
Discovering Block-Structured Process Models From
Event Logs - A Constructive Approach

S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst

Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O.
Box 513, NL-5600 MB, Eindhoven, The Netherlands

Abstract Process discovery is the problem of, given a log of observed behaviour,
finding a process model that ‘best’ describes this behaviour. A large variety of
process discovery algorithms has been proposed. However, no existing algorithm
guarantees to return a fitting model (i.e., able to reproduce all observed behaviour)
that is sound (free of deadlocks and other anomalies) in finite time. We present
an extensible framework to discover from any given log a set of block-structured
process models that are sound and fit the observed behaviour. In addition we
characterise the minimal information required in the log to rediscover a particu-
lar process model. We then provide a polynomial-time algorithm for discovering
a sound, fitting, block-structured model from any given log; we give sufficient
conditions on the log for which our algorithm returns a model that is language-
equivalent to the process model underlying the log, including unseen behaviour.
The technique is implemented in a prototypical tool.

1 Introduction

Process mining techniques aim to extract information from event logs. For example,
the audit trails of a workflow management system or the transaction logs of an enter-
prise resource planning system can be used to discover models describing processes,
organisations and products. The most challenging process mining problem is to learn a
process model (e.g., a Petri net) from example traces in some event log. Many process
discovery techniques have been proposed. For an overview of process discovery algo-
rithms, we refer to [12]. Unfortunately, existing techniques may produce models that
are unable to replay the log, may produce erroneous models and may have excessive
run times.

Which process model is ‘best’ is typically defined with respect to several quality cri-
teria. An important quality criterion is soundness. A process model is sound if and only
if all process steps can be executed and some satisfactory end state is always reachable.
In most use cases, an unsound process model can be discarded without considering the
log that it should represent. Another model quality criterion is fitness. A model has per-
fect fitness with respect to a log if it can reproduce all traces in the log. The quality
criterion precision expresses whether the model does not allow for too much behaviour,
generalisation expresses that the model will allow future behaviour that is currently
absent in the log.[9] Other model quality criteria exist, for which we refer to [21]. In
this paper, we focus on soundness and fitness, as so far no existing discovery algorithm
guarantees to return a sound fitting model in finite time.

2 S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst

In addition to finite run time, there are other desirable properties of process discov-
ery algorithms. In reality, the log was produced by some real-life process. The original
process is rediscoverable by a process discovery algorithm if, given a log that contains
enough information, the algorithm returns a model that is equivalent to the original pro-
cess using some equivalence notion. For instance, language-rediscoverability holds for
an algorithm that returns a model that is language-equivalent to the original model used
to generate the log, and isomorphic-rediscoverability holds for an algorithm that returns
a model that is isomorphic to (a representation of) the original model. The amount of
information that is required to be in the log is referred to as log completeness, of which
the most extreme case is total log completeness, meaning that all possible behaviour of
the original process must be present in the log. A process discovery technique is only
useful if it assumes a much weaker notion of completeness. In reality one will rarely
see all possible behaviour.

Many process discovery algorithms [4,23,24,22,6,10,25,16,3,17,8,2] using differ-
ent approaches have been proposed in the past. Some techniques guarantee fitness,
e.g., [25], some guarantee soundness, e.g. [8], and others guarantee rediscoverability
under some conditions, e.g., [4]. Yet, there is essentially no discovery algorithm guar-
anteeing to find a sound, fitting model in finite time for all given logs.

In this paper, we use the block-structured process models of [8,2] to introduce a
framework that guarantees to return sound and fitting process models. This framework
enables us to reason about a variety of quality criteria. The framework uses any flavour
of block-structured process models: new blocks/operators can be added without chang-
ing the framework and with few proof obligations. The framework uses a divide and
conquer approach to decompose the problem of discovering a process model for a log
L into discovering n subprocesses of n sublogs obtained by splitting L. We explore the
quality standards and hard theoretically founded limits of the framework by character-
ising the requirements on the log under which the original model can be rediscovered.

For illustrative purposes, we give an algorithm that uses the framework and runs in
polynomial time for any log and any number of activities. The framework guarantees
that the algorithm returns a sound fitting model. The algorithm works by dividing the
activities of the log over a number of branches, such that the log can be split accord-
ing to this division. We characterise the conditions under which the algorithm returns
a model that is language-equivalent to the original process. The algorithm has been
prototypically implemented using the ProM framework [11].

We start with an explanation of logs, languages, Petri nets, workflow nets and pro-
cess trees in Section 3. In Section 4 the framework is described. The class of models
that this framework can rediscover is described in Section 5. In Section 6 we give an
algorithm that uses the framework and we report on experimental results.

2 Related work

A multitude of process discovery algorithms has been proposed in the past. We review
typical representatives with respect to guarantees such as soundness, fitness, rediscov-
erability and termination. Techniques that discover process models from ordering re-
lations of activities, such as the α algorithm [4] and its derivatives [23,24], guarantee

Discovering Process Models Constructively 3

isomorphic-rediscoverability for rather small classes of models [5] and do not guaran-
tee fitness or soundness. Semantics-based techniques such as the language-based re-
gion miner [6,7], the state-based region miner [10], or the ILP miner [25] guarantee
fitness but neither soundness nor rediscoverability. Frequency-based techniques such
as the heuristics miner [22] guarantee neither soundness nor fitness. Abstraction-based
techniques such as the Fuzzy miner [16] produce models that do not have executable
semantics and hence guarantee neither soundness nor fitness nor any kind of rediscov-
erability.

Genetic process discovery algorithms [3,17] may reach certain quality criteria if
they are allowed to run forever, but usually cannot guarantee any quality criterion given
finite run time. A notable exception is a recent approach [8,2] that guarantees soundness.
This approach restricts the search space to block-structured process models, which are
sound by construction; however, finding a fitting model cannot be guaranteed in finite
run time.

The Refined Process Structure Tree [19] is a parsing technique to find block struc-
tures in process models by which soundness can be checked [14], or an arbitrary model
can be turned into a block-structured one (if possible) [18]. However, these techniques
only analyse or transform a given model, but do not allow to construct a sound or fitting
model. The language-based mining technique of [7] uses regular expressions to pre-
structure the input language (the log) into smaller blocks; this block-structuring of the
log is then used during discovery for constructing a fitting, though possibly unsound,
process model.

Unsound models can be repaired to become sound by simulated annealing [15],
though fitness to a given log is not preserved. Non-fitting models can be repaired to be-
come fitting by adding subprocesses [13], though soundness is not guaranteed. Hence,
a more integrated approach is needed to ensure soundness and fitness. In the following
we will propose such an integrated approach building on the ideas of a restriction to
block-structured models[2,8], and of decomposing the given log into block-structured
parts prior to model construction.

3 Preliminaries

Logs. We assume the set of all process activities Σ to be given. An event e is the
occurrence of an activity: e ∈ Σ. A trace t is a possibly empty sequence of events:
t ∈ Σ∗. We denote the empty trace with ε. A log L is a finite non-empty set of traces:
L ⊆ Σ∗. For example, {〈a, b, c〉, 〈a, c, b〉} denotes a log consisting of two traces abc
and acb, where for instance abc denotes that first a occurred, then b and finally c. The
size of a log is the number of events in it: ||L|| =

∑
t∈L |t|.

Petri Nets, Workflow Nets and Block-structured Workflow Nets. A Petri net is a bipartite
graph containing places and transitions, interconnected by directed arcs. A transition
models a process activity, a place models a part of the net. We assume the standard
semantics of Petri nets here, see [20]. A workflow net is a Petri net having a single start
place and a single end place, modeling the start and end state of a process. Moreover,

4 S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst

all nodes are on a path from start to end[4]. A block-structured workflow net is a hier-
archical workflow net that can be divided recursively into parts having single entry and
exit points. Figure 1 shows a block-structured workflow net.

Process Trees. A process tree is a compact abstract representation of a block-structured
workflow net: a rooted tree in which leaves are labeled with activities and all other nodes
are labeled with operators. A process tree describes a language, an operator describes
how the languages of its subtrees are to be combined.

We formally define process trees recursively. We assume a finite alphabet Σ of
activities and a set

⊕
of operators to be given. Symbol τ /∈ Σ denotes the silent

activity.

– a with a ∈ Σ ∪ {τ} is a process tree;
– Let M1, · · · ,Mn with n > 0 be process trees and let ⊕ be a process tree operator,

then ⊕(M1, . . . ,Mn) is a process tree.

There are a few standard operators that we consider in the following: operator ×
means the exclusive choice between one of the subtrees, → means the sequential ex-
ecution of all subtrees, 	 means the structured loop of loop body M1 and alternative
loop back pathsM2, · · · ,Mn, and ∧means a parallel (interleaved) execution as defined
below. Please note that for 	, n must be ≥ 2.

To describe the semantics of process trees, we define the language of a process tree
M as a recursive monotonic function L(M), using for each operator ⊕ a language join
function ⊕l:

L(a) = {〈a〉} for a ∈ Σ
L(τ) = {ε}

L(⊕(M1, . . . ,Mn)) = ⊕l(L(M1), . . . ,L(Mn))

Each operator ⊕ has its own language join function ⊕l. Each function takes several
logs and produces a new log: ⊕l : 2

Σ∗ × · · · × 2Σ
∗ → 2Σ

∗
.

