
Data Perspective in Process Choreographies: Modeling
and Execution

Andreas Meyer1, Luise Pufahl1, Kimon Batoulis1, Sebastian Kruse1, Thorben
Lindhauer1, Thomas Stoff1, Dirk Fahland2, and Mathias Weske1

1 Hasso Plattner Institute at the University of Potsdam
{Andreas.Meyer,Luise.Pufahl,Mathias.Weske}@hpi.uni-potsdam.de

{Firstname.Lastname}@student.hpi.uni-potsdam.de
2 Eindhoven University of Technology

d.fahland@tue.nl

Abstract. Process choreographies are part of daily business. While the correct
ordering of exchanged messages can be modeled and enacted with current choreog-
raphy techniques, no approach exists to describe and enact a choreography’s data
perspective. This paper describes an entirely model-driven approach for BPMN
to include the data perspective while maintaining control flow aspects by utiliz-
ing a recent concept to enact data dependencies in internal processes. This work
introduces few concepts that suffice to model data retrieval, data transformation,
message exchange, and correlation. We present a modeling guideline to derive
local process models from a given choreography; their operational semantics
allows to correctly enact the entire choreography from the derived models only.
We implemented our approach by extending the camunda BPM platform with our
approach and show its feasibility by realizing all service interaction patterns using
only model-based concepts.

Keywords: Process Modeling, Data Modeling, Process Choreographies, Process
Enactment, BPMN, SQL

1 Introduction

Customer

Supplier

Request

Message
Quote

Message

Fig. 1. Request for quote
choreography.

In daily business, organizations interact with each other, for
instance, concluding contracts or exchanging information.
Fig. 1 describes an interaction between a customer and a
supplier with respect to a request for a quote. The customer
sends the request to a chosen supplier which internally pro-
cesses it and sends the resulting quote as response which
in turn is then handled internally by the customer. An in-
teraction between business processes of multiple organizations via message exchange
is called process choreography [30]. The industry standard BPMN (Business Process
Modeling and Notation) [18] provides the following means and steps to model process
choreographies. A choreography diagram describes the order of message exchanges
between multiple participants from a global view, called global choreography model.
The message exchanges are then refined into send and receive activities distributed over

mailto:Andreas.Meyer@hpi.uni-potsdam.de;Luise.Pufahl@hpi.uni-potsdam.de;Mathias.Weske@hpi.uni-potsdam.de;kimon.batoulis@student.hpi.uni-potsdam.de;sebastian.kruse@student.hpi.uni-potsdam.de;thorben.lindhauer@student.hpi.uni-potsdam.de;thomas.stoff@student.hpi.uni-potsdam.de;d.fahland@tue.nl
mailto:Andreas.Meyer@hpi.uni-potsdam.de;Luise.Pufahl@hpi.uni-potsdam.de;Mathias.Weske@hpi.uni-potsdam.de;kimon.batoulis@student.hpi.uni-potsdam.de;sebastian.kruse@student.hpi.uni-potsdam.de;thorben.lindhauer@student.hpi.uni-potsdam.de;thomas.stoff@student.hpi.uni-potsdam.de;d.fahland@tue.nl
mailto:d.fahland@tue.nl;Andreas.Meyer@hpi.uni-potsdam.de;Luise.Pufahl@hpi.uni-potsdam.de;Mathias.Weske@hpi.uni-potsdam.de;kimon.batoulis@student.hpi.uni-potsdam.de;sebastian.kruse@student.hpi.uni-potsdam.de;thorben.lindhauer@student.hpi.uni-potsdam.de;thomas.stoff@student.hpi.uni-potsdam.de

2 Meyer et al.

the different participants. This can be captured in collaboration diagrams describing
how each participant’s public process interacts with other participants [2], also called
local choreography model. Deriving a local choreography from a global choreography
is a non-trivial step; various techniques are required [7] including locally enforcing the
order of globally specified message exchanges.

Typically, these two choreography models are used to globally agree on a contract
about the messages exchanged and their order. In the request for quote example, both
participants agreed that first the customer may send a request to the supplier which is
then answered with a quote by the supplier. Based on the agreement, each participant
has to implement its public process as a private process describing the executable part
of this participant including the interactions with other participants as described in
the choreography; this private process is called a process orchestration [13]. Existing
approaches for deriving an orchestration for each participant from a choreography, such
as the Public-to-Private approach [2], only cover the control-flow perspective of the
contract: ensuring the correct order of messages. In the following, we address the correct
contents of messages.

As messages are used to exchange data between the participants, the data perspec-
tive plays a crucial role for a successful process choreography realization. Generally,
organizations store their data in local databases where other choreography participants
do not have access to. These databases follow local data schemes which differ among
the organizations. However, the interacting organizations want to communicate and
therefore have to provide the information to be sent in a format which is understood at
the receiving side. Thus, an agreed exchange message format has to be part of the global
contract mentioned above. For a successful process choreography, it has to be ensured
that messages to be sent are provided correctly and that received messages are processed
correctly based on the global contract. In more detail, three challenges arise:

C1—Data heterogeneity. Interacting participants, such as our customer and supplier,
each implement their own data schema for handling their private data. For sending a
message to another participant, this local data has to be transformed into a message the
recipient can understand. In turn, the received message has to be transformed into the
local data schema to allow storing and processing by the recipient.
C2—Correlation. A participant may interact with multiple instances of another process
at the same time. Therefore, messages arriving at the receiver side need to be correlated
to the correct process instance to allow successful interaction.
C3—1:n communication. In choreographies, there may be multiple participants of the
same type, e.g., multiple suppliers, a customer sends a request for quote to. Thus, individ-
ual processes need to communicate with a multitude of (external) uniform participants.

Current choreography modeling languages such as BPMN do not provide modeling con-
cepts to solve C1-C3. Instead, each participant manually implements message creation
and processing for their private process, which is error-prone, hard to maintain, and
easily results in incompatibilities to other participants in the choreography.

In this paper, we describe a model-driven approach to include the data perspective
within the process choreography modeling while maintaining existing control flow
aspects to realize process choreographies. We utilize the industry standard BPMN and

Data Perspective in Process Choreographies: Modeling and Execution 3

extend its choreography modeling by few but essential concepts for the data perspective.
We describe a modeling guideline that shows how to utilize the new concepts for
deriving the data perspective of a private orchestration model that is consistent to a
public choreography model (the contract). We introduce operational semantics for the
new modeling concepts which makes the orchestration models executable, and thus
allows running the entire choreography purely model-based.

The remainder of this paper is structured as follows. Section 2 discusses the require-
ments derived from above challenges. Subsequently, we explain the modeling guideline
in Section 3 followed by the operational semantics allowing to execute the modeled
choreographies directly from process model information in Section 4. In Section 5, we
discuss our implementation and its feasibility for implementing all service interaction
patterns purely model-based [3]. Section 6 is devoted to related work and Section 7
concludes the paper.

2 Requirements

The challenges C1-C3 described above give rise to specific requirements for integrating
the data perspective in process choreography modeling and execution. We discuss these
requirements and their possible realization in the following.

R1—Content of message. Messages contain data of different types exchanged between
participants. The involved participants have to commonly agree on the types of data and
their format they want to exchange.
R2—Local storage. The participants create and process data used for communication
with other participants in their private processes. This needs to be stored and made
available in their local databases.
R3—Message provision. As the data provided in a message is local to the sender, the
data must be adapted to the agreed format such that the recipient can interpret the
message content.
R4—Message routing. Multiple parties may wait for a message at a certain point in
time. This requires to route the message to the correct recipient.
R5—Message correlation. After being received by a participant, the message needs to
be correlated to the activity instance which is capable to process the message content.
R6—Message processing. Activities receiving messages have to extract data from the
message and to transform it into the local data format usable within their processes.

Requirements R1, R2, R3, and R6 are basic features to realize C1; R4 and R5 originate
in C3; and R5 also addresses C2.

