
Service Discovery from Observed Behavior
While Guaranteeing Deadlock Freedom in

Collaborations

Richard Müller1,2, Christian Stahl2, Wil M.P. van der Aalst2,3, and
Michael Westergaard2,3

1 Institut für Informatik, Humboldt-Universität zu Berlin, Germany
Richard.Mueller@informatik.hu-berlin.de

2 Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, The Netherlands

{C.Stahl, W.M.P.v.d.Aalst, M.Westergaard}@tue.nl
3 National Research University Higher School of Economics, Moscow, 101000, Russia

Abstract. Process discovery techniques can be used to derive a process
model from observed example behavior (i.e., an event log). As the ob-
served behavior is inherently incomplete and models may serve different
purposes, four competing quality dimensions—fitness, precision, simplic-
ity, and generalization—have to be balanced to produce a process model
of high quality.
In this paper, we investigate the discovery of processes that are specified
as services. Given a service S and observed behavior of a service P inter-
acting with S, we discover a service model of P . Our algorithm balances
the four quality dimensions based on user preferences. Moreover, unlike
existing discovery approaches, we guarantees that the composition of S
and P is deadlock free. The service discovery technique has been imple-
mented in ProM and experiments using service models of industrial size
demonstrate the scalability or our approach.

1 Introduction

Over the past years, there has been a shift from monolithic systems to dis-
tributed systems in system development. One prominent computing paradigm
that implements this trend is service-oriented computing [24]. A service-oriented
system is a distributed system that is composed from smaller building blocks
called services. A service is an autonomous system that has an interface to in-
teract with other services via asynchronous message passing. Service models are
useful to understand the running system, to verify the system’s correctness, and
to analyze its performance. However, it is often not realistic to assume that there
exists a service model. Even if there exists a formal model of the implemented
service, it can differ significantly from the actual implementation: The formal
model may have been implemented incorrectly, or the implementation may have
been changed over time. Nevertheless, most implementations provide some kind
of observed behavior, commonly referred to as event log [5]. Such event logs may

2

be extracted from databases, message logs, or audit trails. Given an event log,
there exist techniques to produce a (service) model. The term service discovery
or, more general, process discovery has been coined for such techniques [3].

In this paper, we assume a service model S and an event log L containing
observed behavior in the form of message sequences being exchanged between
(instances of) the implementation of S and (instances of) its environment (i.e.,
the services S interacts with) to be given. Our goal is to produce a model of the
environment of S. As the event log is inherently incomplete (i.e., not all possible
behavior was necessarily observed), there are, in general, infinitely many models
of the environment of S. Clearly, some models might be more appropriate than
others regarding some user requirements. Therefore, service discovery can be
seen as a search process, aiming at producing a model of the environment that
describes the observed behavior “best”.

In this paper, we consider two kinds of user requirements to analyze how good
a model describes the observed behavior: correctness and quality. Correctness is
motivated by the discovery of sound workflow models in [11], where soundness
refers to the ability to always terminate [1]. In our service-oriented setting, it is
reasonable to require that S and its environment interact correctly. As a minimal
requirement of correct interaction, we assume deadlock freedom throughout this
paper. We refer to such model of the environment of S as a partner of S. Thus,
we are interested in discovering a partner of S.

Regarding quality, there exist four quality dimensions for general process
models [3]: (1) fitness (i.e., the discovered model should allow for the behavior
seen in the event log), (2) precision (i.e., the discovered model should not allow
for behavior completely unrelated to what was seen in the event log), (3) gen-
eralization (i.e., the discovered model should generalize the example behavior
seen in the event log), and (4) simplicity (i.e., the discovered model should be as
simple as possible). These quality dimensions compete with each other, as visu-
alized in Fig. 1. For example, to improve the fitness of a model one may end up
with a substantially more complex model. A more general model usually means
a less precise model. We assume that a user guides the balancing of these four
quality dimensions. As a consequence, we aim at discovering a service model that
is a partner of S and, in addition, balances the four quality dimensions guided
by user preferences.

process
discovery

"able to replay
the log"

"not overfitting
the log"

"not underfitting
the log"

"Occam's razor"

precision

simplicity

fitness

generalization

Fig. 1: The different quality dimensions for process model discovery.

3

The actual challenge is now to find such a model. As a service S has, in
general, infinitely many partners, the search space for service discovery is infinite.
Therefore, we are using a genetic algorithm to find a good but possibly not the
optimal model of a partner of S. We have implemented this algorithm. It takes
as an input a service model S, an event log, and values for the four quality
dimensions. The output of the algorithm is a model of a partner of S that comes
close to the specified values of the quality dimensions. We show its applicability
using eight service models of industrial size. Moreover, based on the notion of
a finite representation of all partners of S [16] called operating guideline, we
additionally apply an abstraction, ensuring that we only have to check finitely
many candidates. An operating guideline is a finite state machine, where every
state is annotated with a Boolean formula. Our abstraction considers all rooted
subgraphs of this state machine rather than all state machines that are simulated
by it. Although the abstraction only preserves fitness, we can report on the
positive impact in our experimental results.

Summing up, we make the following contributions:

– adapting existing discovery techniques for workflows (i.e., closed systems) to
services (i.e., reactive systems);

– adapting the metrics for the four quality dimensions to cope with service
models;

– presenting an approach to reduce an infinite search space to a finite one; and
– validation of the algorithm based on a prototype.

We continue with a motivating example in Sect. 2. Section 3 provides back-
ground information on our formal service model and process discovery tech-
niques. Section 4 adapts existing discovery techniques and metrics for workflows
onto services, and Sect. 5 presents an improvement to the discovery process,
where we reduce the infinite search space to a finite one. We explain two imme-
diate applications of our approach in Sect. 6 and validate our approach using
experimental results on discovering services of industrial size in Sect. 7. Section 8
reviews related work, and Section 9 concludes the paper.

2 Motivating Example

Figure 2 shows a service S modeled as a state machine and an event log L. A
transition label !x (?x) denotes the sending (receiving) of a message x to (from)
the environment of S. The event log L contains information on 210 traces. There
are three types of traces: ac (10 times), ad (100 times), and bd (100 times). Our
goal is to produce a model of the environment of S. Two example models are P
and R in Fig. 2. They can be justified with L: P incorporates the frequently
observed behavior in L (traces ad and bd) and disregards trace ac, arguing
that ac is negligible for a “good” model. R incorporates even more than the
observed behavior in L—for example, the trace bc which was not observed in the
interaction with S—generalizing the observed behavior in L in account for L’s
incompleteness.

4

S0

S1

!a

?c ?d

!b

?d
S2

S3 S4 S5

(a) Service S

trace

10 ac
100 ad
100 bd

210

(b) Event log L

P0

P1

?a

!d

P2

?b
⌧

(c) Service P

R0

R1

?a

R2

?b
⌧

!c !d

(d) Service R

Fig. 2: Running example: The event log L represents observed communication
behavior of S and its environment.

The service P is a partner of S—they both interact deadlock freely—whereas
the service R is not: If S sends a message b, then R receives this message b and
sends a message c. However, S cannot receive message c and R does not send
any message unless it receives a message a or b. Thus, the interaction of S and
R deadlocks. For this reason, we prefer P over R and our discovery algorithm
would exclude R.

3 Preliminaries

We introduce state machines as a service model and notions, such as event logs
and conformance (w.r.t. the quality dimensions) of an event log and a state
machine.

