012 log and its discovered process model

the traces in the log and the model to diagnose deviations using the same cost
function previously used in experiments of Section 7.1.

Figure 22 shows some of the computed optimal alignments between traces in
the log and the model. As shown in Figure 22, there are many loops of activity
Completeren aanvraag in the log that are also possible according to the model.
Furthermore, the figure also shows that many moves on model occurred towards
the end of traces. This may indicate that the process execution may not be
finished yet, thus some activities that should have occurred according to the
model have not been executed in reality. The alignments in Figure 22 clearly
show where modeled and observed behavior deviate.

We projected all obtained optimal alignments to the original model to obtain
an overall view of occurred deviations and frequently executed activities. Fig-
ure 23 shows the projection of all computed optimal alignments onto the original
process model. The color of transitions and arcs corresponds to their frequency
of occurrence, i.e. the darker their color, the more they occur in the log. For all

36 A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst

transitions, the frequency of move on model is indicated with the ratio of pink-
colored stripes below them compares to green-colored stripes. The higher the
ratio, the more often move on model occurred compared to synchronous moves.
Furthermore, yellow-colored places are places in some markings where moves on
log occurred.

Memory-Efficient Alignment of Observed and Modeled Behavior 37

“O
_

D
E

C
LI

N
E

D
”

a
n

d
 “

W
_

W
ijz

ig
e

n

co
n

tr
a

ct
g

e
g

e
ve

n
s”

 a
re

 o
ft

e
n

 s
ki

p
p

e
d

M
a

n
y

m
o

ve
s

o
n

 lo
g

 o
f

“O
_

C
A

N
C

E
LL

E
D

”,

”O
_

C
R

E
A

T
E

D
”

,

”O
_

S
E

LE
C

T
E

D
”,

“O
_

S
E

N
T

”
o

cc
u

rr
e

d

w
it

h
 t

h
e

 s
a

m
e

fr
e

q
u

e
n

cy
 v

a
lu

e
 (

i.
e

.

6
0

)
b

e
fo

re
 p

a
ra

lle
l

b
ra

n
ch

M
a

n
y

m
o

ve
s

o
n

 lo
g

 o
f

“W
_

A
fh

a
n

d
e

le
n

le
a

d
s”

 (
 >

 2
2

0
0

 t
im

e
s)

o
cc

u
rr

e
d

 in
 t

h
e

 e
n

d
 o

f

tr
a

ce
s

Lo
o

p
s

o
f

“W
_

C
o

m
p

le
te

re
n

 a
a

n
vr

a
a

g
”

a
n

d

“W
_

N
a

b
e

lle
n

 o
ff

e
rt

e
s”

 a
re

 o
ft

e
n

 p
e

rf
o

rm
e

d

F
ig
.
2
3
.
S
cr
ee
n
sh
o
ts

o
f
p
ro
je
ct
ed

o
p
ti
m
a
l
a
li
g
n
m
en

ts
o
n
to

p
ro
ce
ss

m
o
d
el

fo
r
d
ev
ia
ti
o
n
a
n
a
ly
si
s.

38 A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst

Thick-colored transitions in Figure 23 show some activities that occured more
often than others. In this example, loops of activities W Completeren aanvraag
and W Nabellen offertes occurred frequently. The length of pink-colored stripes
compared to green stripes in both transitions O DECLINED and W Wijzigen
contractgegeven in Figure 23 shows that both activities O DECLINED and
W Wijzigen contractgegeven are often skipped. The frequency of moves on model
for the two transitions are 8,550 and 6,739 times respectively. The figure also
shows that most moves on log in the end of the trace are due to occurrences of
activity W Afhandelen leads they are not supposed to occur according to the
model. Furthermore, many moves on log of some activities before the parallel
branch of A ACTIVATED,A REGISTERED,O ACCEPTED, andA APPROVED
occurred with the same frequency value. This may be an indication that the
model does not capture behavior where the activities are optionally enabled all
at once just before the parallel branch.