Languages such as WSDL [25] use data modeling to specify message formats; we
adopt these ideas to address R1. Requirements R2, R3, and R6 concern the processing of
data in an orchestration. The approach in [14] allows to model and enact data dependen-
cies in BPMN processes for create, read, update, and delete operations on multiple data
objects – even in case of complex object relationships. For this, annotations on BPMN
data objects are automatically transformed into SQL queries (R2). Further, data querying
languages such as XQuery [28] allow to implement data transformations between a

4 Meyer et al.

message and a local data model. In the following, we combine these approaches to
specify message extraction (R3) and message storage (R6) in a purely model-based
fashion. Languages such as BPEL [17] and BPMN [18] correlate a message to a process
instances based on key attributes in the message; we adopt this idea to address R5.
The next sections describe how to model process choreographies including the data
perspective so that data stored locally at the sender’s side can be transmitted and stored
in the receiver’s local data model consistent with the global contract.

Requirement R4, the actual transmission of messages from sender to receiver, is
abstracted from in choreography and process models and also not discussed in this paper.
One can use standard technologies such as middleware or web services to realize the
communication between the process engines of participants.

3 Modeling Guideline

This section introduces a few concepts that allow implementing the data perspective of a
process choreography in an entirely model-based approach. We present these concepts
embedded in a modeling guideline for devising private orchestration models consistent
to a public choreography model; Section 4 presents the execution semantics for our
choreography models.

Fig. 2 illustrates our modeling guideline which has a global level, where the public
contract is defined, and a local level, where the local process implementations can be
found. We assume that the choreography partners have already specified a collaboration
diagram that shows how each participant’s public process interacts with the other partici-
pants and ensures local enforceability of control-flow [2]; see Fig. 2 (top). To support data
exchange between participants, we propose that this public contract is supplemented with
a global data model in which the partners specify the business objects to be exchanged;
see Fig. 2 (top middle). Next, we follow and extend the P2P approach [2] to move from
the global to the local level: each participant separately defines a local data model and
a schema mapping between their local and the global data model and implements the
private process conforming to their public process in the global collaboration diagram.
Next, we describe the details of the global contract followed by the local level both along
our modeling guideline.

1 Global Collaboration

Diagram

2 Global Data Model

3 Message Definition

3 Private Process Model 3 Private Process Model

1 Local Data Model 1 Local Data Model

2
 S

ch
em

a
M

ap
p
in

g

G
lo

b
a
l
L
e
v
e
l

L
o
c
a
l
L
e
v
e
l

2 Schem
a

M
ap

p
ing

Fig. 2. Modeling guideline.

Data Perspective in Process Choreographies: Modeling and Execution 5

GlobalQCollaborationQDiagram

PrivateQProcessQModel

C
us

to
m

er
SendQ

request
ReceiveQ
quote

Su
pp

lie
r

ReceiveQ
request

SendQ
quote

C
us

to
m

er

Supplier

SendQ
request

ReceiveQ
quote

Request
[created]

pk:Qr_id

Request
[sent]

pk:Qr_id

Quote
[received]

pk:Qq_id
fk:Qr_id

[new]CO:QRequest

QuoteQItem
[received]

pk:Qqi_id
fk:Qq_id

III

[new]

Global_Request
CI: Global_Request.r_id

Global_Quote
CI: Global_Request.r_id

Request
Message

Quote
MessageG

lo
ba

lQ
Le

ve
l

Lo
ca

lQ
Le

ve
lQ
of

QC
us

to
m

er

CreateQ
request

[new]

Global_Quote
CI:QGlobal_Request.r_id

Global_Request
CI:QGlobal_Request.r_id

Quote
Details

[received]
pk:Qqd_id
fk:Qq_id

[new]

Fig. 3. Global choreography model and local process model of the customer.

On the global level, all choreography parties together define the following artifacts:

Global collaboration diagram: The global collaboration diagram describes the control
flow layer of the choreography, i.e., it describes which messages are exchanged in which
order on a conceptual level. Exemplary, the left part of Fig. 3 shows the collaboration
diagram of the Request for quote choreography sketched in the introduction. It includes
public processes with all necessary send and receive tasks for each participant, the
customer and the supplier.

Global data model: Messages are used to exchange data. In choreography modeling
languages such as WS-CDL [10] or BPEL4Chor [6], the data carried by a message
is described technically by attribute names and data types for each message individ-
ually [25]. Instead, we propose that the interacting parties first agree on data objects
they want to share and document this in a global data model, for instance using XSD
(http://www.w3.org/standards/xml/schema). In our example, customer
and supplier have agreed on three data objects, Global Request, Global Quote, and
Global Articles, as shown in the upper part of Fig.5. Each object has a unique identifier
attribute (e.g., r id for Global Request) and some have a foreign key attribute (e.g., r id
for Global Quote) to express relationships.

Message Definition: Then, message types are specified by referring to business objects
defined in the global data model. We assume that each message carries exactly one global
data object; nested objects allow placing complex data object hierarchies within one
message. Further, we adopt key-based correlation [17, 18] for messages: each message
contains a set of key/value pairs that allow identifying the correct process instance on
the receiver side; each key is an attribute of some data object in the global data model.
For example, Request Message of Fig. 3 (left) refers to the Global Request object and
Quote Message refers to Global Quote which has multiple Global Article objects. A
Quote Message will contain a Global Quote object and all its Global Article objects.
Both messages use attribute r id of Global Request as correlation key.

-name : String

-CI : List<String>

-d : DataObject

Message

(from Common)

Fig. 4. Message class.

Altogether, a message can be declared as a tuple m =
(name,CI, d), where name is the message type, the correlation
information CI ⊆ K × V is a set of key/value pairs, and d is the
actual data object in the message. To model this tuple, BPMN must
be extended as shown in the UML class of Fig. 4. Originally, each

http://www.w3.org/standards/xml/schema

6 Meyer et al.

message contains a string identifying its name, i.e., the message type. We add correlation
information as a list of strings, each denoting one key/value pair, and the payload as a
data object.

Then, each participants locally creates the following artifacts, based on the global
contract:

-r_id

-date

Global_Request -q_id

-r_id

-totalPrice

-deliveryDate

Global_Quote
-a_id

-q_id

-type

-quantity

-price

Global_Article

1 *1 1

G
lo

b
a
l
L
e
v
e
l

L
o
c
a
l
L
e
v
e
l

Local Data Model of Customer

Global Data Model

-q_id

-r_id

-state

-g_r_id

-g_q_id

Quote

-deliveryDate

-totalPrice

-state

-q_id

-qd_id

Quote Details

1 1

-date

-state

-r_id

Request

1 *
-qi_id

-q_id

-itemPrice

-quantity

-type

-state

-g_q_id

-g_qi_id

Quote Item

1 1

Fig. 5. Schema mapping for customer.

Local Data Model: Each participant
defines a local data model which de-
scribes the classes of data objects
handled by the private process. For
example, the local data model of the
Customer has four classes Request,
Quote, Quote Details, and Quote
Item; see Fig. 5 (bottom). We pro-
pose to also use the local data model
to design the schema for the database
where the objects are stored and accessed during the process execution. There are some
requirements to the local data model wrt. the global data model as described next.

Schema Mapping: A schema mapping defines how attributes of local classes map to
attributes of global classes, and allows to automate a data transformation between global
objects contained in messages and local data objects. For this paper, we consider a simple
attribute-to-attribute schema mapping which injectively maps each attribute of a global
object to an attribute of a local object as shown in Fig. 5. Note that the attributes of
object Global Quote are distributed over objects Quote and Quote Details. The local
implementation can hide private data in a local attribute by not mapping it to a global
attribute (the mapping is not bijective), e.g., the state attributes of each local class. Local
data model and schema mapping must ensure that primary and foreign keys are managed
locally to avoid data inconsistency: when a local object can be created from a received
global object, key attributes of the global object must map to non-key attributes of
the local objects. For example, the local Quote shall be created from a Global Quote
object, thus Quote gets the attributes g q id and g r id to store the primary key q id and
the foreign key r id of Global Quote for local use. Typically, these keys are used for
correlation.

