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Abstract

This paper proposes a recommendation system that supports process participants in taking risk-informed

decisions, with the goal of reducing risks that may arise during process execution. Risk reduction involves

decreasing the likelihood and severity of a process fault from occurring. Given a business process exposed

to risks, e.g. a financial process exposed to a risk of reputation loss, we enact this process and whenever a

process participant needs to provide input to the process, e.g. by selecting the next task to execute or by

filling out a form, we suggest the participant the action to perform which minimizes the predicted process

risk. Risks are predicted by traversing decision trees generated from the logs of past process executions,

which consider process data, involved resources, task durations and other information elements like task

frequencies. When applied in the context of multiple process instances running concurrently, a second

technique is employed that uses integer linear programming to compute the optimal assignment of resources

to tasks to be performed, in order to deal with the interplay between risks relative to different instances. The

recommendation system has been implemented as a set of components on top of the YAWL BPM system

and its effectiveness has been evaluated using a real-life scenario, in collaboration with risk analysts of a

large insurance company. The results, based on a simulation of the real-life scenario and its comparison with

the event data provided by the company, show that the process instances executed concurrently complete

with significantly fewer faults and with lower fault severities, when the recommendations provided by our

system are taken into account.

Keywords: business process management, risk management, risk prediction, job scheduling, work

distribution, YAWL.

1. Introduction

A process-related risk measures the likelihood and the severity that a negative outcome, also called fault, 

will impact on the process objectives [1]. Failing to address process-related risks can result in substan- 



tial financial and reputational consequences, potentially threatening an organization’s existence. Take for

example the case of Société Générale, which went bankrupt after a e 4.9B loss due to fraud.

Legislative initiatives like Basel II [2] and the Sarbanes-Oxley Act1 reflect the need to better manage

business process risks. In line with these initiatives, organizations have started to incorporate process risks

as a distinct view in their operational management, with the aim to effectively control such risks. However,

to date there is little guidance as to how this can be concretely achieved.

As part of an end-to-end approach for risk-aware Business Process Management (BPM), in [3, 4, 5] we

proposed several techniques to model risks in executable business process models, detect them as early as

possible during process execution, and support process administrators in mitigating these risks by applying

changes to the running process instances. However, the limitation of these efforts is that risks are not

prevented, but rather acted upon when their likelihood exceeds a tolerance threshold. For example, a

mitigation action may entail skipping some tasks when the process instance is very likely to exceed the defined

maximum cycle time. While effective, mitigation comes at the cost of modifying the process instance, often

by skipping tasks or rolling back previously-executed tasks, which may not always be acceptable. Moreover,

we have shown that it is not always possible to mitigate all process risks [4]. For example, rolling back a

task for the sake of mitigating a risk of cost overrun, may not allow the full recovery of the costs incurred

in the execution of that task.

To address these limitations we propose a recommendation system that supports process participants

in taking risk-informed decisions, with the aim to reduce process risks preemptively. A process participant

takes a decision whenever they have to choose the next task to execute out of those assigned to them at

a given process state, or via the data they enter in a user form. This input from the participant may

influence the risk of a process fault to occur. For each such input, the technique returns a risk prediction in

terms of the likelihood and severity that a fault will occur if the process instance is carried out using that

input. This prediction is obtained via decision trees which are trained using historical process data such

as process variables, resources, task durations and frequencies. The historical data of a process is observed

using decision trees which are built from the execution logs of the process, as recorded by the IT systems of

an organization.

This way, the participant can take a risk-informed decision as to which task to execute next, or can

learn the predicted risk of submitting a form with particular data. If the instance is subjected to multiple

potential faults, the predictor can return the weighted sum of all fault likelihoods and severities, as well as

the individual figures for each fault. The weight of each fault can be determined based on the severity of

the fault’s impact on the process objectives.

The above technique only provides “local” risk predictions, i.e. predictions relative to a specific process

1www.gpo.gov/fdsys/pkg/PLAW-107publ204
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instance. In reality, however, multiple instances of (different) business processes may be executed at any

time. Thus, we need to find a risk prediction for a specific process instance that does not affect the prediction

for other instances. The interplay between risks relative to different instances can be caused by the sharing

of the same pool of process participants: two instances may require the same scarce resource. In this setting,

a sub-optimal distribution of process participants to the set of tasks to be executed, may result in a risk

increase (e.g. overtime or cost overrun risk). To solve this problem, we equipped our recommendation system

with a second technique, based on integer linear programming, which takes input from the risk prediction

technique, to find an optimal distribution of process participants to tasks. By optimal distribution we mean

one that minimizes the overall execution time (i.e. the time taken to complete all running instances) while

minimizing the overall level of risk. This distribution is used by the system to suggest process participants

the next task to perform.

We operationalized our recommendation system on top of the YAWL BPM system by extending an

existing YAWL plug-in and by implementing two new custom YAWL services. This implementation prompts

process participants with risk predictions upon filling out a form or for each task that can be executed. We

then evaluated the effectiveness of our system by conducting experiments using a claims handling process in

use at a large insurance company. With input from a team of risk analysts from the company, this process

has been extensively simulated on the basis of a log recording one year of completed instances of this process.

The recommendations provided by our system significantly reduced the number and severity of faults in a

simulation of a real life scenario, compared to the process executed by the company as reflected by the event

data. Further, the results show that it is feasible to predict risks across multiple process instances without

impacting on the execution performance of the BPM system.

The remainder of this paper is organized as follows. Section 2 contextualizes the recommendation system

within our approach for managing process-related risks, while Section 3 presents the YAWL language as part

of a running example. Next, Section 4 defines the notions of event logs and faults which are required to

explain our techniques. Section 5 describes the technique for predicting risks in a single process instance

while Section 6 extends this technique to the realm of multiple process instances running concurrently.

Section 7 and Section 8 discuss the implementation and evaluation of the overall technique, respectively.

Finally, Section 9 discusses related work before Section 10 concludes the paper. The Appendix provides the

technical proofs of two lemmas presented in Section 6.

2. Risk Framework

The technique proposed in this paper can be seen as part of a wider approach for the management of

process-related risks. This approach aims to enrich the four phases of the traditional BPM lifecycle (Process

Design, Implementation, Enactment and Diagnosis) [6] with elements of risk management (cf. Fig. 1).
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Figure 1: Risk-aware BPM lifecycle.

Before the Process Design phase, we define an initial phase, namely Risk Identification, where existing

techniques for risk analysis such as Fault Tree Analysis [7] or Root Cause Analysis [8] can be used to identify

possible risks of faults that may eventuate during the execution of a business process. Faults and their risks

identified in this phase are mapped onto specific aspects of the process model during the Process Design

phase, obtaining a risk-annotated process model. In the Process Implementation phase, a more detailed

mapping is conducted linking each risk and fault to specific aspects of the process model, such as the

content of data variables and resource states. In the Process Enactment phase such a risk-annotated process

model can be executed to ensure risk-aware process execution. Finally, in the Process Diagnosis phase,

information produced during Process Enactment is used in combination with historical data to monitor the

occurrence of risks and faults as process instances are executed. This monitoring may trigger mitigation

actions in order to (partially) recover the process instance from a fault.

The technique presented in this paper fits in this latter phase, since it aims to provide run-time support

in terms of risk prediction, by combining information on risks and faults with historical data. The techniques

developed to support the other phases of our risk-aware BPM approach fall outside the scope of this paper,

but have beed addressed in our earlier work [3, 5, 4]. Their relation with the technique described in this

paper is discussed in the Related Work (cf. Section 9).

3. YAWL Specification and Running Example

We developed our technique on top of the YAWL language [9] for several reasons. First, this language is

very expressive as it provides comprehensive support for the workflow patterns2, patterns covering all main

process prospective such as control-flow, dataflow, resources, and exceptions. Further, it is an executable

language supported by an open-source BPM system, namely the YAWL System. This system is based on a

2www.workflowpatterns.com

4



Figure 2: The carrier appointment subprocess of an order fulfillment process, shown in YAWL.

service-oriented architecture, which facilitates the seamless addition of new services, like the ones developed

as part of this work. Further, the open-source license facilitates its distribution among academics and

practitioners (the system has been downloaded over 100,000 times since its first inception in the open-source

community). However the elements of the YAWL language used by our technique are common to all process

modeling languages, so our technique can in principle be applied to other executable process modeling

languages such as BPMN 2.0.

In this section we introduce the basic ingredients of the YAWL language and present them in the context

of a running example. This example, whose YAWL model is shown in Figure 2, captures the Carrier

Appointment subprocess of an Order Fulfillment process, which is subjected to several risks. This process is

inspired by the VICS industry standard for logistics [10], a standard endorsed by 100+ companies worldwide.

The Carrier Appointment subprocess (see Fig. 2) starts when a Purchase Order Confirmation is received.

A Shipment Planner then estimates the trailer usage and prepares a route guide. Once ready, a Supply Officer

prepares a quote for the transportation indicating the cost of the shipment, the number of packages and the

total freight volume.