The alignments also serve as a basis for quantify the quality of process models
with respect to observed behavior [28]. For example, given a process model and
an event log, the fitness metric measures to which extent the observed behavior
in the log can be reproduced by the model. By constructing optimal alignments
between all traces in the log and the model and accumulate their cost of devia-
tions (i.e. moves on model of non invisible tasks and moves on log), fitness can
be quantified. Using the fitness metric proposed in [28] and the standard cost
function, the fitness value between the BPI Challenge 2012 log and the model is
0.80 (from scale 0 to 1, where 1 indicates perfect fitness).

Furthermore, given a trace and a process model, projection of an optimal
alignment between the trace and the model to its movements on model provides
a complete firing sequence of the model that is most similar to the trace. Such
a complete firing sequence can be used to measure precision, i.e. the degree
for which the model only allow the observed behavior in reality [1]. Moreover,
the precision value (a1p [1]) between them is 0.833 (from scale 0 to 1, where 1
indicates prefect precision). Since both fitness and precision value between the
log and the model is relatively high, we can say that the model is good enough
to represent observed behavior in the log.

Alignments can be exploited to identify bottlenecks in process executions.
Given an event log and a proces model, synchronous moves of all optimal align-
ments between the traces in the log and the model provide a way to map occur-
rences of events in the log to the model. This mapping can be used to project
performance information onto the model to show bottlenecks as proposed in [3].
Figure 24 shows a projection of performance information in the BPI Challenge
2012 log onto its process model using the alignment-based approach proposed in
[3]. The color of a place indicate the average time spent between the moment a
token enters the place until the moment the same token is consumed by another
transition, i.e. waiting time. The color of a transition indicate the time spent
between the moment the transition is enabled until the moment it is fired, i.e.
sojourn time. The closer the color of a place(transition) to red, the higher their
average waiting(sojourn) time value compares to other places(transitions).

Memory-Efficient Alignment of Observed and Modeled Behavior 39

As shown in Figure 24, activity W Wijzigen contractgegeven is the bottle-
neck of the process, as in average it is performed 1.14 months after it is en-
abled. However, the activity occurred rarely (only 4 times). We can also see
that the average waiting time for the input place of transition W Nabellen of-
fertes+START is high (2.83 days) compared to waiting time of other places and
occurred frequently (24,299 times). Thus, improving the waiting time of the place
may improve overall performance more significantly than improving the sojourn
time of W Wijzigen contractgegeven. Interestingly, we also see that among the
four parallel activities: O ACCEPTED, A REGISTERED, A ACTIVATED, and
A APPROVED, the activity O ACCEPTED has lower average sojourn times
compared to the other activities (27.07 minutes compared to 29.56 minutes for
other three activities). Furthermore, all of them have similar frequency of oc-
currences (i.e. 2,242 for O ACCEPTED and 2,244 for the other three acivities).
This may indicate that the four activities are always performed in batch and
O ACCEPTED triggers the execution of the other three activities.

40 A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst

“O
_

A
C

C
E

P
T

E
D

”
h

a
s

a
ve

ra
g

e
 s

o
jo

u
rn

 t
im

e
 o

f
2

7
.0

7
 m

in
u

te
s,

w
h

ile
 “

A
_

R
E

G
IS

T
E

R
E

D
”,

 ”
A

_
A

C
T

IV
A

T
E

D
”,

 a
n

d

“A
_

A
P

P
R

O
V

E
D

”
h

a
ve

 a
ve

ra
g

e
 s

o
jo

u
rn

 t
im

e
 o

f
2

9
.5

6
 m

in
u

te
s

A
ct

iv
it

y
“W

_
W

ijz
ig

e
n

 c
o

n
tr

a
ct

g
e

g
e

ve
n

s”
 is

 t
h

e

b
o

tt
le

n
e

ck
,

b
u

t
it

 o
cc

u
re

d
 r

a
re

ly
 (

o
n

ly
 4

 t
im

e
s)

