
Characterizing Weakly Terminating Partners of
Open Systems

Christian Stahl1, Daniela Weinberg2, and Karsten Wolf2

1 Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

C.Stahl@tue.nl
2 Universität Rostock, Institut für Informatik, 18051 Rostock, Germany

{Daniela.Weinberg, Karsten.Wolf}@uni-rostock.de

Abstract. We study open systems modeled as finite state machines with
an interface for asynchronous communication with other open systems.
An open system P is a partner of an open system S, if the two systems
can be composed to a closed system S ⊕ P that is weakly terminating
(does not have deadlocks nor livelocks). Known controller synthesis tech-
niques allow us to construct a most permissive partner MP(S) to a given
open system S. Our contribution is to enhance MP(S) with Boolean
annotations, yielding a finite characterization of all partners of S. We
demonstrate the usefulness of this characterization by involving it in a
decision procedure for accordance. Accordance is a canonical preorder on
open systems: R accords with S if every partner of S is a partner of R.
Our decision procedure reduces accordance to finding a simulation rela-
tion between MP(S) and MP(R) and checking validity of implications
between related Boolean formulas.

1 Introduction

Open systems occur in many areas of computer science, called modules, services,
agents, or components. An open system is typically seen as a unit that evolves
autonomously; that is, it can be changed (or replaced) in the context of an over-
all system that is not necessarily fully transparent to the component designer.
Formal methods can support the process of changing or replacing open systems
by establishing accordance relations between open systems that give guarantees
on the effect to the whole system.

In this paper, we model an open system as a finite state machine with labels
that represent asynchronous message exchange with the remainder of the overall
system. As the correctness criterion we want to assert, we choose weak termina-
tion—that is, the absence of deadlocks and livelocks in the overall system. Weak
termination is a property of highest practical relevance in the fields of workflows
(called soundness [1]), services (e.g., [13]), and discrete event systems (called
non-conflicting or nonblocking [43,17]. Consequently, we aim at an accordance
relation between open systems that preserves weak termination.

2

From this setting, we can canonically derive the concept of a partner P of an
open system S. This is another open system (playing the role of the remaining
system or the environment) such that the composition S ⊕ P (to be defined) is
a weakly terminating closed system. Then, again canonically, R accords with S
if every partner of S is a partner of R, too. Accordance is obviously the coarsest
preorder on open systems such that replacing S with an accordant R preserves
weak termination in every environment P . It has been introduced in [31,13]
for synchronous communication. In [31,13,36], the authors prove that should
testing [44] is the coarsest traditional precongruence that implies accordance, but
accordance does not imply should testing. All mentioned concepts are introduced
in Sect. 2.

Our key to deciding an inclusion on (typically infinite) sets of partners is
a finite characterization of all partners of a given open system S, called the
operating guideline of S. The operating guideline consists of two ingredients:
(1) a specific most permissive partner MP(S) of S that can be obtained using
standard controller synthesis techniques, and (2) a Boolean annotation to every
strongly connected subgraph of MP(S). While MP(S) establishes an upper limit
to the behavior of a partner of S, the annotations establish lower limits—that is,
behavior that must be present at minimum to avoid deadlocks and livelocks in
composition with S. In Sect. 3, we develop the concept of operating guidelines.
We start with the construction of a most permissive partner. Although this is
a standard controller synthesis approach—however, for possibly nondetermin-
istic open systems and asynchronous communication—the explicit presentation
permits us to introduce the specific controller we are using. Then we introduce
the annotations, define a matching relation between open systems and operating
guidelines, and finally establish the characterization: S⊕P is weakly terminating
if and only if P matches with the operating guideline of S.

For deciding accordance between open systems S and R, we relate the most
permissive partners of S and R by a simulation relation. This way, we obtain
a relation between strongly connected subgraphs of the two most permissive
partners. We show that deciding accordance amounts to checking whether im-
plications between related formulas are valid. The result is spelled out in Sect. 4.
Existing algorithms provide with should testing only a sufficient criterion [13] or
assume synchronous communication [50].

Our contribution extends previous work where we used deadlock freedom
as correctness criterion and it was sufficient to have Boolean annotations to
states rather than strongly connected subgraphs. For this (much simpler) setting,
we identified several useful applications for operating guidelines—for example,
finding for an incorrect partner of S a most similar one for a suitable similarity
measure [28] and the implementation of union, intersection, and complement on
sets of partners [23]—which may serve as additional motivation for the partner
characterization given here. Our previous work and links to related work by
other authors are discussed in Sect. 5.

3

2 Preliminaries

For a set X, let X∗ be the set of finite sequences (words) over X. For any

ternary relation δ ⊆ A × B × C, a
b−→δ c denotes (a, b, c) ∈ δ. For a ternary

relation δ ⊆ A×B ×A, relation δ∗ ⊆ A×B∗ ×A is its reflexive and transitive

closure defined by a
b1...bn−−−−→δ∗ c iff there are a0, . . . , an such that a = a0, c = an,

and, for all 1 ≤ i ≤ n, ai−1
bi−→δ ai. If any of the elements a, b, or c is omitted,

we mean the existence of such an element; a −→δ∗ c denotes that c is reachable
from a in δ.

2.1 State Machines for Modeling Open Systems

An open system consists of a control structure describing its internal behavior.
Transitions are labeled. Some of the transition labels are considered as input or
output labels to describe the interaction of the state machine with its environ-
ment. We consider state machines with final states. Final states shall help us to
distinguish between desired and undesired termination.

Definition 1 (state machine). A state machine S = (Q, Q̂, I, O, T, δ, F) con-
sists of

– a (countably infinite) set Q of states,
– a nonempty set of initial states Q̂ ⊆ Q,
– a finite set I of input labels, a finite set O of output labels, and a finite set T

of internal labels such that I, O, and T are pairwise disjoint,
– a transition relation δ ⊆ Q× (I ∪O ∪ T)×Q, and
– a (countably infinite) set F ⊆ Q of final states.

For a state q ∈ Q, define by en(q) = {x | q x−→δ} the set of outgoing transitions
of q. S is finite if the set {q | ∃q̂ ∈ Q̂ : q̂ −→δ∗ q} of reachable states is finite.

We shall assume throughout this paper that a state machine has ingredients
named as in Definition 1. If multiple state machines are involved, we shall use
indices to distinguish their ingredients.

Next, we will coin some state machines as deterministic. Unlike standard
automata theory, we will permit multiple initial states, internal state changes,
and equally labeled transitions in en(q). We will restrict all these permissions,
however, to cases where resulting states can be distinguished by their nature
(i.e., their final status).

Definition 2 (deterministic state machine). A state machine S is deter-
ministic if, for all q, q′, q′′ ∈ Q, the following three conditions hold:

– card(Q̂ ∩ F) ≤ 1 and card(Q̂ \ F) ≤ 1,

– if, for x ∈ I∪O, q
x−→δ q

′ and q
x−→δ q

′′ then q′ = q′′ or card({q′, q′′}∩F) = 1,

– if, for σ ∈ T ∗, q σ−→δ∗ q
′ then q = q′ or card({q, q′} ∩ F) = 1.

4

τ

b0

?o

b1

b2

!a

(a) Buyer B

τ

u0

u1

?a !o

u2

(b) Seller U

v0

v1

?a !o

(c) Seller V

Fig. 1. State machines modeling a buyer and two sellers. The symbol ? and ! precedes
an output and an input label, respectively.

Note that by Definition 1 and the first item of Definition 2, we have card(Q̂∩
F) = 1 or card(Q̂ \ F) = 1.

Example 1. As a running example, we use the open system of a buyer, which is
modeled as the state machine B in Fig. 1. The buyer receives an offer sent by
a seller (?o) and then accepts the order by sending an acceptance message (!a)
to the seller. Thereby, the buyer returns to a state where it can receive further
offers. This is modeled by an internal event.

The state machines U and V in Fig. 1 model two possible sellers of the
buyer. Seller U sends an offer and requires a notification of acceptance. Seller V
continuously sends new offers to the buyer.

Open systems are linked via message channels. The names of the channels
correspond to the input and output labels of the system. For each message
channel m, the state of the channel is represented by the number of pending
messages. Consequently, we pool the state of all message channels connected to
an open system S into a multiset (bag) B : I ∪O → IN over I ∪O. Let [] denote
the empty multiset (assigning 0 to all arguments), and let Bags(M) denote the
set of all multisets over M .

Using the multiset representation of message channels, we can lift the internal
behavior δ ⊆ Q× (I ∪O ∪ T)×Q to the external behavior ∆ of S.

Definition 3 (external behavior). For a state machine S, define its external
behavior ∆ ⊆ (Q × Bags(I ∪ O)) × (I ∪ O ∪ T) × (Q × Bags(I ∪ O)) by the

following laws. For q
x−→δ q

′ and B ∈ Bags(I ∪O):

– if x ∈ I then (q,B + [x])
x−→∆ (q′,B),

– if x ∈ O then (q,B)
x−→∆ (q′,B + [x]),

– if x ∈ T then (q,B)
x−→∆ (q′,B).

Open systems interact by operating on the same message channels. In this
paper, we only consider the interaction between two open systems.

Two state machines S and P are composable if the input channels of one state
machine are the output channels of the other. The result is a closed system; that

5

(b0,u0,[])

(b0,u1,[])

[!a,B]

(b0,u2,[o])

(b1,u2,[])

(b2,u2,[a])

[!o,U]

[τ,B]

[τ,B]

[?o,B] [?a,U]

[τ,U]

[?a,U]

[!o,U]

(b2,u1,[])

(b2,u2,[o])

(b0,u2,[a])

[τ,B]

(a) B ⊕ U

(b0,v0,[])

[!a,B]

(b0,v1,[o])

(b1,v1,[])

(b2,v1,[a])

[!o,V]

[τ,B]

[τ,B]

[?o,B] [?a,V]

[?a,V]
[!o,V]

(b2,v0,[])

(b2,v1,[o])

(b0,v1,[a])

[τ,B]

(b) B ⊕ V

Fig. 2. The compositions of the buyer and the sellers.

is, a system that has only internal transitions. For the sake of preserving the
origin of transitions, we tag the internal labels of the composed system with
either “S” or “P”.

Definition 4 (composition). State machines S = (QS , Q̂S , IS , OS , TS , δS , FS)
and P = (QP , Q̂P , IP , OP , TP , δP , FP) are composable if IS = OP and IP = OS .
The composition of two composable state machines S and P is the state machine
S ⊕ P = (Q, Q̂, I, O, T, δ, F) defined as

– Q = QS ×QP ×Bags(IS ∪ IP),
– Q̂ = Q̂S × Q̂P × {[]},
– I = O = ∅,
– T = (IS ∪OS ∪ TS)× {S} ∪ (IP ∪OP ∪ TP)× {R},
– (qS , qP ,B)

[x,S]−−−→δ (q′S , qP ,B′) if (qS ,B)
x−→∆S (q′S ,B′),

– (qS , qP ,B)
[x,P]−−−→δ (qS , q

′
P ,B′) if (qP ,B)

x−→∆P (q′P ,B′), and
– F = FS × FP .