3.1 State Machines for Modeling Services

For two sets A and B, A]B denotes the disjoint union; writing A]B expresses
the implicit assumption that A and B are disjoint. Let N+ denote the positive
integers. For a set A, |A| denotes the cardinality of A, B(A) the set of all multisets
(bags) over A, and [] the empty multiset. Throughout the paper, we assume a
finite set of actions A such that {τ,final} ∩ A = ∅.

For a set A, let A∗ be the set of finite sequences (words) over A. For two
words v and w, v v w denotes that v is a prefix of w. For a ternary relation

R ⊆ A × B × A, we shall use a
b−−→R a′ to denote (a, b, a′) ∈ R. If any of the

elements a, b, or a′ is omitted, we mean the existence of such an element. The
relation R∗ ⊆ A×B∗×A is the reflexive and transitive closure of R, defined by

a
b1...bn−−−−−→R∗ a′ if and only if there are a0, . . . , an ∈ A such that a = a0, a′ = an,

and, for all 1 ≤ i ≤ n, ai−1
bi−−→R ai. If a −→R∗ a′, then a′ is reachable from a

in R.
We model a service as a state machine extended by an interface, thereby re-

stricting ourselves to the service’s communication protocol. An interface consists
of two disjoint sets of input and output labels corresponding to asynchronous
message channels. In the model, we abstract from data and identify each message
by the label of its message channel.

5

Definition 1 (State Machine). A state machine S = (Q,α,Ω , δ, I ,O) con-
sists of

– a (countable) set Q of states,
– an initial state α ∈ Q,
– a set of final states Ω ⊆ Q,
– a transition relation δ ⊆ Q× (I]O] {τ})×Q, and
– two disjoint, finite sets of input labels I ⊆ A and output labels O ⊆ A.

For a transition t = (q, a, q′) ∈ δ, define its label by l(t) = a. We canonically
extend l to sequences of transitions. For a state q ∈ Q, define by en(q) = {a |
q

a−−→δ} the set of labels of outgoing transitions of q. The state machine S
is finite if the set R(S) = {q | α −→δ∗ q} of reachable states is finite; it is
deterministic if for all q, q′, q′′ ∈ Q and a ∈ I]O , (q, τ, q′) ∈ δ implies q = q′ and
(q, a, q′), (q, a, q′′) ∈ δ implies q′ = q′′. A state machine G = (Q′, α,Ω ′, δ′, I ,O)
is a rooted subgraph of S if the states in Q′ are connected and Q′ ⊆ Q, Ω ′ ⊆ Ω ,
δ′ ⊆ δ. y

For technical reasons (i.e., the asynchronous environment in Def. 9), we need
to define state machines with countable states, but in general we only consider
finite state machines.

Graphically, we precede each transition label x with ? and ! to denote an
input and an output label, respectively. A final state is depicted with a double
circle; see Fig. 2 for examples.

For the composition of state machines, we assume that their interfaces inten-
tionally overlap. We refer to state machines that fulfill this property as compos-
able. We compose two composable state machines S and R by building a product
automaton S ⊕ R, thereby turning all transitions into (internal) τ -transitions.
In addition, a multiset stores the pending messages between S and R.

Our composition operator ⊕ requires the input and output labeles of S and
R to match completely. Technically, we implicitly refer to a preorder between
services [27], excluding hierarchies or multi-service composition.

Definition 2 (Composition). Two state machines S and R are composable if
IS = OR and OS = IR. The composition of two composable state machines S
and R is the state machine S ⊕R = (Q,α,Ω , δ, ∅, ∅) with

– Q = QS ×QR × B(IS] IR),
– α = (αS , αR, []),
– Ω = ΩS × ΩR × {[]},
– δ containing exactly the following elements:
• (qS , qR, B)

τ−−→δ (q′S , qR, B), if qS
τ−−→δS q

′
S ,

• (qS , qR, B)
τ−−→δ (qS , q

′
R, B), if qR

τ−−→δR q′R,

• (qS , qR, B + [a])
τ−−→δ (q′S , qR, B), if qS

a−−→δS q
′
S and a ∈ IS ,

• (qS , qR, B + [a])
τ−−→δ (qS , q

′
R, B), if qR

a−−→δR q′R and a ∈ IR,

• (qS , qR, B)
τ−−→δ (q′S , qR, B + [a]), if qS

a−−→δS q
′
S and a ∈ OS , and

• (qS , qR, B)
τ−−→δ (qS , q

′
R, B + [a]), if qR

a−−→δR q′R and a ∈ OR. y

6

We compare two state machines by a simulation relation, thereby treating τ
like any action in A.

Definition 3 (Simulation Relation). Let S and R be two state machines. A
binary relation % ⊆ QS ×QR is a simulation relation of S by R if

1. (αS , αR) ∈ %, and

2. for all (qS , qR) ∈ %, a ∈ A]{τ}, q′S ∈ QS such that qS
a−−→S q

′
S , there exists

a state q′R ∈ QR such that qR
a−−→R q

′
R and (q′S , q

′
R) ∈ %.

If such a % exists, we say that R simulates S. A simulation relation % of S by R
is minimal, if for all simulation relations %′ of S by R, % ⊆ %′. y

If R is deterministic, then there exists a unique minimal simulation relation.
We want the composition of two services to be correct. As a minimal crite-

rion for correctness, we require deadlock freedom and that every reachable state
contains only finitely many pending messages (i.e., the message channels are
bounded). We refer to services that interact correctly as partners.

Definition 4 (Deadlock Freedom, b-Partner). Let b ∈ N+. A state ma-
chine S is deadlock-free if, for all reachable states q ∈ R(S), en(q) = ∅ implies
q ∈ ΩS .

A state machine R is a b-partner of S if S ⊕ R is deadlock-free and for all
reachable states (qS , qR, B) ∈ R(S ⊕R) and all a ∈ IS] IR, B(a) ≤ b. y

In Fig. 2, P is a 1-partner of S, but R is not because the composition S ⊕R
can deadlock.

3.2 Operating Guidelines

If a finite state machine S has one b-partner, then it has infinitely many b-
partners. Lohmann et al. [16] introduce operating guidelines as a way to represent
the infinite set of b-partners of S in a finite manner. Technically, an operating
guideline is a deterministic, finite state machine where each state is annotated
with a Boolean formula.

Definition 5 (Annotated State Machine). An annotated state machine (T, Φ)
consists of a finite, deterministic state machine T and a Boolean annotation Φ,
assigning to each state q ∈ Q of T a Boolean formula Φ(q) over the literals
I]O] {τ,final}. y

The procedure for checking whether a state machine R is represented by an
annotated state machine (T, Φ) consists of two steps. First, there must exist a
minimal simulation relation % of R by T . As T is deterministic, % is uniquely
defined. Second, for every pair of states (qR, qT) ∈ %, the outgoing transitions of
qR and the fact whether qR is a final state must define a satisfying assignment to
Φ(qT). Intuitively, the formula Φ specifies the allowed combinations of outgoing
transitions.

7

Definition 6 (Matching). A state machine R matches with an annotated
state machine (T, Φ) if there exists a minimal simulation relation % of R by
T such that for all (qR, qT) ∈ %, Φ(qT) evaluates to true for the following assign-
ment β:

β(a) =

true, if a 6= final ∧ qR

a−−→δR

true, if a = final ∧ qR ∈ ΩR

false, otherwise.

y

Finally, we give the definition of an operating guideline [16].