T
h

e
 a

ve
ra

g
e

 w
a

it
in

g
 t

im
e

 f
o

r
th

e
 in

p
u

t
p

la
ce

 o
f

“W
_

N
a

b
e

lle
n

 o
ff

e
rt

e
s+

S
T

A
R

T
”

is
 v

e
ry

 lo
n

g
 (

2
.8

3
 d

a
ys

)

co
m

p
a

re
s

to
 t

h
e

 a
ve

ra
g

e
 w

a
it

in
g

 t
im

e
 o

f
o

th
e

r
p

la
ce

s

F
ig
.
2
4
.
S
cr
ee
n
sh
o
ts

o
f
p
ro
je
ct
ed

o
p
ti
m
a
l
a
li
g
n
m
en

ts
o
n
to

p
ro
ce
ss

m
o
d
el

fo
r
p
er
fo
rm

a
n
ce

a
n
a
ly
si
s.

R
ed

p
la
ce
s/
tr
a
n
si
ti
o
n
s
in
d
ic
a
te

b
o
tt
le
n
ec
k
s.

Memory-Efficient Alignment of Observed and Modeled Behavior 41

8 Conclusion

In situations where process executions are not enforced by systems, deviations
between the operational processes of an organization and the models used to de-
scribe these processes occur frequently. The analysis of business processes based
on observed behavior has proven to be a complex problem in such situations,
because analysis techniques typically have difficulties relating the observed be-
havior to the modeled behavior. In this paper, we consider an approach to align
observed behavior in the form of event logs to process models described using a
notation such as BPMN. To do so, we align traces recorded in the event logs with
Petri net translations of the original models. These alignments are the starting
point for conformance checking and performance analysis based on models and
event logs.

The alignment of traces to Petri nets is a complex problem which we ad-
dressed by translating this problem into a shortest path problem on a (possibly
infinite) graph. We showed that a shortest path can always be found using an A⋆

based algorithm with a permissible underestimation function. The techniques we
presented in this paper make maximal use of the relation between the structure
of the Petri net and it’s potential behavior. We exploited the marking equation
in our estimation function. Our experiments on real-life size logs and models
showed that memory use is reduced significantly in all cases where the marking
equation is exploited. In situations where no deviations occur, the computation
time overhead of exploiting the marking equation causes a limited increase in
overall computation time. However, in cases where deviations are more frequent,
which is the case is almost all real-life applications, the use of the marking equa-
tion leads to a reduction in computation time on top of the memory reduction.
In fact, without using the marking equation, out-of-memory problems occur fre-
quently. Furthermore, we showed using a study case that the approach is robust
to logs and models with real-life complexity, and alignments in general provide
valuable insights into process executions.

In order to make our approach applicable to real-life languages such as
BPMN, EPCs, etc, we extended our techniques to Petri nets with reset and
inhibitor arcs. This way we can deal with advanced workflow patterns, such
as cancellation, priorities, OR-joins, and timeouts more easily. All real-life lan-
guages can be translated to Petri nets with reset and inhibitor arcs while retain-
ing precise semantics and our experiments show that the introduction of these
arcs does not lead to a significant increase in memory usage or computation
time.

The techniques presented in this paper are fully implemented using the open
source framework ProM and the models and logs used in the experiments are
publically available from http://adriansyah.info/publications/ilp.

References

1. A. Adriansyah, J. Munoz-Gama, J. Carmona, B.F. van Dongen, and W.M.P.
van der Aalst. Alignment based precision checking. In Proceedings of the 8th In-

42 A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst

ternational Workshop on Business Process Intelligence 2012 (BPI 2012), Tallinn,
Estonia, September 2012.

2. A. Adriansyah, N. Sidorova, and B.F. van Dongen. Cost-Based Fitness in Con-
formance Checking. International Conference on Application of Concurrency to
System Design, pages 57–66, 2011.