Executable private process: Based on the global collaboration diagram, each participant
designs their private process by enriching their public process with activities that are not
publicly visible. In addition, each process (and each subprocess) gets assigned a case
object; instantiating the process also creates a new instance of this case object that uses
as primary key value the process instance id [14]. Fig. 3 (right) shows the private process
model of the customer. First, activity Create request creates and prepares a new instance
of the case object Request (see “CO” in the top left corner of the process). The schema
mapping defines which local data objects are required to derive the payload d and the
correlation information CI for a message to be sent; this is included in the process model
by associating the required data objects as input to the send task. In our example in
Fig.3, activity Send request creates a Request Message containing a Global Request. The
corresponding local Request object is associated to Send request as input. Correspond-

Data Perspective in Process Choreographies: Modeling and Execution 7

Customer

S
u
p
p
li
e
r

Receive

request

Send

quote

Quote

[created]

pk: q_id
fk: r_id

[new]

Create

quote

Request

[received]

pk: r_id

[new]

Global_Request

CI: Global_Request.r_id

Article

[selected]

pk: a_id
fk: q_id

[new]

Global_Quote

CI: Global_

Request.r_id

Local Level of Supplier

III

CO: Request

Request

[received]

pk: r_id

-r_id

-g_r_id

-state

-date

Request

-a_id

-q_id

-state

-articleType

-quantity

-articlePrice

Article

1

*

1 1

-q_id

-r_id

-state

-price

-deliveryDate

Quote

Fig. 6. Private process model and local data model of the supplier.

ingly, we associate the local data objects into which the payload of a received message
can be transformed as output data objects of a receive task. The last activity modeled
in the customer process receives the Quote Message. The payload of this message is
transformed into data objects Quote, Quote Details, and the multi-instance data object
Quote Item all being associated as output to the receive task. The process designer has
to specify whether the receive task creates new or updates existing data objects. We
use the data annotations described in [14] to express operations and dependencies of
local objects. In the given example, the message payload is used to create new data
objects only as indicated by the identifier new in the upper part of each object. Local data
schema, schema mapping, and private process together define the local choreography of
the participant.

Fig.6 shows the private process model and the local data model of the second partici-
pant – the Supplier. Here, each attribute of a local class directly maps to a corresponding
attribute with an equivalent name in the corresponding global class. For instance, at-
tribute price of class Global Article maps to to attribute articlePrice of class Article,
attribute r id of class Global Request maps to attribute g r id of class Request, and so
on. The private process has three activities: After receiving the Global Request, which is
stored as Request object in state received, the supplier processes the request and creates
the Quote. Sending the Global Quote message requires data objects Quote and Article
to set the payload and Request to set the correlation identifier Global Request.r id.

This modeling guideline proposes a logical order in which the artifacts should be
created based on dependencies between them. However, situations may arise where a
different order (or iterations) are required. In any case, by refining the public process
into a private one and by defining local data model and schema mapping as described, a
process modeler always obtains a local choreography that is consistent with the global
contract. In the next section, we show how to make the local choreography executable,
thus achieving a correct implementation by design.

4 Executing Data-annotated Process Choreographies

In the previous section, we showed how to model executable process choreographies with
respect to the data layer. This section introduces the execution semantics to automatically
generate as well as correlate messages and to persist them using the modeling concepts

8 Meyer et al.

introduced in the previous section. First, we start with an overview based on our example
before we dive into details in Sections 4.2 to 4.4.

4.1 Overview of Choreography Execution

Supplier

Send

quote

Quote

[created]

pk: q_id

CO: Request

Data-

base

Customer

Receive

quote

Quote Item

[received]

pk: qi_id
fk: q_id

[new]

...

Data-

base

1. Retrieval

of data

2. Transfor-

mation

of data

6. Transfor-

mation

of data

3. Send

message

Global_Quote

CI: Global_Request.r_id

Process Engine of Supplier

Correlation

mechanism

Process Engine of Customer

7. Storage

of data

5. Correlation

of message

4. Receive

message

Request

[received]

pk: qd_id

Article

[selected]

pk: a_id

CO: Request

fk: r_id

fk: q_id fk: q_id

Quote

[received]

pk: q_id
fk: r_id

[new]

III III

Quote

Details

[received]
pk: qd_id
fk: q_id

[new]

...

Quote Message

Fig. 7. Approach overview.

Fig. 7 shows the implementation of the second interaction between a supplier and a
customer in which the supplier sends a quote to the customer. It comprises seven steps
numbered accordingly in the figure and satisfying the requirements raised in Section 2:
(1) The required data objects are retrieved from the supplier’s database (satisfying
requirement R2) and (2) transformed to the message (satisfying R1 & R3), which is
(3) sent from the supplier and (4) received at the customer’s side (satisfying R4). The
received message is then (5) correlated to the corresponding activity instance (satisfying
R5), where the message (6) gets transformed into data objects (satisfying R1 & R6)
which are then (7) stored in the customer’s database (satisfying R2 again).

The send task labeled Send quote creates and sends the message. As described in [14],
the input data objects specify the data objects and their states required to start activity
execution. In this paper, the input data objects to send tasks additionally describe the local
data required to create the message to be sent. Therefore, in step 1, they are retrieved
from the local database before step 2 transforms this information into the corresponding
message based on the given schema mapping. Here, the objects Quote and Article (as
multi instance data object) are utilized to create the message’s payload Global Quote
which is a hierarchical object consisting of a number of Global Articles (see global data
model in Fig.5). Further, the specified correlation identifier Global Request.r id is added
to message based on the input data object Request. This is needed by the customer to
correlate the message to its correct scope instance (process or sub-process instance).
After preparing the message, the actual sending to the recipient is executed by the send
task (step 3). The execution of the send and getting the message to the correct recipient is
done by inter-engine communication in lower layers, e.g., by web services or middleware,
which is not discussed in this paper.

Analogously, the retrieval of the message at the recipients side, here the customer, is
managed by the same underlying layer (step 4). Next, the message needs to be correlated

Data Perspective in Process Choreographies: Modeling and Execution 9

Quote

r_id = 6

state = created

q_id = 30

price = 4149.75€

deliveryDate = 13.12.2013

Article

q_id = 30

state = selected

a_id = 16

articleType = laptop

quantity = 3

articlePrice = 1349.95€

Article

q_id = 30

state = selected

a_id = 17

articleType = dvd spindle

quantity = 10

articlePrice = 9.99€

Request

g_r_id = 21

state = received

r_id = 6

date = 25.11.2013

 send receive

Quote Details

q_id = 53

state = received

qd_id = 32

totalPrice = 4149.75€

deliveryDate = 13.12.2013

Quote

r_id = 21

state = received

q_id = 53

g_q_id = 30

Quote Item

q_id = 53

state = received

qi_id = 42

type = dvd spindle

quantity = 10

itemPrice = 9.99€

g_qi_id = 17

g_q_id = 30

Quote Item

q_id = 53

state = received

qi_id = 41

type = laptop

quantity = 3

itemPrice = 1349.95€

g_qi_id = 16

g_q_id = 30

Global_Quote

CI: Global_Request.r_id = 21

Global_Article

q_id = 30

a_id = 16

type = laptop

quantity = 3

price = 1349.95€

Global_Article

q_id = 30

a_id = 17

type = dvd spindle

quantity = 10

price = 9.99€

Global_Quote

r_id = 21

q_id = 30

totalPrice = 4149.75€

deliveryDate = 13.12.2013

(a) Supplier database.

Quote

r_id = 6

state = created

q_id = 30

price = 4149.75€

deliveryDate = 13.12.2013

Article

q_id = 30

state = selected

a_id = 16

articleType = laptop

quantity = 3

articlePrice = 1349.95€

Article

q_id = 30

state = selected

a_id = 17

articleType = dvd spindle

quantity = 10

articlePrice = 9.99€

Request

g_r_id = 21

state = received

r_id = 6

date = 25.11.2013

 send receive
Quote Item

q_id = 53

state = received

qi_id = 41

type = laptop

quantity = 3

itemPrice = 1349.95€

g_qi_id = 16

g_q_id = 30

Quote Item

q_id = 53

state = received

qi_id = 42

type = dvd spindle

quantity = 10

itemPrice = 9.99€

g_qi_id = 17

g_q_id = 30

Quote

r_id = 21

state = received

q_id = 53

g_r_id = 21

g_q_id = 30

Quote Details

q_id = 53

state = received

qd_id = 32

totalPrice = 4149.75€

deliveryDate = 13.12.2013

Global_Quote

CI: Global_Request.r_id = 21

Global_Article

q_id = 30

a_id = 16

type = laptop

quantity = 3

price = 1349.95€

Global_Article

q_id = 30

a_id = 17

type = dvd spindle

quantity = 10

price = 9.99€

Global_Quote

r_id = 21

q_id = 30

totalPrice = 4149.75€

deliveryDate = 13.12.2013

Quote

Message

(b) Message.