×l(L1, . . . , Ln) =
⋃

1≤i≤n

Li

→l(L1, . . . , Ln) = {t1 · t2 · · · tn|∀i ∈ 1 · · ·n : ti ∈ Li}

	l(L1, . . . , Ln) = {t1 · t′1 · t2 · t′2 · · · tm|∀i : ti ∈ L1 ∧ t′i ∈
⋃

2≤j≤n

Lj}

To characterise ∧, we introduce a set notation {t1, · · · , tn}' that interleaves the
traces t1 · · · tn. We need a more complex notion than a standard projection function
due to overlap of activities over traces.

t ∈ {t1, . . . , tn}' ⇔ ∃(f : {1 · · · |t|]} → {(j, k)|j ≤ n ∧ k ≤ |tj |}) :
∀i1 < i2 ∧ f(i1) = (j, k1) ∧ f(i2) = (j, k2) : k1 < k2 ∧
∀i ≤ n ∧ f(i) = (j, k) : t(i) = tj(k)

Discovering Process Models Constructively 5

where f is a bijective function mapping each event of t to an event in one of the ti
and t(i) is the ith element of t. For instance, 〈a, c, d, b〉 ∈ {〈a, b〉, 〈c, d〉}'. Using this
notation, we define ∧l:

∧l(L1, . . . , Ln) = {t|t ∈ {t1, · · · , tn}' ∧ ∀i : ti ∈ Li}

τ

b

c

d

e

f

g

h

a τ

Figure 1: A Petri net, modified from [1, page 196]. The rectangle regions denote the
process tree nodes in→(a,	(→(∧(×(b, c), d), e), f),×(g, h)).

Each of the process tree operators has a straightforward formal translation to a
sound, block-structured workflow Petri net [8,2]. For instance, the Petri net shown in
Figure 1 corresponds to the process tree →(a,	(→(∧(×(b, c), d), e), f),×(g, h)). If
one would come up with another process tree operator, soundness of the translation
follows if the translation of the new process tree operator is sound in isolation. The
four operators presented here translate to well-structured, free-choice Petri nets; other
operators might not.

The size of a model M is the number of nodes in M and is denoted as |M |:
|τ | = 1, |a| = 1 and | ⊕(M1, . . . ,Mn)| = 1 +

∑
i |Mi|. Two process trees M =

⊕(M1, . . . ,Mn) and M ′ = ⊕′(M ′1, . . . ,M ′n) are isomorphic if and only if they are
syntactically equivalent up to reordering of children in the case of ×, ∧ and the non-
first children of 	.

If M is a process tree and L is a log, then L fits M if and only if every trace in L
is in the language of M : L ⊆ L(M). A flower model is a process tree that can produce
any sequence ofΣ. An example of a flower model is the model	(τ, a1, . . . , am) where
a1 · · · am = Σ.

As additional notation, we write Σ(L) and Σ(M) for the activities occurring in log
L or model M respectively, not including τ . Furthermore, Start(L), Start(M) and
End(L), End(M) denote the sets of activities with which log L and model M start or
end.

4 Framework

In this section, we introduce a highly generic process discovery framework. This frame-
work allows for the derivation of various process discovery algorithms with predefined

6 S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst

guarantees. Then we prove that each model returned by the framework fits the log and
that the framework describes a finite computation, both for any set of process tree op-
erators having a corresponding monotonic language join function.

Requirement on the Process Tree Operators. The framework works independently
of the chosen process tree operators. The only requirement is that each operator⊕must
have a sensible language join function ⊕l, such that the language of ⊕ reflects the
language join of its ⊕l.

Framework Given a set
⊕

of process tree operators, we define a framework B to
discover a set of process models using a divide and conquer approach. Given a log L,B
searches for possible splits of L into smaller L1 · · ·Ln, such that these logs combined
with an operator ⊕ can produce L again. It then recurses on the found divisions and
returns a cartesian product of the found models. The recursion ends when L cannot be
divided any further. We have to give this algorithmic idea a little twist as splitting L
into strictly smaller L1 · · ·Ln could prevent some models from being rediscovered, for
instance in presence of unobservable activities. As a more general approach, we allow
L to be split into sublogs having the same size as L. However, such splits that do not
decrease the size of L may only happen finitely often. For this, we introduce a counter
parameter φ, which has to decrease if a non-decreasing log split is made. Parameter φ
essentially bounds the number of invisible branches that the discovered model can have.

function Bselect(L, φ)
if L = {ε} then

base← {τ}
else if ∃a ∈ Σ : L = {〈a〉} then

base← {a}
else

base← ∅
end if
P ← select(L)
if |P | = 0 then

if base = ∅ then
return {	(τ, a1, . . . , am) where {a1 · · · am} = Σ(L)}

else
return base

end if
end if
return {⊕(M1, . . . ,Mn)|(⊕, ((L1, φ1), . . . , (Ln, φn))) ∈ P∧∀i :Mi ∈ B(Li, φi)}∪

base
end function

Where select is a function that takes a log and returns a set of preferred log divi-
sions, being tuples (⊕, ((L1, φ1), . . . , (Ln, φn))), in which⊕ is a process tree operator,
Li are logs and φi are counter parameters. Each returned tuple should:

Discovering Process Models Constructively 7

Definition 1. For each tuple (⊕, ((L1, φ1), . . . , (Ln, φn))) that select(L) returns, it
must hold that

L ⊆ ⊕l(L1, . . . , Ln) ∧
∀i : ||Li||+ φi < ||L||+ φ ∧
∀i : ||Li|| ≤ ||L|| ∧
∀i : φi ≤ φ ∧
∀i : Σ(Li) ⊆ Σ(L) ∧

⊕ ∈
⊕
∧

n ≤ ||L||+ φ

In the remainder of this section, we will prove some properties that do not depend
on a specific preference function select.

Theorem 2. Assuming select terminates, B terminates.

Proof. Termination follows from the fact that in each recursion, ||L|| + φ gets strictly
smaller and that there are finitely many recursions from a recursion step. By con-
struction of select, Σ(Li) ⊆ Σ(L), and therefore Σ is finite. By construction of P ,
n ≤ ||L|| + φ, so there are finitely many sublogs Li. Hence, select creates finitely
many log divisions. Therefore, the number of recursions is finite and hence B termi-
nates. ut
Theorem 3. Let

⊕
be a set of operators and let L be a log. Then B(L) returns at least

one process tree and all process trees returned by B(L) fit L.

Proof. Proof by induction on value of ||L||+φ. Base cases: ||L||+φ = 1 or ||L||+φ =
2. Then, L is either {ε} or {〈a〉}. By code inspection, for these L B returns at least one
process tree and all process trees fit L.
Induction hypothesis: for all logs ||L′||+φ′ smaller than ||L||+φ, B(L′, φ′) returns at
least one process tree and all process trees thatB returns fit L′ : ∀||L′||+φ′ < ||L||+φ :
|B(L′)| ≥ 1 ∧ ∀M ′ ∈ B(L′) : L′ ⊆ L(M ′).
Induction step: assume ||L||+ φ > 2 and the induction hypothesis. Four cases apply:

– Case L = {ε}, see base case;
– Case L = {〈a〉}, see base case;
– Case P is empty, L 6= {ε} and L 6= {a}. Then B returns the flower model
{	(τ, a1, . . . , am) where a1 · · · am = Σ(L)} and that fits any log.

– Case P is nonempty, L 6= {ε} and L 6= {a}. Let M1 · · ·Mn be models returned by
B(L1, φ1), . . . , B(Ln, φn) for some logs L1 · · ·Ln and some counters φ1 · · ·φn.
By construction of the P -selection step, ∀i : ||Li|| + φi < ||L|| + φ. By the in-
duction hypothesis, these models exist. As B combines these models in a cartesian
product, |B(L)| ≥ 1. By the induction hypothesis, ∀i : Li ⊆ L(Mi). Using the
fact that ⊕l is monotonic and the construction of M , we obtain ⊕l(L1, . . . , Ln) ⊆
L(⊕(M1, . . . ,Mn)) = L(M). By construction of P , L ⊆ ⊕l(L1, . . . , Ln), and
by ⊕l(L1, . . . , Ln) ⊆ L(M), we conclude that L ⊆ L(M). We did not pose any
restrictions on M1 · · ·Mn, so this holds for all combinations of M1 · · ·Mn from
the sets returned by B. ut

8 S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst

5 Rediscoverability of Process Trees

An interesting property of a discovery algorithm is whether and under which assump-
tions an original process can be rediscovered by the algorithm. Assume the original
process is expressible as a model M , which is unknown to us. Given is a log L of
M : L ⊆ L(M). M is isomorphic-rediscoverable from L by algorithm B if and only
if M ∈ B(L). It is desirable that L can be as small as possible to rediscover M . In
this section, we explore the boundaries of the framework B of Section 4 in terms of
rediscoverability.

We first informally give the class of original processes that can be rediscovered by
B, and assumptions on the log under which this is guaranteed. After that, we give an
idea why these suffice to rediscover the model. In this section, the preference function
select as used in B is assumed to be the function returning all log divisions satisfying
Definition 1. Otherwise, the original model could be removed.

Class of Rediscoverable Models. Any algorithm has a representational bias; B can
only rediscover processes that can be described by process trees. There are no further
limitations: B can rediscover every process tree. An intuitive argument for this claim
is that as long as the log can be split into the parts of which the log was constructed,
the algorithm will also make this split and recurse. A necessity for this is that the log
contains ‘enough’ behaviour.

Log Requirements. All process trees can be rediscovered given ‘enough’ traces in the
log, where enough means that the given log can be split according to the respective
process tree operator. Intuitively, it suffices to execute each occurrence of each activity
in M at least once in L. Given a large enough φ, B can then always split the log
correctly.