Definition 7 (b-Operating Guideline). Let b ∈ N+. The b-operating guide-
line OGb(S) of a state machine S is an annotated state machine such that for
all state machines R composable with S, R matches with OGb(S) iff R is a
b-partner of S. y

Figure 3a depicts OG1(S) = (T, Φ) of the service S. The state machine P
(Fig. 2c) matches with (T, Φ): The minimal simulation relation of P by T is % =
{(P0, T0), (P1, T3), (P1, T1), (P2, T5), (P2, T4), (P0, T5), (P0, T4), (P1, T7), (P2, T7),
(P0, T7)}, and the formula Φ is evaluated to true, for all pairs of %. For example,
for (P0, T0) we have Φ(P0) = (true ∨ false) ∧ (true ∨ false) which is true and for
(P0, T4) we have Φ(T4) = true. Thus, P is a 1-partner of S. Figure 3b depicts
the smallest subgraph G of OG1(S) such that P is still simulated by G, i.e., the
subgraph used for the simulation relation above. In contrast, the state machine
R (Fig. 2d) does not match with (T, Φ), because (R1, T1) violates the simulation

relation: We have R1
!c−−→ but T1 6 !c−−→. Thus, R is not a 1-partner of S.

In the remainder of the paper, we abstract from the actual bound chosen
and use the terms partner and operating guideline rather than b-partner and
b-operating guideline.

3.3 Event Logs and Alignments

An event log is a multiset of traces. Each trace describes the communication
between S and R in a particular case in terms of a sequence of events (i.e., sent
and received messages). We describe an event as an action label and abstract
from extra information, such as the message content or the timestamp of the
message.

Definition 8 (Event Log). A trace w ∈ A∗ is a sequence of actions, and L ∈
B(A∗) is an event log. y

An event log may take one out of two viewpoints depending on what/when
events are recorded in L [22]. If events are recorded when a service R consumes
(produces) a message from (for) S, then we can use the synchronous environment
envs(R) for checking the conformance of L and R. In contrast, if events are
recorded when S consumes (produces) a message from (for) R, then we can
use the asynchronous environment enva(R) for comparing L and R. The state
machine enva(R) can be constructed from R by adding to each state of R a
multiset containing the pending messages between R and S.

8

dT1 a ^ b T2 c _ d T3

(a _ d) ^ (b _ d)T0

final T6finalT4 final T5

?b

?a!d !c

!d ?a

?b !d

true T7

?a, ?b ?a, ?b?a, ?b

?a, ?b ?a, ?b

?a, ?b, !c, !d

(a) OG1(S).

T1 T3

T0

T4 T5

?b

!d

?a

!d

T7

?a, ?b?a, ?b

?a, ?b, !d

⌧

⌧

⌧

(b) Subgraph G of OG1(S).

Fig. 3: OG1(S) and its smallest subgraph G such that P is simulated by G. The
annotation of a state is depicted inside the state. For OG1(S), every state has a
τ -labeled self-loop and the annotation an additional disjunct τ , which is omitted
in the figure for reasons of readability.

Definition 9 (Environment). Let R be a state machine. The synchronous
environment envs(R) of R is R. The asynchronous environment of R is the
state machine enva(R) = (Q,α,Ω , δ,OR, IR) defined as

– Q = QR × B(IR]OR),
– α = (αR, []),
– Ω = ΩR × {[]},
– δ containing exactly the following elements:
• (qR, B)

a−−→δ (qR, B + [a]), for all a ∈ IR,

• (qR, B + [a])
a−−→δ (qR, B), for all a ∈ OR,

• (qR, B)
τ−−→δ (q′R, B), for all qR

τ−−→δR q′R,

• (qR, B)
τ−−→δ (q′R, B + [a]), for all qR

a−−→δR q′R and a ∈ OR, and

• (qR, B + [a])
τ−−→δ (q′R, B), for all qR

a−−→δR q′R and a ∈ IR. y

The synchronous environment envs(P) is depicted in Fig. 2c, and Fig. 4
illustrates a part of the asynchronous environment enva(P). A state machine
that is composed with P may send a message a or a message b to P at any time.
Therefore, each state of enva(P) has an outgoing a- and an outgoing b-labeled
transition. All internals of P , such as receiving a message a (from state (P0, [a])
to state (P1, [])) or sending a message d (from state (P1, []) to state (P2, [d])),
are hidden by labeling the respective transitions with τ .

Thus, the choice of the environment of R for comparing L and R depends
on what is actually logged in L. In the remainder, we will abstract from these
subtle differences and simply write env(R).

We want to compare a (discovered) service model R with the given event log
L. For evaluating the quality dimensions of R, we use the approach described
in [4] to relate each trace w ∈ L to a sequence σ of transitions of R that can be
executed from R’s initial state.

9

P0, [] ...

P0, [a]...

P1, []

P2, [d]

!a

?d

!b

...

...
...

...

...
!a

⌧

P2, []
...

!b

!b

!b

!b

!a

!a

!a

⌧

⌧

⌧

Fig. 4: Illustration of the asynchronous environment enva(P) of P

Definition 10 (Alignment). Let w be a trace and R be a state machine. A
move is a pair (x, y) ∈

(
(A] {�})× (δR] {�})

)
\ {(�,�)}. An alignment of

w to R is a sequence γ = (x1, y1) . . . (xk, yk) of moves, such that

1. The restriction of γ’s first component to A is the trace w, i.e., (x1 . . . xk)|A =
w;

2. The restriction of γ’s second component to δR reaches a state q′j from the
initial state in R, i.e., (y1 . . . yk)|δR = (q1, a1, q

′
1) . . . (qj , aj , q

′
j) such that q1 =

αR, and for all 1 ≤ i < j, q′i = qi+1;
3. Transition labels and actions coincide (whenever both are defined), i.e., for

all 1 ≤ i ≤ k, if xi 6=� and yi 6=�, then l(yi) = xi.

A move (xi, yi) is a move in the model if xi =� ∧yi 6=�, a move in the log if
xi 6=� ∧yi =�, and a synchronous move if xi 6=� ∧yi 6=�. A move (xi, yi) such
that xi =� ∧yi 6=� ∧l(yi) = τ is a silent move. We denote by trace(γ) ∈ A∗ the
word which we derive from the labels of the restriction of γ’s second component
to δR with all τ removed. y

For the trace ac ∈ L (Fig. 2b) and the state machine P (Fig. 2c), we have

αP
a−−→δ∗P

but αP 6 ac−−→δ∗P
; that is, ac deviates from a by adding an additional

c-labeled transition. Thus, an alignment of ac is γ1 = (a, a), (c,�) or graphically

γ1 =
a c
a �

(P0, a, P1)

The top row of γ1 corresponds to the trace ac ∈ L and the bottom two
rows correspond to the service P . There are two bottom rows because multiple
transitions of P may have the same label; the upper bottom row consists of
transition labels, and the lower bottom row consists of transitions. For a move
in the log, a “�” (“no move”) appears in the upper bottom row. For example,
in γ1 the service P cannot perform the last c-action, because c is not the label of
an outgoing transition of state P1. For a move in the model, a “�” (“no move”)
appears in the top row.

10

To choose an alignment that has as many synchronous and silent moves as
possible, we use a cost function on moves to find an alignment with the least
costs—that is, a “best” alignment.

Definition 11 (Cost Function, Best Alignment). A cost function κ assigns
to each move (x, y) of an alignment γ a cost κ((x, y)) such that a synchronous
or silent move has cost 0, and all other types of moves have cost > 0. The cost
of γ is κ(γ) =

∑k
i=1 κ((xi, yi)); γ is a best alignment if, for all alignments γ′ of

w to R, κ(γ′) ≥ κ(γ). y

As there may exist more than one best alignment of w toR, we use an “oracle”
function which gives for each trace w of the event log L a best alignment of w
to R.

