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Abstract. Process discovery techniques derive a process model from observed
behavior (e.g., event logs). In case of less structured processes, declarative mod-
els have notable advantages over procedural models. A declarative model consists
of a set of temporal constraints over the activities in the event log. In this paper,
we address three limitations of current discovery techniques: their unclear se-
mantics of declarative constraints for business processes, their non-performative
discovery of constraints, and their potential identification of vacuous constraints.
We implemented our contributions as a declarative discovery algorithm for the
Declare language. Our evaluations on a real-life event log indicate that it outper-
forms state of the art techniques by several orders of magnitude.

1 Introduction

For purposes of quality management and performance improvement, organizations are
interested in the way their internal business processes are executed. Such an understand-
ing can be gained by observing process behavior as recorded in the form of an event
log. Event logs may be extracted from databases, message logs, or audit trails. Given
an event log, process discovery techniques can be used to produce a process model [3].

Less structured processes such as health-care processes can often easier be cap-
tured using a declarative rather than a procedural approach. While a procedural model
describes how the process has to work exactly, a declarative model describes only the
essential characteristics of the process. To this end, constraints are specified that restrict
the possible execution of activities. Over the last years, declarative languages, such as
Declare [4,17] (formerly known as DecSerFlow), DCR Graphs [10] and Montali’s logic
based framework [15], have been developed and integrated in academic and industrial
modeling tools [20]. There also exist tools to discover a declarative model from an event
log. Examples are the ProM Declare miner [12] and the MINERful++ tool [7].

Despite advances in discovering declarative process models over the last years, cur-
rent discovery techniques are subject to limitations. We will make these limitations ex-
plicit, describe how related approaches have attempted to deal with these, and describe
our contributions against that background.
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Limitation 1: Unclear semantics Our interest is in the application of process discov-
ery for business processes. An important implication is that the executions of interest,
as recorded in event logs, are finite. For this reason, too, the semantics of the Declare
miner is based on finite linear temporal logic (LTL). The limitation that exists is that
for infinite traces, the LTL semantics [18] is well-understood—a constraint (i.e., an
LTL formula) is translated into a Büchi automaton that can then be used for verifica-
tion [19]—for finite traces, there is currently no agreement on how the LTL semantics
should be defined [5, 8, 9, 16]. Existing approaches deal with this limitation in various
ways. The current Declare miner uses a slight modification of the algorithm proposed
in [9] to construct for a constraint a finite automaton instead of a Büchi automaton. By
exploiting the structure of Declare constraints, Westergaard [21] improves the algorithm
in [9] dramatically, making declarative specifications scale to realistic settings. Bauer
et al. [5] show that a classical 2-valued semantics does not suffice and propose 3-valued
and 4-valued semantics instead. Still, these semantics on finite traces do not converge
with the semantics on infinite traces [16]. Therefore, Morgenstern et al. [16] propose
to consider four classes of LTL properties and define a semantics for each class. How-
ever, dealing with (several) 3-valued or 4-valued semantics as proposed in [5,16] overly
complicates the usage of declarative techniques and the development of tools.

Therefore, we decided to follow a different approach. The first contribution of this
paper is a redefinition of the original Declare semantics [4] using regular expressions.
Regular expressions provide sufficient expressiveness, and are easier to explain to prac-
titioners than the semantics in [5, 16]. More importantly, as every regular expression
describes a regular language, which can be represented by a finite automaton, we have
a mapping from declarative constraints to finite automata. The semantics of finite au-
tomata is well-defined, and operations such as product and complement are decidable.
The MINERful++ tool [7] also uses regular expressions. The semantics of several con-
straints described in [7] is wrong, but has been recently corrected. MINERful++ does
not support choice constraints; that is, it only supports a subset of all Declare con-
straints. Instead, we handle all constraints of Declare.

Limitation 2: Non-performative or incomplete discovery The Declare miner in
ProM [12] systematically checks one constraint after another (for each possible instan-
tiation of parameters) and returns a model comprising all constraints. Because of this
brute-force approach, this miner has severe difficulties with event logs of realistic busi-
ness processes. Alternative approaches try to alleviate the drawbacks of handling all
constraints associated with realistic business processes. These include forcing users to
pick among interesting constraints [13], employing a priori reduction to avoid consider-
ing rarely occurring events [13], and considering the relationships between constraints
to avoid mining some constraints [14]. The limitation, here, is that the mining of declar-
ative models is either non-performative or too selective.

Our contribution is that we stick to mining all constraints, but employ post-processing
to weed out uninteresting constraints. As such, we potentially obtain better resulting
models than making filtering beforehand out of necessity. Any post-processing (and
complexity-reducing filtering) possible with existing miners is also possible with our
approach. Our approach just allows more intelligent post-processing due to having more



information at its disposal. To make our technique performative, we present four pow-
erful reduction techniques, including symmetry reduction and parallelization.

The most related approach is provided by the MINERful++ tool [7], which com-
putes statistics about event relationships and uses that to infer constraints. The approach
is fast, but computation of constraints from statistics makes it difficult to add new con-
straints. The reason is that it requires to develop and prove rules for doing so. For exam-
ple, it is far from obvious how to extend this approach to also mine choices. In contrast,
our approach supports all Declare constraints and it can cope with any constraint that
can be specified as a regular expression.