3. A. Adriansyah, B.F. van Dongen, D. Piessens, M.T. Wynn, and M. Adams. Ro-
bust Performance Analysis on YAWL Process Models with Advanced Constructs.
Journal of Information Technology Theory and Application (JITTA), 12(3):5–26,
2011.

4. A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst. Conformance Check-
ing Using Cost-Based Fitness Analysis. pages 55–64, Los Alamitos, CA, USA,
2011. IEEE Computer Society.

5. A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst. Towards Robust
Conformance Checking. In Michael Muehlen and Jianwen Su, editors, Business
Process Management Workshops, volume 66 of Lecture Notes in Business Infor-
mation Processing, pages 122–133. Springer Berlin Heidelberg, 2011.

6. L. Baresi and M. Pezzè. Concurrent object-oriented programming and petri nets.
chapter On Formalizing UML with High-level Petri Nets, pages 276–304. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2001.

7. J.E. Cook and A.L. Wolf. Software Process Validation: Quantitatively Measuring
the Correspondence of a Process to a Model. ACM Transactions on Software
Engineering and Methodology (TOSEM), 8:147–176, April 1999.

8. G.B. Dantzig and M.N. Thapa. Linear Programming 1: Introduction. Springer,
1997.

9. R. Dechter and J. Pearl. Generalized Best-first Search Strategies and the Opti-
mality of A*. Journal of the ACM (JACM), 32(3):505–536, 1985.

10. C. Dufourd, A. Finkel, and P. Schnoebelen. Reset Nets Between Decidability and
Undecidability. In Proceedings of the 25th International Colloquium on Automata,
Languages and Programming, ICALP ’98, pages 103–115, London, UK, UK, 1998.
Springer-Verlag.

11. M. Dumas, W.M.P. van der Aalst, and A.H. ter Hofstede, editors. Process-Aware
Information Systems : Bridging People and Software through Process Technology.
Wiley-Interscience, Hoboken, NJ, 2005.

12. D. Fahland and W.M.P. van der Aalst. Repairing process models to reflect reality.
In Alistair Barros, Avigdor Gal, and Ekkart Kindler, editors, Business Process
Management, volume 7481 of Lecture Notes in Computer Science, pages 229–245.
Springer Berlin / Heidelberg, 2012.

13. P. E. Hart, N. J. Nilsson, and B. Raphael. A Formal Basis for the Heuristic
Determination of Minimum Cost Paths in Graphs. IEEE Trans. Syst. Sci. and
Cybernetics, SSC-4(2):100–107, 1968.

14. N. Lohmann. A Feature-Complete Petri Net Semantics for WS-BPEL2.0. In M.
Dumas and R. Heckel, editors, Web Services and Formal Methods, volume 4937
of Lecture Notes in Computer Science, pages 77–91. Springer Berlin / Heidelberg,
2008.

15. N. Lohmann, E. Verbeek, and R. Dijkman. Transactions on Petri Nets and Other
Models of Concurrency II. chapter Petri Net Transformations for Business Pro-
cesses — A Survey, pages 46–63. Springer-Verlag, Berlin, Heidelberg, 2009.

16. R. Lorenz, G. Juhas, R. Bergenthum, J. Desel, and S. Mauser. Executability of
Scenarios in Petri nets. Theoretical Computer Science, 410(1213):1190 – 1216,
2009.

Memory-Efficient Alignment of Observed and Modeled Behavior 43

17. J. Munoz-Gama and J. Carmona. Enhancing precision in process conformance:
Stability, confidence and severity. In Proceedings of the IEEE Symposium on Com-
putational Intelligence and Data Mining (CIDM 2011), pages 184–191. IEEE, April
2011.

18. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, August 2002.

19. OASIS. Business process model and notation (bpmn) version 2.0, 2007.
20. OMG. Business Process Model and Notation (BPMN) Version 2.0, 2011.
21. C. Ouyang, E. Verbeek, W.M.P. van der Aalst, S. Breutel, M. Dumas, and A.H.M.

ter Hofstede. Formal Semantics and Analysis of Control Flow in WS-BPEL. Sci-
ence of Computer Programming, 67(2-3):162–198, July 2007.