Definition 12 (Oracle Function). Let R be a state machine and let L be
an event log. Then λR is an oracle function if for all w ∈ L, λR(w) is a best
alignment of w to R. y

Finally, we combine the best alignment of each trace of L to R into a weighted
automaton AA. A state of AA encodes a sequence of (labels of) transitions of
R. We define the weight ω(w) of each state w as the number of times a trace of
L was aligned to w. We shall use AA for the computation of metrics for the two
quality dimensions precision and generalization later on.

Definition 13 (Alignment Automaton). Let R be a state machine, and let
L be an event log. The alignment automaton AA(L,R) = (V, v0, E, ω) of L and
R consists of

– a set of states V = A∗,
– an initial state v0 = ε corresponds to the empty trace,
– a transition relation E ⊆ V ×A× V with v

a−−→E va iff there exists w ∈ L
such that va v trace(λR(w)), and

– a weight function ω : V → N+ such that ω(v) =
∑
w∈L∧vvtrace(λR(w)) L(w)

for all v ∈ V . y

Figure 5 depicts the alignment automaton AA(L,P) of the event log L and
the state machine P . Each trace in L is either aligned to the transition sequence
labeled with a, ad or bd (ignoring τ ’s), as a transition sequence labeled with
ac is not present in P . The weight of each state is depicted inside the state;
for example, ω(a) = 110 means 110 traces of L can be aligned to a transition
sequence of P whose prefix is a.

210
100b

d
a

d

110

100

100

Fig. 5: The alignment automaton AA(L,P)

11

4 Service Discovery

Given a state machine S and an event log L, service discovery aims to produce a
partner R of S such that R conforms “best” to L. Therefore, a service discovery
algorithm has to guarantee that (1) the discovered service is a partner of S and
(2) that the discovered service is of high quality. We address both requirements
in the following.

4.1 Task 1: Discovering a Partner

Given a service S, checking whether some service R is a partner of S reduces to
either model checking S ⊕R or checking whether R matches with the operating
guideline OG(S) of S. As a consequence, the search space for service discovery
reduces to all partners of S rather than any service that is composable with S.
However, the search space is still infinite. We discuss a further improvement to
the discovery process and its restriction in Sect. 5.

4.2 Task 2: Incorporating the Quality Dimensions

In the previous section, we restricted the search space for service discovery to the
partners of S. Now, we are interested in a partner of highest quality. As quality
refers to the possibly competing quality dimensions fitness, simplicity, precision
and generalization [3], we cannot assume the existence of a partner that has the
highest value for every dimension. We rather need to balance these dimensions
and, therefore, assume that a user specified his requirements using a weight for
each quality dimension.

To measure the quality of a state machine, we present a metric for each
quality dimensions. Numerous metrics for measuring the four quality dimensions
have been developed [4,7,26]. In the following, we present our metrics and briefly
compare them with the state-of-the-art.

Fitness Fitness indicates how much of the behavior in the event log L is cap-
tured by the model R. A state machine with good fitness allows for most of the
behavior seen in the event log. We redefine the cost-based fitness metrics from [4]
for state machines, thereby incorporating the viewpoint of the event log by using
the environment of the state machine. We quantify fitness as the total alignment
costs for L and env(R) (computed using the optimal alignments provided by
the oracle function λR) compared to the worst total alignment costs. The worst
total alignment costs are just moves in the log and no moves in the model, in
all optimal alignments. For the moves in the log only, we consider the “least
expensive path” because an optimal alignment will try to minimize costs [4].

Definition 14 (Fitness). The fitness of an event log L and a state machine R
is defined by

fit(L,R) = 1− cost(L, env(R))

move(L)
, where

12

– cost(L, env(R)) =
∑
w∈L

(
L(w) · κ(λenv(R)(w))

)
are the total alignment costs

for L and env(R),

– move(L) =
∑
w∈L

(
L(w) ·∑x∈w κ((x,�))

)
are the total costs of moving

through L without ever moving together with env(R). y

Consider P and L in Fig. 2, and assume that L’s viewpoint is described
by env(P) = envs(P) = P . Assume further a cost function κ where each syn-
chronous and each silent move has cost 0, and all other types of moves have cost
1. The best alignments given by the oracle λP are γ1 (see Sect. 3.3) and

γ2 =
a d
a d

(P0, a, P1) (P1, d, P2)
γ3 =

b d
b d

(P0, b, P1) (P1, d, P2)

We have costs of 1 for γ1, 0 for γ2, and 0 for γ3; therefore, we calculate
fit(L,P) = 1 − 10·1+100·0+100·0

10·2+100·2+100·2 ≈ 0.976. As expected, the fitness value is high
because only 10 out of 210 traces are nonfitting traces in L (i.e., the traces ac).

Simplicity Simplicity refers to state machines minimal in structure, which
clearly reflect the log’s behavior. This dimension is related to Occams Razor,
which states that “one should not increase, beyond what is necessary, the num-
ber of entities required to explain anything.” There exist various techniques to
quantify model complexity; see [19] for an overview. We define the complexity of
the model by its size, i.e., the number of states and transitions in the underlying
graph. Remember that we always discover a state machine R that is a partner
of a state machine S. Thus, we measure the difference in size between R and
a minimal partner of S with the same behavior as R. A minimal partner of S
with the same behavior as R is the smallest subgraph G of OG(S) such that R
is simulated by G.

Definition 15 (Simplicity). The simplicity of an event log L and a state ma-
chine R, which is a partner of a state machine S, is defined by

sim(L,R) =

{ |QG|+|δG|
|Qenv(R)|+|δenv(R)|

, if |QG|+ |δG| <= |Qenv(R)|+ |δenv(R)|
1, otherwise. ,

where G is the smallest subgraph of OG(S) such that env(R) is simulated by
G. y

For our running example, the smallest subgraph G of OG(S) such that P is
simulated by G is depicted in Fig. 3b. G consists of 6 states and 14 transitions
(including the τ -loops at states T4, T5, and T7). Therefore, |QG|+|δG| = 6+14 =
20 and |QP |+ |δP | = 3 + 4 = 7, and thus sim(L,P) = 1. As expected, L and P
have a perfect simplicity value, as P is a relatively small state machine compared
to the smallest subgraph of G describing L.

13

Precision Precision indicates whether a state machine is not too general. To
avoid “underfitting”, we prefer state machines with minimal behavior to repre-
sent the behavior observed in the event log as closely as possible. We redefine the
alignment-based precision metric from [7] for state machines. This metric relies
on building the alignment automaton AA, which relates executed and available
actions after an aligned trace of the log.

Definition 16 (Precision). Let R be a state machine, L be an event log, and
AA(L, env(R)) = (V, v0, E, ω) be the alignment automaton of L and env(R).
Then the precision of L and R is defined by

pre(L,R) =

∑
v∈V

(
ω(v) · |exec(v)|

)∑
v∈V

(
ω(v) · |avail(v)|

) , where

– exec(v) = en(v) in AA(L, env(R)), and

– avail(v) =
⋃
q∈X en(q) with X = {q | αenv(R)

w−−→δ∗
env(R)

q ∧ w|A = v}. y

For our running example, the alignment automaton AA(L, env(P)), which
has been build from the best alignments γ1, γ2, and γ3, is depicted in Fig. 5.
We obtain pre(L,P) = 210·2+110·1+100·0+100·1+100·0

210·2+110·1+100·2+100·1+100·2 = 0.6. As expected, L and
P have average precision, as P allows for far more behavior than the behavior
observed in L.