Having tagged the labels in S ⊕ P , we can define projections of sequences
over T onto S and P , respectively. For a sequence σ ∈ T ∗, σ|S = x1 . . . xn is its
projection onto S if σ = τ0[x1, S]τ1 . . . [xn, S]τn such that τ0 . . . τn ∈ ((IP ∪OP ∪
TP) × {P})∗. The projection σ|P is defined accordingly. We obtain the simple
lemma:

Lemma 5. If (qS , qP ,B)
σ−→δ∗S⊕P

(q′S , q
′
P ,B′) then qS

σ|S−−→δ∗S
q′S and qP

σ|P−−→δ∗P

q′P .

Example 2. In Fig. 1, the state machine B is composable to both state machines
U and V . Figure 2 shows the compositions of B and U and V . Throughout this
paper, we do not depict states that are not reachable from the initial state.

6

To compare the behavior of two given state machines S and R, we use a
(strong) simulation relation [34]. “Strong” means that an internal transition of
one system must be matched by an internal transition of the other system, but
not necessarily the same one. We further demand that S and R have the same
set of input and output channels, respectively. As usual, two states qS and qR
are only related by a simulation relation if both are either final states or not.

Definition 6 (simulation relation). Let S = (QS , I, O, TS , Q̂S , δS , FS) and
R = (QR, I, O, TR, Q̂R, δR, FR) be state machines. A binary relation % ⊆ QS×QR
is a simulation relation of S by R if

– for all q̂S ∈ Q̂S , there exists an q̂R ∈ Q̂R such that (q̂S , q̂R) ∈ %;
– for all (qS , qR) ∈ %, a ∈ I ∪O ∪ TS , q′S ∈ QS such that (qS , a, q

′
S) ∈ δS , there

exists a state q′R ∈ QR and an a′ ∈ I ∪ O ∪ TR such that (qR, a
′, q′R) ∈ δR,

(q′S , q
′
R) ∈ %, and (a = a′ or (a ∈ TS and a′ ∈ TR)); and

– for all (qS , qR) ∈ %, qS ∈ FS iff qR ∈ FR.

If such a % exists, we say that R simulates S. If R is deterministic then there
exists a unique minimal simulation relation % of S by R, i.e., % ⊆ %′, for all
simulation relations %′ of S by R.

The minimal simulation relation can be computed inductively over δS (start-
ing with Q̂S) because, by determinism of R, the respective matching qR is
uniquely determined by the requirements for simulation relations.

2.2 Weak Termination and Partner

We are interested in “correct” collaborations of open systems. In this paper,
“correct” means that the composition neither contains deadlocks nor livelocks.

Definition 7 (strongly connected sets (SCS) and components (SCC)).
Two states q, q′ ∈ Q of a state machine are mutually reachable if q −→δ∗ q

′

and q′ −→δ∗ q. Mutual reachability is an equivalence relation on states of a
state machine, and its equivalence classes are strongly connected components
(SCCs). Every set of states where all elements are pairwise mutually reachable
is a strongly connected set (SCS). An SCS (or SCC) C is reachable if q̂ −→δ∗ q for
any q̂ ∈ Q̂ and any q ∈ C. An SCC C is terminal (TSCC) if no state of another
SCC is reachable from any state of C.

SCCs are the largest SCSs. If an SCS is reachable, all its elements are reach-
able from an initial state.

A reachable TSCC with a singleton nonfinal state without a self-loop is a
deadlock ; every other reachable TSCC, which does not contain a final state,
is a livelock. Note that our definition of a deadlock differs from the standard
definition in literature, as we discriminate between final states and deadlocks.

Weak termination requires that from every reachable state, a final state is
reachable.

7

Definition 8 (weak termination). A finite state machine is weakly terminat-
ing if, for all q̂ ∈ Q̂ and all q ∈ Q with q̂ −→δ∗ q, there is a qf ∈ F such that
q −→δ∗ qf .

For finite state machines, there are several alternative characterizations for
weak termination.

Proposition 9. For any finite state machine S, the following five statements
are equivalent:

1. S is weakly terminating.
2. S contains neither deadlocks nor livelocks.
3. Every set of nonfinal states can be left; that is, for all nonempty reachable

sets C ⊆ Q, C ∩ F = ∅ implies there are states q ∈ C and q′ /∈ C with
q −→δ q

′.
4. Every reachable TSCC contains a final state.
5. S satisfies the CTL formula AG EF final where final is an atomic proposition

that is true of all states in F and false of all other states.

If the collaboration of two open systems is weakly terminating, each system is
referred to as a partner of the other one. The collaboration of two finite systems
is not necessarily finite. In particular, indefinitely growing numbers of messages
may yield infinitely many states. For the sake of staying in the realm of finite
state systems, we introduce the notion of a b-partner.

Definition 10 (b-partner). Let b ∈ IN. A finite state machine P is a b-partner
of a finite state machine S if S ⊕ P is weakly terminating and for all reachable
states (qS , qP ,B) ∈ QS⊕P and all x ∈ IS ∪ IP , B(x) ≤ b.

The introduction of the parameter b establishes an artificial limit on the
number of pending messages in a single channel. Technically, it assures (for any
value of b) that the collaboration has a finite number of reachable states. This
is a prerequisite for the algorithms studied in the sequel, because without this
message bound the existence of a partner for a state machine is undecidable [33].
Pragmatically, the bound could either represent a reasonable buffer size in the
middleware—for example, the result of a static analysis of the communication
behavior of a system—or simply be chosen sufficiently large.

Example 3. The composition B ⊕U in Fig. 2(a) is weakly terminating, because
a final state (b2, u1, []) is reachable from every reachable state. In contrast, the
composition B ⊕ V in Fig. 2(b) is not weakly terminating because it does not
contain a final state. Thus, U is a 1-partner of B but V is not.

In the remainder of this subsection, we distinguish particular b-partners.

Definition 11 (most permissive). A b-partner P ′ of S is most permissive if
P ′ is a deterministic state machine and simulates all b-partners P of S.

8

A state machine may have several different most permissive b-partners. As,
by definition, all of them simulate each other and, in addition, the minimal
simulation relations are unique, these simulation relations are reversible, and we
can state the following proposition:

Proposition 12. Any two most permissive b-partners of S are bisimilar.

Despite bisimilarity, most permissive b-partners may exhibit differences. One
of them is concerned with precision. We introduce this concept for measuring,
how much information (“knowledge”) about S is represented in a state qP of a
b-partner P . In other words, we are interested in the states S might be in while
P is in qP . We generally prefer small sets kS(qP), because then the transitions
of the partner can be specific to only few situations in the collaboration.

Definition 13 (knowledge, precision). Let S and P be composable. For
qP ∈ QP , the set kS(qP) = {(qS ,B) | (qS , qP ,B) reachable in S ⊕ P} defines
the knowledge of qP . Let P1 and P2 be both deterministic and composable to S.
If P1 is simulated by P2 via the minimal simulation relation %, we say that P1 is
more precise than P2 w.r.t. S if, for all (q1, q2) ∈ %, kS(q1) ⊆ kS(q2).

A most precise b-partner is not necessarily the one that can be obtained by
bisimulation minimization. In fact, merging states corresponds to building the
union of involved kS-sets.

In the next section, we will show how to construct a finite minimal b-partner
for S among those which are most permissive and most precise. As this b-partner
is unique up to isomorphism, we shall refer to it as MPb(S).

3 Partner Characterization

An operating guideline for a state machine S characterizes the possibly infinite
set of b-partners of S in a finite manner. It is based on the minimal most per-
missive and most precise b-partner MPb(S) announced in the previous section.
Being most permissive, any other b-partner of S can be understood as having a
more restricted behavior than MPb(S). However, the restricted behavior must
still be rich enough to preserve weak termination. To this end, we annotate
every strongly connected subgraph of MPb(S) with a Boolean formula. This for-
mula spells out the requirement that sufficiently many transitions remain in a
b-partner P to allow to leave all sets of nonfinal states in S ⊕ P as required in
Proposition 9(3).

3.1 Constructing a Most Permissive and Most Precise Partner

First, we aim to construct the minimal most permissive and most precise b-
partner MPb(S) to a given finite state machine S. The construction is based
on computing minimal candidates for values of k(q) to assure most preciseness
and then to identify a state with its kS-image (q := kS(q)) to assure minimality.

9

Most permissiveness is proven subsequently. We believe that our construction
is standard in automata theory and controller synthesis—although it is often
restricted deterministic automata or synchronous communication—but we spell
out the construction, as we will exploit details of the construction later on.

Let S be a finite state machine, and let q be a state of a composable finite state
machine P . First, we observe that the presence of some states in kS(q) implies
that some other states are unavoidably present in kS(q). This is reflected in the
following definition.

Definition 14 (closure, b-set). Let b ∈ IN and S be a finite state machine.
Define the closure ofQ ⊆ QS×Bags(I∪O) as the set cl(Q) = {(q′,B′) | ∃(q,B) ∈
Q : (q,B) −→∆∗S

(q′,B′)}. If for all (q,B) ∈ Q and all x ∈ I ∪O,B(x) ≤ b then Q
is a b-set.

From Definition 4, we can immediately deduce:

Proposition 15. If P is composable to S and qP ∈ QP then Q ⊆ k(qP) implies
cl(Q) ⊆ k(qP). If qP ∈ Q̂P then cl(Q̂S × {[]}) ⊆ k(qP).

In subsequent constructions, we aim to replace inclusion by equality thus
achieving maximum precision.

Next, we model the effect of transitions in P on sets kS(q). This operation
will be used to define the transitions of MPb(S). While input and output labels
of P are determined by S, we are free to chose a set of internal labels TP . We do
so by intentionally leaving the domain of the second argument in the subsequent
definition undefined.

Definition 16 (set-step). Let S be a finite state machine. For Q ⊆ QS ×
Bags(I ∪O), define the set-step function as follows:

– if x ∈ IS , set-step(Q, x) = {(q,B + [x]) | (q,B) ∈ Q},
– if x ∈ OS , set-step(Q, x) = {(q,B) | (q,B + [x]) ∈ Q},
– if x /∈ IS ∪OS , set-step(Q, x) = Q.

Again, Definition 4 yields:

Proposition 17. If P is composable to S and qP
x−→δP q

′
P , then set-step(k(qP)) ⊆

k(q′P).

Having a closer look at the concepts introduced so far, we can even state the
following result:

Proposition 18. If P is composable to S then, for all unreachable qP ∈ QP ,
k(qP) = ∅ while for all reachable qP ∈ QP ,

k(qP) = cl(Q0) ∪
⋃

q′P ,x:q
′
P

x−→δP
qP

cl(set-step(k(q′P), x))

where Q0 = Q̂S × {[]} if qP ∈ Q̂P and Q0 = ∅, else.

10

Next, we construct an overapproximation of MPb(S) of S. We define states
based on candidate sets for their kS-values. Each state occurs in a nonfinal and
a final version. This is achieved by tagging each set with either 1 (nonfinal) or 2
(final). Transitions are defined such that they do not cause any loss in precision.
Furthermore, we insert states only if their k-values are b-closures, for some given
b. This way, our construction is finite. Nevertheless, the construction covers all
b-partners, as for every state q of a b-partner P of S, k(q) must be a b-set.

Definition 19 (overapproximation). Let b ∈ IN. For a finite state machine
S = (QS , Q̂S , I, O, T, δS , FS), define the state machine TS 0

b(S) =
(Q, I, O, {τ}, Q̂, δ,F) inductively as follows:

– Base: Let C = cl(Q̂S ×{[]}). If C is a b-set, then Q̂ = C×{1, 2}; otherwise,
Q̂ = ∅. Let initially Q be Q̂ and δ = ∅.