Limitation 3: Irrelevant discovery A discovered constraint may hold although it is
irrelevant. This phenomenon has been coined as vacuity in model checking. Vacuity
detection in model checking aims to discover meaningless satisfaction of the specifica-
tion. Usually, mutations of subformulae of the specification are used to discover vacuity.
Much research has been conducted (see [11] for a survey). Vacuity is also relevant for
process discovery. In contrast to an LTL formula, a constraint does not contain subfor-
mulae. Consequently, vacuity refers to discover events that are prevented.

Vacuity has been incorporated in the support metric of a constraint which is the
fraction of traces in which the constraint is nonvacuously satisfied [7, 13]. There are,
however, Declare constraints for which the confidence value cannot be expressed. Ex-
amples are the choice constraints.

In this paper, we generalize support to all Declare constraints and even to any
regular expression. We define positive and negative support. Positive support coincides
with support in [7,13], whereas negative support occurs for all constraints that could not
be considered by [7, 13]. Moreover, our support notions are independent of the syntax
of a constraint and can be used to compute the confidence of a constraint.

To demonstrate the feasibility and performance of our approach, we implemented
the UnconstrainedMiner as a plug-in in the tool ProM [1]. The UnconstrainedMiner
uses the Declare language from [4], but the semantics is defined on regular expressions.
On top of the language, we implemented the novel discovery algorithm and the notion of
positive and negative support of constraints. The proposed reduction techniques enable
us to discover all constraints for event logs obtained from processes of realistic size
within seconds. The tool thereby outperforms the state of the art tools by several orders
of magnitude. As an additional feature, the UnconstrainedMiner is also extensible: It
allows users to add any constraint that can be defined as a regular expression. As our
notion of support is generic, it is automatically computed for added constraints. A first
version of the UnconstraintMiner has been presented at the BPM Demos [22]. In this
paper, we present an extended version of the tool and the theory, including the novel
notion of positive and negative support.

We continue with a motivating example and then provide background information in
Sect. 3. We define the Declare language using regular expressions in Sect. 4. We present
our discovery algorithm in Sect. 5 and define the relevance of discovered constraints and
vacuity in Sect. 6. Sect. 7 presents experimental results and Sect. 8 concludes the paper.



2 Motivating Example

Figure 1 shows (part of) a process and an event log consisting of 100 traces. In the
process, either the upper or the lower block is executed. The average probability for each
block is 10% and 90%, respectively. The idea is that a high payment should be preceded
by a double check. Furthermore, a payment should not be made if rejected. Often, we do
not have a model like (a) available, but only the event log in (b). This is where process
discovery comes in. Example constraints are precedence(Double Check, Pay High) (i.e.,
Pay High cannot occur before Double Check), response(Double Check, Pay High) (i.e.,
Double Check is eventually followed by Pay High), and exclusive choice1of3(Pay High,
Pay Low, Reject) (i.e., exactly one of the three events occurs).

A discovered constraint may hold although it is irrelevant. As an example, consider
the constraint response(Pay High, Pay Low). Obviously, both events are unrelated (they
are in exclusive branches) but the constraint holds for 94 traces. We will pick up on the
example in subsequent sections to illustrate our approach.

3 Preliminaries

We define (finite) automata and regular expression, which we shall use to define the
semantics of the Declare language.

Definition 1 (finite automaton). A finite automaton A = (S,Σ, δ, s0, F ) consists of a
finite set s of states, a finite alphabet Σ, a transition relation δ ⊆ S ×Σ × S on states,
an initial state s0 ∈ S, and a set F ⊆ S of accepting states. If for all s, s1, s2 ∈ S and
a ∈ Σ, (s, a, s1), (s, a, s2) implies s1 = s2, then A is deterministic.

As usual, L(A) denotes the language of A; ε denotes the empty trace; and for two
finite traces σ, σ′ ∈ Σ∗, σσ′ denotes their concatenation.

The Declare language allows anything not explicitly constrained, so we always en-
code a Declare constraint as a finite deterministic automaton with a special symbol
(typically -) indicating any action not explicitly specified.

xor xor

Double
Check

Pay
High

Reject

… 10%

Pay
Low

Reject
…

90%

(a) Abstract process

# trace
1 Pay High
4 Double Check, Reject
5 Double Check, Pay High

20 Reject
70 Pay Low

100

(b) Event log L

Fig. 1: Running example



Given two deterministic finite automataA andB, we define their synchronous prod-
uct AB and the complement Ac of A in the standard way. Furthermore, recall that for
every deterministic finite automaton A with language L(A), there exists a deterministic
finite automatonA′ that has the minimal number of states and L(A) = L(A′). All these
operations are computable and efficient.

A regular expression describes a regular language which can be represented by a
finite automaton.

Definition 2 (regular expression). A regular expression over an alphabet Σ and the
language it represents are inductively defined by

– ∅, ε and . are regular expressions, and L(∅) = ∅, L(ε) = {ε} and L(.) = Σ.
– Each a ∈ Σ is a regular expression and L(a) = {a}.
– If α, β are regular expressions, so are the alternation α | β with L(α | β) =
L(α)∪L(β) and the concatenation αβ with L(αβ) = {ab | a ∈ L(α), b ∈ L(β)}.