This yields the notion of activity-completeness. Log L is activity-complete w.r.t.
model M , denote L �aM , if and only if each leaf of M appears in L at least once.
Formally, we have to distinguish two cases. For a model M ′ where each activity occurs
at most once and a log L′,

L′ �aM ′ ⇔ Σ(M ′) ⊆ Σ(L′)

In the general case, where some activity a ∈ Σ occurs more than once in M , we
have to distinguish the different occurrences. For a given alphabet Σ consider a refined
alphabet Σ′ and a surjective function f : Σ′ → Σ, e.g., Σ′ = {a1, a2, · · · , b1, b2, · · · }
and a = f(a1) = f(a2) = · · · , b = f(b1) = f(b2) = · · · , etc. For a log L′ and model
M ′ over Σ′, let f(L′) and f(M ′) denote the log and the model obtained by replacing
each a ∈ Σ′ by f(a) ∈ Σ. Using this notation, we define for arbitrary log L and model
M ,

L �aM ⇔ ∃Σ′, (f ′ : Σ′ → Σ),M ′, L′ : f(L′) = L ∧ f(M ′) =M ∧ L′ �aM ′,

where each activity a ∈ Σ′ occurs at most once in M ′.

Discovering Process Models Constructively 9

Rediscoverability of Models. In order to prove isomorphic rediscoverability, we need
to show that any log L �aM can be split by B such that M can be constructed, given a
large enough φ.

Theorem 4. Given a large enough φ, for each log L and model M such that L ⊆
L(M) and L �aM it holds that M ∈ B(L).

Proof. Proof by induction on model sizes. Base case: |M | = 1. A model of size 1
consists of a single leaf l. By L ⊆ L(M) ∧ L �aM , L is {l}. These are handled by the
L = {ε} or L = {〈a〉} clauses and hence can be rediscovered.
Induction hypothesis: all models smaller than M can be rediscovered: ∀|M ′| < |M | ∧
L′ ⊆ L(M) ∧ L′ �aM ′ :M ′ ∈ B(L′, φ′), for some number φ′.
Induction step: assume |M | > 1 and the induction hypothesis. As |M | > 1, M =
⊕(M1, . . . ,Mn) for certain ⊕, n and M1 · · ·Mn. By L ⊆ L(M) and definition of
L(M), there exist L1 · · ·Ln such that ∀i : Li ⊆ L(Mi), ∀i : Li �aMi and L ⊆
⊕l(L1, . . . , Ln). By the induction hypothesis there exist φ1 · · ·φn such that ∀i : Mi ∈
B(Li, φi). We choose φ to be large enough by taking φ = max{n, φ1+1, . . . , φn+1}.
By this choice of φ,

∀i : ||Li||+ φi < ||L||+ φ ∧ φi ≤ φ

and
n ≤ ||L||+ φ

hold. By construction of ⊕l,
∀i : ||Li|| ≤ ||L||

By |M | > 1 and our definitions of ×l, →l, ∧l and 	l, L does not introduce new
activities:

∀i : Σ(Li) ⊆ Σ(L)

Hence, (⊕, ((L1, φ1), . . . , (Ln, φn))) ∈ P . By the induction hypothesis, ∀Mi : Mi ∈
B(Li). The models returned by B(Li) will be combined using a cartesian product, and
as M = ⊕(M1, . . . ,Mn), it holds that M ∈ B(L). ut

This proof shows that it suffices to pick φ to be the sum of the width and depth of the
original model M in order to rediscover M from an activity-complete log L.

6 Discovering Process Trees Efficiently

The framework of Section 4 has a practical limitation: for most real-life logs, it is infea-
sible to construct the full set P . In this section, we introduce an algorithm B′ that is a
refinement of the framework B. B′ avoids constructing the complete set P . The central
idea ofB′ is to compute a log split directly based on the ordering of activities in the log.
We first introduce the algorithmic idea and provide formal definitions afterwards. We
conclude this section with a description of the classes of process trees that B′ is able to
language-rediscover and a description of our prototype implementation.

10 S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst

d e

f

a

b

c

(a) G(L).

b

c

d e

f

(b) G(L2)

b

c

(c) G(L3).

d e

f

(d) G(L4).

Figure 2: Several directly-follows graphs. Dashed lines denote cuts.

6.1 Algorithmic idea

The directly-follows relation, also used by the α-algorithm [4], describes when two
activities directly follow each other in a process. This relation can be expressed in
the directly-follows graph of a log L, written G(L). It is a directed graph containing
as nodes the activities of L. An edge (a, b) is present in G(L) if and only if some
trace 〈· · · , a, b, · · · 〉 exists in L. A node of G(L) is a start node if its activity is in
Start(L). We define Start(G(L)) = Start(L). Similarly for end nodes in End(L),
and End(G(L)). The definition for G(M) is similar. For instance, Figure 2a shows the
directly-follows graph of log L = {〈a, b, c〉, 〈a, c, b〉, 〈a, d, e〉, 〈a, d, e, f, d, e〉}.

The idea for our algorithm is to find in G(L) structures that indicate the ‘domi-
nant’ operator that orders the behaviour. For example,G(L) of Fig 2a can be partitioned
into two sets of activities as indicated by the dashed line such that edges cross the line
only from left to right. This pattern corresponds to a sequence where the activities left
of the line precede the activities right of the line. This is the decisive hint on how to split
a given log when using the framework of Section 4. Each of the four operators ×,→,
	, ∧ has a characteristic pattern in G(L) that can be identified by finding a partitioning
of the nodes of G(L) into n sets of nodes with characteristic edges in between. The log
L can then be split according to the identified operator, and the framework recurses on
each of the split logs. The formal definitions are provided next.

6.2 Cuts, Components, Cliques

Let G(L) be the directly-follows graph of a log L. An n-ary cut c of G(L) is a partition
of the nodes of the graph into disjoint sets Σ1 · · ·Σn. We characterise a different cut
for each operator ×,→, 	, ∧ based on edges between the nodes.

In a exclusive choice cut, each Σi has a start node and an end node, and there is no
edge between two different Σi 6= Σj , as illustrated by Figure 3(left). In a sequence cut,
the sets Σ1 · · ·Σn are ordered such that for any two nodes a ∈ Σi, b ∈ Σj , i < j, there
is a path from a to b along the edges of G(L), but not vice versa; see Figure 3(top). In a
parallel cut, each Σi has a start node and an end node, and any two nodes a ∈ Σi, b ∈
Σj , i 6= j are connected by edges (a, b) and (b, a); see Figure 3(bottom). In a loop cut,
Σ1 has all start and all end nodes of G(L), there is no edge between nodes of different
Σi 6= Σj , i, j > 1, and any edge betweenΣ1 andΣi, i > 1 either leaves an end node of

Discovering Process Models Constructively 11

...

sequence:

...

exclusive choice:

...

parallel:

...

loop:

Figure 3: Cuts of the directly-follows graph for operators ×,→, ∧ and 	.

Σ1 or reaches a start node of Σ1; see Figure 3(right). An n-ary cut is maximal if there
exists no cut of G of which n is bigger. A cut c is nontrivial if n > 1.

Let a b ∈ G denote that there exists a directed edge chain (path) from a to b in
G. Definitions 5, 6, 7 and 8 show the formal cut definitions.

Definition 5. An exclusive choice cut is a cut Σ1 · · ·Σn of a directly-follows graph G,
such that

1. ∀i 6= j ∧ ai ∈ Σi ∧ aj ∈ Σj : (ai, aj) /∈ G

Definition 6. A sequence cut is an ordered cut Σ1 · · ·Σn of a directly-follows graph G
such that

1. ∀1 ≤ i < j ≤ n ∧ ai ∈ Σi ∧ aj ∈ Σj : aj ai /∈ G
2. ∀1 ≤ i < j ≤ n ∧ ai ∈ Σi ∧ aj ∈ Σj : ai aj ∈ G
3. ai ∈ S(Σi) ≡ ∃j 6= i ∧ aj ∈ Σj : (aj , ai) ∈ G
ai ∈ E(Σi) ≡ ∃j 6= i ∧ aj ∈ Σj : (ai, aj) ∈ G
∀ai ∈ E(Σi) ∧ aj ∈ S(Σi+1) : (ai, aj) ∈ G

Definition 7. A parallel cut is a cut Σ1 · · ·Σn of a directly-follows graph G such that

1. ∀i : Σi ∩ Start(G) 6= ∅ ∧Σi ∩ End(G) 6= ∅
2. ∀i 6= j ∧ ai ∈ Σi ∧ aj ∈ Σj : (ai, aj) ∈ G ∧ (aj , ai) ∈ G

Definition 8. A loop cut is a partially ordered cutΣ1 · · ·Σn of a directly-follows graph
G such that

1. Start(G) ∪ End(G) ⊆ Σ1

2. ∀i 6= 1 ∧ ai ∈ Σi ∧ a1 ∈ Σ1 : (a1, ai) ∈ G⇒ a1 ∈ End(G)
3. ∀i 6= 1 ∧ ai ∈ Σi ∧ a1 ∈ Σ1 : (ai, a1) ∈ G⇒ a1 ∈ Start(G)
4. ∀1 6= i 6= j 6= 1 ∧ ai ∈ Σi ∧ aj ∈ Σj : (ai, aj) /∈ G
5. ∀i 6= 1 ∧ ai ∈ Σi ∧ a1 ∈ Start(G) : (∃a′1 ∈ Σ1 : (ai, a

′
1) ∈ G)⇔ (ai, a1) ∈ G

6. ∀i 6= 1 ∧ ai ∈ Σi ∧ a1 ∈ End(G) : (∃a′1 ∈ Σ1 : (a′1, ai) ∈ G)⇔ (a1, ai) ∈ G

12 S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst

6.3 Algorithm B′

B′ uses the frameworkB of Section 4 by providing a select function selectB′ . selectB′
takes a log and produces a single log division. Recursion and base cases are still handled
by the framework B. For φ, we will use the fixed value 0.