– Step: If (C, i) ∈ Q, x ∈ I∪O∪{τ}, let C ′ = cl(set-step((C, i), x)). If C ′ is a b-
set then let C ′×{1, 2} ⊆ Q and {((C, i), x, (C ′, i)), ((C, i), x, (C ′, 3−i))} ⊆ δ.

– Define F = {(C, i) ∈ Q | i = 2}.

This construction may result in a state machine with empty set of states. This
is the case if already the construction of the initial states violates the bound b
for the pending messages. In this case, S does not have b-partners as b can be
violated by transitions of S which cannot be avoided by any b-partner.

Using Propositions 15, 17 and 18, it is easy to verify:

Proposition 20. For all (C, i) ∈ QTS0
b(S)

, kS((C, i)) = C.

The next lemma shows that TS 0
b(S) overapproximates all b-partners of S.

Lemma 21 (overapproximation simulates all b-partners). Let b ∈ IN and
S be a finite state machine. Then, TS 0

b(S) simulates every b-partner P of S.

Proof. Let P be a b-partner of S. Then TS 0
b(S) exists. Because TS 0

b(S) is de-
terministic, there is a single candidate for a minimal simulation relation that
relates one of the initial states of P to either the final or the nonfinal initial
state of TS 0

b(S) and, for each state, any x-successor of a state qP ∈ QP with
(qP , Q) ∈ % to the unique x-successor of Q that has the fitting final status. We
show that this candidate is indeed a simulation relation. Furthermore, we show
that (qP , (C, i)) ∈ % implies that C ⊆ k(qP).

Let q̂P ∈ Q̂P . Because TS 0
b(S) exists, it has an initial state (C, i) where

i corresponds to the final status of q̂P . So, we have (q̂P , (C, i)) ∈ % fulfilling
the requirements for initial states in a simulation relation. By Proposition 15,
C ⊆ k(qP).

Next, let (qP , q) ∈ % and qP
x−→P q′P . If no x-successor (C, i) to q exists in

TS 0
b(S), C is not a b-set as this is the only condition for omitting x-successors.

In this case, however, Proposition 17 and the inductive assumption would imme-
diately reveal that P itself cannot be a b-partner, contradicting the general as-
sumption. If, however, an x-successor exists, there are actually two of them where
one is final and the other is nonfinal. Consequently, the simulation property con-
tinues to hold. In addition, it is easy to re-establish the condition C ⊆ k(q′P). ut

11

s0

!o

s1

?a

s2

!o

s3

!o
!o!o

τ
τ

τ
τ

?a

!o
?a

?a ?a

τ
τ

!o
!o

?a
?a

?a

s0

s1

s2

s3
τ
τ

τ

τ

τ

τ

τ

τ

τ

τ

(a) MP1(B)

(b0,s0,[])

(b0,s1,[o])

[!o,MP]

(b1,s1,[])

(b2,s1,[a])

(b0,s1,[a]) (b2,s2,[])

(b2,s3,[o])(b0,s2,[])

(b0,s3,[o])

(b1,s3,[])

(b2,s3,[a])

(b0,s3,[a])

[?o,B]

[?o,B]

[!o,MP]

[!o,MP]

[τ,B]

[τ,B]

[τ,B]

[τ,B]

[!a,B]

[!a,B]

[?a,MP]

[?a,MP]

[?a,MP]

[?a,MP]

H0

H1

(b) B ⊕MP1(B)

Fig. 3. The most permissive 1-partner MP1(B) of B and the composition of its nonfinal
states with B. To improve readability, the [τ,MP]-selfloops at every state of B ⊕
MP1(B) are not shown.

We restrict TS 0
b(S) to weak termination by removing all states from TS 0

b(S)
that result in a deadlock or livelock in the composed system. The latter task must
be repeated, as the removal of states may introduce new deadlocks or livelocks.

Definition 22 (construction). Let b ∈ IN and S be a finite state machine.
For i ≥ 0, obtain TS i+1

b (S) from TS ib(S) by removing all states Q where there
exists (qS ,B) ∈ Q such that (qS , Q,B) is a member of a TSCC in S ⊕ TS ib(S)
without final state. Also remove all adjacent transitions and all states that be-
come unreachable from initial states. Let MPb(S) be the fixed point reached by
this construction.

Example 4. Figure 3(a) shows the state machine MP1(B). For every nonfinal
state s, there exists a corresponding final state s and s and s are mutually
reachable. In addition, every state has a τ -labeled selfloop to ensure strong sim-
ulation of any 1-partner of B. To illustrate the construction if Definitions 19
and 22, let C = {(b0, [])} and C ′ = {(b0, [o]), (b0, [a]), (b1, []), (b2, [a])}. Then,
s0 = (C, 1), s1 = (C ′, 1), s2 = (C ∪ {(b2, [])}, 1), and s3 = (C ′ ∪ {(b2, [o])}, 1).
Each final state has the same knowledge as its corresponding nonfinal state, but
is labeled 2.

We show that if the state machine MPb(S) has at least one state, then it is
a most permissive b-partner of S; otherwise, no b-partner exists.

12

Lemma 23 (most permissive partner). Let b ∈ IN. A finite state machine
S has a b-partner iff the set Q of states of MPb(S) is nonempty.

Proof. ⇒: Suppose P is a b-partner of S. Let i be the largest i such that there
is a simulation of P by TS ib(S). If there is no simulation of P by TS i+1

b (S), then
S ⊕ P must violate weak termination (if i = 0) as this is the only reason for
removing additional states from TS ib(S).
⇐: The construction of MPb(S) terminates because we start with a finite

structure and only remove states and transitions. If the resulting structure is not
empty, it must be a b-partner because all reasons not to be a b-partner have been
erased: Removal of ingoing transitions does not change the condition k((C, i)) =
C for remaining reachable states. Thus, the message bound b cannot be violated
as all k-values are b-sets. Weak termination cannot be violated because, upon
termination, no TSCC without final state are there to be removed. ut

Now, we conclude the main result of this section:

Theorem 24. Let b ∈ IN and S be a finite state machine. The state machine
MPb(S) is the most permissive and most precise b-partner of S.

Proof. Most permissive follows from Lemma 21 and Lemma 23. The overapprox-
imation TS 0

b(S) of TS b(S) is most precise by Proposition 18. As the construction
of TS b(S) does not change this property, we conclude that TS b(S) is most pre-
cise. ut

Example 5. With Theorem 24, we conclude that MP1(B) in Fig. 3(a) is the
most permissive and most precise 1-partner of B.

In the remainder of this paper, we restrict ourselves to finite state machines
and assume b ∈ IN.

3.2 Representing all Partners in a Finite Manner

With the most permissive and most precise b-partner of a state machine, we
constructed the first ingredient of its operating guideline. In the following, we
show how the second ingredient, the annotation, can be computed.

We first recapitulate some terms from graph theory.

Definition 25 (subgraph, SCSG). A subgraph G of a state machine S =
(Q, Q̂, I, O, T, δ, F) is a triple (QG, δG, FG) with QG ⊆ Q, δG ⊆ δ, and FG =
F ∩QG. If the set QG is an SCS of G, then G is a strongly connected subgraph
(SCSG). An SCSG G = (QG, δG, FG) is induced by QG if for all q, q′ ∈ QG and
for all x ∈ I ∪O ∪ T , (q, x, q′) ∈ δ iff (q, x, q′) ∈ δG.

We also need to relate subgraphs H in the composition S⊕P with an SCSG
G of P . We require that the projection of H onto the states and transitions of
P is G. In addition, every transition originating from S and having a source in
H must be present in H as well as every transition originating from P being
present in G and having a source in H, must be present in H.

13

qp

sr

a

d

x y y x

H’

(a) S ⊕ P

a

d

x y

p1

p2

(b) P

a

d

x y

c

b

v w

s1

s2

(c) MP(S)

qp

sr

a b

c d

x y y x
v

wv
w

H

(d) S ⊕MP(S)

Fig. 4. Example motivating the annotation of SCSGs in operating guidelines.

Definition 26 (valid subgraph). Let S ⊕ P be the composition of the state
machines S and P , and let G be an SCSG of P . A subgraph H of S ⊕P is valid
w.r.t. G if the following two conditions hold:

1. The projection of H onto the states and transitions of P yields G, i.e.,
– QG = {qP | (qS , qP ,B) ∈ QH},
– δG = {(qP , x, q′P) | (qS , qP ,B)

[x,P]−−−→δH (qS , q
′
P ,B′)},

– FG = QG ∩ FP .
2. The transition relation δH is complete, i.e.,

– ∀e = (qS , qP ,B)
[x,S]−−−→δS⊕P (q′S , qP ,B′) : (qS , qP ,B) ∈ QH implies e ∈ δH ,

and

– ∀(qP , x, q′P) ∈ δG ∀(qS , qP ,B) ∈ QH : e = (qS , qP ,B)
[x,P]−−−→δS⊕P (qS , q

′
P ,B′)

implies e ∈ δH .

An operating guideline specifies which actions MP(S) has to perform to leave
the SCSs of S ⊕MP(S). This information is encoded as Boolean formulae. To
enable P to use this information, we relate the states of P and MP(S) using
the minimal simulation relation of P by MP(S) and determine, based on the
outgoing edges of P , whether the formulae of the operating guideline is evaluated
to true and, thus, S ⊕ P is weakly terminating. It turns out that we have to
annotate all SCSGs of MP(S) rather than its SCSs or SCCs. The example in
Fig. 4 illustrates this.

Example 6. Figure 4 shows (a part of) MP(S) and the corresponding parts of P ,
S ⊕ P and S ⊕MP(S). Assume we annotate every SCS G of MP(S) specifying
how to leave (move on in) every subgraph H of S⊕MP(S) that is valid w.r.t. G.
Let G = {s1, s2}. Then there exists the subgraph H in Fig. 4(d) in S ⊕MP(S)
that is valid w.r.t. G. To leave H (or at least to move on), at least one of the
edges b, c, v, w has to be present, resulting in the annotation b∨c∨v∨w. Consider
P and its SCS G′ = {p1, p2}. The edges leaving G′ (i.e., a and d) do not define a
satisfying assignment to the formula b∨c∨v∨w, and we would (wrongly) assume
that S⊕P is not weakly terminating; however, the subgraph H ′ in Fig. 4(a) can
be left. Thus, annotating SCSs may exclude partners.

14

This can be circumvented by annotating SCSGs instead. In this case, the
SCSG induced by G′ is used to evaluate the annotation of those SCSGs G∗

of MP(S) that contain the edges x and y but neither v nor w. The respective
formula of G∗ is only defined by subgraphs of S ⊕MP(S) that are valid w.r.t.
G∗. Consequently, the the subgraph H does not contribute to the definition of
the annotation of G∗.

Having this in mind, we can define an operating guideline of S. As subgraphs
in the composition of S⊕P can only cause a problem if P cannot perform certain
transitions, only subgraphs H that neither contain a final state nor are left by a
transition originating from S define the annotation of an SCSG of MP(S). The
formula is then the conjunction over all those subgraphs H.

Definition 27 (operating guideline). Let S be a state machine for which
MPb(S) exists. For an SCSG G of MPb(S), the set HG denotes all subgraphs H
of S ⊕MPb(S) that are valid w.r.t. G such that

– H does not contain a final state; and

– No transition originating from S leaves H.