If the total volume is over 10,000 lbs a full trackload is required. In this case two different Client Liaisons

will try to arrange a pickup appointment and a delivery appointment. Before these two tasks are performed,

a Senior Supply Officer may create a Shipment Information document. In case the Shipment Information

document is prepared before the appointments are arranged, a Warehouse Officer will arrange a pickup

5



appointment and a Supply Officer will arrange a delivery appointment, with the possibility of modifying

these appointments until a Warehouse Admin Officer produces a Shipment Notice, after which the freight

will be picked up from the Warehouse.

If the total volume is up to 10,000 lbs and there is more than one package, a Warehouse Officer arranges

the pickup appointment while a Client Liaison may arrange the delivery appointment. Afterwards, a Senior

Supply Officer creates a Bill of Lading, a document similar to the Shipment Information. If a delivery

appointment is missing a Supply Officer takes care of it, after which the rest of the process is the same as

for the full trackload option.

Finally, if a single package is to be shipped, a Supply Officer has to arrange a pickup appointment, a

delivery appointment, and create a Carrier Manifest, after which a Warehouse Admin Officer can produce

a Shipment Notice.

In YAWL, a process model is encoded via a YAWL specification. A specification is made up of one or

more nets (each modeling a subprocess), organized hierarchically in a root net and zero or more subnets.

Each net is defined as a set of conditions (represented as circles), an input condition, an output condition,

and a set of tasks (represented as boxes). Tasks are connected to conditions via flow relations (represented

as arcs). In YAWL trivial conditions, i.e. those having a single incoming flow and a single outgoing flow, can

be hidden. To simplify the discussion in the paper, without loss of generality, we assume a strict alternation

between tasks and conditions.

Conditions denote states of execution, for example the state before executing a task or that resulting

from its execution. Conditions can also be used for routing purposes when they have more than one incoming

and/or outgoing flow relation. In particular, a condition followed by multiple tasks, like condition FTL in

Fig. 2, represents a deferred choice, i.e. a choice which is not determined by some process data, but rather

by the first process participant that is going to start one of the outgoing tasks of this condition. In the

example, the deferred choice is between tasks Arrange Delivery Appointment, Arrange Pickup Appointment

and Create Shipment Information Document, each assigned to a different process participant. When the

choice is based on data, this is captured in YAWL by an XOR-split, if only one outgoing arc can be taken

like after executing Prepare Transportation Quote. If one or more outgoing arcs can be taken it is captured

by an OR-split like after executing Create Shipment Information Document. Similarly, we have XOR-joins

and OR-joing that merge multiple incoming arcs in to one. If among all the incoming arcs only one is active

we use a XOR-join like before executing Produce Shipment Notice, while if among all incoming arcs one or

more arcs are active we use a OR-join like before executing task Create Bill of Lading. Finally, an AND-split

is used when all outgoing arcs need to be taken, like after Receive Confirmation Order, while an AND-join

is used to synchronize parallel arcs like before executing Prepare Transportation Quote. Splits and joins are

represented as decorators on the task’s box.

Tasks are considered to be descriptions of a piece of work that forms part of the overall process. Thus,
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control-flow, data, and resourcing specifications are all defined with reference to tasks at design time. At

runtime, each task acts as a template for the instantiation of one or more work items. A work item

w = (ta, id) is the run-time instantiation of a task ta for a process instance id.

A new process instance id is started and initialized by placing a token in the input condition of a YAWL

net. The token represents the thread of control and flows through the net as work items are executed. The

execution of a work item (ta, id) consumes one token from some of ta’s input conditions (depending on the

task’s type of join) and produces one token in some of ta’s output conditions (depending on the task’s type

of split). In YAWL, work items are performed by either process participants (user tasks) or software services

(automated tasks). An example of an automated task is Receive Confirmation Order in Fig. 2, while an

example of user task is Estimate Trailer Usage.

Below we formalize these notions.

Definition 1. A YAWL net N ∈ N is a tuple N = (TN , CN , i, o, FN , RN , VN , UN , canN ) where:

• TN is the set of tasks of N ;

• CN is the set of conditions of N ;

• i ∈ CN is the input condition;

• o ∈ CN is the output condition;

• A flow relation FN ⊆ (CN \ {o} × TN ) ∪ (TN × CN \ {i});

• RN is the set of resources authorized to perform any tasks in TN ;

• VN is the set of variables that are defined in the net;

• UN is the set of values that can be assigned to variables;

• canN : RN → 2TN is a function that associates resources with the tasks that are authorized to perform.

Compared to [9] we use a simplified definition of YAWL nets, which describes those parts that are relevant

for the article.

We use the following auxiliary functions from [9]. The preset of a task t is the set of its input conditions:

•t = {c ∈ CN | (c, t) ∈ FN}. Similarly, the postset of a task t is the set of its output conditions: t• = {c ∈

CN | (t, c) ∈ FN}. The preset and postset of a condition can be defined analogously.

YAWL supports sophisticated authorization mechanisms as described in the resource patterns [11]. The

above definition describes a simplified version where authorizations are specified at task level and applies

to all work items of a certain task. As such, this definition is generalizable to other executable process

modeling languages.
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4. Event Logs and Fault Severity

The execution of completed and running process instances can be stored in an event log:

Definition 2 (Event Log). Let T and V be a set of tasks and variables, respectively. Let U be the set of

values that can be assigned to variables. Let R be the set of resources that are potentially involved during the

execution. Let D be the universe of timestamps. Let Φ be the set of all partial functions V 6→ U that define

an assignment of values to a sub set of variables in V . An event log L is a multiset of traces where each

trace (a.k.a. process instance) is a sequence of events of the form (t, r, d, φ), where t ∈ T is a task, r ∈ R is

the resource performing t, d ∈ N is the event’s timestamp, φ ∈ Φ is an assignment of values to a sub set of

variables in V . In other words, L ∈ B((T ×R× N× Φ)∗).3

Each completed trace of the event log is assigned a fault’s severity between 0 and 1, where 0 identifies

an execution with no fault and 1 identifies a fault with the highest severity. To model this, a risk analyst

needs to provide a fault function f . The set of all such functions is:

F = (T ×R× N× Φ)∗ → [0, 1]

In many settings, processes are associated with different faults. These faults can be combined together by

assigning different weights. Let us suppose to have n faults {f1, . . . , fn} ⊂ F , we can have a composite fault :

f̂(σ) =

∑
1≤i≤n wifi(σ)∑

1≤i≤n wi
∈ F

where wi is the weight of the fault fi, with 1 ≤ i ≤ n.

A complete trace σ of our Carrier Appointment process, can be affected by three faults:

Over-time fault. This fault is linked to a Service Level Agreement (SLA) which establishes that the

process must terminate within a predefined Maximum Cycle Time dmct (e.g. 21 hours), in order to

avoid pecuniary penalties that will incur as consequence of a violation of the SLA. The severity of the

fault grows with the amount of time that the process execution exceeds dmct. Let dσ be the duration

of the process instance, i.e. difference between the timestamps of the last and first event of σ. Let dmax

be the maximum duration among all process instances already completed (including σ). The severity

of an overtime fault is measured as follows:

ftime(σ) = max

(
dσ − dmct

max(dmax − dmct, 1)
, 0

)
Reputation-loss fault. During the execution of the process when a “pickup appointment” or a “delivery

appointment” is arranged, errors with location or time of the appointment may occur due to a mis-

understanding between the company’s employee and the customer. In order to keep the reputation

3B(X) is the set of all multisets over X
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high, the company wants to avoid these misunderstandings and having to call the customer again.

The severity of this fault is:

frep(σ) =



0 if tasks Modify Delivery Appointment and Modify Pick-up Appointment

do not appear in σ

1 if both Modify Delivery Appointment and Modify Pick-up Appointment

appear in σ

0.5 otherwise

Cost Overrun fault. During the execution of this process, several activities need to be executed, and each

of these has an execution cost associated with it. Since the profit of the company decreases with a

higher shipping cost of a good (or goods), the company wants to reduce them. Of course, there is a

profit cost beyond which the company will not make any profit. The severity increases as the cost

goes beyond the profit cost. Let cmax be the greatest cost associated with any process instance that

has already been completed (including σ). Let cσ be the cost of σ and cmin be the profit cost. The

severity of a cost fault is:

fcost(σ) = min

(
max(cσ − cmin, 0)

max(cmax − cmin, 1)
, 1

)
Moreover, we assume that the company considers Reputation-loss Fault to be less significant than the other

faults. The company could decide to define a composite fault where the reputation weights half:

fcar(σ) =
(
fcost(σ) + ftime(σ) + 0.5 · frep(σ)

)
/2.5

The risk is the product of the estimation of the fault’s severity at the end of the process-instance execution

and the accuracy of such an estimation.

When a process instance is being executed, many factors may influence the risk and, ultimately, the

severity of a possible fault. For instance, a specific order in which a certain set of tasks is performed may

increase or decrease the risk, compared to any other. Nonetheless, it is opportune to leave freedom to

resources to decide the order of their preference. Indeed, there may be factors outside the system that let

resources opt for a specific order. For similar reasons, when there are alternative tasks that are all enabled for

execution, a risk-aware decision support may highlight those tasks whose execution yields less risk, anyway

leaving the final decision up to the resource.