Generalization Generalization penalizes overly precise state machines which
“overfit” the given log. In general, a state machine should not restrict behavior to
just the behavior observed in the event log. Often only a fraction of the possible
behavior has been observed. For this dimension, we developed a new metric.
We combine the generalization metric from [4] with the alignment automaton
AA(L, env(R)). The idea is to use the estimated probability π(x, y) that a next
visit to a state w of the alignment automaton will reveal a new trace not observed
before: x = |en(w)| is the number of unique activities observed at leaving state
w, and y = ω(w) is the number of times w was visited by the event log. We
employ an estimator for π(x, y), which is inspired by [10].

Definition 17 (Generalization). Let R be a state machine, L be an event
log, and AA(L, env(R)) = (V, v0, E, ω) be the alignment automaton of L and
env(R). The generalization of L and R is defined by

gen(L,R) = 1−
(1

|V |
∑
v∈V

π(|en(v)|, ω(v))
)
,

where π can be approximated [4] by π(x, y) = x(x+1)
y(y−1) , if y ≥ x+2, and π(x, y) =

1, if y ≤ x+ 1. y

For the example, we obtain gen(L,P) = 1− 1
5

(
2·3

210·209 + 1·2
110·109 + 1·2

100·99
)
≈ 1.

Given the numbers of traces in L, L and P have nearly perfect generalization as
expected, because it is unlikely to reveal a new trace not observed before.

14

Balancing the Quality Dimensions To balance these four conflicting quality
dimension, we also assume for each of the four quality dimensions a weight ωfit ,
ωsim , ωpre , and ωgen to be specified by a user. With these four weights, we can
actually search for the partner of S that has highest quality.

Definition 18 (Quality). Let L be an event log, R be a state machine, and
ωall = ωfit + ωsim + ωpre + ωgen . The quality of R for L is defined by

quality(L,R) =
ωfit

ωall
fit(L,R)+

ωsim

ωall
sim(L,R)+

ωpre

ωall
pre(L,R)+

ωgen

ωall
gen(L,R)

Using equal weights of 1 for each quality dimension, we obtain quality(L,P) ≈
0.894 for our running example.

5 Improving the Service Discovery Process

Given a service S, the search space for service discovery is infinite (i.e., all
partners of S). For further improving the discovery procedure, we can restrict
the search space to a finite number of partners. To this end, we consider the
operating guideline OG(S) of S and restrict ourselves to partners of S that
are valid subgraphs of OG(S), i.e., those rooted subgraphs that match with
OG(S). As the underlying state machine of OG(S) is finite, the number of
rooted subgraphs of OG(S) is finite, too. So instead of investigating any partner
of S, we only consider valid subgraphs of OG(S). Subsequently, we discuss the
implications of this restriction to valid subgraphs.

Definition 19 (Valid Subgraph). Let (T, Φ) be an annotated state machine.
A rooted subgraph G of T is a valid subgraph of (T, Φ) if G matches with (T, Φ).y

Proposition 20. Any valid subgraph of OG(S) is a partner of S. y

We restricted the search space to the finite set of valid subgraphs of the
operating guideline OG(S). This finite abstraction comes at a price: We may
have excluded partners of S that have a higher quality than any valid subgraph.
Basically, we exclude partners that contain an unfolding of a cycle of OG(S).
For an example, consider the partner Q of S in Fig. 6: Rather than having a
state with a a-labeled self-loop (state T7 from OG1(S)), Q may have a sequence
of states (the states T8 and T9), reached by a sequence of a-labeled transitions
(the transitions (T7, a, T8) and (T8, a, T9)).

In what follows, we discuss the impact of these “unfolded” partners on the
quality of the discovered partners.

Impact on the Fitness Dimension From Def. 14, we conclude that fitness is
preserved by the restriction to valid subgraphs. LetR be a partner of S that is not
a valid subgraph of OG(S) = (T, Φ). Let G denote the valid subgraph of OG(S)
that is obtained by considering the minimal simulation relation of env(R) by T

15

Q1 Q3

Q0

Q4 Q5

?b

!d

?a

!d

Q7

?a, ?b?a, ?b

?a

⌧

⌧

⌧

Q8

Q9

?a

Fig. 6: The service automaton Q, which matches with OG1(S) but is no valid
subgraph.

as a state machine and projecting it onto the states and transitions of T . Clearly,
G is uniquely defined. In the following, we conclude that fit(L,R) ≤ fit(L,G):
Fitness is preserved in G, as env(R) is simulated by G and therefore every trace
of env(R) is a trace of G. The presence of τ -transitions does not increase costs,
because any τ -transition can only be aligned to “no move”—the resulting silent
move always has zero cost by Def. 11.

Impact on the Simplicity Dimension Simplicity from Def. 15 is not pre-
served by the restriction to valid subgraphs. Consider the services B and G in
Figs. 7e and 7d, and assume the viewpoint of log L (Fig. 7c) is the viewpoint
of B, i.e., env(B) = B. Both B and G are partners of the service A in Fig. 7a.
G is a valid subgraph of OG(A) in Fig. 7b, whereas B is not. In addition, G is
the smallest subgraph of OG(A) simulating B. Obviously, B is much smaller in
size than G. However, they both have a simplicity value of 1: For measuring the
simplicity of B, we have to compare the size of B with the size of G according
to Def. 15. As |QG| + |δG| = 4 + 4 = 8 > 4 = 2 + 2 = |Qenv(B)| + |δenv(B)|, we
have sim(L,B) = 1. On the other hand, as G is a valid subgraph and simulates
itself, we have sim(L,G) = 1. Therefore, the restriction to valid subgraphs does
not preserve simplicity, as we exclude partners from the search space which are
obviously simpler, i.e., smaller in size.

Impact on the Precision Dimension Precision from Def. 16 is not preserved
by the restriction to valid subgraphs. Consider the service C in Fig. 7f, which is
also a partner of service A but no valid subgraph of OG(A). Services G and C
have not the same alignment automaton, and C has a higher precision than G:

16

A0

A1

A2

A3
?a!b

?a

!b

(a) Service A

b T1

a _ final T2

a T0

b T3

?b

!a

?b !a

true T4

?b

?b

!a, ?b

(b) Operating guide-
line OG(A)

trace

1 abab
1 ababa

2

(c) Event log L

T1

T2

T0

T3

?b

!a

?b !a

(d) Valid subgraph G
of OG(A)

B0

B1

!a?b

(e) Service B

C0

C1

C2

C3
!a

!a

?b

C4
?b

(f) Service
C

2
ba

2 2 2 2
ba

1
a

(g) Alignment automaton AA(L,G)

2
ba

2 2 2 2
ba

(h) Alignment automaton AA(L,C)

Fig. 7: Technical example for the impact of the restriction on valid subgraphs on
the quality.

C has an unfolded cycle of G and thus G has more transitions enabled at the
state after trace abab of the alignment automaton AA(L, env(G)) (see Fig. 7g)
than C in its corresponding state (see Fig. 7h).

Impact on the Generalization Dimension Generalization from Def. 17 is
not preserved by the restriction to valid subgraphs. The alignment automaton
used for generalization is not the same for C and G, which is the sole basis for
our generalization metric.

17

So we can conclude:

Theorem 21. Restricting the search space of service discovery to valid sub-
graphs preserves fitness. y

6 Applications

We describe two applications of our discovery algorithm: partner discovery and
private view discovery.