A pair (MPb(S), Φ) is an b-operating guideline of S if, for all SCSGs G, the
Boolean annotation of G is defined as

Φ(G) =
∧

H:H∈HG

∨
e∈{(q,x,q′)∈δMPb(S)|∃(qS ,q,B)∈QH :(qS ,q,B)

x−→δS⊕MPb(S)
}

e .

Each clause of the formula Φ(G) is defined by an SCSG H. It is a disjunction
over all transitions originating in MPb(S) and having a state of QH as its source.
In other words, we collect transitions that leave H but also transitions being
internal to H.

Example 7. The 1-operating guideline of B consists of MP1(B) (see Fig. 3(a))
and a formula Φ. We give some example annotations, thereby using the part of
B ⊕ MP1(B), which is in Fig. 3(b). For the SCSG G0 = ({s0}, {}, {}), there
is only one subgraph H0 in B ⊕ MP1(B) (highlighted in Fig. 3(b)) yielding
Φ(G0) = (s0, τ, s0) ∨ (s0, τ, s0) ∨ (s0, !o, s1) ∨ (s0, !o, s1). Accordingly, Φ(G1) =
(s0, τ, s0) ∨ (s0, τ, s0) ∨ (s0, !o, s1) ∨ (s0, !o, s1) for the SCSG G1 = ({s0}, {}, {})
(not shown in Fig. 3(b)). For G3 = ({s2, s3}, {(s2, !o, s3), (s3, ?a, s2)}, {}), the
largest subgraph, H1, is highlighted in Fig. 3(b). All subgraphs require that at
least one of the eight edges with a source in G3 are present; thus, Φ(G3) is a
disjunction over these edges.

We relate the states of P to the states of MPb(S) using the minimal simula-
tion relation, which is a necessary requirement for P being a b-partner of S. To
avoid the consideration of unfolded cycles, we consider the state machine which
is defined by this simulation relation.

15

Definition 28 (matching graph). Let % be the minimal simulation relation
of a state machine R = (QR, Q̂R, I, O, TR, δR, FR) and a deterministic state ma-
chine S = (QS , Q̂S , I, O, TS , δS , FS). Define the state machine Z = (QZ , Q̂Z , I, O,
TZ , δZ , FZ) by

– QZ = %,
– Q̂Z = QZ ∩ (Q̂R × Q̂S),
– TZ = TR,
– δZ = {((qR, qS), (x, x′), (q′R, q

′
S)) | (qR, qS), (q′R, q

′
S) ∈ % ∧ (qR, x, q

′
R) ∈ δR

∧(qS , x
′, q′S) ∈ δS ∧ (x = x′ ∨ (x ∈ TR ∧ x′ ∈ TS))}, and

– FZ = QZ ∩ (FR × FS).

The matching graph MG(R,S) = (Q, Q̂, I, O, T, δ, F) of R and S is the reachable
portion of Z with

– Q = {q | ∃q̂ ∈ Q̂ : q̂ −→δ∗Z
q},

– Q̂ = Q̂Z ,
– T = TZ ,
– δ = δZ ∩ (Q× (I ∪O ∪ TZ)×Q), and
– F = Q ∩ FZ .

Note that we could also define δZ such that it only considers the transition
label x rather than a pair (x, x′), because x′ is uniquely defined.

The projection of an SCS of a matching graph onto the states of its compo-
nents is an SCS in the respective component.

Proposition 29. If G is an SCS of MG(R,S), then the projection GR of G
onto the states of R is an SCS of R and the projection GS of G onto the states
of S is an SCS of S.

An SCC of MG(P,MPb(S)) induces an SCSG of P and of MPb(S). Existence
of these two SCSGs is justified by Proposition 29.

Definition 30 (induced SCSG). Let the SCSG G = (QG, δG, FG) be induced
by an SCC of a matching graph MG(R,S) = (Q, Q̂, I, O, T, δ, F). The SCSG G
induces the SCSG GR = (Q′, δ′, F ′) in R with

– Q′ = {qR | (qR, qS) ∈ QG},
– δ′ = {(qR, x, q′R) | ∃qS , q′S ∈ QS : ((qR, qS), (x, x′), (q′R, q

′
S)) ∈ δG}, and

– F ′ = {qR | (qR, qS) ∈ FG}.

Likewise, G induces the SCSG GS = (Q′′, δ′′, F ′′) in S with

– Q′′ = {qS | (qR, qS) ∈ QG},
– δ′′ = {(qS , x′, q′S) | ∃qR, q′R ∈ QR : ((qR, qS), (x, x′), (q′R, q

′
S)) ∈ δG}, and

– F ′′ = {qS | (qR, qS) ∈ FG}.

16

!o

(u1,s0)

(u2,s1)

(u1,s2)

?a

?a !o

(u2,s3)

τ
(u0,s0)

(a) MG(U,MP1(B))

!o

(v0,s0)

(v1,s1)

(v0,s2)

?a

?a !o

(v1,s3)

C1

C2

C3

(b) MG(V,MP1(B))

Fig. 5. Two matching graphs

The procedure for checking containment of a state machine P in a b-operating
guideline (MPb(S), Φ) of S consists of two steps. First, we construct the matching
graph of P and MPb(S). Second, we check, for all SCCs G in the matching
graph, whether the induced SCSG GP of (the SCSG induced by) G evaluates
the annotation of the induced SCGS GMPb(S) to true.

Definition 31 (matching). A state machine P matches with a b-operating
guideline (MPb(S), Φ) of S if

1. There exists a minimal simulation relation % of P by MPb(S), yielding the
matching graph MG(P,MPb(S)); and

2. For every SCSG G induced by an SCC of MG(P,MPb(S)) and its induced
SCSGs GP and GMPb(S), GP models the formula Φ(GMPb(S)), denoted
GP |= Φ(GMPb(S)), if Φ(GMPb(S)) evaluates to true in the following as-
signment β(GP) : Σ → {true, false} to the propositions l ∈ Σ:

β(GP)(l) =

true,
l = (q, x′, q′) ∈ δMPb(S) ∧ ∃((qP , q), (x, x′), (q′P , q′)) ∈ δMG :

qP ∈ QGP ∧ (qP , x, q
′
P) /∈ δGP

false, otherwise.

As the matching procedure is computationally expensive, it is not intended
to decide whether a state machine P is a b-partner of a state machine S. To this
end, composing P and S and model checking S⊕P is more efficient. Definition 31
rather shows how a b-operating guideline represents a b-partner. It serves as a
precondition for verifying accordance of two state machines in Sect. 4.

Example 8. Figure 5 shows the matching graph MG(U,MP1(B)), and Figure 3.2
shows the matching graph MG(V,MP1(B)). The matching graph MG(V,MP1(B))
has three induced SCSGs C1–C3 (see Fig. 3.2). For C1, (v0, !o, v1) assigns true
to (s0, !o, s1) of G0 (defined in Example 7) and evaluates Φ(G0) (see Example 7)
to true. A similar argumentation holds for C2. The projection of C3 onto V does
not have any outgoing transition. As Φ(C3MP1(B)) (i.e., Φ(G3) in Example 7) is
not true, it is evaluated to false and we conclude that V does not match with
the 1-operating guideline of B.

17

MG(P,MPb(S))PSP MPb(S) SMPb(S)

GGP
GMPb(S) HH'

πσ1 σ1π π

Fig. 6. Ingredients used for the proof of Theorem 32.

3.3 Justification

In this section, we prove that a b-operating guideline of S characterizes all b-
partners of S.

Theorem 32. For any two state machines P and S, P matches with a b-
operating guideline (MPb(S), Φ) of S iff P is a b-partner of S.

The proof takes as ingredients the matching graph MG(P,MPb(S)), the state
machines P and MPb(S), and the transition systems S ⊕ P and S ⊕MPb(S).
More precisely, the proof uses the relation of an SCC G of MG(P,MPb(S)) and
its induced SCSGs GP and GMP(S) of P and MPb(S) and their corresponding
components in S ⊕ P and S ⊕MPb(S); see Fig. 6 for an illustration.

Before we formalize the necessary properties used in the proof, we give a
proof outline with the help of Fig. 6.

For the implication, we choose an arbitrary SCC H ′ of S ⊕ P . We have to
show that it can be left or contains a final state. To this end, we use the existence
of a simulation relation of S⊕P by S⊕MPb(S) (Lemma 33) to determine an SCS
H of S ⊕MPb(S). We project H ′ onto P and H onto MPb(S) yielding GP and
GMPb(S), respectively, from which we construct an SCC G of MG(P,MP(S)).
From GP |= Φ(GMPb(S)) we can show that H ′ has the desired property.

More difficult is the reverse implication. Here, we start with an SCC G of
MG(P,MPb(S)) and its induced SCSGs GP and GMPb(S). For a given clause Φi
of Φ(GMPb(S)), we construct an SCSG H that defines Φi using Lemma 34. From
H we construct an SCSG H ′ of S ⊕ P , which can be used to derive properties
of GP (see Lemma 35) from which we can conclude that GP models Φi.

Lemma 33. For any b-partner P of S, S ⊕MPb(S) simulates S ⊕ P .

Proof. To improve readability, we leave out the subscript b throughout this proof.
By assumption, P is a b-partner of S; so the minimal simulation relation % ⊆

QP ×QMP(S) exists. We construct a simulation relation %′ ⊆ QS⊕P ×QS⊕MP(S)

from % inductively as follows:

Base: If (q̂P , q̂) ∈ %, so ((q̂S , q̂P , []), (q̂S , q̂, [])) ∈ %′.

18

Step: Suppose ((qS , qP ,B), (qS , q,B)) ∈ %′. If (qS , qP ,B)
[x,S]−−−→δS⊕P (q′S , qP ,B′),

then (qS , q,B)
[x,S]−−−→δS⊕MP(S)

(q′S , q,B′) and ((q′S , qP ,B′), (q′S , q,B′)) ∈ %′. Like-

wise, if (qS , qP ,B)
[x,P]−−−→δS⊕P (qS , q

′
P ,B′), then by the definition of % we conclude

that there exists an x′ ∈ I ∪ O ∪ TMP(S) such that (qS , q,B)
[x′,MP(S)]−−−−−−−→δS⊕MP(S)

(qS , q
′,B′) and (x = x′ ∨ (x ∈ TP ∧ x′ ∈ TMP(S))). Thus, we have ((qS , q

′
P ,B′),

(qS , q
′,B′)) ∈ %′. ut

The next lemma relates MPb(S) and S ⊕MPb(S).

Lemma 34. Let S be a state machine for which MPb(S) exists and G be an

SCSG of MPb(S) with q̂
π−→δ∗

MPb(S)
q′ ∈ QG.

For all subgraphs H of S ⊕ MPb(S) that are valid w.r.t. G and for all
states (qS , q,B) ∈ QH , there exist a state q̂S ∈ Q̂S and a trace σ = σ1σ2 with

(q̂S , q̂, [])
σ−→δ∗

S⊕MPb(S)
(qS , q,B) and σ1|MPb(S) = π and q′

σ2|MPb(S)−−−−−−→δ∗G
q.