QuotevItem

q_id = 53
state = received

qi_id = 41

typev=vlaptop
quantityv=v3

itemPricev=v1349.95€

g_qi_idv=v16
g_q_idv=v30

QuotevItem

q_id = 53
state = received

qi_id = 42

typev=vdvdvspindle
quantityv=v10

itemPricev=v9.99€

g_qi_idv=v17
g_q_idv=v30

Quote

r_id = 21
state = received

q_id = 53

g_r_idv=v21
g_q_idv=v30

QuotevDetails

q_id = 53
state = received

qd_id = 32

totalPricev=v4149.75€
deliveryDatev=v13.12.2013

(c) Customer database.

Fig. 8. Representation of on instance from the message flow shown in Fig. 7 where each presented
object refers to one column in the corresponding database table named as the respecting object
(cf. [14]).

to the corresponding scope instance in the correct process model (step 5), where it
is assigned to the correct instance of the respective receive task. In our example, the
response of the supplier is handled in the Receive quote activity. Again, as described
in [14], the output data objects of an activity specify the data objects and their states
expected to exist after activity execution. Therefore, step 6 transforms the received
message’s payload into the specified data objects following the given schema mapping.
Here, data objects Quote, Quote Details and Quote Item (as multi instance data object)
are derived from message’s payload Global Quote. Finally, execution of the receive
task stores the derived data objects in the customer’s local database (step 7). Because of
following the given schema mapping for object derivation, the persistence step succeeds.

These seven steps can be summarized in four phases from which we discuss three in
detail in the upcoming sections while the fourth phase utilizes solutions already existing
as discussed above. These phases are (i) preparing to send the message (see Section 4.2),
(ii) handling the received message (see Section 4.3), (iii) correlating the message to the
correct scope instance of the receiver (see Section 4.4), and (iv) routing a message from
the sender to each receiver.

4.2 Send

The preparation of a message to be sent consists of the retrieval of required data objects
from the database (step 1) and their transformation accordingly to a given schema
mapping (step 2). This section presents both steps in detail. During execution, each
activity appears in various activity states depending on the current status of execution.
With respect to the BPMN specification [18], an activity may be, among others, in states
inactive, ready, active, completing, or completed in this order. Initially, since initialization
of the respecting process instance, the send task Send quote is in state inactive and waits
for its enablement. With arrival of the control flow, the send task changes into the ready
state. There, data dependencies, i.e., the availability of the specified input data objects,
are checked (cf. [14]).

In our example, the data objects Request and Quote as well as all Articles have to be
available in their annotated states to activate the Send quote activity. Those data objects
are necessary to provide the payload and correlation identifier of the message to be sent.
The object Quote in Fig. 7 is expected in state created and has a primary key q id and a

10 Meyer et al.

foreign key r id pointing to the Request. Based thereon, the following guard for checking
the availability of object Quote is created: (SELECT COUNT (q id) FROM Quote
WHERE r id = $ID AND state = created) ≥ 1. This SQL query returns
the number of Quote entries in the local database that are in state ‘created’ and related
via foreign key r id to the case object instance Request of the current process instance
(identified by $ID); there has to be at least one [14]. In [14], the case object is introduced
as the object which drives the execution of a process and all other data objects are related
to this one. The case object relates to the process instance by its primary key.

In Fig. 8a, an extract of the supplier database is illustrated with each table representing
one entry in the Request, Quote, and Article tables respectively. Assuming that the
currently running process instance has the identifier $ID = 6 and no other entry in
the Quote table refers to this identifier, above SQL statement returns value 1 indicating
availability of the required data object. Analogously, the other input data objects are
checked for availability.

If all data dependencies are fulfilled, the message to be sent gets prepared by retriev-
ing the required data objects from the local database followed by the transformation
step building the actual message. For retrieval, we adapt the SQL statements from [15]
by changing SELECT COUNT to SELECT * and removing the quantity expectation ≥
1. Thus, object Quote is retrieved by statement SELECT * FROM Quote WHERE
r id = $ID AND state = created. Each specified data object is retrieved anal-
ogously and then transformed into its global representation following the given schema
mapping, e.g., object Quote is transformed into object Global Quote. In our example,
we utilize the schema mapping explained in Section 3. As object Global Quote is a hier-
archical data object, also all related Article objects are transformed into corresponding
Global Articles. Here, there are two such objects indicated by the foreign key q id =
30. After transformation, all three global objects are added the payload of the message to
be sent by the corresponding sent task. The correlation information Global Request.r id
= 21 is taken from attribute g r id of the local object Request as specified in the schema
mapping as well. After completing the message creation and adding the correlation
identifier, the state of the send task changes from ready to active indicating processing
of the activity. The work performed by a send task is to initiate the actual send of the
prepared message shown in Fig. 8b.

4.3 Receive

After a received message has been correlated to the corresponding instance (see Sec-
tion 4.4) it can be processed by basically reversing the two steps for sending a message.
First, the objects in the message are transformed into the local data model (step 6 in
Fig. 7) followed by storing them in the local database (step 7). A receive task can only
receive a message while it is in state active. Succeeding with the message receipt triggers
the change of activity state active to state completing for the receive task. In this activity
state, steps 6 and 7 from Fig. 7 take place.

The transformation, again, follows the given schema mapping; see Fig. 5 for details.
Thus, Global Quote and its hierarchical depending Global Articles, the payload of the
message in our example, is mapped to the data objects Quote, Quote Details, and Quote
Item (as multi instance data object) by filling the respecting attributes. The data objects

Data Perspective in Process Choreographies: Modeling and Execution 11

to be used are specified by the output data objects to the receive task (likewise the input
data objects for the send task). Thereby, primary keys and foreign keys of newly created
objects as well as their states are not yet set (consider them empty for now). For instance,
the local object Quote gets attributes r id and g q id set to 30 and 21 respectively while
attributes state and q id are still undefined. This information is added to the data objects
while persistence mechanisms take place, i.e., in step 7. Step 7 is only triggered upon
completion of the transformation step comprising that all data objects were created or
updated successfully with message information. Thereby, new information overwrites
probably existing one.

Setting the missing information (primary and foreign keys as well as states) and
storing the data objects in the local database utilizes the concepts from [14]. Thereby we
differentiate between creating a new table entry (INSERT) and updating an existing one
(UPDATE):

INSERT: Data objects, which representation in the process model contains a [new] anno-
tation in the upper left corner, are supposed to be newly created. In the given example, all
objects being output to the receive task shall be created. In [15], patterns and correspond-
ing SQL queries are provided to insert a new data object into the local database. Here,
only the information given in the data object representation, i.e., primary key, foreign key,
and state, are regarded, e.g., , INSERT INTO Quote (q id, r id, state)
VALUES (DEFAULT, $ID, received) for the Quote object with $ID = 21 be-
ing the current process instance id. In this paper, we extend these queries by adding the in-
formation extracted from the received message based on the local data model such that the
complete query for the Quote object looks as follows: INSERT INTO Quote (q id,
r id, state, g q id) VALUES (DEFAULT, $ID, received, 30).

Analogously, the INSERT-statements are created for the other output data objects.
For instance, object Quote Details gets the remaining information, totalPrice and deliv-
eryDate, from the Global Quote object. Fig. 8c visualizes the customer database after
inserting all data object extracted from the received message. Please note, the order of
storing the data objects into the local database is important as, for instance, one object
may relate to another object via foreign key relationship. In this case, the second object
must have been stored first to ensure that the key value is known to be added for the first
object. In our example, object Quote Details has a foreign key relationship to object
Quote such that is must be inserted after object Quote.

We assume that the foreign key relationships between the output data objects of a
receive task form a directed acyclic graph over the respecting data objects. It implies
that these relations have a partial order and that it is possible to insert referenced data
objects before the ones that reference them. Then, this directed acyclic graph describes
the insertion order from leaf to root node.so that first the Quote object and then the Quote
Details and the Quote Item objects are inserted. When the graph is completely traversed,
the receive task has finally reached the completed state.
UPDATE: The representation of an output data object to be updated has no additional
annotation in the process model. Again, we utilize the SQL queries provided for various
update patterns from [14] and extend them to update the information retrieved in the
message as well. For each such data object, the local data model specifies the attributes

12 Meyer et al.

to be updated, i.e., overwritten with the values provided in the received message. As-
suming that object Quote is updated instead of inserted, then the following UPDATE
statement would apply: UPDATE Quote SET state = received, g q id =
30 WHERE r id = $ID;. As primary key and foreign key cannot be updated based
on message information (see above), they are note included in the created SQL queries.
In the given example, a specific update ordering is not necessary as the keys do not
change. However, there do exist patterns where the foreign key is set by such query.
In these cases, the ordering gets important and is enforced as discussed above for the
INSERT-statements. In contrast to the INSERT-statements, updates cannot be applied to
data collections, i.e., multi instance data objects, because in is not clear which informa-
tion would belong to which object of the collection as they are not distinct in the process
instance. Assigning explicit ids would solve this issue but is out of scope for this paper.