5. Risk Estimation

We aim to provide work-items’ recommendation to minimize the risk corresponding to the highest product

of fault severity and likelihood. For this purpose, it is necessary to predict the most likely fault severity

associated with continuing the execution of a process instance for each enabled task. The problem of

providing such a prediction can be translated into the problem of finding the best estimator of a function.
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Figure 3: An example of decision tree used to build a function estimator.

Definition 3 (Function estimator). Let X1, . . . , Xn be n finite or infinite domains. Let Y be a finite

domain. Let f : X1 × X2 × . . . × Xn → Y . An estimator of function f is a function ψf : Y →

2X1×X2×...×Xn×[0,1], such that, for each y ∈ Y , ψf (y) returns a set of tuples (x1, . . . , xn, l) where (x1, . . . , xn) ∈

(X1 ×X2 × . . . ×Xn) is an input domain tuple for which the expected output is y and l is the accuracy of

such an estimation. Moreover, (x1, . . . , xn, l1) ∈ ψf (y1) ∧ (x1, . . . , xn, l2) ∈ ψf (y2)⇒ l1 = l2 ∧ y1 = y2.

The function estimator is trained through a set of observation instances. An observation instance is a

pair (−→x , y) where −→x ∈ X1 ×X2 × . . .×Xn is the observed input and y ∈ Y is the observed output.

The function estimator can easily be built using many machine learning techniques. In this paper, we

employ the C4.5 algorithm to build decision trees. Decision trees classify instances by sorting them down

in a tree from the root to some leaf node. Each non-leaf node specifies a test of some attribute x1, . . . , xn

and each branch descending from that node corresponds to a range of possible values for this attribute. In

general, a decision tree represents a disjunction of conjunctions of expressions: each path from the tree root

to a leaf corresponds to an expression that is, in fact, a conjunction of attribute tests. Each leaf node is

assigned one of the possible output values: if an expression e is associated with a path to a leaf node y,

every tuple −→x ∈ X1 ×X2 × . . .×Xn satisfying e is expected to return y as output.

We link the accuracy of a prediction for ψf (y) to the quality of e as classifying expression. Let I be the set

of observation instances used to construct the decision tree. Let Ie = {(−→x , y) ∈ I | −→x satisfies e} and Ie,y =

{(−→x , y) ∈ Ie | y = y}. The accuracy is l = |Ie,y|/|Ie|; therefore, for all ((x1, . . . , xn), y) ∈ Ie, (x1, . . . , xn, l) ∈

ψf (y). Figure 3 shows an example of a possible decision tree obtained through a set of observation instances

10



to build the estimator ψfĉ of a function that, given a resource, a task, the cost of a good, and an elapsed time,

returns a value belonging to the set H containing the numbers between 0 and 1 with no more than 2 decimals,

i.e. fĉ : Resource × Task ×GoodCost × TimeElapsed → H. For instance, let us consider the value y = 0.6.

Analyzing the tree, the value is associated with two expressions: e1 is (Resource = MichaelBrown ∧Task =

ArrangePickupAppointment) and e2 is (Resource 6= MichaelBrown ∧ GoodCost < 3157 ∧ TimeElapsed <

30 ∧ Task = CreateShipmentInformationDocument). Let us suppose that, among observation instances

(Resource,Task ,GoodCost ,TimeElapsed , y) s.t. e1 or e2 evaluates to true, y = 0.6 occurs 60% or 80% of

times, respectively. Therefore, ψfĉ(0.6) contains the tuples (Resource,Task ,GoodCost ,TimeElapsed , 0.6)

satisfying e1, along with tuples(Resource,Task ,GoodCost ,TimeElapsed , 0.8) satisfying e2. Regarding com-

putational complexity, if decision trees are used, training ψf with m observation instances is computed in

quadratic time with respect to the dimension n (i.e. the number of attributes) of the input tuple, specifically

O(n2 ·m) [12].

As mentioned before, it is necessary to predict the most likely fault severity associated with continuing

the execution of a process instance with each task enabled for execution. Function estimators are used for

such a prediction.

Let N = (TN , CN , RN , VN , UN , canN ) be a YAWL net. In order to provide accurate risks associated with

performing work items of a certain process instance, it is important to incorporate the execution history of

that process instance into the analysis. In order to avoid overfitting predictive functions the history needs

to be abstracted. Specifically, we abstract the execution history as two functions: Cr : TN → R denoting

the last executor of each task and Ct : TN → N denoting the number of times that each task has been

performed in the past. Pairs (cr, ct) ∈ Cr ×Ct are called contextual information. Given the execution trace

of a (running) instance σ′ ∈ (TN×RN×N×Φ), we introduce function getContextInformation(σ′) that returns

the contextual information (cr, ct) that can be constructed from σ′.

Let Φ be the set of all possible assignments of values to variables, i.e. the set of all partial functions

VN 6→ UN . Each condition c ∈ CN can be associated with a function fc : Φ× c• ×RN ×N×Cr ×Ct → H.

If fc(φ, t, r, n, cr, ct) = y, at the end of the execution of the process instance, the fault’s severity is going to

be y if the instance continues with resource r ∈ RN that performs task t ∈ c• at time n with contextual

information (cr, ct) when variables are assigned values as for function φ. Of course, this function is not

known but it needs to be estimated, based on the behavior observed in an event log L. Therefore, we need

to build am estimator ψfc for fc. Let us consider condition cFTL (see Figure 2), and the associated function

estimator ψfcFTL
. Let us suppose that the accuracy is 1, i.e. for each t ∈ cFTL

•, ψfcFTL
(t) always returns 1.

If the execution is such that there is a token in FTL, GoodCost < 3157, executing tasks Arrange

Pickup Appointment, Arrange Delivery Appointment are associated with a risk of 0.2 and 0.45, respectively.

Conversely, executing task Create Shipment Information Document is given a risk of either 0.6 or 0.7,

depending on the moment in which task Create Shipment Information Document is started. Therefore, it
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Algorithm 1: generateFunctionEstimatorsForRiskPrediction

Data: N = (TN , CN , RN , VN , UN , canN ) – A YAWL net, L – An event log, f ∈ F – A fault function

Result: A Function Ψ that associates each condition c ∈ CN with a function estimator ψc

1 Let I be a function whose domain is the set of conditions c ∈ CN , and initially for all c ∈ CN , I(c) = ∅.

2 foreach trace σ = 〈(t1, r1, d1, φ1), . . . , (tn, r1, dn, φn)〉 ∈ L do

3 Set function A such that dom(A) = ∅

4 for i← 1 to n do

5 (cr, ct)← getContextInformation(〈(t1, r1, d1, φ1), . . . , (ti, ri, di, φi)〉)

6 Time elapsed d← (di − d1)

7 J ← (A� (ti, ri, d)� cr � ct), f(σ))

8 foreach c ∈ •ti do

9 I(c)← I(c) ∪ {J}

10 end

11 foreach variable v ∈ dom(φi) do

12 A(v)← φi(v)

13 end

14 end

15 end

16 Set function Ψ such that dom(Ψ) = ∅

17 foreach condition c ∈ CN do

18 Ψ(c)← buildFunctionEstimator
(
I(c)

)
19 end

20 return Ψ

is evident that it is less “risky” to execute Arrange Pickup Appointment.

Algorithm 1 details how function estimators ψfc can be constructed. In the algorithm, we use � to con-

catenate tuples: given two tuples −→x = (x1, . . . , xn) and −→y = (y1, . . . , ym), −→x �−→y = (x1, . . . , xn, y1, . . . , ym).

Operator � can also be overloaded to deal with functions defined on a finite and ordered domain. Let

f : W → Z be a function defined on an ordered domain W = {w1, . . . , wo}. If we denote zi = f(wi) with

1 ≤ i ≤ o, f �−→x = (z1, . . . , zo, x1, . . . , xn).

Algorithm 1 is periodically executed, e.g., every week or after every k process instances are completed.

In this way, the predictions are updated according to the recent process executions. The input parameters

of the algorithm are a YAWL net N , an event log with traces referring to past executions of instances of

the process modelled by N , and a fault function. The output is a function Ψ that associates each condition

c with function estimator ψfc . Initially, in line 1, we initialize function I which is going to associate each

condition c with the set of observation instances associated with the executions of tasks in the postset of p.

From line 2 to line 12, we iteratively replay all traces σ to build the observation instances. While replaying,

a function A keeps the current value’s assignment to variables (line 3). For each trace’s event (ti, ri, di, φi),
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first we build the tuple C of the contextual information (line 5) and compute the elapsed time d (line 6).

Then, we build an observation instance J where tuple (A � (ti, ri, d) � cr � ct) is the observed input and

the fault severity f(σ) is the observed output. This observation instance is put into the set of observation

instances relative to each condition c ∈ •ti. In lines 11-13, we update the current value’s assignment during

the replay, i.e. we rewrite function A. Finally, in lines 16-19, we build each function estimator ψfc for

condition fc by the relative observation instances and rewrite Ψ s.t. Ψ(c) = ψc.