The function selectB′ works by constructing the directly follows graph G(L) of
the input log L. After that, the function tries to find one of the four cuts characterised
above. If selectB′ finds such a cut, it splits the log according to the cut and returns a
log division corresponding to the cut. If selectB′ cannot find a cut, it returns no log
division, and B will produce the flower model for L.

We first define selectB′ followed by the functions to split the log which we illustrate
by a running example. We conclude by posing a lemma stating that selectB′ is a valid
select function for the framework B.

function selectB′ (L)
if ε ∈ L ∨ ∃a ∈ Σ(L) : L = {〈a〉} then

return ∅
else if c← a nontrivial maximal exclusive choice cut c of G(L) then

Σ1, · · · , Σn ← c
L1, · · · , Ln ← EXCLUSIVECHOICESPLIT(L, (Σ1, . . . , Σn))
return {(×, ((L1, 0), . . . , (Ln, 0)))}

else if c← a nontrivial maximal sequence cut c of G(L) then
Σ1, · · · , Σn ← c
L1, · · · , Ln ← SEQUENCESPLIT(L, (Σ1, . . . , Σn))
return {(→, ((L1, 0), . . . , (Ln, 0)))}

else if c← a nontrivial maximal parallel cut c of G(L) then
Σ1, · · · , Σn ← c
L1, · · · , Ln ← PARALLELSPLIT(L, (Σ1, . . . , Σn))
return {(∧, ((L1, 0), . . . , (Ln, 0)))}

else if c← a nontrivial maximal loop cut c of G(L) then
Σ1, · · · , Σn ← c
L1, · · · , Ln ← LOOPSPLIT(L, (Σ1, . . . , Σn))
return {(, ((L1, 0), . . . , (Ln, 0)))}

end if
return ∅

end function
Using the cut definitions, selectB′ divides the activities into sets Σ1 · · ·Σn. After

that, selectB′ splits the log.
The cuts can be computed efficiently using graph techniques. We will give an intu-

ition: the exclusive choice cut corresponds to the notion of connected components. If
we collapse both strongly connected components and pairwise unreachable nodes into
single nodes, the collapsed nodes that are left are the Σs of the sequence cut. If both
of these cuts are not present, then we remove every dual edge, and add double edges
where there was no or a single edge present. In the resulting graph each connected com-
ponent is a Σi of the parallel cut. If these cuts are not present, temporarily removing
the start and end activities and computing the connected components in the resulting
graph roughly gives us the loop cut. As shown in Lemma 16 in Appendix A, the order

Discovering Process Models Constructively 13

in which the cuts are searched for is arbitrary, but for ease of proof and computation we
assume it to be fixed as described.

We define the log split functions together with a running example.
Consider the log L = {〈a, b, c〉, 〈a, c, b〉, 〈a, d, e〉, 〈a, d, e, f, d, e〉}. G(L) is shown

in Figure 2a which has the sequence cut {a}, {b, c, d, e, f}. The log is then split by
projecting each trace of L onto the different activity sets of the cut.

function SEQUENCESPLIT(L, (Σ1, . . . , Σn))
∀j : Lj ← {tj |t1 · t2 · · · tn ∈ L ∧ ∀i ≤ n ∧ e ∈ ti : e ∈ Σi}
return L1, · · · , Ln

end function
In the example, SEQUENCESPLIT(L, ({a}, {b, c, d, e, f})) =
{〈a〉}, {〈b, c〉, 〈c, b〉, 〈d, e〉, 〈d, e, f, d, e〉}. Call the second log L2. G(L2) is shown in
Figure 2b and has the exclusive choice cut {b, c}, {d, e, f}. The log is then split by
moving each trace of L into the log of the corresponding activity set.

function EXCLUSIVECHOICESPLIT(L, (Σ1, . . . , Σn))
∀i : Li ← {t|t ∈ L ∧ ∀e ∈ t : e ∈ Σi}
return L1, · · · , Ln

end function
In the example, EXCLUSIVECHOICESPLIT(L2, ({b, c}, {d, e, f})) = {〈b, c〉, 〈c, b〉}, {〈d, e〉, 〈d, e, f, d, e〉}.
Call the first log L3 and the second log L4. G(L3) is shown in Figure 2c and has the
the parallel cut {b}, {c}. The log is split by projecting each trace for each activity set in
the cut.

function PARALLELSPLIT(L, (Σ1, . . . , Σn))
∀i : Li ← {t|Σj |t ∈ L}
return L1, · · · , Ln

end function
where t|X is a function that projects trace t onto set of activities X , such that all
events remaining in t|X are in X . In our example, PARALLELSPLIT(L3, ({b}, {c})) =
{〈b〉}, {〈c〉}. The directly-follows graph of the logL4 = {〈d, e〉, 〈d, e, f, d, e〉} is shown
in Figure 2d and has the loop cut {d, e}, {f}. The log is split by splitting each trace into
subtraces of the loop body and of the loopback condition which are then added to the
respective sublogs.

function LOOPSPLIT(L, (Σ1, . . . , Σn))
∀i : Li ← {t2|t1 · t2 · t3 ∈ L ∧

Σ({t2}) ⊆ Σi ∧
(t1 = ε ∨ (t1 = 〈· · · , a1〉 ∧ a1 /∈ Σi)) ∧
(t3 = ε ∨ (t3 = 〈a3, · · · 〉 ∧ a3 /∈ Σi))}

return L1, · · · , Ln
end function

In our example, LOOPSPLIT(L4, ({d, e}, {f})) = {〈d, e〉}, {〈f〉}.
Framework B and selectB′ together discover a process model from the log L =

{〈a, b, c〉, 〈a, c, b〉, 〈a, d, e〉, 〈a, d, e, f, d, e〉} as follows. The only exclusive choice cut
forG(L) is {a, b, c, d, e, f}, which is a trivial cut. As we have shown before, a sequence

14 S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst

cut for G(L) is {a}, {b, c, d, e, f}. Then, selectB′ calls SEQUENCESPLIT, which re-
turns two sublogs: L1 = {〈a〉} and L2 = {〈b, c〉, 〈c, b〉, 〈d, e〉, 〈d, e, f, d, e〉}. Then,
selectB′ returns {→, (L1, L2)}. After that,B constructs the partial modelM =→(B(L1), B(L2))
and recurses.

Let us first process the log L1. B(L1) sets base to {a}, and selectB′(L1) returns ∅.
Then, B returns the process tree a, with which the partially discovered model becomes
M =→(a,B(L2)).

For B(L2), EXCLUSIVECHOICESPLIT splits the log in L3 = {〈b, c〉, 〈c, b〉} and
L4 = {〈d, e〉, 〈d, e, f, d, e〉}. The partially discovered model then becomesM =→(a,×(B(L3), B(L4))).

For B(L3), there is no nontrivial exclusive choice cut and neither a nontrivial se-
quence cut. As we have shown before, PARALLELSPLIT splits L3 into L5 = {〈b〉} and
L6 = {〈c〉}. M becomes→(a,×(∧(B(L5), B(L6)), B(L4))).

For B(L4), LOOPSPLIT splits L4 into L7 = {〈d, e〉} and L8 = {〈f〉}, such that M
becomes→(a,×(∧(B(L5), B(L6)),	(L7, L8))).

After one more sequence cut (B(L7)) and a few base cases (B(L5), B(L6), B(L7)),
B′ discovers the model→(a,×(∧(b, c),	(→(d, e), f))).

B′ adheres to B As B′ uses a select function to use the framework, we need to prove
that selectB′ only produces log divisions that satisfy Definition 1.

Lemma 9. The log divisions of L that selectB′ returns adhere to Definition 1.

The proof idea of this lemma is to show that each of the clauses of Definition 1 holds for
the log divisionL1 · · ·Ln that selectB′ chooses, using a fixed φ of 0:L ⊆ ⊕l(L1, . . . , Ln),
∀i : ||Li|| < ||L||, ∀i : Σ(Li) ⊆ Σ(L), ⊕ ∈

⊕
and n ≤ ||L||. For the detailed proof

of this lemma, please refer to Appendix A.

6.4 Language-rediscoverability

An interesting property of a discovery algorithm is whether and under which assump-
tions a model can be discovered that is language-equivalent to the original process.
It can easily be inductively proven that B′ returns a single process tree for any log
L. B′ language-rediscovers a process model if and only if the mined process model
is language-equivalent to the original process model that produced the log: L(M) =
L(B′(L)) (we abuse notation a bit here), under the assumption that L is complete w.r.t.
M for some completeness notion. Our proof strategy for language-rediscoverability will
be to reduce each process tree to a normal form and then prove that B′ isomorphically
rediscovers this normal form. We first define the log completeness notion, after which
we describe the class of models that B′ can language-rediscover. We conclude with a
definition of the normal form and the proof.

Log Completeness Earlier, we introduced the notion of a directly-follows graph. This
yields the notion of directly-follows completeness of a log L with respect to a model
M , written as L �df M : L �df M ≡ 〈· · · , a, b, · · · 〉 ∈ L(M) ⇒ 〈· · · , a, b, · · · 〉 ∈
L ∧ Start(M) ⊆ Start(L) ∧ End(M) ⊆ End(L) ∧Σ(M) ⊆ Σ(L). Intuitively, the
directly-follows graphs M must be mappable on the directly-follows graph of L.

Discovering Process Models Constructively 15

Please note that the framework does not require the log to be directly-follows com-
plete in order to guarantee soundness and fitness.

Class of Language-rediscoverable Models. Given a model M and a generated com-
plete log L, we prove language-rediscoverability assuming the following model restric-
tions, where ⊕(M1, . . . ,Mn) is a node at any position in M :

1. Duplicate activities are not allowed: ∀i 6= j : Σ(Mi) ∩Σ(Mj) = ∅.
2. If ⊕ = 	, the sets of start and end activities of the first branch must be disjoint:
⊕ = 	⇒ Start(M1) ∩ End(M1) = ∅.