– If α is a regular expression, so is α∗ and it is the fixpoint of α∗ = ε | αα∗.
Let α be a regular expression and a1, . . . , an ∈ Σ. For a more compact notation,

we introduce the quantifier ? defined by α? = α | ε; [a1 . . . an] is a short hand for
a1 | · · · | an and [̂ a1 . . . an] denotes the complement of [a1 . . . an] (i.e., none of the
characters a1 . . . an matches); finally α{n} denotes that α is matched n times.

A regular expression α can be transformed to a finite automaton A(α) such that
L(α) = L(A(α)).

4 The Declare Language

As indicated, using finite LTL for the Declare semantics is problematic. Already in [7],
Di Ciccio and Mecella use regular expressions instead. However, the semantics in [7]
describes some constraints incorrectly and some constraints not at all. In this section,
we provide a full semantics for all constraints of Declare using regular expressions.

Table 1 contains the semantics of all Declare constraints. Due to space limitations,
we shall not provide details for each of them. For the informal semantics, we refer
to [17], and for the intuition about some of the regular expression semantics, we refer to
[7]. Our semantics differs for a significant portion from [7] as to fix subtle errors. Also,
the semantics for the choice constraints is new. The semantics is intended to capture our
intuition of the constraints and, as a result, some expressions seem more complex than
necessary. For example, precedence(a,b) says that b cannot occur before an a; there are
alternative expressions possible, but in this way it generalizes nicely to the response
and succession constraints, and to the alternate and chain variants. A constraint like
exclusive choice1of3 is complex and details the three possible situations—any one of
the three parameters occur and the other two do not—and illustrates that the declarative
approach can capture a complex procedural situation nicely.

For each constraintC, the automaton of the constraint,A(C), isA(C) = A(sem(C)).
Figure 2 shows the automata for precedence, response, and exclusive choice1of3. To
instantiate a constraint, the parameters (a, b, c, . . . ) are replaced with concrete event
classes. The special symbol - indicates that any action not explicitly listed may be cho-
sen (so all three automata accept the string “C”). The automata representation for all
constraints can be found in the appendix.



Table 1: Declare constraints and their formal semantics.
Constraint (C) Formal semantics (sem(C))

po
si

tio
n init(a) (a.*)?

strong init(a) a.*
last(a) .*a

co
un

t existence(a,n) .*(a.*){n}
absence(a,n) [ˆa]*(a?[ˆa]*){n-1}
exactly(a,n) [ˆa]*(a[ˆa]*){n}

or
de

re
d

precedence(a,b) [ˆb]*(a.*b)*[ˆb]*
response(a,b) [ˆa]*(a.*b)*[ˆa]*
succession(a,b) [ˆab]*(a.*b)*[ˆab]*
alternate(a,b) [ˆa]*(a[ˆa]*b[ˆa]*)*a?[ˆa]*
alternate precedence(a,b) [ˆb]*(a[ˆb]*b[ˆb]*)*
alternate response(a,b) [ˆa]*(a[ˆa]*b[ˆa]*)*
alternate succession(a,b) [ˆab]*(a[ˆab]*b[ˆab]*)*
chain precedence(a,b) [ˆb]*(ab[ˆb]*)*
chain response(a,b) [ˆa]*(ab[ˆa]*)*
chain succession(a,b) [ˆab]*(ab[ˆab]*)*

un
or

d. responded existence(a,b) [ˆa]*((a.*b.*)|(b.*a.*))?
co-existence(a,b) [ˆab]*((a.*b.*)|(b.*a.*))?

ch
oi

ce

choice1of2(a,b) .*[ab].*
choice1of3(a,b,c) .*[abc].*
choice1of4(a,b,c,d) .*[abcd].*
choice1of5(a,b,c,d,e) .*[abcde].*
choice2of3(a,b,c) .*((a.*[bc])|(b.*[ac])|(c.*[ab])).*
exclusive choice1of2(a,b) ([ˆb]*a[ˆb]*) | ([ˆa]*b[ˆa]*)
exclusive choice1of3(a,b,c) ([ˆbc]*a[ˆbc]*) | ([ˆac]*b[ˆac]*) | ([ˆab]*c[ˆab]*)
exclusive choice2of3(a,b,c) ([ˆc]*((a[ˆc]*b) | (b[ˆc]*a))[ˆc]*) | ([ˆb]*((a[ˆb]*c) |

(c[ˆb]*a))[ˆb]*) | ([ˆa]*((b[ˆa]*c) | (c[ˆa]*b))[ˆa]*)

ne
ga

tiv
e not co-existence(a,b) [ˆab]*((a[ˆb]*) | (b[ˆa]*))?

not succession(a,b) [ˆa]*(a[ˆb]*)*
not chain succession(a,b) [ˆa]*(a+[ˆab][ˆa]*)*a*

5 Discovering Regular Expressions from Event Logs

The ProM Declare miner [12] mines constraints by translating the finite LTL semantics
into a finite automaton, replaying a log on the automaton, and accumulating statistics to
accept constraints according to a given threshold. The MINERful++ miner [7] instead
computes statistics about event relationships and uses that to infer constraints. While
the MINERful++ approach is faster, it is less general and cannot handle all Declare
constraints. We, therefore, use the ProM Declare miner as a starting point. We use var-
ious optimization techniques to make our miner perform better than previous miners.
Aside from an efficient base implementation, we propose four reduction techniques for
improvement: symmetry reduction, prefix sharing, parallelization, and super-scalarity.
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Fig. 2: Automata for precedence (a), response (b), and exclusive choice1of3 (c).