6. Multi-Instance Work-Item Distribution

With the technique presented so far, each resource is given local risk advice as to what work item to

perform next, i.e. a resource is suggested to perform the work item with the lowest overall risk for that

combination of process instance and resource, without looking at other resources that may be assigned work

items within the same instance or in other instances running concurrently. Clearly, such a local work-item

distribution is not optimal, since work items have to compete for resources and this may not guarantee the

best allocation from a risk viewpoint. For example, let us consider two resources r1 and r2 and two work

items wa and wb such that the risk of r1 performing wa is 0.2, and the risk of r1 performing wb is 0.6,

while the risk of r2 performing wa is 0.1 and the risk of r2 performing wa is 0.4. Moreover for the company

executing these work items, it is equally important to minimize the eventuation of risks as well as the overall

execution time. If wa is assigned to r2 because locally this resource has the lowest risk, r1 will be forced to

perform wb leading to an overall risk of 0.7. Another option is to assign both work items to r2, yielding an

overall risk of 0.5. Both these solutions are non-optimal distributions: the former because the overall risk is

too high, the latter, despite the lower risk, because the workload between the two resources is unbalanced,

with the result of increasing the overall execution time.

In this section we combine our technique for risk prediction with a technique for computing an optimal

distribution of work items to resources (available or busy). By optimal distribution we mean a distribution

that minimizes the weighted sum of overall execution time and overall risk across all running instances. In

other words, the algorithm aims to balance the distribution of work items across resources while keeping

the risk low. This distribution can then be used to provide work item recommendations to resources, such

that these can be aided in selecting the best work item to perform. In the example above, the optimal

distribution is r1-wa and r2-wb with an overall risk of 0.6. While this is higher than 0.5 obtained with the

second solution, r1 and r2 will work in parallel thus reducing the overall execution time.

6.1. Optimal Work-Item Distribution

Let f be a certain (composite) fault function and assuming we at time τ . Let I = {id1, . . . , idn} be the set

of running instances of N . Given an instance id ∈ I, timeElapsedτ (id) ∈ N denotes the time elapsed since
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Algorithm 2: calcRisk

Data: N = (TN , CN , RN , VN , UN , canN ) – A YAWL net, f ∈ F – A fault function, r – resource, t – time, (ta, id) –

work item

Result: A risk value

1 risk ← 0

2 φ← varAssign(id)

3 d← timeElapsed(id)

4 (cr, ct)← getContextInformation(history(id))

5 foreach condition c ∈ •t do

6 ψ ← Ψ(c)

7 Pick (severity, l) such that (φ, ta, r, d, cr, ct, l) ∈ ψ(severity)

8 risk ← max(severity · l, risk)

9 end

instance id has started and varAssignτ (id) ∈ (VN → UN ) is the current assignment of values to variables.

Moreover, let us denote a function useN : RN → 2TN×I that associates each resource with the work items

that he/she is executing within the set I of running process instances. Let WE be the set of work items

being executed, i.e. WE =
∑
r∈RN

useN (r). Let W ⊆ TN ×I be the set of work items that are enabled but not

started yet. Section 3 has discussed the concept of deferred choice, highlighting that some of the enabled

work items are mutually exclusive. Therefore, we introduce an equivalence relation ∼ between elements of

W , such that wa ∼ wb if, picking wa ∈ W for execution disables wb ∈ W or vice versa. Let W∼ be the

partition of W according to relation ∼.

For each enabled work item w ∈W , we perform an estimation time(w) of the expected duration of work

item w. For each started work item w ∈WE , we also perform an estimation time(w) of the amount of time

needed by w to be completed. To compute such estimations, we employ the technique proposed in [13] using

event log L as input.

Let Ψ be the set of function estimators that are computed through Algorithm 1, using net N , event log

L and given fault function f as input.

For each work item w ∈ W , let us denote with riskr,w,t the risk of starting a work item w at time t.

This can be computed by invoking Algorithm 2: riskr,w,t = calcRisk(N, f, r, t, w,Ψ).

Let maxTime =
∑

w∈W∪WE

time(w) be the maximum duration of executing all work items that are

currently enabled and started. This corresponds to the situation in which work items are just executed

sequentially, i.e. a new work item starts only when no other work item is being executed. Given a resource

r ∈ RN and a work item (ta, id) ∈ W such that ta ∈ canN (r), we compute the set of moments in time in

which the risk of r performing (ta, id):

startr,w = {t ∈ [τ, τ +maxTime] | riskr,w,t 6= riskr,w,t−1} ∪ {τ}
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Certainly, this can be naively computed by computing the risk for all moments in time between τ and

τ+maxTime. Nonetheless, it can be done more efficiently by observing the occurrences of splits on the time

variable that are present in the decision trees. For instance, let us consider the decision tree in Figure 3: the

only time reference is 30. This reference occurs in a root-to-leaf path in which resource r 6= Michael Brown

and Task = Create Shipment Information. Therefore, for each resource r ∈ R\{Michael Brown} and work-

item w = (Create Shipment Information, id) ∈W , startr,w = {τ, elapsed(id)+30}. Moreover, for each work

item w = (ta, id) ∈W with ta 6= Create Shipment Information and for each resource r ∈ R, startr,w = {τ}.

Similarly, for each work item w = (ta, id) ∈W , startr′,w = {τ} with r′ = Michael Brown.

Given a work item w, a resource r and a time t, ∆r,w(t) denotes the first moment t′ in time after t in

which the risk changes, i.e. t′ > t, t′ ∈ startr,w and there exists no t′′ ∈ startr,w such that t′ > t′′ > t. If

such a moment t′ does not exist, ∆r,w(t) = τ +maxTime.

We formulate the problem of distributing work items as a Mixed-Integer Linear Programming (MILP)

problem. The following two sets of variables are introduced:

• for each resource r ∈ RN and work-item w = (ta, id) ∈ W such that ta ∈ canN (r), there exists a

variable xr,w,t. If the solution of the MILP problem is such that xr,w,t = 1, r is expected to start

performing w in interval between t and ∆r,w(t), xr,w,t = 1; otherwise, xr,w,t = 0;

• for each work item w ∈ W ∪WE (i.e., running or enabled), we introduce a variable war,w. If work

item w is not being executed at time τ and is eventually distributed to resource r, the MILP solution

assigns to war,w a value that is equal to the moment in time when resource r is expected to start work

item w. If w is not expected to be started by r, war,w = 0; if w is already being executed by r at time

τ (i.e. w ∈WE ), war,w is statically assigned value τ .

The MILP problem aims to minimize the weighted sum of the expected total execution time and the overall

risk:

min

 α

maxTime

∑
r∈RN

∑
w∈W∪WE

war,w + (1− α)
∑
r∈RN

∑
w∈W∩canN (r)

∑
t∈startr,w

riskr,w,t · xr,w,t


where α ∈ [0, 1] is the weight of the expected total execution time w.r.t. the overall risk.

This MILP problem is subject to a number of constraints:

• for each r ∈ RN and w = (ta, id) ∈W such that ta ∈ canN (r), if r starts performing w in the interval

between t and ∆r,w(t), xr,w,t must be equal to 1 (and vice versa):

xr,w,t = 1⇔ ∆r,w(t) > war,w ∧ war,w ≥ t; (1)

• For each partition D ∈W∼, only one work item in D can be executed and it can only be executed by
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one resource and can only start within one interval:∑
r∈RN

∑
w∈D∩canN (r)

∑
t∈startr,w

xr,w,t = 1 (2)

• Every resource r ∈ RN cannot execute more than one work item at any time. Therefore, for each

r ∈ RN and for each pairs of partitions D1, D2 ∈W∼:( ∑
wa∈D1

war,wa
−
∑

wb∈D2

war,wb
≥

∑
wb∈D2

∑
t∈startr,wb

time(wb) · xr,wb,t

)
∨( ∑

wb∈D2

war,wb
−
∑

wa∈D1

war,wa
≥

∑
wa∈D1

∑
t∈startr,wa

time(wa) · xr,wa,t

) (3)

The constraints in Equations 1 can be translated into an equivalent set of linear constraints as follows:

−war,w −M · (1− xr,w,t) ≤ −t

war,w −M · (1− xr,w,t) < ∆r,w(t)

war,w −M · xr,w,t −M · o′r,w,t < t

−war,w −M · xr,w,t −M · (1− o′r,w,t) ≤ −∆r,w(t)

(4)

where M is a sufficiently large number (e.g., the largest machine-representable number) and or,w,t is a

boolean variable that needs to be introduced in the MILP problem.

Lemma 1. Constraints of the form as in Equations 1 can be rewritten into sets of equivalent constraints of

the form as in Equations 4.

Proof. See Appendix.

Similarly, the constraints in Equation 3 can be transformed into a set of linear constraints as follows:∑
wb∈D2

war,wb
−
∑

wa∈D1

war,wa +
∑

wb∈D2

∑
t∈startr,wb

time(wb) · xr,wb,t −M · or,D1,D2,t ≤ 0∑
wa∈D1

war,wa −
∑

wb∈D2

war,wb
+
∑

wa∈D1

∑
t∈startr,wa

time(wa) · xr,wa,t −M · (1− or,D1,D2,t) ≤ 0
(5)

where M is a sufficiently large number and or,D1,D2,t is a boolean variable that needs to be introduced in

the MILP problem.

Lemma 2. Constraints of the form as in Equations 3 can be rewritten into sets of equivalent constraints of

the form as in Equations 5.

Proof. See Appendix.