3. No τ ’s are allowed: ∀i ≤ n :Mi 6= τ .

A reader familiar with the matter will have recognised the restrictions as similar to
the rediscoverability restrictions of the α algorithm [4].

Normal form We first introduce reduction rules on process trees that transform an
arbitrary process tree into a normal form. The intuitive idea of these rules is to combine
multiple nested subtrees with the same operator into one node with that operator.

Property 10.

⊕(M) =M

×(· · ·1 ,×(· · ·2), · · ·3) = ×(· · ·1 , · · ·2 , · · ·3)
→(· · ·1 ,→(· · ·2), · · ·3) = →(· · ·1 , · · ·2 , · · ·3)
∧(· · ·1 ,∧(· · ·2), · · ·3) = ∧(· · ·1 , · · ·2 , · · ·3)
	((M, · · ·1), · · ·2) = 	(M, · · ·1 , · · ·2)

	(M, · · ·1 ,×(· · ·2), · · ·3) = 	(M, · · ·1 , · · ·2 , · · ·3)

It is not hard to reason that these rules preserve language. A process tree on which these
rules have been applied exhaustively is a reduced process tree. For a reduced process
tree it holds that a) for all nodes ⊕(M1, . . . ,Mn), n > 1; b) ×,→ and ∧ do not have a
direct child of the same operator; and c) the first child of a	 is not a	 and any non-first
child is not an ×.

Language-rediscoverability Our proof strategy is to first exhaustively reduce the
given model M to some language-equivalent model M ′. After that, we prove that B′

discovers M ′ isomorphically. We use two lemmas to prove that a directly-follows com-
plete log in each step always only allows to 1) pick one specific process tree operator,
and 2) split the log in one particular way so that M ′ is inevitably rediscovered.

Lemma 11. Let M = ⊕(M1, . . . ,Mn) be a reduced model that adheres to the model
restrictions and let L be a log such that L �df M . Then selectB′ selects ⊕.

16 S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst

The proof strategy is to prove for all operators in the order ×, →, ∧, 	 that given a
log directly-follows complete w.r.t. some ⊕(· · ·), ⊕ will be the first operator for which
G(L) satisfies all cut criteria according to the order ×, →, ∧, 	 in which they are
checked in selectB′ . For instance, for ×, G(L) cannot be connected and therefore will
B will select ×.

Lemma 12. For each reduced process tree M = a (with a in Σ) or M = τ , and a log
L that fits and is directly-follows complete to M , it holds that M = B′(L).

This lemma is proven by a case distinction on M being either τ or a ∈ Σ, and code
inspection. For more details, see Appendix A.

Lemma 13. Let M = ⊕(M1, . . . ,Mn) be a reduced process tree adhering to the
model restrictions, and letL be a log such thatL ⊆ L(M)∧L �df M . Let {(⊕, ((L1, 0), . . . , (Ln, 0)))}
be the result of selectB′ . Then ∀i : Li ⊆ L(Mi) ∧ Li �df Mi.

The proof strategy is to show for each operator that its cut returns the correct activity
division. Using that division, we prove that the SPLIT function returns sublogs valid for
their submodels. We then show that each sublog produced by SPLIT produces a log that
is directly-follows complete w.r.t. its submodel. See Appendix A for details.

Using these lemmas, we prove language-rediscoverability.

Theorem 14. If the model restrictions hold for a process tree M , then B′ language-
rediscovers M : L(M) = L(B′(L)) for any log L such that L ⊆ L(M) ∧ L �df M .

We prove this theorem by showing that a reduced versionM ′ ofM is isomorphic to the
model returned by B′, which we prove by induction on model sizes. Lemma 12 proves
isomorphism of the base cases. In the induction step, Lemma 11 ensures that B′(L)
has the same root operator as M , and Lemma 13 ensures that the subtrees of M ′ are
isomorphically rediscovered as subtrees ofB′(L). For a detailed proof see Appendix A.

Corollary 15. The process tree reduction rules given in Property 10 yield a language-
unique normal form.

Take a model M that adheres to the model restrictions. Let L ⊆ L(M) ∧ L �df M
and M ′ = B′(L). Let M ′′ be another model adhering to the model restrictions and fit-
ting L. As proven in Lemma 16 in Appendix A, the cuts the algorithm took are mutually
exclusive. That means that at each position in the tree, only two options exist that lead
to fitness: either the operator B′ chose or a flower model. By Theorem 14, B′(L) never
chose the flower model. Therefore, B′(L) returns the most-precise fitting process tree
adhering to the model restrictions. According to the definitions in [9], M ′ is a model
of perfect simplicity and generalisation: M ′ contains no duplicate activities (simplic-
ity) and any trace that can be produced by M in the future can also be produced by
M ′ (generalisation). By Corollary 15 and construction of Property 10, it is the smallest
process tree model having the same language as well.

6.5 Tool support

We implemented a prototype of the B′ algorithm as the InductiveMiner plugin of the
ProM framework [11], see http://www.promtools.org/prom6/. Here, we sketch its run
time complexity and illustrate it with a mined log.

Discovering Process Models Constructively 17

Run Time Complexity. We sketch how we implemented B′ as a polynomial algorithm.
Given a log L, B′ returns a tree in which each activity occurs once, each call of B′

returns one tree, and B′ recurses on each node once, so the number of recursions is
O(|Σ(L)|). In each recursion, B′ traverses the log and searches for a graph cut. In
Section 6.2, we sketched how directly-follows graph cuts can be found using stan-
dard (strongly) connected components computations. The exclusive choice, parallel and
loop cuts were translated to finding connected components, the sequence cut to finding
strongly connected components. For these common graph problems, polynomial algo-
rithms exist. B′ is implemented as a polynomial algorithm.

Illustrative Result. To illustrate our prototype, we fed it a log, obtained from [1, page
195]: L = {〈a, c, d, e, h〉, 〈a, b, d, e, g〉, 〈a, d, c, e, h〉, 〈a, b, d, e, h〉, 〈a, c, d, e, g〉,
〈a, d, c, e, g〉, 〈a, b, d, e, h〉, 〈a, c, d, e, f, d, b, e, h〉, 〈a, d, b, e, g〉, 〈a, c, d, e, f, b, d, e, h〉,
〈a, c, d, e, f, b, d, e, g〉, 〈a, c, d, e, f, d, b, e, g〉, 〈a, d, c, e, f, c, d, e, h〉,
〈a, d, c, e, f, d, b, e, h〉, 〈a, d, c, e, f, b, d, e, g〉, 〈a, c, d, e, f, b, d, e, f, d, b, e, g〉,
〈a, d, c, e, f, d, b, e, g〉, 〈a, d, c, e, f, b, d, e, f, b, d, e, g〉, 〈a, d, c, e, f, d, b, e, f, b, d, e, h〉,
〈a, d, b, e, f, b, d, e, f, d, b, e, g〉, 〈a, d, c, e, f, d, b, e, f, c, d, e, f, d, b, e, g〉}. The result of
our implementation is M ′ = →(a,	(→(∧(×(b, c), d), e), f),×(h, g)). A manual in-
spection reveals that this model indeed fits the log.

Take an arbitrary model M that could have produced L such that L is directly-
follows complete w.r.t. M . Then by Theorem 14, L(M) = L(M ′).

7 Conclusion

Existing process discovery techniques cannot guarantee soundness, fitness, rediscover-
ability and finite run time at the same time. We presented a process discovery framework
B and proved thatB produces a set of sound, fitting models in finite time. We described
the conditions on the process tree operators under which the framework achieves this.
The process tree operators×,→, ∧ and	 satisfy these conditions. However, the frame-
work is extensible and could be applied to other operators, provided these satisfy the
conditions. Another way of positioning our work is that our approach is able to discover
some τ transitions in models for which the α-algorithm fails.

To make the framework even more extensible, it uses a to-be-given preference func-
tion select that selects preferred log divisions. Soundness, fitness and framework ter-
mination are guaranteed for any select adhering to B. We showed that if the model
underlying the log is a process tree, then B can isomorphically-rediscover the model.

To illustrate B, we introduced an algorithm B′ that uses B and returns a single
process tree. B′ works by dividing the activities in the log into sets, after which it
splits the log over those sets. We proved that selectB′ adheres to B, which guarantees
us soundness, fitness and framework termination for any input log. We proved that if
the model underlying the log is representable as a process tree that has no duplicate
activities, contains no silent activities and does not contain too-short loops, then B′

language-rediscovers this model. The only requirement on the log is that it is directly-
follows complete w.r.t. the model underlying it. We argued that B′ returns the smallest,
most-precise, most-general model adhering to the model restrictions, and runs in a time
polynomial to the number of activities and the size of the log.

18 S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst

Future Work. It might be possible to drop the model restriction 2 of Section 6.4, which
requires that the the sets of start and end activities of the leftmost branch of a loop
operator must be disjoint, when length-two-loops are taken into account and a stronger
completeness requirement is put on the log. Moreover, using another strengthened com-
pleteness assumption on the log, the no-τ restriction might be unnecessary. We plan on
performing an empirical study to compare our B′ algorithm to existing techniques.
Noise, behaviour in the log that is not in the underlying model, could be handled by
filtering the directly-follows relation, in a way comparable to the Heuristics miner [22],
before constructing the directly-follows graph.