We also allow combinations of inserts and updates for one receive task, if the limitations
of both operations are considered, i.e., the insertion order for the newly created data
objects and no update on data collections.

4.4 Correlation

Before a message can be handled, it has to be assigned to its receiving instance which is
also known as correlation handling. The standard approach is key-based correlation [17,
18], where some attributes of the data model are designed as correlation keys. An
incoming message is correlated to a process instance when both store the same value for
all correlation keys in the message; any two instances must be distinct on their correlation
values. We first consider the case when an instance has all keys initialized already and
then discuss how to initialize a key.

All keys initialized. Our approach refines key-based correlation by making correlation
keys part of the global data model. On the one hand, each message m = (name,CI, d)
explicitly defines a number of correlations keys CI , where each key d2 .a ∈ CI points
to some attribute a of some global data object d2 (not necessarily d). For example,
the message of Fig. 8b has the correlation key Global Request.r id while its payload
is of type Global Quote (as specified in Fig. 3). On the other hand, each participant
defines a local data model, where each correlation key attribute d2 .a of m is mapped
to a local attribute f(d2 .a) = d ′

2 .b of some local data object d′2. Each process instance
$ID has its own case object instance and related object instances; message m correlates
to $ID when the value of each d2 .a ∈ CI matches the value of the corresponding
f(d2 .a) of some data object related to instance $ID. For example, the Customer maps
Global Request.r id to Request.r id (see Fig. 5). Thus, the message of Fig. 8b can be
correlated to a process instance where the case object has Request.r id = 21.

Formally, the correlation information of a message m = (name,CI, d) is a set
CI = {(k1, v1), . . . , (kn, vn)} of key/value pairs, where each key ki = di.ai is an
attribute ai of a global data object di. A participant’s schema mapping f maps each
key to a local attribute f(di.ai) = d′i.a

′
i. The value of the correlation attribute d′i.a

′
i can

be extracted with respect to the case object c of the receiving instance $ID as follows.
Object d′i relates to c via foreign key relations. Thus, we can build an SQL query joining
the tables that store d′i and c, select only the entries where the primary key of c equals

Data Perspective in Process Choreographies: Modeling and Execution 13

$ID, and finally extract the value of attribute d′i.a
′
i; see [15]. Let e(d′i.a

′
i, c,$ID) denote

the results of this query. By ensuring that in the local data model the relations from c to
d′i are only 1:1, the extracted value e(d′i.a

′
i, c,$ID) = v is uniquely defined. Now, m

correlates to an instance $ID of a process with case object c iff for each (ki, vi) ∈ CI
holds e(f(ki), c, $ID) = vi. This definition can be refined to not only consider the case
object of the entire process, but also the case object and instance id of the scope that
encloses the active task that can receive m.

Initializing correlation keys. When sending a message m, then its correlation keys are
automatically initialized by extracting for each global correlation attribute ki the corre-
sponding value e(f(ki), c, $ID) = vi from the sender’s local data model. Technically,
this can be done in the same way as extracting the payload of m, see Section 4.2. From
this point on, all process instances receiving a message with correlation key ki have to
agree on the value vi. The only exception is when e(f(ki), c, $ID) =⊥ is still undefined
at the receiving instance. By initializing the local attribute f(ki) to value vi, we can
make $ID a matching instance for m. Thus, we generalize the above condition: m
correlates to an instance $ID of a process with case object c iff for each (ki, vi) ∈ CI
holds if e(f(ki), c, $ID) 6=⊥ then e(f(ki), c, $ID) = vi. When receiving m, the local
key attribute f(ki) can be initialized for $ID to value vi by generating an SQL update
statement as discussed in Section 4.3.

5 Evaluation

We implemented our approach by extending the camunda Modeler, a modeling tool
supporting BPMN, and the camunda BPM Platform, a process engine for BPMN process
models. The modeling tool was extended with the annotations for messages and data
objects described in Section 3; message types of the global data model are specified in
XSD and a simple editor allows to create an attribute-wise schema mapping from the
global to the local data model. Once a private choreography model has been completed,
the user can automatically generate XQuery expressions (http://www.w3.org/TR/xquery/)
at the send and receive tasks to transform between local and global data model (Section 4).
The engine was extended with a messaging endpoint for sending and receiving messages
in XML format to correlate messages, to read and write local data objects by generating
SQL queries from process models, and to process messages as described in Section 4.
As the concepts in this paper, also our implementation does not address R4 (message
routing); in particular if the receiving task is not in state active to receive the incoming
message, the message will be discarded. Making the process layer compatible with error
handling of the message transport layer is beyond the scope of this paper.

To demonstrate the feasibility of our approach, we implemented the service inter-
action patterns [3] which capture basic forms of message-based interaction. In the
following, we briefly describe each pattern and how it can be realized using the proposed
approach. Thereby, we reuse the pattern classification into single-transmission bilateral,
single-transmission multilateral, multi-transmission, and routing interaction patterns to
structure this section.

14 Meyer et al.

5.1 Single-Transmission Bilateral Interaction Patterns

Patterns in this category describe the interaction of two participants A and B that each
send/receive one message.

P1 Send and P2 Receive. Participant A sends a message which has to be received by
participant B. The challenges are to generate and send a message, to correlate a message
based on an initialized or uninitialized key, and to process a received message.

Fig. 9 shows the pattern for A sending a message to B. Thereby the local object
RequestA is transformed into the global object Request P1 and the correlation key
Request P1.request id is set from the primary key requestID of RequestA.

Fig. 9. Pattern P1: send.

Fig. 10 shows the pattern for B receiving the message from A. Thereby the message
being received creates a new process instance; the global object Request P1 is mapped
to the local object RequestB with its own primary key; the correlation information
in Request P1.request id is mapped to an attribute RequestB.requestID fromA. This
correlation key is initialized upon receipt.

P3 Send/Receive. Participant A sends a request to B and receives a response. The
challenge is to correlate the response message to the instance of A that sent the message.

Fig. 11 shows the pattern for A sending a message to B and then awaiting the corre-
sponding response. Correlation of the response to the request is achieved by including in
the response message the correlation information Request P3.request id that was sent
to B in the request message. This way, only responses that match the request will be
received. As the correlation key Request P3.request id is initialized from the primary
key RequestA.requestId, the received response can be transformed into the local object
ResponseA that has requestId as foreign key pointing to RequestA.

Fig. 12 shows the pattern for B receiving the message from A and producing a
response. Thereby the message being received creates a new process instance; the
global object Request P3 is mapped to the local object RequestB with its own primary
key; the correlation information in Request P3.request id is mapped to an attribute
RequestB.requestID fromA. This correlation key is initialized upon receipt and used again
when generating the response message Response P3 from the local object ResponseB.

Data Perspective in Process Choreographies: Modeling and Execution 15

Fig. 10. Pattern P2: receive.

Fig. 11. Pattern P3: send/receive (Participant A).

16 Meyer et al.

Fig. 12. Pattern P3: send/receive (Participant B).

5.2 Single-Transmission Multilateral Interaction Patterns

Patterns in this category describe the interaction of participants A with multiple partici-
pants B1, B2, ..., each sending/receiving one message.

P4 Racing Incoming Messages. Participant B expects one or more messages from
participants A1, A2, ..., and will consume the first arriving message; messages arriving
later may be discarded or queued. Optionally, a timeout is allowed in case no message
arrives. The challenge is to ensure that B consumes exactly one message or the timeout
occurs.