As an example of an instance of the class of MILP problems, let us consider a case where at time τ we

want to schedule three work items wa, wb and wc, and we have two resources, r1 and r2, who can perform

them. We know that wa and wb are mutually exclusive generating the following partitions D1 = {wa, wb},
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and D2 = {wc}. Moreover, we know that the expected duration of each work item is time(wa) = 30 mins,

time(wb) = 10 mins, and time(wc) = 40 mins. We also know that the risk associated with each work

item does not change over time. Finally, we know that when performed by resource r1 the work items

have the following expected risk levels: riskr1,wa,τ = 0.2, riskr1,wb,τ = 0.7, and riskr1,wc,τ = 0.6 while

when performed by resource r2 the work items have the following expected risk levels: riskr2,wa,τ = 0.1,

riskr2,wb,τ = 0.7, and riskr2,wc,τ = 0.4.

The MILP problem for distributing work items will take the following form (assuming α = 0.5):

minimize
0.5

τ + 80
· (war1,wa + war1,wb + war1,wc + war2,wa + war2,wb + war2,wc)

+ 0.5 · (0.2 · xr1,wa,τ + 0.7 · xr1,wb,τ + 0.6 · xr1,wc,τ + 0.1 · xr2,wa,τ + 0.7 · xr2,wb,τ + 0.4 · xr2,wc,τ )

subject to the following constraints:

either work item wa or wb is executed, whereas wc has to (instantiation of Equation 2):

xr1,wa,τ + xr1,wb,τ + xr2,wa,τ + xr2,wb,τ = 1

xr1,wc,τ + xr2,wc,τ = 1

at any time, all resources, i.e. r1 and r2, can only perform one work item (Equation 3):(
war1,wc − war1,wa − war1,wb ≥ 30 · xr1,wa,τ + 10 · xr1,wb,τ

)
∨
(
war1,wa + war1,wb − war1,wc ≥ 40 · xr1,wc,τ

)
(
war2,wc − war2,wa − war2,wb ≤ 30 · xr2,wa,τ + 10 · xr2,wb,τ

)
∨
(
war2,wa + war2,wb − war2,wc ≤ 40 · xr2,wc,τ

)
instantiation of Equation 1 for resources r1 and r2 and work items wa, wb and wc:

xr1,wa,τ = 1⇔ war1,wa ≥ τ ∧ war1,wa < τ + 80 xr1,wa,τ = 1⇔ war2,wa ≥ τ ∧ war2,wa < τ + 80

xr1,wb,τ = 1⇔ war1,wb ≥ τ ∧ war1,wb < τ + 80 xr1,wb,τ = 1⇔ war2,wb ≥ τ ∧ war2,wb < τ + 80

xr1,wc,τ = 1⇔ war1,wc ≥ τ ∧ war1,wc < τ + 80 xr1,wc,τ = 1⇔ war2,wc ≥ τ ∧ war2,wc < τ + 80

The optimal solution to this problem is war1,wa = 1, war1,wb
= 0, war1,wc = 0, war2,wa = 0, war2,wb

= 0,

war2,wc
= 1, xr1,wa,τ = 1, xr1,wb,τ = 0, xr1,wc,τ = 0, xr2,wa,τ = 0, xr2,wb,τ = 0, xr2,wc,τ = 1, that is a schedule

where resource r1 performs work item wa and resource r2 performs work item wc.

6.2. Recommendations for Work Items Execution

After the optimal distribution is computed, we need to provide a recommendation to r for executing any

w ∈ W ∩ canN (r). For any work item w, the recommendation rec(w, r) is a value between 0 and 1, where

0 is assigned to the work item with the highest recommendation and 1 to the work item with the least one.

Let us consider an optimal solution s of the MILP problem to distribute work items while minimizing risks.

The work-item recommendations for each resource r are given as follows:
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• If there exists a work item w ∈W∩canN (r) such that xr,w,τ = 1 for solution s, the optimal distribution

suggests w to be performed by r at the current time. Therefore, rec(w, r) = 0. For any other work

item w′, the value rec(w′, r) is strictly greater than 0 and lower than or equal to 1:

rec(w′, r) =
riskr,w′,τ + riskr,w,τ

riskr,w,τ + 1

rec(w′, r) grows proportionally to riskr,w′,τ , with rec(w′, r) = 1 if riskr,w′,τ = 1.

• Otherwise, r is supposed to start no work item at the current time. However, since recommendations

need to be provided also to resources that are not supposed to execute any work item, for each

w ∈W ∩ canN (r), we set rec(w, r) = riskr,w,τ .

It is possible that the optimal distribution assigns no work item to a resource r at the current time. This is

the case when r is already performing a work item (i.e., no additional work item should suggested) or there

are more resources available than work items to assign.

Let us consider the problem illustrated at the end of Section 6.1. In this problem we have two resources

r1 and r2 and three work items wa, wb, and wc. We recall that the expected risk levels associated with a

resource performing a given work item were: riskr1,wa,τ = 0.2, riskr1,wb,τ = 0.7, and riskr1,wc,τ = 0.6 for

resource r1, and riskr2,wa,τ = 0.1, riskr2,wb,τ = 0.7, and riskr2,wc,τ = 0.4 for resource r2. We can then

derive that the best allocation requires that resource r1 performs work item wa and resource r2 performs

work item wc. Finally, when recommendations about which work item should be performed and by whom

will they be required, the system will return the following values: rec(r1, wa) = 0, rec(r1, wb) = 0.75 and

rec(r1, wc) = 0.67 for resource r1, and rec(r2, wa) = 0.36, rec(r2, wb) = 0.79 and rec(r2, wc) = 0 for resource

r2.

6.3. Recommendations for Filling Out Forms

In addition to providing risk-informed decision support when picking work items for execution, we provide

support during the execution of the work items themselves. Human resources usually perform work items

by filling out a form with the required data. The data that are provided may also influence a process risk.

Therefore, we want to highlight the expected risk whenever a piece of data is inserted by the resource into

the form.

The risk associated with filling a form with particular data is also computed using Algorithm 2. When

used to compute the risk associated with filling a form to perform a work item (ta, id), varAssign(id) is the

variable assignment that would result by submitting a form using the data the resource has inserted so far.

7. Implementation

We operationalized our recommendation system on top of the YAWL BPM system, by extending an

existing YAWL plug-in and by implementing two new custom YAWL services. This way we realized a
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(a) The UI to support participants in choosing

the next work item to perform based on risks.

(b) The UI to support participants in filling

out a form based on risks.

Figure 4: Screenshots of the Map Visualizer extension for risk-aware prediction in YAWL.

risk-aware BPM system supporting multi-instance work distribution and forms filling-out.

The intent of our recommendation system is to “drive” participants during the execution of process

instances. This goal can be achieved if participants can easily understand the suggestions proposed by

our tool. For this we decided to extend a previous plug-in for the YAWL Worklist Handler, named Map

Visualizer [14]. This plug-in provides a graphical user interface to suggest process participants the work

items to execute, along with assisting them during the execution of such work items. The tool is based

on two orthogonal concepts: maps and metrics. A map can be a geographical map, a process model, an

organizational diagram, etc. For each map, work items can be visualized by dots which are located in a

meaningful position (e.g., for a geographic map, work items are projected onto the locations where they need

to be executed, or for a process-model map onto the boxes of the corresponding tasks in the model). Dots

can also be colored according to certain metrics, which determine the suggested level of priority of a work

item. This approach offers advantages over traditional BPM systems, which are only equipped with basic

client applications where work items available for execution are simply enlisted, and sorted according to

given criteria. When users are confronted with hundreds of items, this visualization does not scale well. The

validity of the metaphors of maps and metrics used for decision support in process execution was confirmed

through a set of experiments reported in [14]. De Leoni et al. [14] only define very basic metrics. We have

extended the repertoire of these metrics with a new metric that is computed by employing the technique

described in Section 6.

Figure 4a shows a screenshot of the Map Visualizer where a risk-based metric is employed. The map
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Figure 5: The integration of the implemented tools with the YAWL system.

shows the process model using the YAWL notation and dots are projected onto the corresponding elements

of the model. Each dot corresponds to a different work item and is colored according to the risks for the

three faults defined before. When multiple dots are positioned on the same coordinates, they are merged

into a single larger dot whose diameter grows with the number of dots being amalgamated. Colors go from

white to black, passing through intermediate shades of yellow, orange, red, purple and brown. The white

and black colors identify work items associated with a risk of 0 and 1, respectively. The screenshot in Fig. 4a

refers to a configuration where multiple process instances are being carried out at the same time and, hence,

the work items refer to different process instances. The configuration of dots highlights that the risk is lower

if the process participant performs a work item of task Estimate Trailer Usage, Arrange Pickup Appointment

or Arrange Delivery Appointment for a certain instance. When clicking on the dot, the participant is shown

the process instance of the relative work item(s).

As discussed in Section 6.3, the activity of compiling a form is also supported. Figure 4b shows a

screenshot where, while filling in a form, participants are shown the risk associated with that specific input

for that form via a vertical bar (showing a value of 45% in the example, which means a risk of 0.45). While

a participant changes the data in the form, the risk value is recomputed accordingly.