Proof. To improve readability, we leave out the subscript b throughout this proof.
Let (qS , q,B) ∈ QH . We have q̂

π−→δ∗
MP(S)

q′ by assumption, and q ∈ QG
follows from H being valid w.r.t. G. Now, with the definition of an SCSG, there

exists a trace π′ with q′
π′−→δ∗

MP(S)
q. Together with the most preciseness of MP(S)

justified by Theorem 32, we conclude, in particular by Proposition 20, that there
exists a state q̂S ∈ Q̂S and a trace σ = σ1σ2 with (q̂S , q̂, [])

σ−→δ∗
S⊕MP(S)

(qS , q,B)

and σ1|MP(S) = π and σ2|MP(S) = π′. So it remains to show that σ2 is also a trace
of H. To see this, consider the state (qS , q,B) ∈ QH . By construction of MP(S),
we have (qS ,B) ∈ k(q). If ππ′ is the empty sequence, this means that (qS ,B) ∈
cl(Q̂S×{[]}) which means that there is the claimed sequence from an initial state
to (qS , q,B). Otherwise, let ππ′ = π∗x and q∗ the state reached by π∗ in MP(S),

i.e., q∗
x−→δMP(S)

q. By construction of MP(S), k(q) = cl(set-step(k(q∗, x)). By
definition of closure and set-step, we conclude that there is some (q∗S ,B∗) ∈ k(q∗)
such that (qS , q,B) is reachable in S⊕MP(S) from (q∗S , q

∗,B∗) by first executing
x (by set-step) and then executing transitions from S (by closure). Iterating the
same argument for (q∗S , q

∗,B∗) until ππ′ is reduced to the empty sequence, yields
the desired sequence. ut

As Figures 4(a) and 4(b) show, the subgraph H is not necessarily connected.
Next, we show that from the subgraph H ′ we can derive an assignment for

GP . In the proof, we construct from H ′ a subgraph H of S ⊕ P that is valid
w.r.t. to GP .

Lemma 35. Let S⊕P be weakly terminating, C be an SCC of MG(P,MPb(S)),
and G be the SCSG induced by C. Let GP and GMPb(S) be the induced SCGS of
G in P and MPb(S). Let Φi be a clause of Φ(GMPb(S)). Then, GP |= Φi.

Proof. To improve readability, we leave out the subscript b throughout this proof.

19

LetH be the subgraph of S⊕MP(S) that is valid w.r.t.GMP(S) and according
to which Φi has been added to Φ(GMP(S)). Let π be a path in MG(P,MP(S))
that leads from an initial state to some state in G.

We construct from H the following subgraph H ′ = (Q, δ, F) of S ⊕ P :

– Q = {(qS , qP ,B) | ∃q ∈ QGMP(S)
: (qS , q,B) ∈ QH ∧ (qP , q) ∈ QG},

– δ = {(qS , qP ,B)
[x,S]−−−→δ (q′S , qP ,B′) | (qS , qP ,B), (q′S , qP ,B′) ∈ Q

∧∃q ∈ QGMP(S)
: (qP , q) ∈ QG ∧ (qS , q,B)

[x,S]−−−→δH (q′S , q,B′)}
∪ {(qS , qP ,B)

[x,P]−−−→δ (qS , q
′
P ,B′) | (qS , qP ,B), (q′S , qP ,B′) ∈ Q

∧∃q, q′ ∈ QGMP(S)
: ((qP , q), (x, x

′), (q′P , q
′)) ∈ δG

∧(qS , q,B)
[x′,MP(S)]−−−−−−−→δH (qS , q

′,B′)},
– F = {(qS , qP , []) ∈ Q | ∃q ∈ QMP(S) : (qS , q, []) ∈ FH ∧ (qP , q) ∈ FMG}.

Let (qS , q,B) ∈ QH . From Lemma 34, we conclude that there exists a

trace σ = σ1σ2 with (q̂S , q̂, [])
σ−→S⊕MP(S) (qS , q,B) and σ1|MP(S) = π and

q′
σ2|MP(S)−−−−−→δGMP(S)

. We shall now construct a corresponding trace in S ⊕ P that

proves reachability of H ′. W.l.o.g., assume σ = y1x1 . . . ynxnyn+1 with traces
y1, . . . , yn+1 in S and traces x1, . . . , xn in MP(S). By induction over the length of
σ, we have for all (q′S , q

′,B′) ∈ QS⊕MP(S) and (q′S , q
′
P ,B′) ∈ QS⊕P with (q′P , q

′) ∈

QMG , if (q′S , q
′,B′) yixi−−−→S⊕MP(S) (q′′S , q

′′,B′′) then (q′S , q
′
P ,B′)

yix
′
i−−−→S⊕P (q′′S , q

′′
P ,B′′)

with ((q′P , q
′), (x′i, xi), (q

′′
P , q
′′)) ∈ δMG . For yi observe that the message bag and

the state of S are the same in both states, and for x′i recall that these steps are
determined by δMG . The relation δ then directly follows from the definition of
Q. The set F is defined according to the definition of a final state in S⊕MP(S).
By the definition of QMG , (qP , q) ∈ QMG and existence of (qS , q, []) ∈ FH imply
qP ∈ FP and hence (qS , qP , []) ∈ FH′ .

The subgraph H ′ is valid w.r.t GP : The projection of H ′ onto the states and
transitions of P yields GP . Furthermore, completeness of the transition relation
δ can be concluded from the completeness of the transition relation δH and
Proposition 18.

We shall use the fact that H ′ is valid w.r.t. GP to prove that GP models Φi.
As S ⊕ P is weakly terminating, H ′ contains a final state or can be left by an
edge of S or P (Proposition 9(3)). If H ′ contains a final state (qS , qP , []) and
(qP , q) ∈ % (% is the minimal simulation relation of P by MP(S)), then q is a
final state by the construction of % and so is the respective state (qS , q, []) ∈ QH .
Therefore, Φi is defined as true. Now assume that H ′ does not contain a final
state but can be left by an x-labeled edge. Suppose this edge originates from
S. Then, it can also be executed in the respective state in QH . If its target is
not in QH , then H defines Φi to be true; otherwise, if its target is in QH , the
corresponding target in H ′ must be in Q by the construction of H ′ from H.
Suppose this x-labeled edge originates from P . Then it is also a leaving edge in
GP and by the construction of % in GMP(S), and so it is in H. Thus, GP would
assign true to this edge (no matter whether it leaves H or is internal to H) and
hence model Φi. ut

20

Now, we have all the ingredients to prove Theorem 32.

Proof (of Theorem 32). To improve readability, we leave out the subscript b
throughout this proof.
⇒: Let P match with (MP(S), Φ). Then, MP(S) simulates P . From TS 0(S)

simulates MP(S) (Lemma 21) and transitivity of the simulation relation, we
conclude that TS 0(S) simulates P . As a consequence, S ⊕ P does not violate
the bound b. So it suffices to show that S ⊕ P weakly terminates, from which
we can conclude that P is a b-partner of S.

Let H ′ be the induced SCSG of some SCC of S ⊕ P . Let σ1 be a trace
of S ⊕ P to a state of H ′ with (q̂S , q̂P , [])

σ1−→δ∗S⊕P
(q′S , q

′
P ,B′) ∈ QH′ . Let

σ1 = y1x1 . . . ynxnyn+1 with traces y1, . . . , yn+1 in S and traces x1, . . . , xn in P .
By Lemma 33, S⊕MP(S) simulates S⊕P using relation %′ ⊆ QS⊕P×QS⊕MP(S).
Thus, there exists an SCSG H in S ⊕MP(S) whose states form an SCS with %′

relates the states of H ′ and H (note that S ⊕MP(S) may have more behavior
than S⊕P , so H is not necessarily induced by an SCC). By the construction of
%′, a trace σ′1 = y1x

′
1 . . . ynx

′
nyn+1, which is derived from σ1 by replacing every

trace xi of P with the corresponding trace x′i of MP(S) according to %′, can be
executed in S ⊕MP(S) leading to a state of H. Let GP be the projection of H ′

onto the states and transitions of P and GMP(S) be the projection of H onto
the states and transitions of MP(S). By construction, H is valid w.r.t. GMP(S)

and H ′ is valid w.r.t. GP . Let further π = (x1, x
′
1) . . . (xn, x

′
n). By the choice of

H ′, GP is an SCSG whose states form an SCC and GMP(S) is an SCSG whose
states form an SCS. So the matching graph MG(P,MP(S)), which exists by
assumption, has an SCSG G induced by an SCC such that G is reachable via
trace π, and G induces the SCSGs GP and GMP(S).

By assumption, P matches with (MP(S), Φ) and, therefore, GP models
Φ(GMP(S)). Let H define the clause Φi of Φ(GMP(S)). Then, GP models Φi.
We distinguish three cases: (1) The SCSG H contains a final state (and, thus, is
not considered for defining Φ(GMP(S))). Then, there exists a final state of H ′ by
the definition of %′. (2) The SCSG H can be left by a transition originating from
S (and, thus, is not considered for defining Φ(GMP(S))). Then, the corresponding
state in H ′ enables the same transition, and it leaves H ′ as otherwise %′ would
relate a state of H ′ with a state which is not in H. (3) H can be left by a tran-
sition originating from MP(S). By the definition of matching, a corresponding
edge leaves GP and thus H ′. In all three cases, Proposition 9 holds and hence
S ⊕ P weakly terminates.
⇐: Let P be a b-partner of S. This implies the existence of a most-permissive

b-partner of S by Lemma 23 from which we conclude the existence of MP(S).
By Definition 11, MP(S) simulates P . So let MG(P,MP(S)) be the matching
graph. It remains to show that Definition 31(2) holds.

To do so, let G be an SCSG induced by an SCC of MG(P,MP(S)) and π be

a trace of MG(P,MP(S)) to a state of G with (q̂P , q̂)
π−→δ∗MG

(q′P , q
′) ∈ QG. Let

GP and GMP(S) denote the induced SCGSs of G in P and MP(S). Let Φi be
a clause in Φ(GMP(S)). Then, there exists a subgraph H of S ⊕MP(S) that is
valid w.r.t. GMP(S) and defines Φi with

21

– H does not contain a final state; and
– No transition originating from S leaves H.

Lemma 34 shows that we can construct H from G and π. Given H, we
conclude with Lemma 35 that GP models Φi. Thus, Definition 31(2) holds and
P matches with (MP(S), Φ). ut

4 Deciding Accordance

In this section, we demonstrate the main application for operating guidelines.
Given two open systems S and R, we want to decide whether R can safely
replace S. Safe replacement of an open system is formalized by the accordance
relation. Accordance requires that every partner of S is also a partner of R.
An open system may have infinitely many partners, so we must check inclusion
of two infinite sets. Because the set of all partners of an open system can be
represented in a finite manner using the operating guideline, we may use the
operating guidelines of S and R to decide whether R accords with S.

Definition 36 (accordance). Let S and R be state machines with IS = IR
and OS = OR. Then, R b-accords with S if every b-partner P of S is also a
b-partner of R.

It is easy to see that b-accordance is a preorder and by generalizing the
composition operator ⊕ such that the composition of two state machines is not
necessarily a closed transition system, b-accordance is even a precongruence for
the operator ⊕.

To decide b-accordance of S and R, we need to relate their operating guide-
lines, in particular the assigned formulae. As ΦS uses transitions of MP(S) as
literals, and ΦR transitions of MP(R), we need to transform these literals into
a common domain. The natural candidate is to use transitions of the matching
graph as literals.