5.1 Efficient Base Implementation

Given a log file consisting of a set of traces, the base idea is to gather all different
events of the log (yielding a set of event classes), instantiate all Declare constraints
using all possible combinations of event classes, and check whether each trace be-
longs to the language of the resulting automaton (by following transitions and checking
whether we end in an accepting state). For the example in Fig. 1, the event classes
are {Double Check,Pay High,Pay Low,Reject . . . }. Examples for constraint instances
are precedence(Double Check, Pay High), precedence(Double Check, Pay Low), and
response(Double Check, Pay High).

To make this simple approach more efficient, we first enumerate all encountered
event classes. This allows us to refer to events using an integer instead of text string or
even a structured entry, which makes comparison faster. We get a representation of the
log from Fig. 1 like in Fig. 3(a). Then, we realize that we need not instantiate constraints
repeatedly, but only maintain a translation table. We, therefore, enumerate all labels of
the automaton obtained from a constraint. We can now represent logs as sets of lists
of integers (Fig. 3(a)), the automaton of a constraint as a look-up table mapping states
and label numbers to new states (e.g., Fig. 3(b) shows the automaton for precedence),
and an instantiation of a constraint as a map from event identifiers to label identifiers
(Fig. 3(c)). In practise, we represent these as arrays of arrays of integers and arrays of
integers, making the representation compact and allowing for fast operations.

5.2 Symmetry Reduction

While the base algorithm is intriguingly simple and with its efficient base implemen-
tation already outperforms all previous miners, it does perform superfluous work. Ba-
sically, we still replay every trace on every instantiation of every constraint, leading to
tn(n − 1) · · · (n − p + 1) replays for a O(ltn(n − 1) · · · (n − p + 1) performance,
where l is the length of the longest trace, t is the number of traces, n the number of
event classes, and p the number of parameters of the constraint. If t = 10, 000, n = 20,
and p = 5 for the choice1of5 constraint, we have to perform a total of more than 18.6
billion replays.
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Fig. 3: Representations of logs (a), automata (b), and instantiations of constraints (c).

Some constraints display a notion of symmetry, however. This means that swapping
some parameters does not change the validity of the constraint. For example, the con-
straint choice1of2(Pay High, Pay Low) is the same as choice1of2(Pay Low, Pay High). In
general, we can have multiple such symmetry subgroups. We only need to check for one
member of a symmetry subgroup to check for all of them, which means that each sym-
metry group G reduces the number of comparisons by the number of possible permu-
tations of the elements of the groups or |G|!. Often, a constraint is symmetric in all pa-
rameters, leading to a reduction of a factor of p!. For example, the choice1of5 constraint
is symmetric in all parameters, and forcing us to make “only” 155 million replays as op-
posed to 18.6 billion. If a constraint is symmetric in all parameters, we reduce the com-
plexity fromO(ltn(n−1) · · · (n−p+1)) toO(ltn(n−1) · · · (n−p+1)/p!) = O(lt

(
n
p

)
).

We can automatically check if a constraint is symmetrical in two parameters by
checking if the regular expression obtained by swapping two parameters has the same
language as the original regular expression. This is easily done by checking that the
intersection of one and the complement of the other is empty, and vice versa—that
is, whether L(A(C)) ∩ L(A(C[pi 7→ pj , pj 7→ pi])

c) = L(A(C[pi 7→ pj , pj 7→
pi])) ∩ L(A(C)c) = ∅, for all pi, pj ∈ G.

5.3 Prefix Sharing

When a log stems from a single process, the individual traces typically share a lot of
characteristics. We can exploit this to achieve improved performance. The idea is to
organize the log in a prefix-tree or trie. This is a tree where each node corresponds to
an event and each edge to one event following another in an execution. Figure 4 shows
a log and an example trie representation.

We can replay such a trie on an automaton in a single run, allowing us to not re-
play any shared prefix more than once. Formally, this is done by constructing the syn-
chronous product of the automaton and the trie, but in practise we can do it a bit simpler.
We annotate the trie with the number of traces terminating in each node. Now, as we
replay the log on the automaton, we annotate each node of the trie with the state in the
automaton corresponding to it.
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Fig. 4: Trie representation of the log from Fig. 3a. The number to the left of each node
indicates the event, and the number to the right how many traces end in this node.