Besides the extension to the Map Visualizer, we implemented two new custom services for YAWL,

namely the Prediction Service and Multi Instance Prediction Service. The Prediction Service provides risk

prediction and recommendation. It implements the technique described in Section 5 and constructs decision

trees through the implementation of the C4.5 algorithm of the Weka toolkit for data mining.4

The Prediction Service communicates with the Log Abstraction Layer described in [3], to be able to

retrieve event logs from textual files, such as from OpenXES event logs, or directly from the YAWL database,

4The Weka toolkit is available at www.cs.waikato.ac.nz/ml/weka/
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which stores both historical information and the current system’s state.

The Multi Instance Prediction Service, similarly to the Prediction Service, provides risk prediction and

recommendation. The difference between these two services is that in the former a recommendation takes

into account all process instances currently running in the system. The Multi Instance Prediction Service

interacts with the Prediction Service to obtain “local” predictions that, in combination with other informa-

tion derived from the log (e.g. expected task duration, other running instances), are used to find the optimal

resource allocation using the technique described in Section 6. To this purpose, the Multi Instance Predic-

tion Service also interacts with the MILP Solver. The MILP Solver provides an interface for the interaction

with different integer linear programming solvers. So far we support Gurobi,5 SCIP6 and LPSolve.7 Finally,

the Multi Instance Prediction Service is invoked by the Map Visualizer to obtain the risk predictions and

recommendations and show these to process participants in the form of maps. The map visualizer works

with the standard Worklist Handler provided by YAWL to obtain the up-to-date distribution of work to

resources. Figure 5 shows the diagram of these connections.

8. Evaluation

We evaluated our technique using the claims handling process and related event data, of a large insurance

company kept under condition of anonymity. The event data recording about one year of completed instances

(total: 1, 065 traces) was used as a benchmark for our evaluation. The claims handling process, modeled

in Fig. 6, starts when a new claim is received from a customer. Upon receipt of a claim, a file review is

conducted in order to assess the claim, then the customer is contacted and informed about the result of the

assessment. The customer may provide additional documents (“Receive Incoming Correspondence”), which

need to be processed (“Process Additional Information”) and the claim may need to be reassessed. After the

customer has been contacted, a payment order is generated and authorized in order to process the payment.

During the execution of the process model, several updates about the status of the claim may need to be

provided to the customer as follow-ups. The claim is closed once the payment has been authorized.

As one can see from the model, this process contains several loops, each of which is executed multiple

times, in general.

Four risk analysts working in this insurance company were consulted through an iterative interview

process, to identify the risks this process is exposed to.8 They reported about three equally-important faults

related to complete traces σ of the claim handling process:

5Available at http://www.gurobi.com
6Available at scip.zib.de
7Available at lpsolve.sourceforge.net
8Three interviews were conducted for a total of four hours of audio recording
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Figure 6: The Claims Handling process used for the evaluation.

Over-time fault. This fault is the same as the over-time fault described in Section 4. For this risk we set

the Maximum Cycle Time dmct = 30 (i.e. 30 days) and the maximum duration dmax = 300 (i.e. 300

days). The severity of an overtime fault is measured as follows:

ftime(σ) = max

(
dσ − dmct

max(dmax − dmct, 1)
, 0

)
Customer-dissatisfaction fault. During the execution of the process, if a customer is not updated reg-

ularly on their claim, they may feel “unheeded”. A customer dissatisfied may generate negative con-

sequences such as negative publicity for the insurance company, leading to bad reputation. In order

to avoid this kind of situations, the company’s policy is to contact their customers at least once every

15 days. Given the set Λ = {(t, r, d, φ) ∈ σ|t = Request Follow Up ∨ t = Receive New Claim ∨ t =

Close Claim} of events belonging to task Request Follow Up, to task Receive New Claim, or to task

Close Claim, ordered by timestamp, the severity of this fault is:

fdissatisfaction(σ) =
∑

1≤i≤‖Λ‖

max(0, di+1 − di − 15days)

where di is the time stamp of ith event ∈ Λ.

Cost Overrun fault. Each task has an execution cost associated with it, e.g. the cost of utilizing a resource

to perform a task. Since the profit of the company decreases with a higher number of tasks executed,

the company clearly aims to minimize the number of tasks required to process a claim, for example by

reducing the number of follow-ups with the claimant or the need for processing additional documents,

and reassessing the claim, once the process has started. The severity of the cost overrun fault increases

as the cost goes beyond the minimum. Let cσ be the number of work items executed in σ, cmax be

the maximum number of work items (e.g. 30) that should be executed in any process instance that

has already been completed (including σ), and cmin be the number of work items with unique label
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executed in σ. The severity of a cost overrun fault is:

fcost(σ) = min

(
cσ − cmin

max(cmax − cmin, 1)
, 1

)
Trialling our technique within the company was not possible, as the claims handling process concerns

thousands of dollars, which cannot be put in danger with experiments. So we had to simulate the execution

of this process and the resource behavior using CPN Tools.9 We mined the control-flow of our simulation

model from the original log and refined it with the help of business analysts of the company, and added the

data, resource utilization (i.e. who does what), and tasks duration, which we also obtained from the log.

We then add the frequency of occurrence of each of these elements, on the basis on that observed from the

log. This log was also used to train the function estimators.

The CPN Tools model we created is a hierarchical model composed of ten nets that all together count

65 transitions and 62 places. The main net is based on the model showed in Figure 6, with additional places

and transitions in order to guarantee the interaction with our system. The remaining nine nets define the

behaviour of each one of the nine tasks showed in Figure 6.

We used this model to simulate a constant workload of 50 active instances (in the original log we had

300 active instances). In order to maintain the ratio between active instances and resources, we reduced the

number of resources utilized to one-sixth of the original number observed in the log.

The model created with CPN Tools was able to reproduce the behavior of the original log. The

Kolmogorov-Smirnov Z two-samples test (Kolmogorov − SmirnovZ = 0.763, p = 0.605 > 0.05) shows no sig-

nificant difference between the distribution of the composite fault in the original log and that in the simulated

log. This result is confirmed by the Mann-Whitney test (U = 109, 163.0, z = −0.875, p = 0.381 > 0.05).

We performed three sets of experiments. In the first set, all the suggestions provided by the system

were followed. In the second set, only 66% of the times the suggestions were followed, and executing the

process as the company would have done for the remaining 33% of the times. Finally, in the third set of

experiments, only 33% of the times the suggestions provided by our system were followed. Moreover, for

each set of experiments we tested several values of α (i.e. 0.0, 0.25, 0.5, 0.75 and 1.0), where α equal to 0

will shift focus on reducing risks, while α equal to 1 on reducing the overall execution time (see Section 6).

All experiments were executed simulating the execution of the process by means of the CPN Tools model.

For each experiment we generated a new log containing 213 fresh log traces (a fifth of the traces contained

in the original log). We used a computer with an Intel Core i7 CPU (2.2 GHz), 4GB of RAM, running

Lubuntu v13.10 (64bit). We used Gurobi 5.6 as MILP solver and imposed a time limit of 60 seconds, within

which a solution needs to be provided for each problem. For mission-critical processes, the time limit can

also be reduced. If a time limit is set and Gurobi cannot find a solution within the limit, a sub-optimal

9Available at www.cpntools.org
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Figure 7: Comparison of the fault severity when recommendations are and are not followed, with 0 denoting absence of faults.

The x-axis represents the severity of the composite fault and the y-axis represents the percentage of instances that completed

with a certain severity.

solution is returned, i.e. the best solution found so far. The experiments have shown that, practically, the

returned solution is always so close to the optimal that it does not influence the final fault’s magnitude.

Figure 7 shows the results of each of the three sets of experiments, comparing the fault severity of the

original log with that obtained when recommendations are followed. It is worth highlighting how the results

are given in terms of severity measured for completed instances. Risks are relative to running instances and
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Reference Logs # Traces % Faulty Instances Average Median

Original 1065 89.4% 0.22 0.10

Simulation model 1065 92.5% 0.22 0.15

Suggestions 100% Suggestions 66% Suggestions 33%

Test Logs # Traces
% Faulty

Avg Mdn
% Faulty

Avg Mdn
% Faulty

Avg Mdn
Instances Instances Instances

Simulated aggregated 1065 26.8% 0.02 0.00 43.9% 0.03 0.00 76.3% 0.07 0.05

- Simulated α = 0.0 213 31.9% 0.02 0.00 53.1% 0.03 0.05 80.3% 0.08 0.05

- Simulated α = 0.25 213 24.9% 0.02 0.00 42.7% 0.02 0.05 76.5% 0.07 0.05

- Simulated α = 0.5 213 14.1% 0.01 0.00 37.1% 0.02 0.05 71.4% 0.07 0.05

- Simulated α = 0.75 213 22.1% 0.01 0.00 38.0% 0.02 0.05 77.5% 0.07 0.05

- Simulated α = 1.0 213 40.8% 0.03 0.00 48.8% 0.03 0.05 75.6% 0.08 0.05

Table 1: Percentage of faulty instances, mean and median fault severity occurring in the reference logs, i.e. original log and

simulation model log. Percentage of faulty instances, mean and median fault severity occurring in the test logs aggregated into

a unique log, i.e. simulated aggregated, and for each value of α, reported for each of the three sets of experiments (33%, 66%

and 100% suggestions used).

estimate the expected fault severity and likelihood when such instances complete.