References

1. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business
Processes. Springer (2011)

2. van der Aalst, W., Buijs, J., van Dongen, B.: Improving the representational bias of process
mining using genetic tree mining. SIMPDA 2011 Proceedings (2011)

3. van der Aalst, W., de Medeiros, A., Weijters, A.: Genetic process mining. Applications and
Theory of Petri Nets 2005 pp. 985–985 (2005)

4. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: Discovering process models
from event logs. Knowledge and Data Engineering, IEEE Transactions on 16(9), 1128–1142
(2004)

5. Badouel, E.: On the α-reconstructibility of workflow nets. In: Petri Nets’12. LNCS, vol.
7347, pp. 128–147. Springer (2012)

6. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions of lan-
guages. Business Process Management pp. 375–383 (2007)

7. Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Synthesis of Petri nets from term based
representations of infinite partial languages. Fundam. Inform. 95(1), 187–217 (2009)

8. Buijs, J., van Dongen, B., van der Aalst, W.: A genetic algorithm for discovering process
trees. In: Evolutionary Computation (CEC), 2012 IEEE Congress on. pp. 1–8. IEEE (2012)

9. Buijs, J., van Dongen, B., van der Aalst, W.: On the role of fitness, precision, generalization
and simplicity in process discovery. In: On the Move to Meaningful Internet Systems: OTM
2012, pp. 305–322. Springer (2012)

10. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets from finite
transition systems. Computers, IEEE Transactions on 47(8), 859–882 (1998)

11. van Dongen, B., de Medeiros, A., Verbeek, H., Weijters, A., van der Aalst, W.: The ProM
framework: A new era in process mining tool support. Applications and Theory of Petri Nets
2005 pp. 1105–1116 (2005)

12. van Dongen, B., de Medeiros, A., Wen, L.: Process mining: Overview and outlook of Petri
net discovery algorithms. Transactions on Petri Nets and Other Models of Concurrency II
pp. 225–242 (2009)

13. Fahland, D., van der Aalst, W.: Repairing process models to reflect reality. In: BPM’12.
LNCS, vol. 7481, pp. 229–245. Springer (2012)

14. Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Analysis on demand:
Instantaneous soundness checking of industrial business process models. Data Knowl. Eng.
70(5), 448–466 (2011)

15. Gambini, M., La Rosa, M., Migliorini, S., ter Hofstede, A.: Automated error correction of
business process models. In: BPM’11. LNCS, vol. 6896, pp. 148–165. Springer (2011)

16. Günther, C., van der Aalst, W.: Fuzzy mining–adaptive process simplification based on multi-
perspective metrics. Business Process Management pp. 328–343 (2007)

Discovering Process Models Constructively 19

17. de Medeiros, A., Weijters, A., van der Aalst, W.: Genetic process mining: an experimental
evaluation. Data Mining and Knowledge Discovery 14(2), 245–304 (2007)

18. Polyvyanyy, A., Garcia-Banuelos, L., Fahland, D., Weske, M.: Maxi-
mal structuring of acyclic process models. The Computer Journal (2012),
http://comjnl.oxfordjournals.org/content/early/2012/09/19/comjnl.bxs126.abstract

19. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generalization of the
refined process structure tree. In: WS-FM’10. LNCS, vol. 6551, pp. 25–41. Springer (2010)

20. Reisig, W., Schnupp, P., Muchnick, S.: Primer in Petri Net Design. Springer-Verlag New
York, Inc. (1992)

21. Rozinat, A., de Medeiros, A., Günther, C., Weijters, A., van der Aalst, W.: The need for a
process mining evaluation framework in research and practice. In: Business Process Man-
agement Workshops. pp. 84–89. Springer (2008)

22. Weijters, A., van der Aalst, W., de Medeiros, A.: Process mining with the heuristics miner-
algorithm. Technische Universiteit Eindhoven, Tech. Rep. WP 166 (2006)

23. Wen, L., van der Aalst, W., Wang, J., Sun, J.: Mining process models with non-free-choice
constructs. Data Mining and Knowledge Discovery 15(2), 145–180 (2007)

24. Wen, L., Wang, J., Sun, J.: Mining invisible tasks from event logs. Advances in Data and
Web Management pp. 358–365 (2007)

25. van der Werf, J., van Dongen, B., Hurkens, C., Serebrenik, A.: Process discovery using inte-
ger linear programming. Applications and Theory of Petri Nets pp. 368–387 (2008)

A Formal Proofs

Proof (of Lemma 9). Lemma: The log divisions of L that selectB′ produces are valid
for B.
As we chose φ to be 0, we prove five clauses of the P selection step separately. Let
(⊕, ((L1, 0), . . . , (Ln, 0))) be the result of selectB′ .

– L ⊆ ⊕l(L1, . . . , Ln). Call the sets of activities resulting from the cut Σ1 · · ·Σn.
• Case ⊕ = ×. By construction of EXCLUSIVECHOICESPLIT and the fact that⋃

iΣi = Σ(L), every t ∈ L is in at least one Li. Hence, L ⊆
⋃
i Li. By

definition of ×l, L ⊆ ×l(L1, . . . , Ln).
• Case ⊕ = →. Pick a trace t ∈ L. Divide t = t1 · t2 · · · tn · z such that
∀i : Σ({ti}) = Σi and z is as small as possible. For |t| = 0 and |t| = 1, z is
trivially empty. Towards contradiction, assume |t| > 1 and z 6= ε. Then there
must be two activities ai and ai+1 somewhere in t with ai ∈ Σk, ai+1 ∈ Σl
and k > l. By definition of G(L), ai ai+1 ∈ G(L) and therefore, by
definition 6, l ≤ k. Hence, z must be empty and t can be written as t1 · t2 · · · tn
such that ∀i : Σ({ti}) = Σ(i). By construction of SEQUENCESPLIT, and
definition of→l, t ∈ →l(L1, . . . , Ln) and hence L ⊆ →l(L1, . . . , Ln).

• Case ⊕ = ∧. Pick a trace t ∈ L. By definition of PARALLELSPLIT, each Li
contains a ti, being the projection of t to Σi. Obviously, for each t there is a
corresponding trace in {t1, . . . , tn}'. Hence, L ⊆ ∧l(L1, . . . , Ln).

• Case ⊕ = 	. Pick a trace t ∈ L. Noting that ε /∈ L, we apply case distinction
on whether t consists exclusively of activities in Σ1:
∗ Case Σ({t}) = Σ1. By construction of LOOPSPLIT, L1 contains t.

20 S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst

∗ Case Σ({t}) 6= Σ1. By Definition 8, Start(L) ∪ End(L) ⊆ Σ1 and
therefore there exist ti such that t = t1 · t2 · · · t2m+1, such that ∀j :
Σ({t2j+1}) = Σ1. Constraint 4 of Definition 8 guarantees that no t2m′
contains activities from two different Σi. Then, LOOPSPLIT puts all t2m
in some Li 6=1 intact and all L2m+1 in L1 intact.

By definition of 	l, t ∈ 	l(L1, . . . , Ln) and hence L ⊆ 	l(L1, . . . , Ln).
– ∀i : ||Li|| < ||L||. For each i, Σi contains at most |Σ(L)| − 1 activities. Therefore,

there is an activity in Σ(L) that is not in Σi. As Li only contains events from L,
there is an event in L that is not in Li and

∑
t∈Li
|t| <

∑
t∈L |t|. Hence, ||Li|| <

||L||.
– ∀i : Σ(Li) ⊆ Σ(L). by definition of G(L) and the cuts, no step introduces a new

activity.
– ⊕ ∈

⊕
. ⊕ is either ×,→, ∧ or 	, so ⊕ ∈

⊕
.

– n ≤ ||L||. Each ∀i ≤ n : |Σi| ≥ 1. For each activity, there is at least one event in
L. Hence, n ≤ ||L||. ut

Proof (of Lemma 11). Lemma: Let M = ⊕(M1, . . . ,Mn) be a reduced model that
adheres to the model restrictions and let L be a log such that L �df M . Then selectB′
selects ⊕.

Let ⊕′ be the operator returned by selectB′ . Let c be the cut of G(L) according
M1 · · ·Mn. Apply case distinction on ⊕:

Case ⊕ = ×. As there are no duplicate activities in M by model restriction 1, no
trace in L contains two activities ai ∈ Σi and aj ∈ Σj with i 6= j. Then G contains
neither the path a b nor the path b a in G(L). Then c is a nontrivial exclusive
choice cut of G(L) and hence, selectB′ returns ×.

Case ⊕ = →. As L is directly-follows complete, G(L) is connected and therefore
selectB′ does not return ×.
Take two submodels Mi and Mj with i < j. By semantics of→, G(L) only contains
edges from Mi towards Mj . As L �df M , c is a nontrivial sequence cut of G(L) and
hence, selectB′ returns→.

Case ⊕ = ∧. As L is directly-follows complete, G(L) is a single strongly con-
nected component. Therefore, selectB′ does not select ×, and, due to the first require-
ment of →, also does not select →. Take any Mi. By model restriction 3, Mi can-
not be language-equivalent to τ . As L �df M , there must be traces in L that start with
Start(Mi) and there must be traces that end with End(Mi), so c satisfies the fist cut
criterion. Take two arbitrary sublogs Mi and Mj such that i 6= j. As L �df M , there
must be an edge from every node in End(Mi) to every node in Start(Mj) and vice
versa. Therefore, c satisfies criteria 2 and is therefore a nontrivial parallel cut of G(L).
Hence, selectB′ returns ∧.