The first application of our discovery algorithm is the previously explained
partner discovery: Given a service S and an event log L of observed behavior of
S interacting with its environment, we can discover a partner P of S such that
P and L have, among the abstract partners, the highest quality.

We can also apply our approach for private view discovery [22]. In this set-
ting, we assume a service specification S (the public view) and an event log L to
be given. In contrast to partner discovery, L contains observed behavior of the
implementation of S (the private view) and its environment. The goal is to pro-
duce a private view S′ such that S′ and L have highest quality. Moreover, every
partner of S must also be a partner of S′ to ensure that replacing S with S′ does
not effect any partner of S. Private view discovery has its application in inter-
organizational cooperation, where several organizations implement a complex
service. To this end, they specify an abstract description of the overall service,
the contract. Every organization involved implements its share of the contract,
which has to conform to the contract. As implementations tend to be very com-
plex, private view discovery is a technique to check whether an implementation
is actually correct. As the set of all private views S′ of S can be also represented
as an annotated state machine, we can use the technique presented in this paper
to discover a private view.

7 Experimental Results

In this section, we describe our implementation and evaluate it with our running
example and eight service models of industrial size.

7.1 Algorithm and Implementation

Given a state machine S and an event log L recording behavior between a service
P and S, we aim to discover a service model of P that is a partner of S and has
high quality with L.

As motivated in Sect. 1, the search space (i.e., the number of partners of S)
is infinite. Even if we further improve the discovery process by restricting the
search space to valid subgraphs (see Sect. 5), it may still be too large to search
for an optimal candidate exhaustively. Thus, we are using a genetic algorithm
to discover a service model of P that has a high but possibly not the maximal
quality. Genetic algorithms have been successfully applied in the discovery of

18

workflow models [18,11]. A genetic algorithm evolves a population of candidate
solutions (i.e., the individuals) step-wise (i.e., in generations) toward better so-
lutions of an optimization problem. In our setting, an individual is either a state
machine R (in the discovery process without the improvement from Sect. 5) or
a valid subgraph G of OG(S) (in the discovery process with the improvement
from Sect. 5). In both cases, the quality of a candidate solution is determined
by the quality (see Def. 18) of R and G, respectively, as every valid subgraph is
a state machine as well.

Our algorithm employs the general procedure of genetic algorithms, which is
depicted in Fig. 8:

1. Choose the initial population (i.e., the first generation) of individuals. These
are randomly generated individuals (either state machines matching with
OG(S), or valid subgraphs of OG(S)). The size of the initial population is
part of the input parameters of the algorithm.

2. The algorithm repeats on the current generation until a termination criterion
is satisfied:
(a) Compute the quality of each individual in this generation, using Def. 18.
(b) Elitism: Directly shift a proportion of the individuals with the highest

quality into the next generation.
(c) Select the remaining individuals of the current generation for breeding.
(d) Create new individuals (called children) through crossover, mutation,

and replacement operations. The crossover operation randomly exchanges
parts (subgraphs) between two given individuals. The mutation opera-
tion randomly adds or removes a transition or a final state from a given
individual. The replacement operation replaces a randomly chosen indi-
vidual by a new, randomly generated individual. The probabilities for
each operation are part of the input parameters of the algorithm.

(e) Evaluate the quality of each newly breed individuals.
(f) Replace the individuals with the least quality in the current generation

with high-quality newly breed individuals. They, together with the ini-
tially shifted elite individuals, form the new generation.

3. If at least one termination criterion is satisfied, return the individual with
the highest quality of the latest generation.

We employ a combination of four different termination criteria to determine
when to terminate evolution: (1) A time limit stops the evolution after a certain
amount of time, regardless how far the individuals have been evolved. (2) A
generation count stops the evolution after a certain number of generations. (3)
A stagnation count stops the evolution after a certain number of generations
without a new highest-quality individual. (4) A sufficient quality criterion stops
the evolution if the quality of the current generation’s highest-quality individual
exceeds a specified threshold.

We have implemented the genetic algorithm, both with and without the im-
provement from Sect. 5, in Java as a ProM plug-in1. ProM2. is an extensible

1 https://svn.win.tue.nl/repos/prom/Packages/ServiceDiscovery/
2 http://www.promtools.org/prom6/

https://svn.win.tue.nl/repos/prom/Packages/ServiceDiscovery/
http://www.promtools.org/prom6/

19

Fig. 8: The different phases of the genetic algorithm.

framework that supports a wide variety of process mining techniques. Our im-
plementation uses the Watchmaker framework3, which is a framework for imple-
menting platform-independent genetic algorithms in Java. Our implementation
completely relies on open source software. The ProM plug-in is free to download
and available under the Lesser GNU Public License. ProM is available under the
GNU Public License; the Watchmaker Framework is subject to the terms of the
Apache Software License, Version 2.0.

7.2 Validation

We evaluate the feasibility of our approach by discovering partners of high quality
for eight service models of industrial size, see Table 1. The services “Loan Ap-
proval” and “Purchase Order” are taken from the WS-BPEL specification [14],
and the other six examples are industrial service models provided by a consulting
company.

Table 1: Size of the service models, the operating guidelines, and event logs

service S OG(S) event log L

name |Q| |δ| |Q| |δ| cases events

Car Breakdown 11, 381 39, 865 1, 449 13, 863 300 1, 938
Deliver Goods 4, 148 13, 832 1, 377 13, 838 300 1, 938
Loan Approval 30 41 21 84 300 2, 537
Purchase Order 402 955 169 1, 182 300 2, 537
Internal Order 1, 516 4, 996 97 567 300 1, 938
Ticket Reservation 304 614 111 731 300 2, 381
Reservations 28 33 370 3, 083 300 2, 671
Contract Negotiation 784 1, 959 577 4, 859 300 1, 938

3 http://watchmaker.uncommons.org/

http://watchmaker.uncommons.org/

20

Figure 9 illustrates our evaluation process. As most services were specified
in WS-BPEL, we had to translate them into state machines using the compiler
BPEL2oWFN [15]. For each state machine S, we calculated the operating guide-
line OG(S) using the tool Wendy [17]. Columns 4 and 5 of Table 1 depict the
size of these operating guidelines. In the next step, we used the underlying state
machine T of OG(S) to generate a random event log L. That way, we guarantee
that there exists at least one partner exhibiting the observed behavior in L while
simultaneously leaving a maximal degree of freedom in generating L, because T
is the “most permissive” partner [16] of S. We generated L with the viewpoint of
a partner of S (i.e., using envs) using the tool Locretia4. Each such event log L
is free of noise and consists of 300 cases with about 1, 900–2, 700 events—see the
last column of Table 1 for the size of the generated event logs. The size of our
generated event logs is the size of event logs successfully applied to evaluate the
genetic process discovery algorithm in [11]. Finally, we used our implementation
to discover a partner of S with high quality from OG(S) and L. All experiments
were conducted on a MacBook Pro, Intel Core i5 CPU with 2.4 GHz and 8 GB
of RAM.

Fig. 9: BPMN diagram illustrating the evaluation process.