5.4 Parallelization

Our algorithm does not make any global assumptions and does not depend on global
computations. This means that it should be easy to parallelize. We can parallelize ei-
ther in constraints or traces. Parallelization requires that we can decompose the problem
and later compose the solution. The ProM Declare miner [12] depends on global com-
putations to do its a priori reduction, meaning it can only parallelize on constraints.
MINERful++ could in principle perform its global computations in parallel, but does
not do so. We make no assumptions on global computations and all values computed are
just the number of traces which satisfy various properties (whether a trace is accepted
by a constraint and the various vacuity properties detailed in the next section), we can
compose on both traces and constraints. Experiments show that, in practise, the most
complex constraint dominates the computation; so unless we have many constraints that
are as difficult as the most complex one, decomposing on constraints will yield little re-
duction. It is possible to split up checking of instances of a single constraint, but it is
complicated. In contrast, if we can split up checking by traces, this is much simpler.
We, therefore, parallelize on traces.

5.5 Super-scalarity

Previous miners already try to use relationships between constraints to reduce com-
putation efforts. Unfortunately, when used as a reduction, this does not improve the
worst-case computation time and additionally imposes a check for each instance of each
constraint. Moreover, it will either force users to select threshold levels before mining
or yield imprecise threshold levels as accurate thresholds cannot be inferred. Therefore,
we propose to check multiple constraints at a time instead. We have already demon-
strated how to check multiple constraints at the same time [21] (by having acceptance
states for each constraint) and extend this approach to mining. If care is taken, replay-
ing a log on an automaton recognizing multiple constraints is not more time-consuming
when replaying. Furthermore, such an automaton can be constructed once for each set
of constraints, and instantiated the same way as our base algorithm, effectively allowing
us to mine multiple constraints at a time, much how like super-scalar processors execute
different parts of multiple instructions at a time.

When we combine constraints, we have to consider two things: symmetry subgroups
and memory use. Large symmetry subgroups reduce execution time, so it is bad to split
up a subgroup. When we combine automata, the size of the product is the product of



the individual sizes in the worst case, so we should only combine related constraints.
To avoid breaking symmetry subgroups, we require that to allow combining two con-
straints, C1 and C2, any symmetry subgroups of C1 is fully contained in exactly one
symmetry subgroup of C2.

Definition 3 (combining constraints). We combine two constraints C1 and C2 if the
following three statements hold: (1) L(C1) ⊇ L(C2); (2) for all symmetry subgroups
G1 of C1, there exists a symmetry subgroup G2 of C2 such that G1 ⊆ G2; and (3) any
for symmetry subgroup G of C1 with G ∩G2 6= ∅, we have G = G1.

The first condition in Definition 3 thereby ensures that we only combine related
constraints. We can easily check the symmetry requirements using simple set operations
and the implication requirement using L(C1) ∩ L(C2) = ∅.

Our requirements for combining are not symmetrical, but capture that we may
merge something simpler to something more complex; that is, we do allow adding a
smaller symmetry group to a larger. While this means we may check a simple con-
straint more times than necessary, we do so for free, as the cost is already incurred by
the more complex constraint. This is reflected in Definition 3, which is asymmetric and
basically allows adding something simple to something complex as long as neither is
made more complex.

6 Vacuity Detection

The idea of vacuity checking in model checking is to check that all parts of a formula
matter to the truth of the full formula. This is done by detecting subformulae that can
be replaced by any stronger variant without affecting the truth value. In practise, a sub-
formula is replaced by either true or false depending on whether it occurs positively or
negatively. As formulas are often translated to negative normal form, where all nega-
tions are moved all the way in front of atomic propositions, all subformulae except
atomic propositions occur positively and can be replaced by false. A similar method
exists for regular languages [6]. This approach tries to mimic the ideas from LTL by
quantifying over all sequences. This neglects two facts of Declare: Declare does not
use complex event relationships in single constraints, and some constraints cannot be
vacuously satisfied. This allows us to do faster and better vacuity tests.

Declare does not have complex relationships between atomic propositions (tasks)
because no constraint has more than two symmetry subgroups. We use this to look at
constraints in isolation. Conceptually, we add absence constraints prohibiting subsets of
tasks, much like how support is computed for LTL. If the outcome allows any sequence
of events (except those including the prohibited ones), the constraint is not interesting
unless at least one of the tasks occur.

Definition 4 (positive support). Let C be a constraint with parameters p1, . . . , pp and
L(C) ∩ L([̂ p′1 · · · p′k]∗) = L([̂ p′1 · · · p′k]∗) with p′i ∈ {p1, . . . , pp}, for 1 ≤ i ≤ k.
Then, C is vacuously satisfied for a trace σ if σ ∈ L([̂ p′1 · · · p′k]∗). A trace σ has pos-
itive support for C if σ is a member of the language of the positive support automaton
Pos(C) =

∏
L(C)∩L([̂ p′1···p′k]∗)=L([̂ p

′
1···p′k]∗)

Ac([̂ p′1 · · · p′k]∗).



A constraint C can have multiple sets p′1 · · · p′k (which we represent with Pos(C))
and it has positive support for a trace σ if σ is a member of any such set. We use Pos(C)
to represent all those sets p′1 · · · p′k. Thus, having positive support intuitively means the
constraint was satisfied but not by chance (by avoiding triggering anything that could
make it unsatisfied). In general, Pos(C) looks like Fig. 5, where the set of labels is the
union of all labels that may trigger the constraint C. As an example, we have the label
set {B} for precedence(A,B) and {A} for response(A,B).