Case⊕ = 	. AsL is directly-follows complete,G(L) is a single strongly connected
component. Therefore, selectB′ selects neither × nor →. We identify some clusters
of nodes in G(L): S = Start(L), E = End(L) and R = ∪i 6=1Σ(Mi). By model
restrictions 2 and 3, these are disjoint. As ⊕ = 	, there is no edge from any node in R
to any node in E. Then by constraint 2 of Definition 7, E and R are in the same parallel
branch Σ∧i . The same argument holds for S and R. Hence, S, E and R are in the same
Σ∧i and therefore Start(L) ∪ End(L) ∈ Σ∧i . By constraint 1 of Definition 7, there is

Discovering Process Models Constructively 21

no nontrivial parallel cut and selectB′ does not select ∧.
By model restriction 3, noMi can produce the empty trace. Then all traces inL start and
end with activities from M1, so Start(M) = Start(M1) and End(M) = End(M1),
and c satisfies the first cut criterion. The second and third criteria hold for c by the
semantics of 	. For any 1 6= i 6= j 6= 1, by the semantics of 	 and model restriction
2, no activity of Mi can directly follow any activity of Mj and therefore the fourth
criterion holds for c. Criteria 5 and 6 follow from L �df M . Hence, selectB′ returns
	. ut

Proof (of Lemma 12). Lemma: For each reduced process tree M = a (with a ∈ Σ)
or M = τ , and a log L that fits and is directly-follows complete w.r.t. M , it holds that
M = B′(L).

Apply case distinction on M .
Case M = τ . We assumed L ⊆ L(M) and L cannot be empty, so L must be {ε}

for some k. By code inspection, in framework B, base = {τ}. The function selectB′
returns ∅, after which B returns {τ}, which only containing model is isomorphic to M .

Case M = a for some a ∈ Σ. We assumed L �df M , so L must be {〈a〉}. By code
inspection, in framework B, base = {a}. The function selectB′ returns ∅, after which
B returns {a}, which only containing model is isomorphic to M .

Proof (of Lemma 13). Lemma: Let M = ⊕(M1, . . . ,Mn) be a reduced process tree
adhering to the model restrictions, and let L be a log such that L ⊆ L(M) ∧ L �df M .
Let {(⊕, (L1, . . . , Ln))} be the result of selectB′ . Then ∀i : Li ⊆ L(Mi)∧Li �df Mi.

Apply case distinction on ⊕:

– Case ⊕ = ×. Let G′(L) be the undirected version of G(L). By the reductions of
Property 10, no Mi is a × itself. Pick two activities ai ∈ Σ(Mi) and aj ∈ Σ(Mj),
i 6= j. By model restriction 1 and the semantics of ×, there is no t ∈ L containing
both ai and aj and there is no path ai aj ∈ G′(L). Hence, ai and aj will be split
by a maximal exclusive choice cut. For any a′i ∈ Σ(Mi) there exists a path ai
a′i ∈ G′(L) (by semantics of→, ∧ and 	, and Mi is no ×). Hence, ai and a′i will
not be split by the exclusive choice cut. Hence, the maximal exclusive choice cut
Σ1 · · ·Σn corresponds to the division of activities over Σ(M1) · · ·Σ(Mn). As the
order of children of an× node is irrelevant for isomorphism, we assume w.l.o.g. that
∀i : Σi = Σ(Mi). By construction of EXCLUSIVECHOICESPLIT, ∀i : Σ(Li) =
Σi = Σ(Mi).
Let i ≤ n and t ∈ Li. By EXCLUSIVECHOICESPLIT, t ∈ L, therefore t ∈ L(M)
and by the semantics of ×, ∃j : t ∈ L(Mj). As Σ(Li) = Σ(Mi), and Σ({t}) ⊆
Σ(Li), Mj =Mi. Hence, Li ⊆ L(Mi).
Left to prove: ∀i : Li �df Mi. We prove the clauses of �df separately:
• ∀a, b ∈ Σ ∧ 〈· · · a, b, · · · 〉 ∈ L(Mi) : 〈· · · a, b, · · · 〉 ∈ L′i. By the semantics

of × and model restriction 1, we can safely restrict ourselves to a and b from
Σ(Mi). Let a, b ∈ Σ(Mi) such that 〈· · · , a, b, · · · 〉 ∈ L(Mi). By the seman-
tics of × and L �df M , there is a t = 〈· · · , a, b, · · · 〉 ∈ L that fits this pattern.
As a and b are from Σ(Mi), t ∈ Li.
• Start(Mi) ⊆ Start(Li). From L �df M and the fact that M fits L we derive

that Start(L) = Start(M). By the semantics of×, Start(Mi) ⊆ Start(M),

22 S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst

so for each activity a ∈ Start(Mi) there is a trace t = 〈a, · · · 〉 ∈ L. By
EXCLUSIVECHOICESPLIT, t ∈ Li and therefore a ∈ Start(Li). Hence,
Start(Mi) ⊆ Start(Li). A similar argument holds forEnd(Mi) ⊆ End(Li).

• Σ(Mi) ⊆ Σ(Li) was proven before.
Hence, ∀i : L′i ⊆ L(M ′i) ∧ L′i �df M ′i .

– Case ⊕ = →. Let ai ∈ Σ(Mi) and aj ∈ Σ(Mj) with i < j. By semantics of
→, there must be a path ai aj ∈ G(L), and aj ai /∈ G(L). Then, in a
maximal sequence cut, ai and aj will be in Σl and Σk with l < k. By the reduction
rules of Property 10, no Mi is a→ itself. The directly-follows graphs of ∧ and 	
are single strongly connected components and the directly-follows graph of × is
disconnected, so each cluster G(Mi) is not a chain itself. Therefore, two activities
ai, a

′
i ∈ Σ(Mi) end up in the same Σk. Hence, the sequence cut contains the

correct n sets of activities: ∀i : Σ(Li) = Σ(Mi). Pick any i ≤ n and pick any
trace t ∈ Li. By SEQUENCESPLIT there must be a trace t′ · t · t′′ ∈ L, such that
Σ({t′}) ∩Σ(Mi) = ∅ = Σ({t′′}) ∩Σ(Mi). By assumption, t′ · t · t′′ ∈M . Then
by semantics of→, t must have been produced by Mi. Hence, Li ⊆ L(Mi).
Left to prove: ∀i : Li �df Mi. We prove the clauses of �df separately:
• ∀a, b ∈ Σ ∧ 〈· · · a, b, · · · 〉 ∈ L(Mi) : 〈· · · a, b, · · · 〉 ∈ Li. Each Mi can be

recognised as a cluster of nodes in G(M). Consider an internal edge (a, b)
in this cluster. As L �df M , there exists a trace t ∈ L that contains 〈a, b〉.
SEQUENCESPLIT splits t only on positions corresponding to edges that are
external to the cluster. Hence, 〈a, b〉 is in some trace in Li.
• Start(Mi) ⊆ Start(Li). As L �df M , there is an edge in G(M) from ev-

ery node in End(Mi−1) to every node in Start(Mi). Each trace in L′ is cut
in pieces on positions corresponding to these edges. Hence, Start(Mi) ⊆
Start(Li). A similar argument holds for End(Mi) ⊆ End(Li).

– Case⊕ = ∧. Let ai ∈ Σ(Mi) and let Σ(Mj) with i 6= j. By semantics of ∧, G(L)
has edges such that ∀aj ∈ Σ(Mj) : (ai, aj) ∈ G. Then in a maximal parallel
cut, ai /∈ Σj . By semantics of ∧, G(M) can be seen as a clique of completely
connected clusters, such that each cluster is Σ(Mi) for some i. By the reduction
rules of Property 10, no Mi is a ∧ itself. Neither × nor → produces a clique of
completely connected clusters, so a maximal parallel cut of G(M) consists of the
n Σ(Mi). W.l.o.g. it holds that ∀i : Σ(Li) = Σ(Mi). Pick any i ≤ n and pick
any trace t ∈ Li. By construction of PARALLELSPLIT, there must be a trace t′ ∈ L
such that t is a projection of t′. By assumption, t′ ⊆ L(M). By model restriction
1, the activities of t in t′ can only be produced by Mi. Therefore, M ′i must have
produced t and hence Li ⊆ L(Mi).
Left to prove: ∀i : Li �df Mi. We prove the clauses of �df separately:
• ∀a, b ∈ Σ ∧ 〈· · · a, b, · · · 〉 ∈ L(Mi) : 〈· · · a, b, · · · 〉 ∈ Li. Pick any two

activities a and b such that b directly-follows a in Mi. As L �df M and the fact
that M can produce a trace 〈· · · a, b, · · · 〉, there must be a trace t ∈ L such that
t = 〈· · · a, b, · · · 〉. By construction of PARALLELSPLIT, then there will be a
trace 〈· · · a, b, · · · 〉 ∈ Li.
• Start(Mi) ⊆ Start(Li). By semantics of ∧, Start(Mi) ⊆ Start(M). Take

a a ∈ Start(Mi). As L �df M , there must be a trace t ∈ L that starts with a.

Discovering Process Models Constructively 23

By PARALLELSPLIT, then there must be a trace in Li that starts with a. Hence,
Start(Mi) ⊆ Start(Li). A similar argument holds forEnd(Mi) ⊆ End(Li).