The behavior of A1, A2, ... is described in Fig. 9 (P1 send). Fig. 13 realizes the pattern
using the event-based gateway that has two subsequent intermediate message events.
Each awaits a message from a different participant (A or C in this case). Whichever
message arrives first will be consumed and the corresponding path will be taken. The
timer event after the event-based gateway implements the timeout mechanism. The
model in Fig. 13 only implements the correlation handling: depending on which message
is received first, the corresponding correlation property is set. The model does not
implement transformation of the message into local data as the BPMN standard does not
allows data handling at events [18].

Fig. 14 shows an alternative realization where the message events are replaced by
receive tasks. By the BPMN standard [18], the event-based gateway will follow the
sequence flow of the receive task which first has a message to consume. This also allows

Data Perspective in Process Choreographies: Modeling and Execution 17

Fig. 13. Pattern P4: racing incoming messages (Participant B), with message events.

to transform data. However, by the time of our research the camunda BPM platform did
not support receive tasks after and event-based gateway and thus this pattern could not
be executed.

P5 One-to-Many Send, P7 One-to-Many Send/Receive. In P5, Participant A sends
out a request to multiple participants B1, B2, ..., so that each participant receives one
request. In P7, each participant B1, B2, ... then sends a reply to its request. The challenge
is to generate multiple messages with different correlation information and to then
correlate the incoming responses to the original request.

Fig. 15 realizes the behavior of A for P7 (and thus also for P5). First, we generate a
separate instance of data object SubRequestA for each request that is going to be sent.
The number of requests to be generated is set in the process variable numSubRequests.
Then, for each instance of SubRequestA, we create a new instance of the multi-instance
subprocess; each handling one instance of SubRequestA as case object. This case object
is mapped to the global data object Request P3; the primary key subRequestID of
SubRequestA is mapped to the correlation information Request P3.request id. Thus,
each message carries a different correlation information. This correlation information
is also set for the subprocess instance from which the message is sent making the
subprocess instances distinguishable. Participant B can handle the message as described
in Fig. 12 and send the response. The response is correlated by A to the receive activity
in the subprocess instance which has the matching correlation information. The received
global Response P3 is transformed to the local object ResponseB which is related to the
top-level case object RequestA.

18 Meyer et al.

Fig. 14. Pattern P4: racing incoming messages (Participant B), with receive tasks.

Fig. 15. Pattern P5 and Pattern P7: one-to-many send/receive.

Data Perspective in Process Choreographies: Modeling and Execution 19

This pattern also shows that the global data model used for Pattern P3 using Re-
quest P3 and Response P3 can be implemented in very different ways. In P3, Participant
A sends just one message, whereas in P7, Participant A sends multiple messages to
different recipients. The recipient process B (Fig. 12) cannot distinguish these two
implementations as each request is handled by a different instance of B.

P6 One-from-Many Receive. In P6, participant A receives from an unknown number
of participants B1, B2, B3, ... one message per participant. The sent messages logically
correspond to each other and thus have to be correlated to the same instance of A. The
challenge is to dynamically let the first message set the correlation information based
on which the other messages are correlated to that instance. A message with a different
correlation information has to be correlated to a different instance. Pattern P6 is not
covered by Fig. 15 as there the correlation information is set by A, whereas in P6, the
correlation information is distributedly set by B1, B2, etc.

The model in Fig. 16 realizes P6 for instances of A that are already running. The
process uses DocumentA as case object. The subprocess is used to receive multiple
messages containing a global object Message P6. The contents of this global object is
transformed to the local DataObjectA; the correlation information conversation number
is mapped to the attribute DocumentA.number of the case object. For each receive
message, a new instance of DataObjectA is created. The first received message will
initialize the correlation key DocumentA.number for the entire process. All subsequent
messages that have the same key will be correlated to that instance. The subprocess has
two termination criteria: receiving a certain number of messages and a timeout condition.
The criterion on the received number of messages had to be implemented manually.

Fig. 16. Pattern P6: one-from-many receive (running instance).

The model in Fig. 16 realizes P6 for the situation when a new instance of A has to
be created to receive the messages. Both receive activities can receive the same kind
of messages. The first incoming message will be consumed by the instantiating receive

20 Meyer et al.

task which also sets the correlation information. All subsequent messages that have the
same correlation information will be routed to that instance. A message with a different
correlation information causes the creation of a new process instance.

Fig. 17. Pattern P6: one-from-many receive (create instance)

5.3 Multi-Transmission Interaction Patterns

Patterns in this category describe scenarios where participant A directly exchanges
multiple messages with one or more participants B1, B2, ...

P8 Multi-Responses. In P8, participant A sends a request to participant B and then
receives one or more responses from B until a certain condition (based on received data
or a timeout) holds. The challenge is to correlate each response of B to the instance of A
that sent the request.

Fig. 18 and 19 realize Pattern P8 for participants A and B, respectively. A cre-
ates a global Request P8 object from their local RequestA object; the primary key
RequestA.requestID serves as correlation key.

The message is received by B (Fig. 19) which can generate one or more responses
in a loop. Each response carries again RequestA.requestID as correlation identifier;
its value is retrieved from the local object RequestB that was created when receiving
Request P8. When the response arrives at A, the correlation key only matches the
correlation information of the sending instance that receives multiple messages until a
timeout occurs (or an upper bound of messages has been received). Note that the upper
bound of messages is not derived from the model shown in Fig. 18, but implemented
manually.

In general, P8 allows that B may respond with different message types. This can
be achieved for B by replacing in the model of Fig. 19 the send activity with a block
of alternative send activities (a pair of XOR-gateways enclosing one send activity for

Data Perspective in Process Choreographies: Modeling and Execution 21

Fig. 18. Pattern P8: multi-responses (Partner A).

Fig. 19. Pattern P8: multi-responses (Partner B).

22 Meyer et al.

each message type). The XOR-gateway chooses the corresponding type by following
a specific path based on the kind of information entered. For A, replace in Fig. 18 the
receive activity with an event-based gateway followed by an intermediate message event
or receive activity for each message type as shown in Fig. 13 and Fig. 14.

P9 Contingent Requests. In P9, participant A sends a request to participant B who
shall send a response. If B’s response does not arrive on time, then A will resend the
request to another participant C, now expecting a response from C and discarding any
response from B. If C’s response does not arrive on time, the pattern is iterated with
another participant D and so on until some response is received.

The challenges in P9 are (1) to pick a different recipient each time a request is sent
and (2) to ensure that at any point in time only the response to the latest request is
considered as valid. The model in Fig. 20 realizes this pattern as follows. Regarding (1),
activity Pick Recipient stores the recipient’s endpoint URL in a process variable; this
variable is read when sending a message. Regarding (2), the case object RequestA has a
single child object SubRequestA that is the case object of the subprocess. SubRequestA
is mapped to the global object Request P3 and the primary key subRequestID is mapped
to the correlation identifier Request P3.request id. The response Response P3 uses the
same correlation identifier. For instance, the process of Fig. 12 can receive the request
and send a corresponding response.

Fig. 20. Pattern P9: contingent requests (Partner A).

As SubRequestA is the case object of the subprocess, the correlation key is only valid
for the instance of the subprocess from which the message was sent. When the timeout
occurs, the instance terminates and all its correlation information is removed. Then, the
SubRequestA instance for this request is deleted by task clear subrequest before creating a
new one. This ensures that at any point in time RequestA has a unique child SubRequestA.

Data Perspective in Process Choreographies: Modeling and Execution 23

The new child is used in the next iteration of the send/receive until a response arrives. As
the correlation information is attached to the subprocess, only responses arriving during
the lifetime of the sending subprocess instance will be correlated to the process.

P10 Atomic Multicast Notification. In P10, participant A sends a request to multiple
participants B1, B2, ..., Bm; of these between nmin and nmax participants have to respond
within a certain time interval. If less than nmin participants or more than nmax participants
respond, then all participants of B1, B2, ..., Bm who already did respond have to be
notified, e.g., by a cancellation message. In other words, this pattern has conditional
transactional properties: from all the participants that do respond to A, either all continue
successfully, or all are notified with a cancellation message. Which case occurs depends
on the total number of responses received by A.

The challenges in this pattern are to compute the number of received responses and
depending on the outcome to either succeed or to notify all participants who did respond
with a cancellation message.