Having a notion of positive support, it makes sense to also look at negative support.
The intuition is to look at what tasks are necessary to satisfy a constraint. We again look
at what happens if we exclude a subset of parameters. Instead of considering the case
when we accept everything else, we look at what happens if we accept nothing at all.

Definition 5 (negative support). Let C be a constraint over parameters p1, . . . , pp
and L(C) ∩ L([̂ p′1 · · · p′l]∗) = ∅ with p′i ∈ {p1, . . . , pp}, for 1 ≤ i ≤ l. A trace σ
has negative support for C if σ is not a member of the language of the negative support
automaton Neg(C) = A(|L(C)∩L([̂ p′1···p′l]∗)=∅ [̂ p

′
1 · · · p′l]∗).

Intuitively, L(C) ∩ L([̂ p′1 · · · p′l]∗) = ∅ means that if we avoid all p′1 · · · p′l, the
constraint has no chance of being satisfied (so if it is not, we do not particularly care). In
general, Neg(C) looks like Fig. 5, where the labels is the intersection of labels that can
change the truth value of the constraint. For example, we have {A,B,C} for exclusive
choice1of3(A,B,C).

Interestingly, positive support checks for presence of some parameters whereas neg-
ative support checks for absence, but we can compute them using a single computation.
Table 2 shows for each Declare constraint the corresponding label set for the support
automaton in Fig. 5. Note that the constraint init(a) has neither positive nor negative
support.

Intuitively, it may seem that it would be possible for a constraint to have both a non-
trivial positive and nontrivial negative support automaton. This is not the case, however.

Theorem 1. No regular expression has both a nontrivial positive and nontrivial nega-
tive support automaton.

Proof. Assume a constraint C with parameters p1, . . . , pp and two subsets p′1, . . . , p
′
k,

q′1, . . . , q
′
l ∈ {p1, . . . , pp} with L(C)∩L([̂ p′1 · · · p′k]∗) = L([̂ p′1 · · · p′k]∗) and L(C)∩

L([̂ q′1 · · · q′l]∗) = ∅. We then get that L([̂ p′1 · · · p′k]∗) ∩ L(C) ∩ L([̂ q′1 · · · q′l]∗) =
L([̂ p′1 · · · p′k]∗)∩∅ = ∅ (adding intersection with L([̂ p′1 · · · p′k]∗) on both sides). Using
the first equality, we get L([̂ p′1 · · · p′k]∗) ∩ L([̂ q′1 · · · q′l]∗) = ∅. However, ε would lie
in both L([̂ p′1 · · · p′k]∗) and L([̂ q′1 · · · q′l]∗) contradicting that the intersection is the
empty set, contradicting that a constraint can have nontrivial both positive and negative
support. ut

0

-

1A, B, C, ...

-

Fig. 5: Automaton recognizing positive and negative support.



Table 2: Declare constraints and their support: The second column gives the label set
for the arc connecting state 0 and 1 in Fig. 5.

Constraint (C) Label set of the support automaton

po
si

tio
n init(a) –

strong init(a) a
last(a) a

co
un

t existence(a,n) a
absence(a,n) a
exactly(a,n) a

or
de

re
d

precedence(a,b) b
response(a,b) a
succession(a,b) a,b
alternate(a,b) a
alternate precedence(a,b) b
alternate response(a,b) a
alternate succession(a,b) a,b
chain precedence(a,b) b
chain response(a,b) a
chain succession(a,b) a,b

un
or

d. responded existence(a,b) a
co-existence(a,b) a,b

ch
oi

ce

choice1of2(a,b) a,b
choice1of3(a,b,c) a,b,c
choice1of4(a,b,c,d) a,b,c,d
choice1of5(a,b,c,d,e) a,b,c,d,e
choice2of3(a,b,c) a,b,c
exclusive choice1of2(a,b) a,b
exclusive choice1of3(a,b,c) a,b,c
exclusive choice2of3(a,b,c) a,b,c

ne
ga

tiv
e not co-existence(a,b) a,b

not succession(a,b) a,b
not chain succession(a,b) a,b

For a better understanding of when constraints have positive or negative support,
we define prefix-closure of a language.

Definition 6 (prefix-closure). Let C be a constraint and Par be the set of parameters
of C. If a ∈ L(C) =⇒ ∀v /∈ Par(C) : av ∈ L(C), then L(C) is prefix-closed.

The next lemma proves some facts positive and negative support. With this lemma,
we can illustrate how negative support, positive support, and prefix closure are related
using Fig. 6.

Lemma 1. Let C be a constraint. Then the following holds



1. Neg(C) 6= ∅ =⇒ ε /∈ L(C).
2. Pos(C) 6= ∅ =⇒ ε ∈ L(C).
3. If L(C) is prefix-closed and ε ∈ L(C) then Pos(C) 6= ∅.

Proof. (1) If Neg(C) 6= ∅, then L(C) ∩ L([̂ p′1 · · · p′l]∗) = ∅, for all parameter sets
p′1 · · · p′l. Because ε ∈ L([̂ p′1 · · · p′l]∗, we conclude ε /∈ L(C).