Definition 37 (formula projection). Let S and R be state machines such
that, for their operating guidelines (MP(S), ΦS) and (MP(R), ΦR), the matching
graph MG(MP(S),MP(R)) = (Q, Q̂, I, O, T, δ, F) exists. Let G be an SCSG
of the matching graph and GS and GR the respective projections to MP(S)
and MP(R). For the formula ΦS(GS), its projection ΦS(GS)|MG replaces every
transition literal (q1, x, q2) in ΦS(GS) by∨

q′1,q
′
2,x
′:(q1,q′1)∈G∧((q1,q′1),(x,x′),(q2,q′2))∈δ

((q1, q
′
1), (x, x′), (q2, q

′
2)) .

Correspondingly, for the formula ΦR(GR), its projection ΦR(GR)|MG replaces
every transition literal (q′1, x

′, q′2) in ΦR(GR) by∨
q1,q2,x:(q1,q′1)∈G∧((q1,q′1),(x,x′),(q2,q′2))∈δ

((q1, q
′
1), (x, x′), (q2, q

′
2)) .

22

The next lemma shall be used to prove our main result.

Lemma 38. Let P be simulated by MP(S).

1. P and the matching graph MG(P,MP(S)) are bisimilar.
2. If P is also simulated by MP(R), then the two matching graphs MG(P,MP(S))

and MG(P,MP(R)) are bisimilar.

Proof. (1) The matching graph MG(P,MP(S)) exists because of the assumed
simulation. The bisimulation follows from the definition of a matching graph.

(2) The two matching graphs MG(P,MP(S)) and MG(P,MP(R)) exist be-
cause of the assumed simulations. By the first item, P and MG(P,MP(S)) are
bisimilar and P and MG(P,MP(R)) are bisimilar. As bisimulation is an equiva-
lence, we conclude that MG(P,MP(S)) and MG(P,MP(R)) are bisimilar, too.

ut

The main claim of this section is that accordance of R by S can be decided
on their operating guidelines. To this end, we define a refinement relation on
operating guidelines that consists of two conditions. First, MP(R) must simulate
MP(S). Informally, if R accords with S then, in particular, MP(S) is a partner
of R. Second, every partner of S must not livelock with R and thus also satisfies
the formulae of the operating guideline of R. To decide this, we investigate all
SCSGs G of the matching graph MG(MP(S),MP(R)). Recall that matching
requires that the projection of an SCC G∗ onto P evaluates the formula of the
projection of G∗ onto MG . This formula must imply the formula ΦR(GMP(R)),
also projected to MG .

Theorem 39 (checking accordance). For any two state machines S and R
with operating guidelines (MPb(S), ΦS) and (MPb(R), ΦR), R b-accords with S
iff the following two items hold:

1. There exists a minimal simulation relation % ⊆ QMPb(S) × QMPb(R) of
MPb(S) by MPb(R) yielding the matching graph MG = MG(MPb(S),MPb(R)).

2. For every SCSG G of MG(MPb(S),MPb(R)), the formula
ΦS(GMPb(S))|MG =⇒ ΦR(GMPb(R))|MG is a tautology.

Proof. To improve readability, we leave out the subscript b throughout this proof.
⇒: Assume R accords with S. We show that items (1) and (2) hold. To this

end, we proceed according to the following agenda:

1. Establish a simulation of MP(S) by MP(R) thus proving (1);
2. Assume that (2) is not true, for some SCSG G and some assignment β;
3. Construct a state machine P from MP(S), G, and β;
4. Establish a simulation of P by MP(S);
5. Show that P is a partner of S using Theorem 32 and the fact that β satisfies
ΦS(GMP(S))|MG ;

6. Establish a simulation of P by MP(R);
7. Show that P is not a partner of R using Theorem 32 and the fact that β

violates ΦR(GMP(R))|MG .

23

q1
(1)

q2
(1)

q4
(1)

q3
(1)

q5
(1)

q6
(1)

a

b

q1
(2)

q2
(2)

q4
(2)

q3
(2)

q5
(2)

q6
(2)

a

b

q1
(G)

q2
(G)

q4
(G)

q3
(G)

a

b
✗

MG MGG

(1) (G) (2)

Fig. 7. Illustration for the proof of the implication of Theorem 39. We have
β((q2, a, q5)) = true and β((q4, b, q6)) = false

8. Conclude that R does not accord with S, in contradiction to the assumption,
thus proving (2).

Ad 1. The state machine MP(S) is a partner of S and, by assumption,
must be a partner of R. So there exists a minimal simulation relation % ⊆
QMP(S) × QMP(R) according to Theorem 32 and MG = MG(MP(S),MP(R)),
the matching graph, exists.

Ad 2. Assume that there exists an SCSG G ⊆ QMG where the formula in
(2) is not a tautology. This means that there is a particular assignment β where
ΦS(GMP(S))|MG is true while ΦR(GMP(R))|MG is false.

Ad 3. We construct a state machine P that consists of two copies of MG
and, additionally, of a copy of G. The first copy of MG is only connected to the
copy of G, and the copy of G is only connected to the second copy of MG ; see
Fig. 7. We refer to a state q ∈ QMG as q(1) if it belongs to the first copy of MG
and as q(2) if it belongs to the second copy of MG . States of the copy of G are
referred to as q(G). Let Q(1) = {q(1) | q ∈ QMG}, Q(2) = {q(2) | q ∈ QMG}, and
Q(G) = {(q(G) | q ∈ QG}; that is, QP is supposed to be the disjoint union of
Q(1), Q(2), and Q(G).

Initial states of P are exactly the initial states of the first copy of MG . Final
states are all those q(1), q(2), and q(G) where q is final in MG .

The three parts of P are connected by additional transitions.

– Add transition (q(1), x, q′
(G)

) iff (a.) (q, x, q′) ∈ δMG and (b.) q′ ∈ G.

– Add transition (q(G), x, q′
(2)

) iff (a.) (q, x, q′) ∈ δMG , (b.) q ∈ G, and (c.)
β((q, x, q′)) = true.

Informally, states from whichG as part of the first copy of MG can be entered, get
additional transitions to enter the explicit copy of G instead. For each transition
that leaves G in MG , the explicit copy of G is left at according position in P ,
jumping to the second copy of MG , but only with those transitions where β
assigns true.

By this construction, every SCSG of P contains only states with the same
superscript.

24

Ad 4. Consider the following relation %P,MP(S) ⊆ QP ×QMP(S): %P,MP(S) =

{((qMP(S), qMP(R))
(x)), qMP(S)) | x ∈ {1, 2, G}, (qMP(S), qMP(R))

(x) ∈ Q(x) and

(qMP(S), qMP(R))
(x) is reachable in P}.

%P,MP(S) is just a projection of copies of MG to MP(S) and of G to MP(S).
In addition, the transitions linking the three parts of P directly correspond
to transitions of MG . It is thus easy to see that %P,MP(S) is a simulation re-
lation. Moreover, because every reachable state of P occurs exactly once in
%P,MP(S), it is necessarily the minimal simulation relation. Thus the matching
graph MG(P,MP(S)) exists. Using the mapping φ with
φ(((qMP(S), qMP(R))

(x), qMP(S))) = (qMP(S), qMP(R))
(x), it is easy to verify that

the reachable part of P and MG(P,MP(S)) are actually isomorphic.

Ad 5. Consider the matching graph MG(P,MP(S)) and one of its SCSG H
induced by some SCC of this matching graph. As there are no strongly connected
components that span over more than one part of P , we can distinguish three
cases forH. In the first case,HP has states inQ(1). We know that MG is bisimilar
to MP(S) (Lemma 38(1)) and MP(S) is a partner of S. For this reason, HP must
have sufficiently many leaving transitions to satisfy ΦS(HMP(S)). The same holds

if HP consists of states in Q(2). In the third case, HP consists of states in Q(G).
Since P and MG(P,MP(S)) are isomorphic, the matching graph will cover all
states and transitions of G, i.e., HP = G.

By Definition 37, this means that ΦS(GMP(S)) is true if all those literals

(qS , x, q
′
S) are true where there exist qR, x′, and q′R where (qS , qR)

(x,x′)−−−−→MG

(q′S , q
′
R) and β(((qS , qR), (x, x′), (q′S , q

′
R))) = true. Let l be such a literal (qS , x, q

′
S).

As for all edges of MG where β assigns true and which have a source in G, there
is a transition in P that leaves (the copy of) G, this means that l is also true in
the assignment β∗ that is constructed for G in Theorem 32. As ΦS(GMP(S)) is
monotonic (negation free), this suffices to conclude that ΦS(GMP(S)) is satisfied
by β∗. Consequently, P is a partner of S.

Ad 6. Consider the following relation %P,MP(R) ⊆ QP ×QMP(R): %P,MP(R) =

{((qMP(S), qMP(R))
(x), qMP(R)) | x ∈ {1, 2, G}, (qMP(S), qMP(R))

(x) ∈ Q(x) and

(qMP(S), qMP(R))
(x) is reachable in P}.

%P,MP(R) is just a projection of copies of MG to MP(R) and of G to MP(R).
In addition, the transitions linking the three parts of P directly correspond
to transitions of MG . It is thus easy to see that %P,MP(R) is a simulation re-
lation. Moreover, because every reachable state of P occurs exactly once in
%P,MP(R), it is necessarily the minimal simulation relation. Thus the matching
graph MG(P,MP(R)) exists. Using the mapping φ with
φ(((qMP(S), qMP(R))

(x), qMP(R))) = (qMP(S), qMP(R))
(x), it is easy to verify that

the reachable part of P and MG(P,MP(R)) are actually isomorphic.

Ad 7. We show that P is not a partner of R. To this end, we apply The-
orem 32 to the copy of G as part of P and its isomorphic counterpart G∗ in
MG(P,MP(R)). The projection of G∗ to P is obviously G while the projec-
tion to MP(R) is GMP(R). That is, we evaluate ΦR(GMP(R)) in the assign-
ment β∗ constructed from G. We show that a literal (qMP(R), x

′, q′MP(R)) can be

25

true only if the disjunction that replaces (qMP(R), x
′, q′MP(R)) in Definition 37 is

evaluated to true by β. Because ΦR(GMP(R)) is monotonic (negation free) and
ΦR(GMP(R))|MG is not satisfied by β, we can then conclude that ΦR(GMP(R))
is not satisfied by β∗. By Theorem 32, this shows that P is not a partner of R.

Hence, consider a literal (qMP(R), x
′, q′MP(R)) that is true in β∗. By Defini-

tion 31, this means that there are qP , q
′
P ∈ QP and x such that

((qP , qMP(R)), (x, x
′), (q′P , q

′
MP(R))) ∈ δMG(P,MP(R)), qP ∈ QG, and (qP , x, q

′
P) /∈

δP . By the construction of P and the specific simulation relation %P,MP(R), this
means that there exist qMP(S), q

′
MP(S) ∈ QMP(S) and x such that

(((qMP(S), qMP(R)), qMP(R)), (x, x
′), ((q′MP(S), q

′
MP(R)), q

′
MP(R))) ∈ δMG(P,MP(R)),

(qMP(S), qMP(R)) ∈ QG, and ((qMP(S), qMP(R)), (x, x
′), (q′MP(S), q

′
MP(R))) /∈ δG.

By construction, ((qMP(S), qMP(R)), (x, x
′), (q′MP(S), q

′
MP(R))) /∈ δG implies that

β(((qMP(S), qMP(R)), (x, x
′), (q′MP(S), q

′
MP(R)))) = true. Thus, the disjunction

that replaces (qMP(R), x
′, q′MP(R)) in Definition 37 is true in β which remained

to show.