As parameters for the genetic algorithm, we used an initial population of 100
individuals, a mutation/crossover/replacement probability of 0.3 with at most
1 crossover point, and elitism of 0.3, i.e., the 30 individuals with the highest
quality are directly shifted to the next generation. The computation of a new
generation stops after 1, 000 generations, if the highest quality stagnates for
750 generations, if a quality of 0.999 is reached, or if the algorithm ran for 60
minutes. To take into account that a discovered service can be simpler than the
subgraph to be compared, we chose a weight of 1 for simplicity and a weight
of 2 for all other dimensions. Notice that because of the restriction to 1, 000
generations, our genetic algorithm generates at most 70, 100 different individuals:
100 individuals for the initial population, and 100 − 30 individuals (because of
elitism) for each generation. Thus, for comparability, we randomly generated

4 http://svn.gna.org/viewcvs/service-tech/trunk/locretia/

http://svn.gna.org/viewcvs/service-tech/trunk/locretia/

21

71, 100 partners in the first experiment, or stopped the random generation after
60 minutes (whatever appeared first). The generated partner with the highest
quality is the experiment result. The experiment data is available online5.

Table 2: Experiment 1: Randomly discover a matching state machine.

discovered partner

service name |Q| |δ| quality fit sim pre gen time in s

Car Breakdown 210 708 0.64 0.08 0.86 0.84 0.89 3, 620
Deliver Goods 62 257 0.7 0.03 1 0.92 1 3, 604
Loan Approval 16 15 0.73 0.21 0.71 1 1 3, 600
Purchase Order 99 236 0.74 0.54 0.87 0.61 1 3, 601
Internal Order 1, 490 1, 514 0.59 0.14 0.03 0.9 1 3, 613
Ticket Reservation 33 98 0.59 0.08 0.98 0.5 1 3, 600
Reservations 670 1, 426 0.64 0.43 0.61 0.51 1 3, 600
Contract Negotiation 117 311 0.57 0.24 0.89 0.69 0.63 3, 603

sum 28, 841

To the best of our knowledge, there does not exist any other service discovery
implementation with which we could compare our algorithm. Therefore, we per-
formed three different experiments on the service models in Table 1. In the first
experiment, we randomly generated partners to the given services. We measured
their size, their quality, and the time it took to generate them in Table 2. For
each service, Table 2 gives the size of the discovered partner (columns 2 and
3), the values of the overall quality and of the individual quality dimensions
(columns 4–8), and the time to discover this partner (last column). In the sec-
ond experiment, we discovered partners that match with the operating guideline,
and in the third experiment we discovered partners that are valid subgraphs, as
explained in Sect. 5. Tables 3 and 4 show the results.

Based on the experimental results in Tables 2–4, we observe that Experi-
ment 1, which serves as a control group for the two other experiments, has max-
imal runtime while resulting in lower quality. This shows that our approach is
better than guessing. In the remainder, we compare the results of Experiments 2
and 3. The results in Table 3 show that discovered partners in Experiment 2
are more complex than the ones in Experiment 3; that is, valid subgraphs are
smaller than arbitrary partners. This explains the higher computation time in
Experiment 2 by a factor of 1–44 compared to Experiment 3: Smaller candidates
enable the algorithm to compute more generations in less time. For the same
reason, Experiment 3 produced, in general, partners with higher fitness. The
simplicity values are by Def. 14 higher for Experiment 3. In all examples, the
discovered partners in Experiment 3 have slightly higher precision values than
the partners discovered in Experiment 2. However, in three out of eight exam-

5 https://u.hu-berlin.de/mueller

https://u.hu-berlin.de/mueller

22

ples they have slightly lower generalization values. Restricting the search space
to valid subgraphs is an abstraction, which neither preserves precision nor gen-
eralization. Therefore, we expected lower precision and generalization values for
the partners discovered in Experiment 3, although our experiments confirm only
lower generalization values. Despite the loss of preservation of the abstraction,
the overall quality of the respective partner discovered in Experiment 3 is in all
examples better.

Table 3: Experiment 2: Discover a matching state machine using the genetic
algorithm.

discovered partner

service name |Q| |δ| quality fit sim pre gen time in s

Car Breakdown 548 1, 180 0.72 0.59 0.59 0.7 0.95 3, 744
Deliver Goods 246 829 0.71 0.5 0.94 0.57 0.94 3, 689
Loan Approval 15 19 0.97 0.91 1 0.98 1 3, 239
Purchase Order 101 248 0.94 0.92 0.89 0.99 0.94 3, 605
Internal Order 107 106 0.62 0.11 0.19 0.95 1 3, 698
Ticket Reservation 29 99 0.91 0.93 1 0.82 0.95 3, 606
Reservations 218 671 0.93 0.95 0.98 0.8 1 3, 601
Contract Negotiation 73 220 0.62 0.7 1 0.61 0.35 3, 798

sum 28, 980

Table 4: Experiment 3: Discover a matching state machine using the genetic
algorithm with the valid subgraph improvement.

discovered partner

service name |Q| |δ| quality fit sim pre gen time in s

Car Breakdown 86 384 0.95 0.87 1 0.99 0.96 3, 602
Deliver Goods 82 316 0.96 0.91 1 0.98 0.98 1, 763
Loan Approval 14 30 0.98 0.98 1 0.98 0.97 73
Purchase Order 33 107 0.97 0.9 1 1 1 214
Internal Order 9 11 0.87 0.6 1 0.98 0.95 3, 021
Ticket Reservation 15 48 0.96 0.96 1 0.99 0.92 143
Reservations 176 582 0.97 1 1 0.91 1 207
Contract Negotiation 74 201 0.94 0.86 1 0.97 0.94 3, 606

sum 12, 629

Summing up, our experimental results validate that, in general, partner dis-
covery produces better results on a finite abstraction of the search space than

23

on the complete search space. Although the abstraction only preserves fitness,
the values of the other three dimensions and the quality are high.

8 Related Work

The term “service discovery” describes techniques for producing a service model
from observed communication behavior of services [6], one the on hand, and
techniques for finding a service model in a service repository in service-oriented
architectures [24], on the other hand. In this paper, we investigated the discovery
of a service model from observed communication behavior, which corresponds to
a particular form of process mining [3]. Process mining research has been focused
on workflows (i.e., closed systems) but during the last few years, process mining
techniques have also been applied to services resulting in the term “service min-
ing”. Paper [2] reviews service mining research and identifies two main challenges
regarding the discovery of services: (1) the correlation of instances of a service
with instances of another service (e.g., [9,21]) and (2) the discovery of services
based on observed behavior (e.g., [13,25,23,8,29,20]). This paper contributes to
the second challenge.

In [22], we considered with weak termination a stronger correctness criterion
than deadlock freedom but solely focused on the fitness dimension, thus, ignored
the three other quality dimensions. To make the discovery efficient, we do not
discover a “best” model as in [22] but a model of high quality using a genetic
algorithm. The idea of using an genetic algorithm is inspired by the work of
Buijs et al. [11] on discovering sound workflow models while balancing the four
conflicting quality dimensions. In Sect. 4, we discussed the relation of our metrics
for these four quality dimensions and the metrics used in [11]. For the simplicity
metric, we used the structure of the operating guideline, which does not exist for
workflow models. Correctness in our setting is deadlock freedom of the service
composition, a weaker criterion than soundness in [11]. To deal with correctness
in the setting of services, we assume a service S to be given and we discover a
partner of S from observed behavior of S.

Dustdar et al. [13] discover workflow models from service interaction. The
authors of [8,29] discover workflow models from interaction patterns. These ap-
proaches can only discover parts of a service, whereas our algorithm produces a
complete service model.

Musaraj et al. [23] correlate messages from an event log without correlation
information and use this information in their discovery algorithm. In contrast,
we abstract from correlation information and assume cases to be independent.
Another difference is that our discovered model is a partner of a given service
model S (i.e., their composition is deadlock free) and it balances the four con-
flicting quality dimensions guided by user preferences.