(2) There exist p′1 · · · p′k such that L(C) ∩ L([̂ p′1 · · · p′k]∗) = L([̂ p′1 · · · p′k]∗) by
assumption. Because ε ∈ L([̂ p′1 · · · p′k]∗, we conclude ε ∈ L(C).

(3) Let Par be the set of parameters of C. Because L(C) is prefix-closed and
ε ∈ L(C), we have σ ∈ L(C), for all σ ∈ (Σ \ Par(C))∗. Then, we obtain L(C) ∩
L([̂ p′1 · · · p′k]∗) = L([̂ p′1 · · · p′k]∗), for {p′1, · · · , p′k} = Par(C). From this, we con-
clude Pos(C) 6= ∅. ut

It is possible for a trace to have positive support without satisfying a constraint
(i.e., it is triggered but not satisfied), and for a constraint to not be satisfied despite not
having negative support. These are, in fact, really the interesting cases as a constraint
was triggered and we are interested in whether it is satisfied in that case. For this reason,
we define the notion of dependent support, which captures this.

Definition 7 (dependent support). A trace σ has dependent support if σ ∈ L(Pos(C))∩
L(A(C)) or σ ∈ L(Neg(C))c ∩ L(A(C)).

We note that as L(Neg(C)) ⊇ L(A(C)), we have that L(Neg(C)) ∩ L(A(C)) =
L(A(C)) if it is nontrivial. Figure 7 illustrates dependent support (the highlighted area)
as a partitioning of all traces. As an example, for exclusive choice1of3(A,B,C) all ac-
cepting traces of the automaton in Fig. 2(c) have dependent support whereas for prece-
dence(A,B) and response(A,B) only the accepting traces that leave the initial state of
Fig. 2(b) and (c), respectively, have dependent support.

εϵL(C)εϵL(C)

Neg(C)

Pos(C)

prefix-closed

A1 A3

A2 A4

init

(a)

- - A

-

-

(b)

- - A

-

-

(c)

- - A

--

A A

(d)

- - A

--

A A

(e)

Fig. 6: Illustration of how negative support, positive support, and prefix closure are re-
lated (a) and four automata A1–A4 (b)–(e) to show the differences.



L(C)
L(Pos(C))

(a)

L(C) L(Neg(C))

(b)

Fig. 7: Dependent support for constraints with nontrivial positive (a) and negative (b)
support.

As positive and negative support cannot happen at the same time by Theorem 1,
this means the logical disjunction always is exclusive. For a set L of traces, we say that
the confidence of the log is the number of traces with dependent support divided by
sum of the number of traces with positive or negative support. As traces with dependent
support is a subset of traces with positive or negative support, this number is between 0
and 1. We use the convention that 0 divided by 0 is 0 here. This measures how large a
percentage of triggered constraints were satisfied.

7 Experimental Results

Everything presented hitherto has been implemented in the process mining framework
ProM [1]4. In this section, we show that for our running example, we get meaningful
values allowing us to recognize a constraint which was previously impossible. We also
illustrate that our algorithm and implementation is not only more expressive but also
faster on a real-life data set. Figure 8 shows a screen-shot from the configuration of the
miner.

To illustrate the usefulness of the vacuity measurements defined previously, we sum-
marize the support measurements for seven constraint instances in Table 3. We see
that with a threshold of 80 for confidence, we get sensible results: precedence(Double
Check, Pay High) and exclusive choice1of3(Reject, Pay High, Pay Low) hold. We also
see that we reject an obviously meaningless constraint, response(Pay High, Pay Low).
We would reject response(Double Check, Pay High), but see we pay out in 55% of cases,
indicating that making the extra check is worth the effort. We also reject the exclusive
choice1of3(Double Check, Reject, Pay High) constraint, which would previously not be
possible. The remaining exclusive choices are both mostly correct, but not completely
precise. For reference, for the log in Fig. 1b, all instances of precedence, response, and
exclusive choice1of3 with confidence over 50% are shown in Table 3.

To assess the speed of various implementations, we tested the ProM Declare miner,
MINERful++, and the UnconstrainedMiner on the BPI challenge log from 2012 [2].
The reason for using this in place of the newer 2013 log is that the 2013 log is triv-
ial for Declare mining due to a low number of event classes. We perform four tests:
just one constraint (succession), all the easy constraints (the constraints from Table 1
except for the choice group), nearly all constraints (all constraints save for choice1of4
and choice1of5), and all constraints. Table 4 summarizes the results. We see that the

4 To run the tool, add the UnconstrainedMiner package using the ProM package manager.



Fig. 8: Configuration of the UnconstrainedMiner in ProM.