Ad 8. We have by (5.) that P is a partner of S but, by (7.) P is not a
partner of R. This contradicts the general assumption that R accords with S.
Consequently, the assumption made in (2.) must by false and hence the claim
(2) of the theorem must hold.

⇐: Assume items (1) and (2) hold. Let P be a partner of S. We have to show
that P is also a partner of R (i.e., P matches with the operating guideline of R).

First, we show that the matching graph MG(P,MP(R)) exists. By assump-
tion, the matching graphs MG(P,MP(S)) and MG(MP(S),MP(R)) exist. As
a simulation relation is transitive, we conclude that MP(R) simulates P . As
MP(R) is by construction deterministic, this simulation relation is even mini-
mal. Thus, MG(P,MP(R)) exists, proving the first item of Definition 31.

It remains to prove that the second item of Definition 31 is satisfied. Let G′′

be an SCSG induced by an SCC of MG(P,MP(R)), and let G′′P and G′′MP(R) be

the induced SCSGs of G′′. We have to show that G′′P |= ΦR(G′′MP(R)).

From the bisimulation between the matching graphs MG(P,MP(S)) and
MG(P,MP(R)) (see Lemma 38(2)), we conclude the existence of an SCSG G′

(induced by an SCC) of MG(P,MP(S)) which is bisimilar to G′′. As G′ and G′′

are bisimilar, for their projections we have G′S = G′′S and G′MP(S) and G′′MP(R)

are bisimilar. Moreover, from P being a partner of S, we conclude by Theorem 32
and Definition 31 that G′P |= ΦS(G′MP(S)) in the assignment βP .

We now show that βP can be mapped on the domain of edges of R, yielding an
assignment in which G′′P |= ΦR(G′′MP(R)). As G′MP(S) and G′′MP(R) are bisimilar,

there exists an SCSG G of MG with GMP(S) = G′MP(S) and GMP(R) = G′′MP(R).

Consider a literal (qMP(S), xS , q
′
MP(S)) that is true in βP . This means that

there are qP , q
′
P ∈ QP and x such that ((qP , qMP(S)), (x, xS), (q′P , q

′
MP(S))) ∈

δMG(P,MP(R)), qP ∈ QG, and (qP , x, q
′
P) /∈ δP by Definition 31. Replacing

the formula ΦS(G′MP(S)) by its projection ΦS(G′MP(S))|MG according to Defi-

nition 37, replaces every (qMP(S), xS , q
′
MP(S)) by a disjunction of literals. Thus,

26

r1

!a ?o

r0

(a) R

t0

!o

t1

!o
?a

τ
τ

!o
!o

?a
?a

?a t0

t1
τ
τ

τ

τ

τ

τ

(b) MP1(R))

!o

?a

!o

!o!o!o

τ
τ

τ
τ

?a

!o
?a

?a ?a

τ
τ

!o
!o

?a

?a?a

τ
τ

ττ
(s0,t0) (s0,t0)

ττ
(s1,t1) (s1,t1)

ττ
(s2,t0) (s2,t0)

ττ
(s3,t1) (s3,t1)

(c) MG(MP1(B),MP1(R))

Fig. 8. State machine R 1-accords with state machine B.

βP (qMP(S), xS , q
′
MP(S)) = true implies this disjunction is evaluated to true in

βP .
Now, using the second item of Theorem 39, we know that ΦR(GMP(R))|MG

evaluates to true in βP . We use again Definition 37 to establish a relation be-
tween the formulae ΦR(GMP(R))|MG and ΦR(GMP(R)) = ΦR(G′′MP(R)). As Def-

inition 37 replaces a disjunction of literals by a single literal and ΦR(GR)|MG

evaluates to true in βP , this literal is only evaluated to true in βP if the dis-
junction is. Thus βP is the assignment in which G′′P |= ΦR(G′′MP(R)). As a con-
sequence, with Definition 31 we have P is also a partner of R. ut

Example 9. Figure 8(a) depicts a new buyer R. It provides the possibility to also
terminate without interaction. All other functions of B remain unchanged. To
prove that R 1-accords with B, we apply Theorem 39. Figure 8 shows MP1(R)
and the matching graph MG(MP1(B),MP1(R)). Thus the first item of Theo-
rem 39 holds. Two check the second item, we consider the SCSGs of the matching
graph. Consider the SCSG G = ({(s0, t0)}, {}, {}) and the formulae ΦB(GMP(B))
(i.e., Φ(G1) in Example 7) and ΦB(GMP(R)). The latter formula is true because
all respective subgraphs of R ⊕MP1(R) contain a final state. Thus, the impli-
cation of these formulae is a tautology. The same argumentation holds for any
SCSG with the state set {(s0, t0), (s0, t0)}.

5 Related Work

5.1 Operating guidelines

The presented operating guideline for weak termination builds on the notion of
an overapproximation for state machines and the most permissive partner for
weak termination, as defined by Wolf [53]. Moreover, it generalizes operating
guidelines for deadlock freedom as introduced by Lohmann et al. [29]. Whereas
in the case of deadlock freedom, it sufficed to annotate every state of the under-
lying most permissive partner by a Boolean formula, every strongly connected
subgraph has to be annotated in the case of weak termination.

27

The construction of the most permissive partner is related to supervisory
control [43]. Given a system specification as a finite automaton, supervisory con-
trol asks whether there exists an environment such that the composition of the
system and the environment satisfies some temporal logic property. Weak termi-
nation, also known as nonconflicting or nonblocking, is an important property
in the field of discrete event systems [43,17]. Temporal synthesis is an instance
of supervisory control where a partner is synthesized directly from a temporal
specification; see the overview of Kupferman [24]. It ensures that the synthe-
sized system realizes the property with either the maximal environment (i.e.,
an environment that offers all inputs in every state) or all environments. There
also exist approaches to restrict the environments under consideration by adding
assumptions [19] and to bound the size of the synthesized system [46]. However,
controller synthesis is just a transient step in our approach to construct an oper-
ating guideline that characterizes all partners—a concept that is not yet known
in the fields of temporal synthesis and supervisory control. Moreover, to the best
of our knowledge, the notion of a most precise partner has not been considered
in controller synthesis.

Operating guidelines are related to work of de Alfaro and Henzinger on inter-
face automata [6,7]. Interface automata implicitly characterize the set of required
input actions and allowed output actions at every state. Our main contribution
is the characterization of all partners in a style that is much more explicit than in
interface automata. The explicit notion enables simple procedures for exploring
operating guidelines. Moreover, for us, the Boolean annotations play a com-
pletely different role than the predicates, for example, in [48]. Instead of data
dependencies, our annotations express choices in the control flow.

Operating guidelines complement work on robust model checking by Kupfer-
man and Vardi [25]. An open system S robustly satisfies a temporal logic prop-
erty ψ if for every environment E such that S ⊕E is deadlock free holds, S ⊕E
satisfies ψ. Although we consider only weak termination rather than arbitrary
temporal logic properties but in an asynchronous rather than a synchronous set-
ting as in [25], operating guidelines represent all partners, also in case S does
not robustly satisfy ψ.

5.2 Accordance

Classification Accordance has been introduced as conflicting preorder in [31]
and subcontract in [13] for synchronous communication. As noticed by Malik et
al. [31] and Bravetti and Zavattaro [13], should testing [16,37,44]—also known as
fair testing—is the coarsest traditional precongruence that implies accordance,
but accordance does not imply should testing. Bravetti and Zavattaro [13] give
a counterexample, whereas Malik et al. [31] also show that accordance implies a
new variant of failures preorder.

Mooij et al. [36] show when accordance and should testing coincide by re-
stricting the tests, on the one hand and by restricting the considered sets of
system, on the other hand. They identify three differences between should test-
ing and accordance: First, in the case of accordance, the composed system must

28

terminate together (using a synchronized termination action), whereas in the
case of should testing, only the test needs to perform an (unsynchronized) “suc-
cess” action. In other word, the notion of a partner is symmetric whereas a test
is an asymmetric notion. Second, whereas in the case of accordance there is no
information about the states of the open system after any occurrence of the ter-
mination action, in the case of should testing, there is information about each
state of the open system. Third, a state machine can have uncoverable states—
that is, states that cannot be visited with any partner. In the case of accordance,
there is no information about uncoverable states of the process (because no part-
ner visits them), whereas in the case of should testing, there is information about
each state of the process (i.e., those states are visited by tests). This, in partic-
ular, causes that accordance does not imply the trace preorder.

The notion of uncoverable states has been introduced as the set of certain
conflicts by Malik et al. [31]. A similar phenomenon occurs in the safe-must
preorder [12], where a process and its observer must reach a success state before
reaching a catastrophic (i.e., diverging) one.

Work on Automata Ware and Malik [50] give a state-based characterization of
accordance in the setting of synchronous communication—the characterizations
in [31,13,36] are defined in a testing like setting. Based on this characterization,
they provide a decision procedure. The idea is to compare for a state of S and a
state of R the traces leading to a final state. This decision procedure is similar
to the one for should testing in [44], where for a pair of states of S and R the
tree failures are compared. In contrast, we decide accordance on the operating
guidelines of S and R rather than on S and R. Moreover, we consider a setting of
asynchronous communication rather than synchronous communication as Ware
and Malik [50]. Recently, Ware and Malik [51] introduce accordance-preserving
abstraction techniques to speed up the decision of accordance.

The presented solution to decide accordance generalizes previous work by
Stahl et al. [47] on deadlock freedom to weak termination. Likewise, it generalizes
work on acyclic open systems by Aalst et al. [5] to cyclic open systems.

We decide accordance in another style than Alfaro and Henzinger for interface
automata [7], and in another setting (e.g., asynchronous unqueued communica-
tion). Likewise, also the work on protocol automata of Beyer et al [10] considers
synchronous communication but arbitrary temporal logic properties.

Benatallah et al. [9] restrict their model to deterministic automata that com-
municate synchronously. For such models accordance coincides with the simula-
tion preorder.

Pathak et al. [41] focus on a substitutability notion that preserves an ar-
bitrary property, which is expressed by a µ-calculus formula. The approach
assumes a synchronous communication model and is based on partial model
checking [8]. Oster and Basu [40] extend the work of [41] to asynchronous com-
munication by introducing a buffer process that can buffer one message for each
channel.

29

Work on Petri Nets Vogler’s invariant reachability (IR) equivalence [49] is used
for the replaceability of open Petri nets. As the main difference to accordance,
it is an asymmetric notion that focuses only on the tests (i.e., the partners) and
not on the open system being tested. Vogler proves in [49] that IR-equivalence
coincides with should testing.

Van der Aalst et al. [5] present a decision procedure for accordance in case
the open systems, which are modeled as open Petri nets, are acyclic. In this
paper, we do not put any restriction on the structure of an open system.

A compositional refinement check for accordance is presented by Van der
Aalst et al. in [3]. The approach is restricted to composition that have a tree
structure and the only a sufficient criterion is to decide accordance is given.

Martens [32] considers accordance, but his decision procedure is only suf-
ficient. In contrast, we presented a decision procedure on operating guidelines
which is sufficient and necessary.

Van der Aalst and Basten [2] consider synchronously communicating Petri
nets and present projection inheritance as a refinement relation. Projection in-
heritance is based on branching bisimulation [21] and is finer than (i.e., implies)
accordance; see [4]. Likewise weak bisimulation used as a refinement relation by
Bonchi et at. [11] is finer than accordance.