Table 1 shows the results of the experiments. In this table we show percentage of faulty instances, mean

and median fault severity obtained during our tests. The values are shown for the original log and the log

obtained by our simulation model without using our recommendation system (Simulation model). Same

values are also reported for each log obtained using our recommendation system, both in an aggregated log

(Simulated aggregated) and for each value of α, over the three sets of experiments (33%, 66% and 100%

suggestions used). In the best case (Simulated log with α = 0.5), our technique was able to reduce the

percentage of instances terminating with a fault from 89.4% to 14.1% and the average fault severity from

0.216 to 0.01. In particular, the use of our system significantly reduced the number of instances terminating

with faults, as evidenced by the result of the Person’s χ2 test (χ2(1) = 857.848, p < 0.001 for the first

set of experiments, χ2(1) = 494.907, p < 0.001 for the second set, and χ2(1) = 64.663, p < 0.001 for

the third one, computed over the original log and the simulated aggregated log). Based on the odds ratio,

the odds of an instance completing without a fault are respectively 23.06, 10.75, and 2.62 times higher

if our suggestions are followed. Moreover, we tested if the number of suggestions followed influences the

effectiveness of our technique. The Kruskal-Wallis test (H(3) = 1, 603.61, p < 0.001) shows that the overall

fault severity among the three sets of experiments (using the Simulated overall dataset, i.e. independently

of the value of the parameter α) and the original log is significantly different, and as revealed by Jonkheere’s

test (J = 1, 658, 630.5, z = −41.034, r = −0.63, p < 0.001), the median fault severity decreases as more

suggestions are followed (see Figure 8). These two tests indicate that our technique is capable of preventing

the occurrence of faults and of reducing their severity. Clearly, it is preferable to follow as many suggestions

as possible in order to obtain the best results though this may not always be possible.
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Figure 8: BoxPlot showing the fault severity occurring in instances of each of the three experiments and of the original log.

Finally, we tested how the value of the parameter α influences the effectiveness our technique. We

compared the performances obtained with each value of α for each set of experiment. The Kruskal-Wallis

test (H(4) = 46.176, p < 0.001 for the first set of experiments, H(4) = 17.191, p = 0.002 < 0.05 for the

second one, H(4) = 5.558, p = 0.235 > 0.05 for the third one) shows how the value of the parameter α

significantly influences the median fault severity if the suggestions proposed are followed in at least 66% of

the instances. Jonkheere’s test (J = 251, 305, z = 5.577, r = 0.17, p < 0.001 for the first set of experiments,

J = 246, 322.5, z = 3.918, r = 0.12, p < 0.001 for the second one) revealed that the median fault severity

increases when the value of α diverges from 0.5 moving either toward 0 or 1.

In the case study taken in exam, the duration of an instance has an influence over the over-time fault

and the cost overrun fault. A short execution time will directly minimize the duration of an instance (thus

preventing the over-time fault) but also reduce the number of activities that are executed inside such an

instance (thus preventing the cost overrun fault). In light of so, it is not strange that the best results are

obtained with α = 0.5 which strikes a good balance between minimizing risks and overall execution time.

Based on the results of our experiments we can conclude that the approach produces a significant

reduction in the number of faults and their severity. Specifically, for the case study in question we achieved

the best results with α equal to 0.5. We observe that this parameter can be customized based on the

priorities of the company where our approach would be deployed, e.g. an organization may use lower values

of α if risk reduction is prioritized over reduction of process duration.

9. Related Work

The technique developed in this paper can be compared to work in the following areas: risk prediction,

job scheduling and work-item distribution.
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9.1. Risk Prediction

Various risk analysis methods such as OCTAVE [15], CRAMM [16] and CORAS [17] have been de-

fined which provide elements of risk-aware process management. Meantime, academics have recognized

the importance of managing process-related risks. However, risk analysis methods only provide guidelines

for the identification of risks and their mitigation, while academic efforts mostly focus on risk-aware BPM

methodologies in general, rather than on concrete approaches for risk prediction [18].

An exception is made by the works of Pika et al. [19] and Suriadi et al. [20]. Pika et al. propose

an approach for predicting overtime risks based on statistical analysis. They identify five process risk

indicators whereby the occurrence of these indicators in a trace indicates the possibility of a delay. Suriadi

et al. propose an approach for Root Cause Analysis based on classification algorithms. After enriching a log

with information like workload, occurrence of delay and involvement of resources, they use decision trees

to identify the causes of overtime faults. The cause of a fault is obtained as a disjunction of conjunctions

of the enriching information. Despite looking at the same problem from different prospectives, these two

approaches result to be quite similar. The main difference between them and our technique is that we use

risk prediction as a tool for providing suggestions in order to prevent the eventuation of faults, while they

limit their scope to the identification of indicators of risks or of causes of faults. Moreover, the works in

[19, 20] do not consider the data prospective and have been designed to support overtime risks only.

The technique for risk prediction presented in this paper is part of a wider approach, described in

Section 2, which aims to bridge the gap between risk and process management. In particular, this technique

is complemented by two other techniques. The first one [3, 5] allows process modelers to specify process-

related faults and related risks on top of (executable) process models, and to detect them at run-time

when their risk likelihood exceeds a tolerance threshold. Risks are specified as conditions over control-flow,

resources and data aspects of the process model. The second technique [4] builds on top of the first one to

cover risk mitigation. As soon as one or more risks are detected which are no longer tolerable, the technique

proposes a set of alternative mitigation actions that can be applied by process administrators. A mitigation

action is a sequence of controlled changes on a process instance affected by risks, which takes into account

a snapshot of the process resources and data, and the current status of the system in which the process

is executed. These two techniques have also been implemented on top of the YAWL system, thus being

fully integrated with the technique for risk prediction presented in this paper. There could be cases where

the recommendations provided by the risk prediction technique may not be sufficient to fully prevent the

eventuation of a risk. In these cases the risk monitoring technique will kick in, detecting the eventuation of

a risk and notifying the process administrator. The administrator may then decide to initiate a mitigation

action that will be discovered by the risk mitigation technique.

For a comprehensive review and comparative analysis of work at the intersection of risk management

and BPM, we refer to [18].
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9.2. Job Scheduling

The problem of distributing work items to resources in business process execution shares several simi-

larities with the job-shop scheduling [21, 22, 23, 24]. Job-shop scheduling concerns M jobs that needs to be

assigned to a N machines, with N < M , while trying to minimize the make-span, i.e. the total length of the

schedule. Jobs may have constraints, e.g. job i needs to finish before job j can be started, certain jobs can

only be performed by given machines.

Unfortunately, these approaches are intended for different settings and cannot be specialized for risk-

informed work-item assignment. To our knowledge, techniques of job-shop scheduling are unaware of the

concept of cases or process instances, since typically jobs are not associated with a case.

The concept of case is crucial when dealing with process-aware information systems. Work items are

executed within process instances and many process instances can be running at the same, so like many

work items may be enabled for execution. Different instances may be worked on by the same resources and,

hence, the allocation within a instances may affect the performance of other instances. Without considering

the instances in which work items are executed, an important aspect is not considered and, hence, the overall

allocation is not really optimized. Moreover, applying job-scheduling for work-item distribution, such work

items will be distributed with a push strategy, i.e. a work item is pushed to a single qualifying resource. This

is also related to the fact the jobs are usually assumed to be executed by machines, whereas, in process-aware

information systems, work items are normally being executed by human resources. Work items may also be

executed by automatic software services, but this is not the situation in the majority of setting. In [25], it

is shown that push strategies already perform very poorly when the resource work-load is moderately high.

Therefore, work items ought to be distributed with a pull mechanism, i.e. enabled work items are put in a

common pool and offered to qualifying resources, which can freely pick any of them. As a matter of fact, a

pull strategy is far the most common used in current-day process-aware information systems.

9.3. Work-item distribution

Our work on work-item distribution to minimize risks shares commonalities with Operational support

and Decision Support Systems (DSSs). We aim to provide recommendations to process participants to take

risk-informed decisions. Our work fully embraces the aim of these systems to improve decision making

within work systems [35], by providing an extension to existing process-aware information systems.

Mainstream commercial and open-source BPM systems do not feature work-item prioritization. They

only allow one to indicate a static priority for tasks (e.g. low, medium or high priority), independently of the

characteristics of the process instance and of the qualified resources. Similarly, the YAWL system, which is

the one we extended, does not provide means for operational support, besides the extension proposed by de

Leoni et al. [14], which, however, defines very basic metrics only.
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Table 2: Comparison of different approaches for operational support in Process-aware Information Systems

Approach Weight Process Perspectives Optimal Objective Assignment

Computation Distribution Method

Kim et al. [26] Dynamic Control-flow, Resource - Time, Cost -

Yang [27] Static - Instance level Customizable PUSH

Kumar et al. [28] Dynamic Control-flow, Resource Instance level Cooperation
a

PUSH

Kumar et al. [25] Static - Instance level Suitability, Urgency, Workload PUSH/PULL
b

Huang et al. [29] Dynamic Control-flow, Resource, Data, Time Instance level Customizable PUSH

van der Aalst et al. [13] Dynamic Control-flow - Time -

Folino et al. [30] Dynamic Control-flow, Resource, Data, Time - Time -

Sjoerd et al. [31] Dynamic Control-flow - Cost -

Cabanillas et al. [32] Static Control-flow, Resource Process level User preference
c

PUSH

Barba et al. [33] Static Control-flow, Resource Instance level Time PULL

Maggi et al. [34] Dynamic Control-flow, Resource, Data - Customizable LTL formulas
d

-

Our approach Dynamic Control-flow, Resource, Data, Time Process Level Customizable PULL

a
Work items are distributed to maximize the quality of the cooperation among resources. This approach assumes that some resources can cooperate

better than others when working on a process instance.

b
Resources declare their interest in picking some work items for performance. The approach assigns each work item to the interested resource that

guarantees the better distribution.

c
At design time, users provide preferences for work items. At run time, the system allocates work items to resources to maximize such preferences.

d
The expressiveness power of business goals in the form of a single LTL formula is lower than what our approach allows for. In principle, multiple

LTL formulas can be provided though one has to balance contrasting recommendations for the satisfiability of such formulas.