Table 3: Support measurements for the running example from Fig. 1.
Constraint Measurement (%)

match pos neg dep conf

precedence(Double Check, Pay High) 99 6 0 5 83
response(Double Check, Pay High) 96 9 0 5 55
response(Pay High, Pay Low) 94 6 0 0 0
exclusive choice1of3(Reject, Pay High, Pay Low) 100 0 100 100 100
exclusive choice1of3(Double Check, Reject, Pay Low) 95 0 99 95 96
exclusive choice1of3(Double Check, Pay High, Pay Low) 75 0 80 75 94
exclusive choice1of3(Double Check, Reject, Pay High) 21 0 30 21 70

ProM Declare miner is by far the slowest. MINERful++ is quite good for the easy con-
straints. Neither of these can handle all the choices (the ProM Declare miner can handle
choices with two parameters). Our base implementation is already fastest, but spends
significant time for the difficult choices (note the unit is minutes here). Symmetry sig-
nificantly improves speed for the hard constraints, but less so for the easy ones, which
get less reduction. Adding prefix sharing is surprisingly enough slower than plain sym-
metry reduction despite a sharing ration of around a factor four. The reason is that the



base algorithm is extremely efficient, even though the trie implementation is efficient,
it is still not enough to be better. For a sharing factor of over 15 we expect this to per-
form better. Running the base algorithm with symmetry reduction in parallel (here just
for two cores) reduces time by approximately 33%. The reason we do not get a full
50% reduction is partly a bit of overhead, but also that modern CPUs use Turbo Boost,
which makes a single core run faster if the other is idle. Super-scalar mining yields
most if there are many constraints with similar difficulty, which is the case for the
easy constraints and to some extent for the hard ones, but for all constraints choice1of5
dominates the computation and is the single constraint of this difficulty. Mining all con-
straints using symmetry reduction, super-scalarity and eight computation cores (that are
slower than the ones used in the table), the UnconstrainedMiner ties with MINERful++
even though it mines more and more complex constraints.

8 Conclusion

In this paper, we provided a complete semantics for Declare using regular expressions.
We suggested various improvements to basic mining algorithms, including an outline
for a basic algorithm, using symmetry reduction, sharing prefixes, parallelization, and
super-scalarity. All were implemented and evaluated. Indeed, our base algorithm is
faster than the state of the art, and all reductions improve speed, save for prefix sharing,
which is only better if prefix sharing is above a factor 15.

We proposed a generalized notion of support, which coincides with previous defi-
nitions where they are both defined. Our definition can be automatically computed, and
generalizes to cases where previous attempts did not provide an answer. We demon-
strated that for a toy example this notion leads to a meaningful model.

The two contributions in unison means (1) Declare mining is now so fast, we can
use it as a stepping stone for other algorithms, even for real-life examples, and (2) we
can automatically compute all measures; we can even add arbitrary constraints to mine
for, even if they are not originally part of Declare. Future work includes investigating
this, in particular by using Declare to mine models with block structure.
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A Automata Representation of Declare Constraints

A.1 Positioned

Fig. 9: Automaton modeling the constraint init(a).

Fig. 10: Automaton modeling the constraint strong init(a).

Fig. 11: Automaton modeling the constraint last(a).



A.2 Count

Fig. 12: Automaton modeling the constraint existence(a,1).

Fig. 13: Automaton modeling the constraint existence(a,2).

Fig. 14: Automaton modeling the constraint existence(a,3).

Fig. 15: Automaton modeling the constraint absence(a,1).



Fig. 16: Automaton modeling the constraint absence(a,2).

Fig. 17: Automaton modeling the constraint absence(a,3).

Fig. 18: Automaton modeling the constraint exactly(a,1).

Fig. 19: Automaton modeling the constraint exactly(a,2).



A.3 Ordered

Fig. 20: Automaton modeling the constraint precedence(a,b).

Fig. 21: Automaton modeling the constraint response(a,b).

Fig. 22: Automaton modeling the constraint succession(a,b).



Fig. 23: Automaton modeling the constraint alternate(a,b).

Fig. 24: Automaton modeling the constraint alternate precedence(a,b).

Fig. 25: Automaton modeling the constraint alternate response(a,b).

Fig. 26: Automaton modeling the constraint alternate succession(a,b).



Fig. 27: Automaton modeling the constraint chain precedence(a,b).

Fig. 28: Automaton modeling the constraint chain response(a,b).

Fig. 29: Automaton modeling the constraint chain succession(a,b).



A.4 Unordered

Fig. 30: Automaton modeling the constraint responded existence(a,b).

Fig. 31: Automaton modeling the constraint co-existence(a,b).



A.5 Choice

Fig. 32: Automaton modeling the constraint choice1of2(a,b).

Fig. 33: Automaton modeling the constraint choice1of3(a,b,c).

Fig. 34: Automaton modeling the constraint choice1of4(a,b,c,d).

Fig. 35: Automaton modeling the constraint choice1of5(a,b,c,d,e).



Fig. 36: Automaton modeling the constraint choice2of3(a,b,c).

Fig. 37: Automaton modeling the constraint exclusive choice1of2(a,b).

Fig. 38: Automaton modeling the constraint exclusive choice1of3(a,b,c).



Fig. 39: Automaton modeling the constraint exclusive choice2of3(a,b,c).



A.6 Negative

Fig. 40: Automaton modeling the constraint not co-existence(a,b).

Fig. 41: Automaton modeling the constraint not succession(a,b).

Fig. 42: Automaton modeling the constraint not chain succession(a,b).
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