• Σ(Mi) ⊆ Σ(Li) was proven before.
– Case ⊕ = 	. By semantics of 	, G(M) can be seen as a loop having a body
Σ(M1) and mutually unconnected redo parts of Σ(Mi 6=1). Take two activities
ai, a

′
i ∈ Σ(Mi 6=1). By the reduction rules of Property 10, Mi is not a × and there-

foreMi is connected. By semantics of	, there is no edge (ai, ae) ∈ G(M) for any
ae ∈ End(M) and no edge (as, ai) ∈ G(M) for any as ∈ Start(M). Hence, ai
and a′i will end up in the same Σk. Take two activities ai ∈ Σ(Mi), aj ∈ Σ(Mj)
with i 6= j. By semantics of 	, there cannot be a path ai aj ∈ G′. Hence,
there cannot be an edge connecting Σi and Σj in G(M). Hence, ai and aj end
up in Σk and Σl with k 6= l. Let a1, a′1 ∈ Σ(M1)\Start(M)\End(M). Then
as a1 ae ∈ G(M) for some as ∈ Start(M), ae ∈ End(M). By criteria
(2) and (3) of Definition 8, a1 ∈ Σ1. Hence ∀i : Σ(Li) = Σ(Mi), where w.l.o.g.
the order of the non-first children is arbitrary. Pick any i ≤ n and pick any trace
t ∈ Li. Apply case distinction on whether i = 1 to prove that Li ⊆ L(Mi).
• Case i = 1. By construction of LOOPSPLIT, there exists a trace t′ · t · t′′ ∈ L′,

such that t′ is either empty or ends with an activity /∈ Σ1, and t′′ is either empty
or starts with an activity /∈ Σ1.

• Case i 6= 1. By construction of LOOPSPLIT, there exists a trace t′ · 〈a′〉 · t ·
〈a′′〉 · t′′ ∈ L′, such that a′, a′′ /∈ Σi.

By model restriction 1, the semantics of 	 and the assumption that L ⊆ L(M), it
holds that t must have been produced by Mi. Hence, Li ⊆ L(Mi).
Left to prove: Li �df Mi. We prove the clauses of �df separately:
• ∀a, b ∈ Σ ∧ 〈· · · a, b, · · · 〉 ∈ L(Mi) : 〈· · · a, b, · · · 〉 ∈ Li. Pick any activities
a, b ∈ Start(Mi) such that 〈· · · a, b, · · · 〉 ∈ L(Mi). As L �df M , there must
be a trace t · 〈a, b〉 · t′ ∈ L. Then by construction of LOOPSPLIT, there is a
trace in Li that contains 〈· · · , a, b, · · · 〉.
• Start(Mi) ⊆ Start(Li). Pick an activity a ∈ Start(Mi). As L �df M , there

must be a trace t · 〈a〉 · t′ ∈ L, such thatΣ({t})∩Σi = ∅. Then by construction
of LOOPSPLIT, there is a trace in Li that starts with a. Hence, Start(Mi) ⊆
Start(Li). A similar argument holds for End(Mi) ⊆ End(Li).

• Σ(Mi) ⊆ Σ(Li) was proven before.

Concluding the case distinction, it holds that ∀i : Li ⊆ L(Mi) ∧ Li �df Mi.

Proof (of Theorem 14). Theorem: If the model restrictions hold for a process tree M ,
then B′ language-rediscovers M : L(M) = L(B′(L)) for any log L such that L ⊆
L(M) ∧ L �df M .

We define M ′ to be the model that results from applying the rules of Property 10
exhaustively to M .

We prove by induction on model sizes of M ′ that ∀L ⊆ Σ∗ ∧ L ⊆ L(M ′) ∧
L �df M ′ :M ′ = B′(L).
Base case: |M ′| = 1. By Lemma 12, M ′ = B′(L).
Induction hypothesis: for all modelsM ′i smaller thanM ′, it holds that ∀Li ⊆ Σ∗∧Li ⊆
L(M ′i) ∧ Li �df M ′i :M ′i = B′(Li).

24 S.J.J. Leemans, D. Fahland, and W.M.P. van der Aalst

Induction step: Assume |M ′| > 1 and the induction hypothesis. As |M ′| > 1, there ex-
ists⊕′, M ′1 · · ·M ′m such that M ′ = ⊕′(M ′1, . . . ,M ′m). By Lemma 11, selectB′ selects
⊕′. Let {⊕′, (L′1, . . . , L′n)} be the result of selectB′ . By Lemma 13, ∀i : Li ⊆ L(Mi)∧
Li �df Mi. By the induction hypothesis,⊕′(M ′1, . . . ,M ′n) = ⊕′(B′(L1), . . . , B

′(Ln)).
By construction of B′ it holds that M ′ = B′(L), which finishes the induction.

By construction, L(M) = L(M ′) and hence ∀L ⊆ Σ∗ ∧ L ⊆ L(M) ∧ L �df M :
L(M) = L(B′(L)). ut

Lemma 16. For a process tree M = ⊕(M1, . . . ,Mn) adhering to the model restric-
tions of Section 6.4, the possible cuts for the root operator are mutually exclusive.

Proof. Lemma: For a process treeM = ⊕(M1, . . . ,Mn) adhering to the model restric-
tions of Section 6.4, the possible cuts for the root operator are mutually exclusive.
We prove by case distinction that for each ⊕, the only nontrivial cut on M is an ⊕-cut.

– Case⊕ = ×. Take two activities ai, a′i ∈ Σ(Mi) and aj 6=i ∈ Σ(Mj). By semantics
of ×, ai aj /∈ G(M) and aj ai /∈ G(M). Hence, no nontrivial sequence cut
exists. Similarly, there is no nontrivial parallel cut.
Towards contradiction, assume there is a loop cut Σ	

1 , Σ
	
2 . By semantics of 	,

there exists some a2 ∈ Σ	
2 , such that a2 ∈ Σ(Mi) for some i and there is a a3 ∈

Start(Mi) with (a2, a3) ∈ G(M). Then there is an a1 ∈ Σ(Mj 6=i) ∩ Start(M).
By constraint 5 of Definition 8, (a2, a1) ∈ G(M). This contradicts the semantics
of ×, that require (a2, a1) /∈ G(M). Hence, there is no such a2, Σ	

2 is empty and
there is no nontrivial loop cut.

– Case⊕ =→. In Lemma 11 it is proven that selectB′ selects→. By the cut probing
order of selectB′ , there exists no nontrivial exclusive choice cut.
Towards contradiction, suppose there exists a parallel cut Σ∧1 , Σ

∧
2 . Take activities

ai, a
′
i ∈ Σ(Mi), aj=i+1 ∈ Σ(Mj). By semantics of →, (ai, aj) /∈ G(M) and

(a′i, aj) /∈ G(M). Hence, ai, a′i, aj ∈ Σ∧k for some k, each Σ∧l 6=k = ∅ and there is
no nontrivial parallel cut.
Towards contradiction, suppose there exists a loop cut Σ	

1 , Σ
	
2 . By constraint 1 of

Definition 8, Start(M) ⊆ Σ	
1 . By the model restrictions, End(M)∩Σ(Mi) = ∅

for any i 6= n. Pick a node a1 ∈ Σ(M1) such that there exists a node a′1 ∈
Start(M) having (a′1, a1) ∈ G(M). By constraint 2 of Definition 8 andEnd(M)∩
Σ(M1) = ∅, it holds that a1 ∈ Σ	

1 . By transitivity it holds that ∪i 6=nΣ(Mi) ⊆
Σ	

1 . By a similar argument, using constraint 3 of Definition 8, it holds that∪i 6=1Σ(Mi) ⊆
Σ	

1 . Hence, Σ	
2 is empty and there is no nontrivial loop cut.

– Case ⊕ = ∧. In Lemma 11 it is proven that selectB′ selects ∧. By the cut probing
order of selectB′ , there exists no nontrivial exclusive choice or sequence cut.

Σ	
1 Σ	

2

Σ(Mi) a4 a2
Σ(Mj) a1 a3

Let i 6= j. Towards contradiction, assume there exists a loop cut Σ	
1 , Σ	

2 . In the
following, we define a ∈ Start(Σ	

2) to hold if and only if ∃b ∈ Σ	
1 : (a, b) ∈

G(M), and similarly for End(Σ	
2). We prove a contradiction by showing that

Discovering Process Models Constructively 25

Σ	
2 is empty. Let a2 ∈ Start(Σ	

2) ∩ Σ(Mi). Each parallel branch has start ac-
tivities, so there must exist a1 ∈ Start(Mj). By constraint 1 of Definition 8,
a1 ∈ Σ	

1 . By semantics of ∧, (a1, a2) ∈ G(M). By constraint 2 of Definition 8,
a1 ∈ Start(M) ∩End(M). Hence, Start(M) ∩Σ(Mj) = End(Mj) ∩Σ(Mj).
By the model restrictions of Section 6.4, the only operators of which Mj can exist
are × and ∧. Then, Σ(Mj) = Start(M) ∩ Σ(Mj) = End(M) ∩ Σ(Mj). By
constraint 1 of Definition 8, Σ	

2 ∩Σ(Mj) = ∅.
Left to prove: Σ	

2 ∩ Σ(Mi) = ∅. We assumed a2 ∈ Start(Σ	
2). By semantics

of ∧, (a1, a2) ∈ G(M). Then by constraint 6 of Definition 8, a2 ∈ End(Σ	
2 .

By semantics of ∧, there exists an a4 ∈ Start(M) ∩ Σ(Mi) ∩ Σ	
1 . As a2 ∈

Start(Σ	
2) ∩ End(Σ	

2), (a4, a2) ∈ G(M). By constraint 2 of Definition 8, a4 ∈
End(M). Then Start(M) ∩Σ(Mi) = End(M) ∩Σ(Mi). By the model restric-
tions of Section 6.4, the only operators of which Mi can exist are × and ∧. Then,
Σ(Mi) = Start(M) ∩ Σ(Mi) = End(M) ∩ Σ(Mi). By constraint 1 of Defini-
tion 8, Σ	

2 ∩ Σ(Mi) = ∅. Hence, Σ	
2 is empty and there is no nontrivial loop cut

of G(M).
– Case ⊕ = 	. In Lemma 11 it is proven that selectB′ selects 	. By the cut probing

order of selectB′ , there exists no nontrivial exclusive choice, sequence or parallel
cut. ut