The models in Fig. 21 and 22 realize this pattern. In Fig. 21, activity Enter Data
generates the local RequestA data object. The subsequent service task then generates
multiple SubRequestA objects from the contents of RequestA (the corresponding handling
of attributes has been implemented manually). For each SubRequestA, an instance of the
first multi-instance subprocess is created in which the SubRequestA is transformed into a
global Request P10 object with SubRequestA.requestID as correlation identifier. When
A receives a response, the SubRequestA object moves to state received; the contents of
the response is stored in the object SubResponseA. When A did not receive a response
until the timeout occurs, then task clear request deletes the SubRequestA object for
which there was no response. The multi-instance subprocess completes when for each
SubRequestA either the response arrived (and hence SubRequestA is in state received) or
the timeout occurred (and hence SubRequestA has been deleted).

Thus, when reaching task evaluate, the case object RequestA of A has exactly one
SubRequestA object instance for each received response. The task itself executes an SQL
query to retrieve the number n of SubRequestA object instances that are associated to
the case object and sets the process variable sendCancel to false iff nmin ≤ n ≤ nmax.
If sendCancel is false, the pattern terminates (or could be extended to interact with the
responding partners). If sendCancel is true, the second multi-instance subprocess is
started creating one instance for each SubRequestA object instance associated to the
case object. The subprocess instance carries the correlation key of the SubRequestA
object, i.e., Request P10.request id which is mapped to SubRequestA.subRequestID.
This correlation key is used in the cancellation message which can then be correlated
exactly the instance that responded to the original request.

Participant B shown in Fig. 22 generates a response for the request using the same
correlation information as in the response. After that, B waits at the event-based gateway
for either the cancellation message to arrive or a timeout to occur after which no
cancellation message from A will arrive.

Note that Fig. 21 and Fig. 22 realize P10 using model-based concepts only, except
for generating contents of the subrequests, and for aggregating the number of received
responses into a variable. These had to be defined manually.

24 Meyer et al.

Fig. 21. Pattern P10: atomic multicast notification (Partner A).

Data Perspective in Process Choreographies: Modeling and Execution 25

Fig. 22. Pattern P10: atomic multicast notification (Partner B).

5.4 Routing Interaction Patterns

Patterns in this category describe scenarios where participant A sends messages to
participants it does not know yet via an intermediate participant B; Participant B routes
messages received from A to participants C,D,...

P11 Request with Referral. In P11, Participant A sends B a request that contains
the address of a participant it would like to contact. Participant B takes the recipient
information from this message and forwards the request to the right recipient. The
challenges in this pattern are to forward a message to another recipient and to set the
recipient’s address from data in the message.

The processes in Fig. 23, 24, and 25 realize this pattern. In Fig. 23, A generates
the local RequestA which also contains an attribute endPoint to which the request shall
finally be routed; the local object RequestA is transformed into the global AtoB P11
which is sent to B.

In Fig. 24, B receives the global object AtoB P11 and stores it in the local object
RequestB including the attribute endPoint. The subsequent service task retrieves the
value of RequestB.endPoint and stores it in a local variable endPoint. The subsequent
send task generates the global object BtoC P11 from the stored RequestB and sends it to
the URL in the variable endPoint.

The process at that URL finally receives the request as shown in the process model
in Fig. 25.

The models can be extended to not only send a single endpoint URL but a list of
URLs which B can then process one-by-one. Note that setting the process variable
endPoint from the attribute of RequestB is not supported by our approach and had to be
implemented manually.

26 Meyer et al.

Fig. 23. Pattern P11: request with referral (Partner A).

Fig. 24. Pattern P11: request with referral (Partner B).

Data Perspective in Process Choreographies: Modeling and Execution 27

Fig. 25. Pattern P11: request with referral (Partner C).

P12 Relayed Request. In P12, participant A sends a request to B which is forwarded
to C; the response of C is then sent directly to A and not via B. The challenge in this
pattern is to provide C with the right correlation information so that the response from C
can be correlated to the right instance of A.

The models in Fig. 26, 27, and 28 realize this pattern. Here, participants A, B, and
C first agreed that the message from A to B carries correlation information to identify
the sending instance of A (via correlation key AtoB P12.id from a). This correlation
information is included in the message sent from B to C so that C can use the information
in the final response CtoA P12. The control and message flow are then straightforward.
In Fig. 26, participant A sends the request with the correlation key AtoB P12.id from a
that has been set from the local attribute RequestA.requestID and expects a response
message CtoA P12 having the same correlation information. In other words, the value of
AtoB P12.id from a in CtoA P12 has to match the attribute requestID of the case object
RequestA.

In Fig. 24, participant B receives the request from A and stores it in the local
RequestB; in particular, attribute AtoB P12.id from a is stored in the attribute Re-
questB.idFromA. The entire request is sent to C in the global object BtoC P12 which has
the attributes id from a (mapped from RequestB.idFromA) and id from b (mapped from
RequestB.requestID). Thus, the correlation information of A is forwarded to C although
the message BtoC P12 only carries BtoC P12.id from b as correlation key.

In Fig. 28, participant C receives the forwarded request from B and stores it in the
local object RequestC; the attribute BtoC P12.id from a is mapped to RequestC.idFromA.
Then C generates a response which is transformed to the global object CtoA P12. The
message also gets the correlation key AtoB P12.id from a for which the value is mapped
from RequestC.idFromA. Thus the final response contains the expected correlation
information for the sending instance.

28 Meyer et al.

Fig. 26. Pattern P12: relayed request (Partner A).

Fig. 27. Pattern P12: relayed request (Partner B).

P13 Dynamic Routing. In P13, Participant A sends a request to B which forwards the
request to participant C or D depending on the contents of the message. This pattern
differs from P11 in that C and D are known to B at design time and that the condition to
whom to send the message is defined within B and not by A. The challenge here is to
make an internal choice in B based on the contents of a received message.

The models in Fig. 29, 30, and 31 realize this pattern. In Fig 29, Participant A
generates a RequestA which is transformed into the global AtoB P13 and then sent to B.

Participant B receives the message and transforms AtoB P13 into the local RequestB
which has an attribute requestText (mapped from AtoB P13.request text). The subsequent
user task does not do anything. The XOR gateway’s outgoing arcs are annotated with
a condition comparing attribute requestText of the case object RequestB to a value.
Depending on the value, a different path is taken leading to an activation of a different
send task to which RequestB is forwarded.

Data Perspective in Process Choreographies: Modeling and Execution 29

Fig. 28. Pattern P12: relayed request (Partner C).

Fig. 29. Pattern P13: dynamic routing (Partner A).

This matches pattern A2 of [15] which translates to the following behavior: when
reaching the XOR gateway, an SQL query SELECT requestText FROM RequestB
WHERE requestID = $ID is generated to retrieve the value of the attribute men-
tioned at the outgoing arc(s) in order to evaluate the guard expressions. Technically, we
store the result of the query in a local process variable which is then used to evaluate the
expression.

The participant C or D (shown in Fig. 31) to which the request was sent by B receives
the forwarded request and processes it locally.

Our implementation and the implemented patterns are available at http://bpt.hpi.uni-
potsdam.de/Public/BPMNData.

6 Related Work

In this section, we briefly discuss approaches related to the concepts presented in this
paper. Thereby, we focus on communication between distributed partners, the transfor-
mation of data, and message correlation. The service interaction patterns discussed in [3]

30 Meyer et al.

Fig. 30. Pattern P13: dynamic routing (Partner B).

Fig. 31. Pattern P13: Dynamic Routing (Partner C and D).

describe a set of recurrent process choreography scenarios occurring in industry. There-
fore, they are a major source to validate choreography support of a modeling language.
Besides BPMN [18] as used in this paper as basis, there exist multiple solutions to cope
with process choreographies. Most prominent are BPMN4Chor [5], Let’s Dance [33],
BPEL4Chor [6], and WS-CDL [27]. From these, only BPEL4Chor and WS-CDL realize
operational semantics to handle message exchange by reusing respectively adapting the
concepts defined in BPEL [17]. However, message transformation to achieve interoper-
ability between multiple participants is done with imperative constructs meaning that the
process engineer has to manually write these transformations and that she has to ensure
their correctness. Additionally, BPEL4Chor and WS-CDL are not model-driven as the
approach introduced in this paper.