Several approaches have been proposed in the literature. Table 2 summarizes and compares the most

significant ones, using different criteria:

Weight Computation. In order to perform an optimal distribution, every work item needs to be assigned

a weight, which may also depend on the resources that is going to perform it or on the moment in

time when such work item is performed. These weights can be defined either statically by analysts or

dynamically computed on the basis of the past history recorded in an event log.

Process Perspective. When weights are dynamically defined, they may be computed considering different

perspectives: control-flow, resources, data and time.

Optimal Assignment. The optimization of work-item distribution can be computed by considering single

instances in isolation or trying to optimize the overall performances of all running instances.

Objective. The work-item distribution can be optimized with respect to several factors, such as minimizing

the cost, time or maximizing the cooperation. Only few approaches allow one to customize the objective

function to minimize/maximize.

Assignment Method. Once an optimal distribution is computed, each work item can be pushed to single

qualified resource or, conversely, can be put in a common pool and simply recommended to a single

resource.

The last row refers to our approach. This is the only one that performs predictions based on various

perspectives and uses such predictions to compute an optimal distribution that is not local to instances but

is global at process level. Moreover, we use customizable faults as objective functions. To the best of our
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knowledge, this is the only approach where each work item is recommended to qualifying resources with

different emphasis (the strongest emphasis is associated with the resource that would minimize the fault’s

risk).

There also exists a number of approaches (e.g.,[36, 37, 38]) that mine association rules from event logs to

define the preferable distribution of work items. However, in the end a resource manager needs to manually

assign work items to resources. Manual distributions are clearly inefficient because they are both unlikely to

be optimal and some work items probably remain unassigned for a certain amount of time until the manager

takes charge of their assignment. Moreover, the mined rules consider process instances in isolation.

Our approach to risk-aware operation support is also related with the body of work that is concerned with

devising frameworks and architectures to provide operational support as service. For instance, Nakatumba

et al. [39] propose a service for operational support, which generalizes what proposed in [40]. This service

is implemented in ProM, a pluggable framework to implement process-aware techniques in a standardized

environment. On its own, the service does not implement recommendation algorithms but provides an

architecture where such algorithms can be easily plugged in. For instance, the prediction technique in [34]

(see Table 2) is an example of algorithm plugged into this architecture. So is the work reported in [41],

which concerns a recommendation algorithm based on monitoring the satisfaction of business constraints.

This work does not make any form of prediction and automatic optimal work-items’ distribution. As a

matter of fact, there is no conceptual or technical limitation that would prevent our approach from being

implemented as a plug-in for an operational-support service.

This paper is an extended version of the conference paper in [42]. With respect to the conference paper,

the main extension relates to the provision of support for multi-instance risk prediction. This is achieved by

combining our existing technique for risk estimation [42], with a technique for identifying the best distribution

of resources to work items of concurrent process instances, using integer linear programming. This technique

has been implemented via a new YAWL custom service, the Multi Instance Prediction Service. Further,

the evaluation has been completely redone using a real-life business process in use at a large insurance

company. With input from a team of risk analysts from the company, this process has been extensively

simulated on the basis of an event log recording one year of completed instances of this process, to show

that it is feasible to predict risks across multiple process instances without impacting on performance, and

that the recommendations provided by our system significantly reduce the number and severity of faults,

for all instances simulated.

10. Conclusion

This paper proposes a recommendation system that allows users to take risk-informed decisions when

partaking in multiple process instances running concurrently. Using historical information extracted from
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process execution logs, for each state of a process instance where input is required from a process participant,

the system determines the risk that a fault (or set of faults) will occur if the participant’s input is going to

be used to carry on the process instance. This input can be in the form of data used to fill out a user form,

or in terms of the next work item chosen to be executed.

The system relies on two techniques: one for predicting risks, the other for identifying the best assignment

of participants to the work items currently on offer. The objective is to minimize both the overall risk of

each process instance (i.e. the combined risk for all faults) and the execution time of all running process

instances.

We designed the system in a language-independent manner, using common notions of executable process

models such as tasks and work items borrowed from the YAWL language. We then implemented the system

as a set of components for the YAWL system. For each user decision, the system provides recommendations

to participants in the form of visual aids on top of YAWL models. We also extended the YAWL user form

visualizer, to show a risk profile based on the data inserted by the participant for a given form. Although

we implemented our ideas in the context of the YAWL system, our recommendation system can easily be

integrated with other BPM systems by implementing an interface that allows the communication through

the “log abstraction layer” (in [5] we showed how it can be integrated with the Oracle BPEL 10g database),

and by extending the Map-Based Worklist Handler in order to list work items belonging to a different BPM

system than the YAWL system.

We simulated a real-life process model based on one year of execution logs extracted from a large

insurance company, and in collaboration with risk analysts from the company we identified the risks affecting

this process. We used these logs to train our system. Then we performed various statistical tests while

simulating new process instances following the recommendations provided by our system, and measured the

number and severity of the faults upon instance completion. Since in reality it might not always be feasible

to follow the recommendations provided, we varied the percentage of recommendations to be followed by

the simulated instances. Even when following one recommendation out of three, the system was able to

significantly reduce the number and severity of faults. Further, results show that risks can be predicted

online, i.e. while business processes are being executed, without impacting on execution performance.

The system we propose relies on a couple of assumptions. While we deal with multiple process instances

sharing the same pool of participants, we assume no sharing of data between instances. Further, we only

assume that one participant can perform a single task at a time. These assumptions offer opportunities for

future work. For example, for the sharing of data between instances we need to reformulate the ILP problem

in order to consider that the risk estimation of a work item may change as a consequence of the modification

of data by work items that have been scheduled to be performed first. For allowing participants to perform

multiple tasks at a time we need to assign a capacity to each resource as the maximum number of work

items that resource can perform in parallel. Our ILP problem needs to be reformulated in order to take this

31



capacity into account.
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Appendix

This appendix provides the mathematical proofs of Lemma 1 and Lemma 2 discussed in Section 6.1.

Proof of Lemma 1

Let us consider xr,w,t and its possible values 1 and 0. If xr,w,t = 1 then the last two constraints will be

satisfied by −M · xr,w,t � t− war,w and −M · xr,w,t � −∆r,w(t)− war,w. In order to satisfy the first two

constraints, since M · (1−xr,w,t) = 0, war,w must be war,w ≥ t∧war,w < ∆r,w(t), that is exactly the second

part of the constraint defined in Equations 1.

If xr,w,t = 0 then M · (1− xr,w,t) = M . This satisfies the first two constraints since −M · (1− xr,w,t)�

−t+war,w and −M ·(1−xr,w,t)� ∆r,w(t)−war,w. The third constraint can be satisfied only if war,w < t or

if o′r,w,t = 1, similar thing can be said for the fourth constraint that will be satisfied only if war,w ≥ ∆r,w(t)

or if o′r,w,t = 0. We can derive that in order to satisfy the last two constraints we either have war,w < t and

o′r,w,t = 0, or we have war,w ≥ ∆r,w(t) and o′r,w,t = 1. As we can see for xr,w,t = 0 the only way to satisfy

the constraints of Equations 4 is to violate the second part of the constraint defined in Equations 1. �

Proof of Lemma 2

Let us consider the constraints in Equations 5, and let introduce for readability purposes the following

equality: ∑
wb∈D2

war,wb
−
∑

wa∈D1

war,wa
+
∑

wb∈D2

∑
t∈startr,wb

time(wb) · xr,wb,t = a

∑
wa∈D1

war,wa −
∑

wb∈D2

war,wb
+
∑

wa∈D1

∑
t∈startr,wa

time(wa) · xr,wa,t = b.

we can then rewrite Equations 5 as:

a−M · or,D1,D2,t ≤ 0

b−M · (1− or,D1,D2,t) ≤ 0

The first constraint in Equations 5 can only be satisfied if either a ≤ 0 or if −M · or,D1,D2,t ≤ 0. Similarly,

the second constraint can only be satisfied if either b ≤ 0 or if −M · (1− or,D1,D2,t) ≤ 0. Since or,D1,D2,t can

only be 0 or 1, we can see that in order to satisfy both constraints either a ≤ 0 or b ≤ 0 must be satisfied

that is exactly the constraint defined in Equations 3. �

34