Work on Process Calculi Bravetti and Zavattaro study the subcontract preorder
for different communication paradigms. They consider synchronous handshake
in [13] and asynchronous communication via unbounded message queues in [14].
In addition, a stronger notion is introduced ensuring, whenever a message can
be sent, the other service is ready to receive this message. Systems that behave
this way are strongly compliant [15]. Bravetti and Zavattaro show that except
for unbounded message queues, the notion of should testing implies the corre-
sponding subcontract preorder. In the setting of of unbounded message queues
decidability has not been proved.

Fournet et al. [20] consider CCS processes of asynchronous message passing
software components. They present stuck-free conformance which, in contrast to
accordance, only excludes deadlocks. As shown in [20], the CSP stable-failures
preorder [45] (which, for finitely branching processes without divergences, is
equivalent to must testing; see [38]) does not imply stuck-free conformance, and
stuck-free conformance is strictly larger than the refusal preorder of Phillips [42].
Thus, accordance does not imply stuck-free conformance.

The sub-contract preorder from [26,18] is an asymmetric notation that only
focuses on the test (i.e., the partner) rather than the composition of open sys-
tem and test. Moreover, it only requires that the test never gets stuck. Laneve
and Padovani prove in [26] that this sub-contract relation coincides with must
testing [39]. Must testing is known to be incomparable to should testing.

5.3 Applications of Operating Guidelines

In the case of deadlock freedom, operating guidelines proved their usefulness in
a multitude of applications. The algorithm to decide accordance and thus to

30

decide whether one open system can replace another one has been presented in
this paper and in the case of deadlock freedom in [47]. Another application is to
decide whether a running instance of an open system can be migrated to a state
of another open system [27]. To this end, states of the current instance have
to be related to states of the new instance. Accordance checks the inclusion of
two sets of partners. Kaschner and Wolf [23] show that union, intersection, and
complement can be implemented for sets of partners, yielding a way to calculate
with sets of open systems.

Matching checks containment of an open system in the set of open systems
represented by an operating guideline. It can be used for service discovery [29].
In the case, an open system is misbehaving, the operating guideline can be used
to correct this open system [28]. The characterization of all partners of an open
system may also yield useful positive test cases while the complement of that
characterization might include negative test cases [22]. Furthermore, operating
guidelines may serve as a starting point for computing a public view of an open
system (i.e., an abstract view) [35].

6 Conclusion

We have studied open systems that communicate via asynchronous message
passing, and presented a data structure to characterize the possibly infinite set
of partners of an open system S in a finite manner. Thereby a partner of S
is an open system such that the composition is a closed system that has the
possibility to always reach a final state, a property that is of highest relevance in
practice. As an application for our data structure, we showed that we can decide
accordance of two open systems on their partner characterization. Although the
computation of this data structure is exponential (both in time and space) in
the number of states of the open system, a first prototype in our tool Wendy [30]
shows that, despite the worst case complexity, the approach is tractable [52].

In future work we aim to implement the procedure for deciding accordance.
Furthermore, we want to study which properties other than weak termination
yield a partner characterization as the one presented. In addition, we are inter-
ested in implementing the operation complement, union and intersection of sets
of partners for the given representation as for deadlock freedom [23].

References

1. Aalst, W.M.P.v.d.: The application of Petri nets to workflow management. The
Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

2. Aalst, W.M.P.v.d., Basten, T.: Inheritance of workflows: an approach to tack-
ling problems related to change. Theoretical Computer Science 270(1-2), 125–203
(2002)

3. Aalst, W.M.P.v.d., Hee, K.M.v., Massuthe, P., Sidorova, N., Werf, J.M.E.M.v.d.:
Compositional service trees. In: Petri Nets 2009. LNCS, vol. 5606, pp. 283–302.
Springer (2009)

31

4. Aalst, W.M.P.v.d., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: From public
views to private views - correctness-by-design for services. In: WS-FM 2007. LNCS,
vol. 4937, pp. 139–153. Springer (2008)

5. Aalst, W.M.P.v.d., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: Multiparty
contracts: Agreeing and implementing interorganizational processes. Comput. J.
53(1), 90–106 (2010)

6. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC / SIGSOFT FSE.
pp. 109–120 (2001)

7. de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design. In:
EMSOFT 2001. LNCS, vol. 2211, pp. 148–165. Springer (2001)

8. Andersen, H.R., Lind-Nielsen, J.: Partial model checking of modal equations: A
survey. STTT 2(3), 242–259 (1999)

9. Benatallah, B., Casati, F., Toumani, F.: Representing, analysing and managing
web service protocols. Data Knowl. Eng. 58(3), 327–357 (2006)

10. Beyer, D., Chakrabarti, A., Henzinger, T.A.: Web service interfaces. In: WWW
2005. pp. 148–159. ACM (2005)

11. Bonchi, F., Brogi, A., Corfini, S., Gadducci, F.: On the use of behavioural equiva-
lences for web services’ development. Fundam. Inform. 89(4), 479–510 (2008)

12. Boreale, M., De Nicola, R., Pugliese, R.: Basic observables for processes. Inf. Com-
put. 149(1), 77–98 (1999)

13. Bravetti, M., Zavattaro, G.: A foundational theory of contracts for multi-party
service composition. Fundam. Inform. 89(4), 451–478 (2008)

14. Bravetti, M., Zavattaro, G.: Contract compliance and choreography conformance
in the presence of message queues. In: WS-FM 2008. LNCS, vol. 5387, pp. 37–54.
Springer (2009)

15. Bravetti, M., Zavattaro, G.: A theory of contracts for strong service compliance.
Mathematical Structures in Computer Science 19(3), 601–638 (2009)

16. Brinksma, E., Rensink, A., Vogler, W.: Fair testing. In: CONCUR 1995. LNCS,
vol. 962, pp. 313–327. Springer (1995)

17. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer,
2 edn. (2007)

18. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
ACM Trans. Program. Lang. Syst. 31(5) (2009)

19. Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Environment assumptions for syn-
thesis. In: CONCUR 2008. LNCS, vol. 5201, pp. 147–161. Springer (2008)

20. Fournet, C., Hoare, C.A.R., Rajamani, S.K., Rehof, J.: Stuck-Free Conformance.
In: CAV 2004. LNCS, vol. 3114, pp. 242–254. Springer (2004)

21. Glabbeek, R.v., Weijland, W.: Branching Time and Abstraction in Bisimulation
Semantics. Journal of the ACM 43(3), 555–600 (1996)

22. Kaschner, K.: Conformance testing for asynchronously communicating services. In:
ICSOC 2011. LNCS, vol. 7084, pp. 108–124. Springer (2011)

23. Kaschner, K., Wolf, K.: Set algebra for service behavior: Applications and con-
structions. In: BPM 2009. LNCS, vol. 5701, pp. 193–210. Springer (2009)

24. Kupferman, O.: Recent challenges and ideas in temporal synthesis. In: SOFSEM
2012. LNCS, vol. 7147, pp. 88–98. Springer (2012)

25. Kupferman, O., Vardi, M.Y.: Interactive Computation - The New Paradigm, chap.
Verification of Open Systems, pp. 97–118. Springer (2006)

26. Laneve, C., Padovani, L.: The must preorder revisited. In: CONCUR 2007. LNCS,
vol. 4703, pp. 212–225. Springer (2007)

27. Liske, N., Lohmann, N., Stahl, C., Wolf, K.: Another approach to service instance
migration. In: ICSOC 2009. LNCS, vol. 5900, pp. 607–621. Springer (2009)

32

28. Lohmann, N.: Correcting deadlocking service choreographies using a simulation-
based graph edit distance. In: BPM 2008. LNCS, vol. 5240, pp. 132–147. Springer
(2008)

29. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In: ICATPN 2007. LNCS, vol. 4546, pp. 321–341. Springer (2007)

30. Lohmann, N., Weinberg, D.: Wendy: A tool to synthesize partners for services.
Fundam. Inform. 113(3-4), 295–311 (2011)

31. Malik, R., Streader, D., Reeves, S.: Conflicts and fair testing. Int. J. Found. Com-
put. Sci. 17(4), 797–814 (2006)

32. Martens, A.: Analyzing web service based business processes. In: FASE 2005.
LNCS, vol. 3442, pp. 19–33. Springer (2005)

33. Massuthe, P., Serebrenik, A., Sidorova, N., Wolf, K.: Can I find a partner? Un-
decidability of partner existence for open nets. Inf. Process. Lett. 108(6), 374–378
(2008)

34. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc. (1989)
35. Mooij, A.J., Parnjai, J., Stahl, C., Voorhoeve, M.: Constructing replaceable services

using operating guidelines and maximal controllers. In: WS-FM 2010. LNCS, vol.
6551, pp. 116–130. Springer (2011)

36. Mooij, A.J., Stahl, C., Voorhoeve, M.: Relating fair testing and accordance for
service replaceability. J. Log. Algebr. Program. 79(3-5), 233–244 (2010)

37. Natarajan, V., Cleaveland, R.: Divergence and fair testing. In: ICALP 1995. LNCS,
vol. 944, pp. 648–659. Springer (1995)

38. Nicola, R.D.: Extensional equivalences for transition systems. Acta Inf. 24(2), 211–
237 (1987)

39. Nicola, R.D., Hennessy, M.: Testing equivalences for processes. Theor. Comput.
Sci. 34, 83–133 (1984)

40. Oster, Z.J., Basu, S.: Extending substitutability in composite services by allowing
asynchronous communication with message buffers. In: ICTAI 2009. pp. 572–575.
IEEE Computer Society (2009)

41. Pathak, J., Basu, S., Honavar, V.: On Context-Specific Substitutability of Web
Services. In: ICWS 2007. pp. 192–199. IEEE Computer Society (2007)

42. Phillips, I.: Refusal testing. Theor. Comput. Sci. 50, 241–284 (1987)
43. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event

processes. SIAM J. Control and Optimization 25(1), 206–230 (1987)
44. Rensink, A., Vogler, W.: Fair testing. Inf. Comput. 205(2), 125–198 (2007)
45. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall Series in

Computer Science, Prentice Hall (1998)
46. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: ATVA 2007. LNCS, vol. 4762,

pp. 474–488. Springer (2007)
47. Stahl, C., Massuthe, P., Bretschneider, J.: Deciding substitutability of services with

operating guidelines. In: ToPNoC II. pp. 172–191. LNCS 5460, Springer (2009)
48. Tripakis, S., Lickly, B., Henzinger, T.A., Lee, E.A.: A theory of synchronous rela-

tional interfaces. ACM Trans. Program. Lang. Syst. 33(4), 14 (2011)
49. Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets,

LNCS, vol. 625. Springer (1992)
50. Ware, S., Malik, R.: A state-based characterisation of the conflict preorder. In:

FOCLASA 2011. EPTCS, vol. 58, pp. 34–48 (2011)
51. Ware, S., Malik, R.: Conflict-preserving abstraction of discrete event systems using

annotated automata. Discrete Event Dynamic Systems 22(4), 451–477 (2012)
52. Weinberg, D.: Deciding Service Substitution – Termination Guaranteed. Phd the-

sis, Universität Rostock, Germany (2012)

33

53. Wolf, K.: Does my service have partners? In: ToPNoC II. pp. 152–171. LNCS 5460,
Springer (2009)

	Characterizing Weakly Terminating Partners of Open Systems