Apart from process and service domains, distributed systems [22] describe the
communication between IT systems via pre-specified interfaces similar to the global
contract discussed in this paper. Usually, the corresponding data management is done by

Data Perspective in Process Choreographies: Modeling and Execution 31

distributed databases [19] and their enhancements to data integration systems [12, 23]
as well as parallel database systems [8] or is done by peer-to-peer systems [9, 24]. The
database solution allows many participants to share data by working with a global schema
which hides the local databases, but unlike our approach, the participants work on the
same database or some replication of it. Peer-to-peer systems take the database systems
to a decentralized level and include mechanisms to deal with very dynamic situations
as participants change rapidly. In process choreographies, the participants are known
and predefined such that a centralized solution as presented in this paper saves overhead
as, in the worst case, the decentralized approach requires a schema mapping for each
communication between two participants instead of only one mapping per participant to
the global schema. The transformation of data between two participants can be achieved
via schema mapping and matching [20,21], a mediator [31], an adapter [32], or ontology-
based integration [4, 16, 29]. For instance, [4] utilizes OWL [26] ontologies, which are
similar to our global data model, and mappings from port types to attributes via XPath
expressions to transform data between web services. In this paper, we utilize schema
matching due to the close integration of database support for data persistence.

Returning to the process domain, there exist fundamental works describing the
implementation of process choreographies [1, 7] with [1] ensuring correctness for inter-
process communication. These works only describe the control flow side although the
data part is equally important as messages contain the actual artifacts exchanged. [11]
introduces a data-aware collaboration approach including formal correctness criteria.
They define the data perspective using data-aware interaction nets, a proprietary notation,
instead of a widely accepted one as BPMN, the industry standard for process modeling,
used as basis in this paper.

7 Conclusion

In this paper, we presented an approach allowing to model and enact the data perspective
of process choreographies entirely model-driven. Thereby, we utilized the industry
standard BPMN and extended the model-driven data dependency enactment approach
catered for process orchestrations with concepts for process choreographies. Based on
challenges of data heterogeneity, correlation, and 1:n communication, we identified a set
of six requirements covering the retrieval of data from the sender’s local database, the
data transformation into a global data schema all participants agreed upon, the correlation
of a message to the correct activity instance, the transformation from the global to the
receiver’s local database schema, and the storage of the data there. The message routing
between participants is out of scope of this paper by adapting existing technologies
as, for instance, web services. In this paper, we describe a modeling guideline with
the artifacts required to automatically execute the mentioned steps from these only.
Furthermore, we describe the corresponding operational semantics and provide details
about our implementation. Our approach has been implemented; we could implement all
service interaction patterns of [3] except for dynamically setting URLs of recipients and
evaluating data conditions over aggregations of data objects; both are outside the scope
of this paper and deserve future work. Also the integration of process layer and message
transport layer (in particular wrt. handling message transport errors) is outside the scope

32 Meyer et al.

of this paper. The current approach only utilizes tasks to send and receive messages.
However, BPMN also supports message events to which the discussed concepts could
be applied as well by overcoming BPMN’s limitation that events cannot transform
and correlate data objects. In future work, we plan to provide an integrated formal
verification technique for model-driven data enactment in process orchestrations and
choreographies.

References

1. van der Aalst, W.M.P., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: Multiparty contracts:
Agreeing and implementing interorganizational processes. Comput. J. 53(1), 90–106 (2010)

2. van der Aalst, W.M.P., Weske, M.: The p2p approach to interorganizational workflows. In:
CAiSE. pp. 140–156. Springer (2001)

3. Barros, A., Dumas, M., ter Hofstede, A.H.M.: Service interaction patterns. In: Business
Process Management. pp. 302–318. Springer (2005)

4. Bowers, S., Ludäscher, B.: An ontology-driven framework for data transformation in scientific
workflows. In: Data Integration in the Life Sciences. pp. 1–16. Springer (2004)

5. Decker, G., Barros, A.: Interaction modeling using bpmn. In: BPM Workshops. pp. 208–219.
Springer (2008)

6. Decker, G., Kopp, O., Leymann, F., Weske, M.: Bpel4chor: Extending bpel for modeling
choreographies. In: ICWS. pp. 296–303. IEEE (2007)

7. Decker, G., Weske, M.: Interaction-centric modeling of process choreographies. Information
Systems 36(2), 292–312 (2011)

8. DeWitt, D., Gray, J.: Parallel database systems: the future of high performance database
systems. Communications of the ACM 35(6), 85–98 (1992)

9. Halevy, A.Y., Ives, Z.G., Suciu, D., Tatarinov, I.: Schema mediation in peer data management
systems. In: Data Engineering. pp. 505–516. IEEE (2003)

10. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., Barreto, C.: Web services
choreography description language version 1.0. W3C candidate recommendation 9 (2005)

11. Knuplesch, D., Pryss, R., Reichert, M.: Data-aware interaction in distributed and collaborative
workflows: Modeling, semantics, correctness. In: CollaborateCom. pp. 223–232. IEEE (2012)

12. Lenzerini, M.: Data integration: A theoretical perspective. In: Symposium on Principles of
Database Systems. pp. 233–246. ACM (2002)

13. Mendling, J., Hafner, M.: From ws-cdl choreography to bpel process orchestration. Journal of
Enterprise Information Management 21(5), 525–542 (2008)

14. Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and Enacting Complex Data
Dependencies in Business Processes. In: BPM. pp. 171–186. Springer (2013)

15. Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and Enacting Complex Data
Dependencies in Business Processes. Tech. Rep. 74, HPI at the University of Potsdam (2013)

16. Noy, N.F.: Semantic integration: a survey of ontology-based approaches. ACM Sigmod Record
33(4), 65–70 (2004)

17. OASIS: Web Services Business Process Execution Language, Version 2.0 (April 2007)
18. OMG: Business Process Model and Notation (BPMN), Version 2.0 (January 2011)
19. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Springer (2011)
20. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The VLDB

Journal 10(4), 334–350 (2001)
21. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Journal on Data

Semantics IV 3730, 146–171 (2005)

Data Perspective in Process Choreographies: Modeling and Execution 33

22. Tanenbaum, A.S., van Steen, M.: Distributed Systems: Principles and Paradigms. Prentice
Hall (2006)

23. Tomasic, A., Raschid, L., Valduriez, P.: Scaling access to heterogeneous data sources with
disco. Knowledge and Data Engineering, IEEE Transactions on 10(5), 808–823 (1998)

24. Valduriez, P., Pacitti, E.: Data management in large-scale p2p systems. In: High Performance
Computing for Computational Science (VECPAR), pp. 104–118. Springer (2005)

25. W3C: Web Services Description Language (WSDL) 1.1 (March 2001)
26. W3C: OWL Web Ontology Language (February 2004)
27. W3C: Web Services Choreography Description Language, Version 1.0 (November 2005)
28. W3C: XQuery 1.0: An XML Query Language (Second Edition) (December 2010)
29. Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., Hübner,

S.: Ontology-based integration of information-a survey of existing approaches. In: IJCAI
workshop: ontologies and information sharing. pp. 108–117 (2001)

30. Weske, M.: Business Process Management: Concepts, Languages, Architectures. Second
Edition. Springer (2012)

31. Wiederhold, G.: Mediators in the architecture of future information systems. Computer 25(3),
38–49 (1992)

32. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM Transactions
on Programming Languages and Systems (TOPLAS) 19(2), 292–333 (1997)

33. Zaha, J.M., Barros, A., Dumas, M., ter Hofstede, A.H.M.: Let’s dance: A language for service
behavior modeling. In: OTM Conferences, pp. 145–162. Springer (2006)

	Data Perspective in Process Choreographies: Modeling and Execution
	Introduction
	Requirements
	Modeling Guideline
	Executing Data-annotated Process Choreographies
	Overview of Choreography Execution
	Send
	Receive
	Correlation

	Evaluation
	Single-Transmission Bilateral Interaction Patterns
	P1 Send and P2 Receive.
	P3 Send/Receive.
	Single-Transmission Multilateral Interaction Patterns
	P4 Racing Incoming Messages.
	P5 One-to-Many Send, P7 One-to-Many Send/Receive.
	P6 One-from-Many Receive.
	Multi-Transmission Interaction Patterns
	P8 Multi-Responses.
	P9 Contingent Requests.
	P10 Atomic Multicast Notification.
	Routing Interaction Patterns
	P11 Request with Referral.
	P12 Relayed Request.
	P13 Dynamic Routing.

	Related Work
	Conclusion