22. E. Ramezani, D. Fahland, and W.M.P. van der Aalst. Where Did I Misbehave?
Diagnostic Information in Compliance Checking. In Alistair Barros, Avigdor Gal,
and Ekkart Kindler, editors, Business Process Management, volume 7481 of Lecture
Notes in Computer Science, pages 262–278. Springer Berlin / Heidelberg, 2012.

23. K. Reinhardt. Reachability in Petri Nets with Inhibitor Arcs. Electronic Notes in
Theoretical Computer Science (ENTCS), 223:239–264, December 2008.

24. A. Rozinat, R. S. Mans, M. Song, and W.M.P. van der Aalst. Discovering simula-
tion models. Information Systems, 34(3):305–327, May 2009.

25. A. Rozinat and W.M.P. van der Aalst. Conformance Checking of Processes Based
on Monitoring Real Behavior. Information Systems, 33:64–95, March 2008.

26. W.M.P. van der Aalst. Formalization and Verification of Event-driven Process
Chains. Information and Software Technology, 41(10):639–650, 1999.

27. W.M.P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer Verlag, 2011. ISBN:978-3-642-19344-6.

28. W.M.P. van der Aalst, A. Adriansyah, and B.F. van Dongen. Replaying History
on Process Models for Conformance Checking and Performance Analysis. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(2):182–192,
2012.

29. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.

30. W.M.P. van der Aalst, K. M. van Hee, A.H.M. ter Hofstede, N. Sidorova, H. M.
W. Verbeek, M. Voorhoeve, and M. T. Wynn. Soundness of workflow nets: Clas-
sification, decidability, and analysis. Formal Aspects of Computing, 23:333–363,
May 2011.

31. W.M.P. van der Aalst, K.M. van Hee, J.M. van der Werf, and M. Verdonk. Auditing
2.0: Using Process Mining to Support Tomorrow’s Auditor. Computer, 43:90–93,
March 2010.

32. W.M.P. van der Aalst and H.M.W. Verbeek. Process Discovery and Conformance
Checking Using Passages. BPM Center Report BPM-12-21, BPMcenter.org, 2012.

33. B. F. van Dongen, M. H. Jansen-Vullers, H.M.W. Verbeek, and W.M.P. van der
Aalst. Verification of the SAP Reference Models using EPC Reduction, State-space
Analysis, and Invariants. Computers in Industry, 58(6):578–601, August 2007.

34. B.F. van Dongen. Event log for the bpi challenge 2012, 2012.
35. H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, and W. M.P. van der Aalst.

ProM 6: The process mining toolkit. In M. La Rosa, editor, Proceedings of BPM
Demonstration Track 2010, volume 615 of CEUR Workshop Proceedings, pages
34–39, Hoboken, USA, September 2010. CEUR-WS.org.

36. H.M.W. Verbeek, M.T. Wynn, W.M.P. van der Aalst, and A.H.M. ter Hofstede.
Reduction Rules for Reset/Inhibitor Nets. Journal of Computer and System Sci-
ences, 76(2):125–143, March 2010.

44 A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst

37. J. Wang, Y. Deng, and G. Xu. Reachability Analysis of Real-time Systems using
Time Petri nets. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 30(5):725 –736, oct 2000.

38. H. Wimmel and K. Wolf. Finding a Witness Path for Non-Liveness in Free-choice
Nets. In Proceedings of the 32nd International Conference on Applications and
Theory of Petri Nets, PETRI NETS’11, pages 189–207, Berlin, Heidelberg, 2011.
Springer-Verlag.

39. Glynn Winskel. Petri nets, Algebras, Morphisms, and Compositionality. Informa-
tion and Computation, 72(3):197 – 238, 1987.