Motahari-Nezhad et al. [20] present a user-driven refinement approach for
discovering service models. Their approach considers the fitness and the precision
dimension, but ignores generalization and simplicity of the discovered service.
Like Musaraj et al. [23], Motahari-Nezhad et al. do not assume a service model

24

to be given and, thus, they cannot guarantee that their produced service model
can interact correctly with its environment.

9 Conclusion and Future Work

We presented a technique to discover a service model from a given service S and
observed behavior of a service P interacting with S. Our technique produces a
service model for P that can interact correctly (no deadlocks) with S and, in
addition, balances the four conflicting quality dimensions (i.e., fitness, simplic-
ity, precision, and generalization). As an additional improvement, we proposed
an abstraction technique to reduce the infinite search space to a finite one. As
an exhaustive search to find an optimal solution may still be intractable, we
implemented our technique as a genetic algorithm. In a prototypical implemen-
tation, we experimented with several service models of industrial size. Our results
showed that the algorithm finds (nearly) optimal solutions in acceptable time.
It is worth mentioning that our approach is not restricted to service models but
can discover arbitrary reactive systems.

In future work, we aim to extend our presented approach. First, we want to
change the simplicity metrics such that the size of the candidate is compared
with the matching subgraph of the operating guideline that is reduced modulo
bisimulation. That way, we can ensure that the candidate cannot be smaller than
the respective subgraph. In addition, we will investigate how the abstraction
technique based on valid subgraphs can be improved such that it preserves all
metric. Second, we aim to consider concurrency in the simplicity metric. To this
end, we have to transform the state machine model into a Petri net. However,
this comes at a price of drastically increased runtime, even when applying state-
of-the-art tools [12]. Third, we plan to extend our approach to the respective
precongruence (rather than the preorder) between services [28] and to stronger
correctness criteria than deadlock freedom correctness, such as responsiveness
(i.e., the possibility to always communicate in a service composition) and weak
termination (i.e., the possibility to always terminate in a service composition).
Fourth, we plan to study the impact of different weights of the quality dimensions
on the quality of the discovered partner.

Acknowledgement Support from the Basic Research Program of the National
Research University Higher School of Economics is gratefully acknowledged.

References

1. Aalst, W.M.P.v.d.: The application of Petri nets to workflow management. Journal
of Circuits, Systems, and Computers 8(1), 21–66 (1998)

2. Aalst, W.M.P.v.d.: Service mining: Using process mining to discover, check, and
improve service behavior. IEEE Transactions on Services Computing (2012)

3. Aalst, W.M.P.v.d.: Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer (2011)

25

4. Aalst, W.M.P.v.d., Adriansyah, A., Dongen, B.F.v.: Replaying history on process
models for conformance checking and performance analysis. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 2(2), 182–192 (2012)

5. Aalst, W.M.P.v.d., Dongen, B.F.v., Herbst, J., Maruster, L., Schimm, G., Weijters,
A.J.M.M.: Workflow mining: A survey of issues and approaches. Data Knowledge
Engineering pp. 237–267 (2003)

6. Aalst, W.M.P.v.d., et al.: Process mining manifesto. In: BPM 2011 Workshops
Proceedings. pp. 169–194. Springer (2012)

7. Adriansyah, A., Munoz-Gama, J., Carmona, J., Dongen, B., Aalst, W.: Alignment
based precision checking. In: BPI Workshops. lnbip, vol. 132, pp. 137–149. Springer
(2013)

8. Asbagh, M., Abolhassani, H.: Web service usage mining: mining for executable
sequences. In: WSEAS 2007. vol. 7, pp. 266–271 (2007)

9. Basu, S., Casati, F., Daniel, F.: Toward web service dependency discovery for SOA
management. In: SCC 2008. vol. 2, pp. 422 –429 (2008)

10. Boender, C., Rinnooy Kan, A.: A bayesian analysis of the number of cells of a
multinomial distribution. The Statistician pp. 240–248 (1983)

11. Buijs, J.C.A.M., Dongen, B.F.v., Aalst, W.M.P.v.d.: On the role of fitness, preci-
sion, generalization and simplicity in process discovery. In: CoopIS 2012. LNCS,
vol. 7565, pp. 305–322. Springer (2012)

12. Carmona, J., Cortadella, J., Kishinevsky, M.: Genet: A tool for the synthesis and
mining of Petri nets. In: ACSD 2009. pp. 181–185. IEEE (2009)

13. Dustdar, S., Gombotz, R.: Discovering web service workflows using web services
interaction mining. Int. Journal of Business Process Integration and Management
1(4), 256–266 (2006)

14. Jordan, D., et al.: Web services business process execution language version 2.0.
OASIS Standard 11 (2007)

15. Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0. In: WS-
FM 2007. LNCS, vol. 4937, pp. 77–91. Springer (2008)

16. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In: ICATPN 2007. LNCS, vol. 4546, pp. 321–341. Springer (2007)

17. Lohmann, N., Weinberg, D.: Wendy: A tool to synthesize partners for services.
Fundam. Inform. 113(3-4), 295–311 (2011)

18. Medeiros, A., Weijters, A., Aalst, W.M.P.v.d., et al.: Genetic process mining: an ex-
perimental evaluation. Data Mining and Knowledge Discovery 14, 245–304 (2007)

19. Mendling, J., Neumann, G., van der Aalst, W.M.P.: Understanding the occurrence
of errors in process models based on metrics. In: CoopIS 2007, LNCS, vol. 4803,
pp. 113–130. Springer (2007)

20. Motahari-Nezhad, H.R., Saint-Paul, R., Benatallah, B.: Deriving protocol models
from imperfect service conversation logs. IEEE Trans. Knowl. Data Eng. 20(12),
1683–1698 (2008)

21. Motahari Nezhad, H.R., Saint-Paul, R., Casati, F., Benatallah, B.: Event correla-
tion for process discovery from web service interaction logs. The VLDB Journal
20(3), 417–444 (2010)

22. Müller, R., Aalst, W.M.P.v.d., Stahl, C.: Conformance checking of services using
the best matching private view. In: WS-FM 2012. LNCS, vol. 7843, pp. 49–68.
Springer (2013)

23. Musaraj, K., Yoshida, T., Daniel, F., Hacid, M.S., Casati, F., Benatallah, B.: Mes-
sage correlation and web service protocol mining from inaccurate logs. In: ICWS
2010. pp. 259 –266 (2010)

26

24. Papazoglou, M.: Web Services - Principles and Technology. Prentice Hall (2008)
25. Rouached, M., Gaaloul, W., Aalst, W.M.P.v.d., Bhiri, S., Godart, C.: Web service

mining and verification of properties: An approach based on event calculus. In:
CoopIS 2006, LNCS, vol. 4275, pp. 408–425. Springer (2006)

26. Rozinat, A., Aalst, W.M.P.v.d.: Conformance checking of processes based on mon-
itoring real behavior. Information Systems 33(1), 64–95 (2008)

27. Stahl, C., Massuthe, P., Bretschneider, J.: Deciding substitutability of services with
operating guidelines. In: ToPNoC II. pp. 172–191. LNCS 5460, Springer (2009)

28. Stahl, C., Vogler, W.: A trace-based service semantics guaranteeing deadlock free-
dom. Acta Informatica 49(2), 69103 (Feb 2012)

29. Tang, R., Zou, Y.: An approach for mining web service composition patterns from
execution logs. In: WSE 2010. pp. 53 –62 (2010)

	Service Discovery from Observed Behavior While Guaranteeing Deadlock Freedom in Collaborations

